

NanoDefine – figures and tables final report

Figure 1: Structure of the NanoDefine work plan

Figure 2: Overview on the coherence and interactions of the different WP, tasks and subtask

able 1: Selection of representative test materials ^{Material ID}	material	Subst.(S) / product (P)	pre-selected	nano (n) / coarse (c)	link to NANoREG WP2	Origin: maufactured (m); natural (n); incidental (i)	chem. composition	shape	presence of different sized particles	trade form
IRMM-382	MWCNT	S	x	n	x	m	carbon	fiber	nano	powder
IRMM-380	Organic pigment	S	х	n		m	organic	particle	nano+(non-nano)	powder
IRMM-386	Organic pigment	S		с		m	organic	particle	(nano)+non-nano	powder
IRMM-384	CaCO ₃ (fine grade)	S	х	с		m	inorganic	rod / cigar	(nano)+non-nano	powder
IRMM-383	Nano Steel	S	х	n		m	metal	platelets	nano+(non-nano)	powder
IRMM-387	BaSO ₄ (ultrafine grade)	S		n	х	m	inorganic	particle	nano+(non-nano)	powder
IRMM-381	BaSO4 (fine grade)	S		с		m	inorganic	particle	non-nano	powder
IRMM-385	Kaolin	S		с	x	n	inorganic	multiscale platelets	(nano)+non-nano	powder
BAM-11	Zeolite powder	S		С		m	inorganic	particle	(nano)+non-nano	powder
IRMM-389	Basic methacrylate copolymer particles (BMA)	S		с		m	organic	particle	non-nano	powder
IRMM-388	coated TiO_2	S		с		m	inorganic/ composite	core-shell	non-nano	powder
BAM-12a/b	Food with SiO ₂ , (NanoLyse-material+ commercial dry pancake mix)	Ρ	x	n		m	inorganic	particle	nano+(non-nano)	suspension /powder
BAM-13a	TiO ₂ +surface treatment with aluminum compound formulated in sunscreen (w/ Fe ₂ O ₃ , micro-TiO ₂)	Ρ	x	n		m	inorganic/ composite	particle	nano + (non-nano)	cream
BAM-13b	TiO2 +surface treatment with aluminum compound formulated in simplified sunscreen	Ρ	x	n		m	inorganic/ composite	particle	nano	cream
BAM-14 BAM-14-1 BAM-14-2	Fe ₂ O ₃ in HDPE (+ raw HDPE + raw Fe ₂ O ₃ powder)	Ρ		n		m	inorganic	particle	nano	granulate
BAM-15	Al ₂ O ₃ in toothpaste	Р		с		m	inorganic	particle	(nano)+non-nano	paste

Table 1: Selection of representative test materials

Figure 3: SEM images of the selected substances

Figure 4: SEM images of the selected consumer products

Table 2: Results of the evaluation of all considered MTs and recommendations of MTs for further specific development or direct validation and standardisation.

		onzo rungo					Convertibility	the small-	i-															
			nm			μm		Direct	to number weighted PSD / Quanti-	est di- mension	Measurement of the mate-	ISO stan- dards	Size Ac-	Chemical	Access to primary	Costs	Analysis	Widely used	Hyphenation to	Potential for im- provement in	Recommended	Recommended	Recommended	
			1-10	10-30	30-100	0.1–1	1–10	>10	СМ	tative accu- racy	particle	rial as it is	available	curacy	selectivity	particles?	per sample	turnaround time	Availability	other methods?	NanoDefine with- in 2014-2017?	to WP4	to WP5	to WP6
		SEM		(+)	++	++	++	++	++		+		0	+	++3	+			++		+		++	+
	EM	TSEM	(+)	+	++	++	++	++	++		+		+	++	++3	+			+		+		. ++	++
		TEM	++	++	++	++	++	+	++		+		+	++	++3	++			0		0			++
Counting	SFM		+	++	++	+	0	-	++		++		+	++		0			+		0	· · /		+
	PTA			0	+	++			+				+	+	0		+	+	0		+	\mathbb{N}		+
	TRPS				0	+	+		++				++	++			+	+		-	-	-		
	FFF	mə	+	++	++	++	0							+	+4		0	0		++	+		++	+
Fractio.	AC		0	+	++	++	+			0			++	++			+	+	+	-	+	+		+
nating	DMA	s	+	++	++	++			+	+	1.1	1.1	++	+			+	+	0	+	0	+		0
	SEC		0	+	+	+													1					
DLS + ++ ++ Recommended to W							to WI	Recommended to WP5 Recommended						ded to V	VP6									
	sxs + + + + + (Screening methods) (Confirmatory methods) (Methods red							adv for	direct															
-	USSp		-	+	++	+				.g	,			1,01			.,	,		, inclusion	dette e	a a fa mali		
Ensemble	ALS		•	+	+	++	1													valuation or s		rstanda	ardisati	on)
	os		+	+	+	0	S	Strongly			recommended			Strongly			n	recommended			Strongly r		comme	nded
	FCS							recommended							0	and	o d				mmond	od		
Integral	BET		+	+	+	+		:00	iiiiiie	nueu	<u> </u>			Tec	recommended			Tecc	recommended					
PTA/DUM						TRPS			EM			5	SFM EM			I SFM								
sp ICP-MS FF						FFF			FF	FFF sp ICP-M			MS1	1S ¹			PTA/DUM							
AC							SAXS							sp	sp ICP-MS									
DMAS							USSp							FF	FFF									
DLS						ALS							A	AC										
BET ²																								

Figure 5: Parity plots of the number weighted medians $x_{50,0}$ as determined by the various MTs versus the SEM value; lines indicate parity and deviation from parity by a factor of 2.

Table 3: UIP ob	tained for the	measurement	of the me	edian Feret	min of the	different
materials by P1	, P2, P3, TP1	and TP2.				

UIP	P1	P2	P3	TP1	TP2
ERM-FD100 18500x	1.8%	1.9%	1.7%	1.7%	2.0%
ERM-FD100 68000x	1.9% 2.3%		2.4%	Test 1: 31.7% Test 2: 1.9%	5.3%
ERM-FD304 18500x	1.3%	3.0%	1.4%	1.4%	1.4%
ERM-FD304 68000x	1.5%	2.2%	1.8%	6.1%	6.1%
Au nanorods	3.4%	7.4%	4.4%	Test 1: 29.5% Test 2: 23.8%	7.2%
NM-100	2.1%	2.6%	2.3%	3.9%	15.8%
NM-103	2.5%	3.1%	2.1%	6.3%	2.3%
NM-212	6.7%	9.0%	6.3%	4.4%	4.5%

Figure 6: (A) A mosaic image (5x6) of Au NIST NPs (JEOL JEM-2800); (B) PSD of NIST Au NPs (X_{50} value is 56 nm and 6636 particles were analysed).

Figure 7: Fractogram of toothpaste with Al_2O_3 particles after AF4-ICP-MS (A) and conversion to number based particle size distribution (B).

Figure 8: TiO₂ mass-based PSD (A) and number-based PSD (B) of BAM-13a (complex sunscreen) after dilution method. LS-signal (A) is referred to MALS data for a detector angle of 90°.

Figure 9: Selected relative reproducibility standard deviations vs. the number of accepted data sets in the inter-laboratory validation exercises. Only the most prominent parameters are shown (average particle sizes of number-based or mass-based distributions). The black bar represents the minimum number of valid data sets of eight. Identical symbols indicate where different test materials were available (CLS) or the particle distribution was bimodal (AF4).

Table 4: Overview of new results (foreground) with high potential for commercial exploitation

Exploitable product	Main	Innovation and commercialization potential				
	producer					
NTA Validation Protocol	Malvern	Describes a set protocol for in-house and inter- laboratory validation of NanoDefine samples. Offers a method for generating values for instrument validation. A technique for evaluating PTA technology.				
NTA Validation SOP for sample preparation and measurement	Malvern	Describes a set protocol for sample preparation (including powder dispersion) and measurement setup for NanoDefine supplied samples. To be used in conjunction with NTA Validation protocol. A technique for evaluating PTA technology				
HRMS for nanoparticle characterization	RAMEM	There is no commercial High-resolution DMA for particles in the range of 1-5 nm. High Resolution, detection of the smallest nanoparticles.				
Electrospray deposition for EM	RAMEM	Sampling system to avoid aggregation and agglomeration of NP for EM. No other sampling system exists to avoid aggregation and homogeneous distribution of NP				
Coupling FFF and ESI for aerosol detec-tors	RAMEM	Increase in the number and type of detectors for FFF. First development apart from FFF-ESI-ICP-MS				
Concentration Calibration of NTA in-struments	Malvern	Current NTA instruments use fixed values across all instruments and capture settings in determining concentration measurements. This innovation aims to calibrate individual system at a range of capture and analysis settings thereby removing concerns of low reproducibility and user dependence. Additionally, accuracy of measurements will be improved. Increases accuracy and robustness of concentration measurement producing a unique, high throughput, number based concentration tool				
spICP-MS data evaluation software	RIKILT	The Single Particle Calculation tool version 2 (SPCTv2) allows to generate spreadsheet-based analysis data of spICP-MS measurements. Data can be imported into the NanoDefiner e-Tool for an automatic nano/non-nano/borderline decision for a specific material.				

		http://www.wur.nl/nl/show/Single-Particle- Calculation-tool.htm
Auto-EM toolbox for automated operation and image analysis	EAWAG	The ParticleSizer is an ImageJ plug-in for TEM image analysis. Measures automatically distributions of characteristic size and shape prop- erties of potential nanomaterials. Analysis results exportable in a text-based file format and imported into the NanoDefiner e-Tool for an automatic nano/non-nano/borderline de-cision on a specific material. https://imagej.net/ParticleSizer
The NanoDefiner e-tool	FHDO	a Standardised automated procedure for method selection and NM classification for the most economic implementation of the definition. <u>https://labs.inf.fh-dortmund.de/NanoDefiner/</u> and http://www.nanodefine.eu/index.php/nanodefiner- e-tool
The NanoDefine Method Manual	JRC	Technical guidance on the use of available methodologies
New Standard operation procedures (SOPs) for dispersion control and various particle size measurement and imagining methods	WP1-7 partners	SOPs described in WP1-7 deliverable reports developed and validated by intra- and/or inter- laboratory comparison studies

Beneficiary	Female	Male	Postgraduate	PhD students	Postdocs
RIKILT	5	6	0	0	0
NOMI	2	2	0	0	0
JRC	8	12	0	0	0
UNIVIE	2	4	0	1	4
DTU	4	2	0	0	1
BfR	2	2	0	0	0
EAWAG	0	3	0	0	2
CEA	1	1	0	0	0
TUD	0	3	1	1	2
CODA-CERVA	1	1	0	0	1
UoB	3	0	0	1	1
FHDO	1	5	0	2	0
BAM	6	3	1	1	1
DIN	3	2	0	0	0
BASF	0	4	0	0	0
CLARIANT	0	3	2	1	0
SOLVAY	0	2	0	0	0
MBN	0	6	3	2	0
L'OREAL	2	2	0	0	0
MALVERN	2	4	2	4	0
RAMEM	3	8	0	0	0
SUPERON	0	5	2	0	0
THERMO FISHER	1	4	1	0	0
EUROFINS	0	2	0	0	0
NIA	2	5	0	0	0
VdMi	2	0	0	0	0
Cosmetics Europe	0	1	0	0	0
LNE	1	2	0	0	0
TOTAL	50	94	12	13	12

Table 5: Number of females and male researchers/technicians as well as postgraduates,PhD students and postdocs involved in NanoDefine