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Description of the main S&T results / foregrounds

University of Mons: Catalyst development for the bulk polymerization of L-lactide
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Figure 1: Proposed mechanism for DMAP/DMAP.HX catalysed ROP of lactide (X is benzoate, chloride,
trifluromethane sulphonate, methane sulphonate)

a) DBU Conjugate salt b) Betaine(s)
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Figure 2: Examples of organic catalysts a) DBU benzoate conjugate salt and b) (trimethylammonio)-
phenolate betaine and (7-Hydroxylate-naphthalen-2-yl)-trimethyl-ammonium
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Figure 3: Examples of 5-membered carbene catalysts
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Figure 4: 6-membered N-heterocycle carbenes 1) 1,3-dimethyl-3,4,5,6-tetra- hydropyrimidin-1-ium-2-
carboxylate 2) 1,3-dimethyl-3,4,5,6-tetrahydro pyrimidin-1-ium-2-MgCl2 (Mg-NHC) 3) 1,3-dimethyl-3,4,5,6-
tetrahydropyrimidin-1-iu- m-2-carbodithioate
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Figure 5: 1,3-dimethyl-3,4,5,6-tetrahydropyrimidin-1-ium-2-MgCl2 (Mg-NHC)



Table 1: Characterization data for P(L-LA) obtained by carbene-MgCl2 (six-membered ring NH) catalyst
polymerization at 170°C& 190°C.

. [catalyst]®/
Temperature Time Conversion My? Mp?
) by 'H NMR® [initiator]®/ Pwm?
°) (min) (%) (g/mol) (g/mol)
[monomer]
170 64 39,000 63,000 1.61
5 1/0/400
190 72 33,000 61,000 1.73
170 76 38,000 64,000 1.70
15 1/0/400
190 80 27,000 56,000 1.95
170 80 41,000 66,000 1.66
30 1/0/400
190 90 24,000 50,000 2.01
170 83 35,000 66,000 1.88
45 1/0/400
190 92 19,500 49,000 2.3
170 85 33,000 66,000 1.94
60 1/0/400
190 95 18,300 35,700 2.14

by GPC in CHCls, PS standards, 1 ml.min™', T = 30°C, ® by 500MHz 'H NMR



Time vs % of conversion
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Figure 6: Kinetics of Mg-NHC ROP of L-Lactide without solvent and initiator (alcohol)
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Figure 7: Five-cycle DSC analyses of high molecular weight PLA obtained at 170°C (see Table 1) - from 0 to
190°C at both heating/cooling rates of 10°C/min).



Table 2: Evolution of the extrusion force recorded during the extrusion synthesis of PLA (170°C — 75 RPM).

Time (min) Force (N)
3% 30
6 40
7 50
85 75
9 80
10 85
11 93
12 98
13 100
14 103
15 105
16 108
18 110
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Figure 8: Five-cycle DSC analyses carried out on high molecular weight PLA obtained by extrusion before
(a) and after monomer purification (b) (see Table 2 — from 0 to 190°C at both heating/cooling rates of

10°C/min).
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Figure 9: Variation in Mg-NHC



Hielscher: Ultrasonic Polymerization

Figure 10: Ultrasonic lab device UP200St for preliminary tests in smaller scale

Effect of ultrasound (90 um) on lactide polymerization at 180°C

30000 100

25000 \_ N\ — %

)
E 15000 85
a
£
10000 80
5000 ¥ 7
0 70

0 10 20 30 40 50 60 70 80 90
specific energy input [Ws/g]

Figure 11: Effects of sonication (90 pm) on lactide polymerization at 180°C
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Figure 12: Setup - Ultrasonic batch reactor with pressure sensor and temperature sensor

InsertMPC48 for ultrasonic flow cells

Figure 13: MPC48 with 48 cannulas for fine-size pre-mixing under sonication



Figure 14: UIP2000hdT on extruder
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Figure 15: Extruder block for the integration of the ultrasonic device into the twin screw extruder




Figure 16: Reactor for post-extrusion sonication

MUEGGE: Development, design and setup of an extruder block for injection of microwave
energy
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Figure 17: CAD model for coupling of 5.8 GHz microwave to the lab-scale twin screw extruder
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Figure 18: Vertical cross-section alongside the plane spanned by the cylindrical axes of the two matching
elements. The diameter of each twin screw without screw thread is D, = 12 mm, and the distance between
the centers of the two screws is A = 15 mm
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Figure 19: Distribution of the electrical field strength in the horizontal plane



u/m

8446
7918

6863

5867

4751

3695

2639

1584

528

Type E-Field (peak)

Monitor e-field (f=5.8) [1]
Component Abs

Plane at z 0

Maximum-2d  9396.92 U/m at -67.5 / 6 / 0
Frequency 5.8

Phase 67.5 degrees

Figure 20: Distribution of the electrical field strength in the vertical plane
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Figure 21: Distribution of the power density in the vertical plane corresponding to the vertical cross-
section alongside the plane spanned by the cylindrical axes of the two matching elements
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Figure 22: Time-related temperature profiles of the lactic acid in the extruder block for microwave injection
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Figure 23: Results obtained from the simulations for the distribution of the microwave power in the
different sections of the extruder block for injection of the 5.8 GHz microwave into the lab-scale twin
screw extruder at Fraunhofer ICT at steady state conditions



Figure 24: Extruder block designed for microwave injection into the lab-scale twin screw extruder,
connected to the shorting plunger on the right and to the E/H tuner on the left (only partly visible) of the
5.8 GHz microwave injection line

Figure 25: 5.8 GHz microwave injection line including (from left to right) a short piece of R 58 rectangular
waveguide, an E/H tuner, the extruder block designed for microwave injection into the lab-scale twin
screw extruder, and a shorting plunger

Figure 26: 5.8 GHz microwave injection line including a short R 58 rectangular waveguide, an E/H tuner,
the extruder block and a shorting plunger, integrated into the lab-scale twin screw extruder at Fraunhofer
ICT
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Figure 27: Molecular weight of the resulting PLA obtained for different process settings, with and without
application of additional microwave energy injection

Gneuss: Degassing extruder and online viscometer development

Figure 28: Prototype of MRS lab size extrusion system built during InnoREX



Figure 30: Schematic of extruder integrated viscosity sensing unit



Fraunhofer ICT: Project coordinator combining the InnoREX production line
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Figure 31: PLA samples produced at different settings with and without incorporated ultrasound energy
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Figure 32: Online viscometer attached in processing length of twin screw and recorded dynamic viscosity
with respect to molecular weight
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Figure 33: MRS purification extruder attached to twin screw and resulting molecular weights with varying
vacuum level in MRS
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Figure 34: NIR measurement at different points within the processing length and resulting spectra with
varying machine process settings



Cranfield University: Selection of simulation technique for understanding of molecular
interaction and simulation of most suitable reaction mechanism:
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Figure 35: Project work methodology
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Where: ka,, the activation rate

coefficients,

ka, are

ko, kq are the propagation rate coefficients,
ks isthe chain-transfer rate coefficient,
k. is the trans-esterification rate coefficient and

k4o is the random chain scission reaction rate
coefficient;

C is the catalyst, Sn(Oct),,

A is octanoic acid (OctOH) produced by the
catalyst,

R, represents the active polymer chains with
length 7",

D; represents the dormant polymer chains with
length 7",

G; represents the terminated polymer chains with
length *j” and M the monomer

Figure 36: details of the new five stage reaction mechanism'’

"Yu et al. Ind. Eng. Chem. Res., vol. 50, no. 13, pp. 7927-7940, Jul. 2011
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Figure 38: Isothermal curves for conversion (X) vs t and average molecular weight (M,,) vs t
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Figure 39: Isothermal curves for average molecular weight (M,) vs. t. and for conversion (X) vs. t.



SCC: Totally dedicated to simulation
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Figure 40: Screw profile with microwave device
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Figure 41: Temperature variation due to conduction (blue), mechanical (red) and micro-wave (100W)
(green) effect and result on final temperature (grey)
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Figure 42: Microwave power Gaussian distribution
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Figure 44: Microwave distribution by user defined (data from MUEGGE)

Figure 45: Effect of level of microwave power on temperature
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Figure 46: Evolution of viscosity as a function of %LA (curve and trend analysis)
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Figure 48: Simulated conversion rate and molecular weight



Materia Nova: Life Cycle Assessment (LCA) study all along the InnoREX process.
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Figure 49: Highlight of the PLA life cycle steps where InnoREX innovations could provide environmental

benefits
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Figure 50: Compared global life cycle impacts for the three scenarios, including catalysts production and

catalyst residues emissions.



AIMPLAS: Processability of new PLA grades, mainly focus on manufacturing processes:
injection and extrusion.

Figure 52: Pure InnoREX PLA and additived PLA compound



Figure 53: Cast-sheet extrusion and test bar injection of additived InnoREX PLA compound
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Figure 54: scale up strategy in two steps in order to study both polymerization and compounding scale up
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Figure 56: Steps of thermoforming process and final thermoformed trays



Survey Results

Recyclable

Modified atmosphere

Barrier properties

thermosealed

Coold without freezzing

Pelling test

Freefall test

Stacking storage
Homogeneus distribution of...

Printability

Matte/gloss finish

Transparent

00 200 400 600 800 1000

B % YES M %NO

Figure 57: Results from packaging companies of the done survey by Talleres Pohuer

Talleres Pohuer: New PLA grades and case studies thereof mainly focus on manufacturing
processes injection moulding.

Photos of packages from InnoREX-PLA

Figure 58: Injection moulded package from InnoREX PLA

BHI - PLA industrial up-scaling
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Figure 59: Work methodology of scale up step 1
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Figure 60: DOE results inputs: Flow rate (50-300kg.h), rotation speed (100-350 rpm)
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Figure 61: Scale up results with modified screw at temperatures (C) 190-180, throughput (kg/h) 140,

rotation speed (rpm) 180
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Figure 62: Extrusion parameters of extrusion studies



Gender dimension of InnoREX project
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Figure 63: Overview of female and male employees in InnoREX project
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Figure 64: Distribution of female employees in academia
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