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EXECUTIVE	SUMMARY	
 
 

The aim of MODERN (Modeling the 
Environmental and Human Health 
Effects of Nanomaterials) is to 
develop a robust framework suitable 
for evaluating the environmental and 
health impact of engineered 
nanoparticles (eNPs). The main 
challenges that have been addressed to 
achieve the above objective are: (i) the 
development of nanoparticle 
categories based on their 
physicochemical, structural and 
toxicological properties, including 

their environmental and human health impacts, and (ii) the development of computational 
approaches for nanostructure characterization (nanodescriptors) and in silico models to assess 
nanoparticle effects.  
 
The main outcomes of MODERN can be summarized as:  

• New methodologies and tools for the computation of descriptors for nanoparticles with 
the focus on metals and metal oxides 

• Synthesis and characterization of a library of metal and metal oxide nanoparticles for 
model testing and safe-by-design hypothesis validation. 

• A web-based nanosafety data management system compliant with the ISA-TAB-Nano 
format to facilitate data exchange. 

• A collection of ecotoxicity data via targeted experiments using MODERN’s nanoparticle 
library openly accessible from MODERN’s nanoDMS. 

• Structure-activity relationships for nanomaterials based on selected properties and 
ecotoxicological endpoints and development of nanoparticle signatures that integrate 
biological information at multiple levels. 

• A data-driven framework and basic categorization criteria for the identification of 
nanoparticle categories. 

• A hazard ranking scheme suitable to rank eNPs and their categories according to their 
potential environmental and human health impact.  

 
Regarding impact, the novel nanodescriptors and the new and improved toxicity models 
developed in the project enable to bring the understanding of the nanoparticle world out from the 
scientific community and research facilities and closer to the general public. The improved 
understanding of the safety issues of nanomaterials should have a twofold impact. First, a more 
knowledgeable public will be less accepting to poor practices of material handling and safety by 
the producers. Also producers of various nanomaterials would have an improved understanding 
of both the beneficial characteristics of their potential products but also the hazards at workplace 
and requirements for material handling. Regulators would have new and improved tools for 
assessing the safety of nanomaterials. Last, but not least, a knowledgeable public would be less 
likely to fall for any mass campaigns, either for or against the use of nanomaterials without 
analyzing the benefits and risks related to the real exposure scenarios in each particular case.   
 
In conclusion, the overall expected impact of MODERN is the progress in understanding and 
describing the properties of nanomaterials, at scientific, production, regulatory and general public 
levels. 
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SUMMARY	DESCRIPTION	OF	THE	PROJECT	CONTEXT	AND	MAIN	
OBJECTIVES		
 
The overall objective of MODERN is to develop a robust framework suitable for evaluating the 
environmental and health impact of engineered nanoparticles (eNPs). The main challenges that 
are addressed to achieve the above objective are: (i) the development of nanoparticle categories 
based on their physicochemical, structural and toxicological properties, including their 
environmental and human health impacts, and (ii) the development of computational approaches 
for nanostructure characterization (nanodescriptors) and in silico models to assess nanoparticle 
effects. Accordingly, the specific objectives to attain MODERN’s overall research goal are: (i) to 
build a well-characterized library of eNPs with a comprehensive description of their structural, 
molecular and physicochemical properties; (ii) to develop and validate in silico models of 
biological activity of eNPs in organisms and in the environment from in vitro/in vivo toxicity 
profiling data; and (iii) to define and implement a categorization and hazard ranking methodology 
for eNPs based on structural similarity principles and toxicological profiles. 
The specific scientific objectives for the project were: 

• Development of new methodologies for the computation of basic descriptors for 
nanoparticles with the focus on metals and metal oxides (WP1).  

• Synthesis and characterization of a basic library of metal and metal oxide nanoparticles 
for model testing and safe-by-design hypothesis validation (WP1). 

• Development of a nanosafety data management system including structure, 
physicochemical properties and toxicity profiles of nanoparticles (WP2). 

• Data generation (via targeted experiments using MODERN’s nanoparticle library) and 
collection (via data sharing agreements and manual literature data curation) to populate 
MODERN’s nanosafety data repository (WP2). 

• Development of QNPRs/QNARs based on selected properties and ecotoxicological 
endpoints and development of nanoparticle signatures integrating biological information 
at multiple levels (WP2). 

• Establishment of a data mining framework and basic categorization criteria for the 
identification of nanoparticle categories (WP3). 

• Development of a hazard ranking scheme suitable to rank eNPs and their categories 
according to their potential environmental and human health impact.  

 
The above objectives have been complemented by a set of dissemination & exploitation actions 
(WP4) and project management activities (WP5):  

• Development and periodic update of project’s website and dissemination of MODERN 
activities via social network tools (Facebook and Twitter) (WP4). 

• Implementation of tools useful for different stakeholders (WP4). 
• Dissemination of project results via peer-reviewed publications and conference 

presentations (WP4). 
• Collaboration and information sharing with ongoing NMP projects in the NMP.2012.1.3-

2, with other EC projects and EC NanoSafety Cluster, the OECD working party on 
manufactured nanomaterials (WPMN), and the Communities of Reseach (CoR) of the 
US-EU Dialogue on nanoEHS (WP4). 

• Raising awareness of the methodologies and results of the project within various 
stakeholders (industry, regulators, and academy) and educating new generation 
(seminars, presentations) at postgraduate and PhD level in this very interdisciplinary 
study area. 
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MAIN	S&T	RESULTS/FOREGROUNDS	
 
In what follows, we describe the work done during the 36 months of the project.  Relevant project 
outcomes are reported for each individual RTD work package. Results are summarized in the 
context of each project’s objective. 
 
Objective: Synthesis and characterization of a basic library of metal and metal oxide 
nanoparticles for model testing and safe-by-design hypothesis validation.  
 
Although the number of unique eNPs and their innovative performance and growing, new 
engineered eNPs with novel physicochemical properties are posing health challenges to the 
human and the environment. These could include potentially hazardous interactions and a 
pressing need is felt for a comprehensive understanding of their toxicological properties and safer 
design. In depth research is needed to acquire knowledge in nanomaterial properties and their 
influence in bioavailability, transport, fate, cellular uptake, and catalysis of injurious biological 
responses. Additionally, extensive experimental protocols are also necessary to tailor the bio-
impact across a spectrum of in-vitro to in-vivo nano-bio interfaces. To this end, MODERN has 
developed a well-characterized library of 12 metal-based nanoparticles using Flame Spray 
Pyrolysis (FSP). The FSP is a versatile process which is extremely appealing due to properties 
such as the generation of particles with crystalline perfection and with very large specific surface 
area and porosity (>95%). Using this novel technique, 12 metal-based nanoparticles (ZnO, CuO, 
Co3O4, Fe3O4, Mn3O4, TiO2, Sb2O3, Al2O3, SiO2, MgO, WO3, and metallic Pd) have been 
synthetized. For the synthesis of these eNPs, metal-organic precursors such as zinc napthenate, 
copper napthenate, cobalt napthenate, iron napthenate, manganese napthenate, titanium (IV) 
isopropoxide, antimony (III) isopropoxide, aluminium secondary butoxide, tetraorthosilicate 
(TEOS), magnesium napthenate and palladium acetylacetonate were dissolved in a highly 
combustible organic solvent such as xylene to dilute the precursor and keep the metal 
concentration to 0.5 M. In order to design materials using FSP for demonstrating safer-by-design 
strategies, several nanoparticles were synthesized adapting controlled precursor chemistry and 
solvent combinations.  In general, each liquid precursor (having 0.5M by metal) was delivered to 
the nozzle tip by a syringe pump at a flow rate of 5 mL/min by atomising the precursor solution 
with dispersant O2 at a flow rate of 5mL/min and maintaining a pressure drop of 1.5 bar at the 
nozzle tip. Combustion of the dispersed droplets is initiated by the co-delivery of CH4 and O2 (1.5 
L/min, 3.2 L/min) to form a flame. The flame parameters described above result in primary 
particle sizes of approximately 10 nm. The resulting ultrafine nanoparticles are highly crystalline 
with specific surface area and primary particle sizes in the range of 53 to 289 m2/g and 8-13 nm, 
respectively reasonably agreeing with the crystallite sizes derived from Rietveld fittings of the 
XRD patterns. Primary particle sizes were also confirmed by TEM analysis. The TEM 
micrographs demonstrate the particle shapes as well as their tendency to aggregate under dry 
conditions. After synthesis, the nanoparticle library was fully characterized in terms of their 
physicochemical properties.  
 
Objective: Development of new methodologies for the computation of basic descriptors for 
nanoparticles with the focus on metals and metal oxides. 
 
The development of in silico toxicity models for nanoparticles is mainly hindered by two factors: 
lack of appropriate descriptors and scarcity of consistent experimental data. While the latter is 
largely caused by the difficulties in synthesizing nanoparticles with well characterized and narrow 
size distribution, agglomeration, etc, the former is mainly caused by the very complex and large 
structures of nanoparticles (as compared to organic molecules) not permitting the use of most 
atom-explicit computational methods. MODERN has implemented two approaches for 
nanodescriptor development. The first is based on quantum chemistry calculations to describe the 
electronic structure of the nanoparticle whereas the second is based on molecular modeling 
principles. 



6 
	

 
Development of Nanodescriptors based on nanoparticle’s electronic structure. 
Dimensionality has a significant impact on eNP reactivity. One of the presumable reasons why 
certain nanoparticles are found to be toxic is the fact that they catalyze certain reactions on their 
surface, and thus may generate toxic compounds. As most reactions catalyzed by metal oxide 
surfaces involve transfer of electrons in some stages (i.e., redox reactions), knowledge of the 
electronic structure at the surface of the nanoparticle is pertinent. Four different types of rutile 
(TiO2) systems (Figure 1) are shown to illustrate the approach used in MODERN to investigate 
these properties. 

 
Figure 1. Four rutile (TiO2) systems with different dimensionalities: Monomer (upper left), 1D-periodic 
rod (below), 2D-periodic layer (middle), 3D-periodic bulk phase (upper right). 
 
Nanoparticles typically contain millions of atoms, and are therefore considered to be very large 
from the viewpoint of electronic structure theory. They no longer possess discrete electronic 
orbitals, but these orbitals are fused to form energy bands, as is well known from investigations 
of metals and semiconductors. A simple way to visualize such a band structure is a density of 
states (DOS) plot. In Figure 2, such a DOS plot is shown for plane wave (PW) calculations of 
rutile (TiO2) in the following four dimensionalities: monomer (single molecule, approximated 
through a pseudo-isolated periodic slab approach), 1D-periodic (nanowire), 2D-periodic 
(nanosheet), and 3D-periodic (bulk crystal). For comparison, orbital energies of the highest four 
occupied and lowest four unoccupied electronic states of TiO2 as truly non-periodic molecule are 
added as top row. 

 
Figure 2. Density of states (DOS) vs. electronic state energy for rutile (TiO2) in four dimensionalities, 
augmented by the orbital energies of TiO2 as truly isolated non-periodic molecule. 
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In this figure, the density of available electronic states (Y axis) is plotted against the electronic 
state energy (X axis). The orange colour below the curves indicates up to which energy the states 
are occupied by electrons in the investigated material (Fermi level). All four systems possess an 
electronic band gap, meaning that occupied states do not directly merge into unoccupied states, 
but that there is a region with no electronic states at all that separates the valence band from the 
conduction band. Note further that the HOMO-LUMO energy difference (i.e., the energy 
difference between highest occupied molecular orbital and lowest unoccupied molecular orbital) 
of TiO2 as truly isolated compound (“Monomer” in Fig. 1) is very similar to the mean of the 
HOMO-LUMO band gap difference of its pseudo-isolated periodic-slab counterpart. 
When switching on the intermolecular interactions in one, two or (all) three dimensions as 
addressed through periodic-slab calculations with respectively selected vacuum spacers in the 
unit cell, the HOMO-LUMO band gap becomes increasingly smaller. In Figure 2, this trend is 
seen when increasing the dimensionality through going from the PW-approximated monomer 
over the 1D-periodic and 2D-periodic to the 3D-periodic (bulk) system. The width of this band 
gap is an indicator for the ability of the material to accept and donate electrons to adsorbed 
species, and therefore is related to the catalytic activity at the surface. Accordingly, increasing the 
dimensionality makes the band gap increasingly narrow, implying a corresponding decrease in 
electronic hardness and thus an increase in reactivity. 
 
Effect of doping and impurities. Another relevant outcome of MODERN concerns the influence 
of doping or other impurities on the electronic structure of metal oxide NPs. To capture this effect, 
the bulk phase rutile system shown in Figure 1 was modified in several ways. Specifically, one 
titanium (Ti, ground-state valence-shell electron configuration 3d2 4s2) atom was replaced by 
zirconium (Zr, 4d2 5s2), scandium (Sc, 3d1 4s2), vanadium (V, 3d3 4s2), and a vacancy (i.e., no 
atom at all), respectively. For these modified systems, the electronic structure was calculated both 
with and without allowing the geometry to relax after the replacement. The results are presented 
in Figure 3. It can be seen that replacing Ti by the isoelectronic Zr has almost no effect on the 
electronic structure and the band gap. If, however, one Ti atom is replaced by Sc (one less valence-
shell electron), V (one more valence-shell electron) or a void, the orbital pattern is heavily 
affected, and the electronic band gap becomes much smaller. In case of Sc, there exists a partially 
occupied orbital exactly at the Fermi level, which corresponds to a completely vanishing band 
gap: A small amount of electron density can be either donated or accepted without any change in 
energy, leading to a very high redox activity. These electronic structure results thus demonstrate 
that doping as well as voids may be crucial for their redox activity, keeping in mind that real 
nanoparticles are never completely pure regarding their chemical composition. 
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Whereas these results have been calculated for the bulk phase as a 3D-periodic crystal, respective 
effects could be even more pronounced at the surface layer, and there add to the already present 
electronic perturbation caused by the fact that in contrast to bulk-phase lattice positions, surface-
layer atoms are not surrounded by neighbouring solid-phase atoms and thus less shielded. 
Corresponding calculations, however, are computationally more demanding because an at least 
approximate atomic-level description of an NP surface layer would require an explicit inclusion 
of some additional layers below the surface in order to capture the electronic structure variation 
in the bulk-surface transition region. From this viewpoint, the 2D-periodic and 3D-periodic 
systems discussed above in the context of dimensionality (Figure 2) represent limiting cases of 
an isolated surface layer (that lacks any subjacent layers) and a perfect bulk phase (that lacks a 
surface layer), with a true surface layer being expected to show a somehow intermediate 
behaviour. 
 
Prediction of Infrared Spectra. When it comes to identifying nanoparticle surfaces, infrared 
spectroscopy can be an important experimental tool. However, it is not always easy to assign 
bands in the spectrum to structural motifs of different surface types. By the use of ab initio 
molecular dynamics, infrared spectra of metal oxide surface slabs can be computed, which might 
be of aid for interpreting experimental results. Figure 4 shows a computed infrared spectrum of 
a rutile 100 surface with and without adsorbed water molecules. As under ambient conditions 
always a certain amount of water is adsorbed to surfaces, the spectrum which includes the explicit 
solvation is assumed to be more realistic. 

	
Figure 3. Influence of doping (one Ti atom of the unit cell replaced by Zr, Sc or V) and a void (hole = 
one Ti position in the unit cell empty) on the energy levels of bulk phase rutile (TiO2). Fix = rutile 
geometry; Opt = geometry optimized with modified system. Black: occupied orbitals, green: 
unoccupied orbitals, blue: partially occupied orbitals. 
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Figure 4. Predicted infrared spectra of rutile surface slab with (blue) and without (black) solvation by 
water. 
 
Development of size-dependent nanodescriptors. One of MODERN’s goals has been to find a 
solution to the lack of “true nanodescriptors” capable of distinguishing between the properties of 
compounds in the bulk and in nanoparticles of different sizes. To address this issue, the approach 
chosen was to model eNPs as whole-particles since it is the most consistent and size-aware option.  
Naturally, true quantum chemistry is not applicable to such large systems, therefore, molecular-
mechanics/dynamics based methods have been used.  
Using this approach, a series of descriptors derived from the full molecular mechanic simulation 
of metal oxide nanoparticles have been developed. Due to the increasing processing power of 
computers, it is possible to calculate the energy and structural parameters of nanoparticles in a 
relatively small timescale using simple interatomic potentials. 

 

 

Fig. 5 A sample of a spherical SiO2 nanoparticle used for descriptor calculations at the force-field level. 
The size of the particle is 6.75 nm and it contains 102,579 atoms  

The novel methodology developed in MODERN for nanodescriptor calculation comprises the 
following steps. First, atomic coordinates for the metal oxide nanoparticle are generated. The 
thermodynamically most stable crystal structure for each metal oxide is selected and the 
corresponding unit cell parameters are used to generate a spherical nanoparticle with the desired 
diameter (see Fig. 5). The atoms in this sphere are divided into two groups: core and shell. The 
atoms in the core are assumed to have similar characteristics to the bulk material while the shell 
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atoms are destabilized. While the positions of the atoms can be optimized according to different 
schemes, the approach works even without optimization. Already from a single-point calculation, 
the potential energy and coordination numbers can be extracted. These values are the basis to 
derive different categories of descriptors for nanoparticles (Table 1). Constitutional descriptors, 
reflecting the chemical composition, can be as simple as the number of metal or oxygen atoms in 
the two respective nanoparticle regions. Topological (i.e., connectivity based) descriptors include 
the average coordination number of metal and oxygen atoms in the shell group and in the core 
group. Descriptors based on potential energy can either be derived solely from the nanoparticle 
(average potential energy of metal atoms in shell regions) or in comparison with bulk material 
(difference between the lattice energy of nanoparticle and bulk material). Some of the 35 
descriptors developed were specific to metal oxide eNPs (i.e., use parameters related to oxygen 
atoms or metal atoms) but the concept can be adjusted to pure metal NPs or other types of particles 
in a straightforward manner.  

Table 1. Classes of size-dependent nanodescriptors for metal oxide eNPs  

Descriptor related to Basis of descriptors 

Chemical composition Total number of atoms in nanoparticle, in the core 
and shell regions. 

Potential energy 
Average potential energy of all atoms in 
nanoparticle, of metal atoms or oxygen atoms, in 
electron volts. 

Lattice energy 

Lattice energy of the whole nanoparticle, relative 
lattice energy (per diameter or per surface area or as 
compared to a perfect crystal) of the particle in 
electron volts. 

Topology Average coordination number of all atoms, metal 
atoms or oxygen atoms in the nanoparticle. 

Size Diameter, surface area and volume of the 
nanoparticle in Å, Å2, Å3, respectively. 

 

Nanodescriptor calculation. The calculation of nanodescriptors was performed with the 
LAMMPS1 molecular dynamics simulator program using Buckingham potentials to calculate the 
energies. First, the energy of the unit cell was calculated and the optimal cutoff values for 
Coulombic interactions were calibrated and later used for nanoparticle calculations. Atomic 
coordinates of nanoparticle were found by replicating the selected unit cell and cutting out the 
desired shape of the nanoparticle (sphere in the present case). To ensure the charge neutrality of 
the nanoparticle, an appropriate number of metal or oxygen atoms were added at random lattice 
positions on the surface of the nanoparticle. After that, descriptors from classes described in Table 
1 were calculated from the results of a single-point energy calculation. 

A large number of the descriptors are derived from the potential energy which is composed of 
two parts: pairwise energy calculated by the Buckingham potential (eq 1), and Coulombic 
interactions, which are calculated by Wolf summation: 
 𝐸" = 𝐴 ∗ 𝑒

'( ) − +
(,
				𝑟 < 𝑟0, (1) 

where A, ρ, C are constants of the Buckingham potential; r is the interatomic distance; rc is the 
cut-off radius. Wolf summation was used as the computationally much more affordable 
alternative to the traditional Ewald summation. The required cut-off radiuses for the Wolf 
summation were derived from the modeling of respective infinite crystals by periodic calculation 
of small clusters of crystal unit cells.  

																																																								
1 http://lammps.sandia.gov 
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One of the main requirements for these calculations are the constants for Buckingham potentials. 
For many metal oxides, these values can be found from the literature, but for example Sb2O3, 
these constants had to be derived. Density functional theory (i.e., DFT at the level of 
B3LYP/Def2-TZVDP) was used to calculate the interatomic potential parameters. The ability to 
derive the interatomic potential fully theoretically based on ab-initio calculations and the 
subsequent calculation of descriptors using these parameters constitutes a great advantage since 
the only experimental parameter required for the calculation of nanodescriptors is the determined 
structure of the unit cell. As many metal oxides can exist in multiple crystal structures, the 
thermodynamically most stable crystal structure under standard conditions was used for the 
calculation of nanodescriptors in all cases. As an example, Table 2 summarizes the values of the 
35 nanodescriptors calculated for two nanoparticles of TiO2 and Al2O3 with diameters of 20 and 
60 nm, respectively.  

Table 2. Descriptor classes and representatives of descriptors with examples of nanoparticles of TiO2 and 
Al2O3 of 20 nm and 60 nm, respectively.  

Geometric: TiO2 Al2O3 
Diameter [nm] 20 60 

Surface area [nm2] 1259 11317 

Volume [nm3] 4201 113210 

Constitutional (atom counts):     

Number of atoms in eNP 402483 6544700 

Number of atoms in core region 293465 5911572 
Number of atoms in shell region 109018 633128 

Number of metal atoms 134161 2617880 
Number of metal atoms in core region 97789 2364696 

Number of metal atoms in shell region 36372 253184 
Number of oxygen atoms 268322 3926820 

Number of oxygen atoms in core region 195676 3546876 
Number of oxygen atoms in shell region 72646 379944 

Potential energy based descriptors:     

Average potential energy of atoms [eV] -40.31 -28.37 

Average potential energy of atoms in core region[eV] -40.48 -28.43 
Average potential energy of atoms in shell region [eV] -39.88 -27,79 

Average potential energy of metal atoms [eV] -78.99 -42.53 
Average potential energy of metal atoms in core 
region [eV] -79.34 -42.62 
Average potential energy of metal atoms in shell 
region [eV] -78.03 -41.66 
Average potential energy of oxygen atoms [eV] -20.98 -18.93 
Average potential energy of oxygen atoms in core 
region [eV] -21.05 -18.97 
Average potential energy of oxygen atoms in shell 
region [eV] -20.77 -18.55 

Topologic:     

Average coordination number of all atoms 3.94 2.39 
Average coordination number of all atoms in core 
region 4.00 2.40 
Average coordination number of all atoms in shell 
region 3.78 2.26 

Average coordination number of all metal atoms 5.91 2.98 
Average coordination number of all metal atoms in 
core region 6 3 
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Average coordination number of all metal atoms in 
shell region 5.67 2.83 
Average coordination number of all oxygen atoms 2.96 1.99 
Average coordination number of all oxygen atoms in 
core region 3 2 
Average coordination number of all oxygen atoms in 
shell region 2.84 1.89 

Lattice energy based descriptors:     
Lattice energy [eV] -120.94 -141.86 
Difference between lattice energies of eNP and 
perfect crystal [eV] -0.50 -0.31 
Lattice energy divided by diameter of the eNP [eV/Å] -0.60 -0.24 
Lattice energy divided by surface area of the eNP 
[eV/Å2] -9.60E-04 -1.25E-04 

Lattice energy divided by volume of the eNP [eV/Å3] -2.88E-05 -1.25E-06 
 
Geometric descriptors are based on the calculated diameter of the nanoparticle, which is defined 
as the maximum distance between any two atoms in the nanoparticle. Constitutional descriptors 
are based on the chemical composition of nanoparticle. Descriptors which are based on the 
potential energy indicate the stability of the core and shell regions in the nanoparticle, 
respectively. Topologic descriptors are based on the coordination number of atoms (defined as 
counting the neighboring atoms which lie inside radius R.  
 𝑅 = 1.2 ∗ (𝑅7 + 𝑅9) (2) 
where RM, RO are the ionic radii of metal and oxygen atoms, respectively. Finally, the last group 
of descriptors is based on the lattice energy, the difference of the latter compared to that of a 
perfect crystal and the proportion to diameter, surface area, and volume. 

The main advantages of these nanodescriptors over previously published descriptors are: 
1) Current descriptors require only one experimental parameter for calculation, namely the 

structure of the unit cell of the metal oxide. This information is available for many 
different metal oxides (and other compounds) 

2) Descriptors are size-dependent. 
3) Method for calculating descriptors is easily extendable to include solvent effects or to 

nanoparticles with non-spherical shape. 
The unit cell structure is necessary to calculate the required constants for the Buckingham 

potential and to generate the structure of the nanoparticle. While at the moment the 
thermodynamically most stable crystal structure is used, in principle any other crystal structure 
can be used if so desired. 

Analysis of size-dependency. Verifying the size-dependency of the new nanodescriptors is 
paramount, as the nanoparticles with the same chemical composition but different size can have 
different toxicity/property values. The size-dependency of a Cr2O3 nanoparticle descriptor 
“Difference between lattice energies of nanoparticle and perfect crystal” is depicted on Figure 
6. 
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Fig. 6 The size-dependency of the descriptor “Difference between lattice energies of nanoparticle and 
perfect crystal” for a Cr2O3 nanoparticle.  

As the radius of nanoparticle increases, the difference between lattice energy of nanoparticle and 
the corresponding perfect crystal is reduced, approaching a constant. This follows the notion that 
as the size of nanoparticle approaches macroscopic levels, the properties of the nanoparticle start 
to become similar to the ones of macroscopic particle/bulk material. The curve presented in 
Figure 8 agrees well with the commonly accepted position that nanoparticles of size below 20 
nm require the most attention as they start to possess significantly different properties as 
compared to bulk material. A web-based application has been developed to obtain the values of 
the different nanodescriptor types for a set of 24 metal oxide nanoparticles. The application can 
be accessed from http://nano_descriptors.biocenit.cat and also provides interpolated estimations 
for any nanoparticle sizes in the range of 5 nm to 30 nm. 

 
Objective: Development of a nanosafety data management system including structure, 
physicochemical properties and toxicity profiles of nanoparticles (WP2). 
 
The development of reliable nanosafety assessment strategies requires the compilation of a 
significant amount of very heterogeneous data (e.g., emission sources, nanoscale properties, 
intermedia distribution, transformations and persistence, and effects in biological systems). 
Although these data are rapidly emerging, there is still a critical need for implementing efficient 
data management protocols aimed to facilitate data retrieval, transparent data sharing and the 
development of robust structure/property/activity relationships. To be effective, nanosafety data 
repositories must provide researchers and regulators with tools for knowledge extraction from 
annotated data. Data collected from nanotechnology research are fundamental for the 
identification of correlations between nanomaterial’s structure, physicochemical properties and 
biological activity. Establishing these relationships is of paramount importance to identify 
mechanisms of toxicity and to guide safe-by-design strategies for new nanomaterials. Currently, 
most of the data on nanosafety are widely scattered and remain inaccessible as tables and figures 
in scientific literature or in non-public databases (e.g., research project results and industrial R&D 
activities). Data ambiguity, the lack of standardization together with unstructured and 
heterogeneous data sources makes the impact assessment of nanomaterials a challenging task 
plagued with uncertainties. The use of ontologies (i.e., controlled vocabularies and relationships 
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that capture knowledge in a specific domain) provides a unifying approach for data structuring 
and annotation. The use of standards for data annotation allows the integration of heterogeneous 
data sources, aggregation and presentation in an accessible format and facilitates the 
computational analysis of the integrated data sets.  
To extract the maximum amount of relevant information, nanomaterial data should not be 
analysed independently of the overall nanosafety context. For instance, data only on in vitro 
toxicity effects are not sufficiently relevant/informative to get the complete picture of the potential 
impact of a nanomaterial. Additional information such as in situ nanomaterial properties, 
information on synthesis process, exposure conditions and actual dose and distribution of the 
particles taken up by cells/animals, and characteristics of the biological endpoint are also required. 
Based on these principles, a data management system with full support for ontology annotation 
was conceived and implemented in MODERN. The function of the data management system is 
to store nanosafety data in a semantically consistent manner by leveraging existing ontologies for 
specific parts of the nanosafety domain. In addition, the system has been designed to be 
interoperable and to facilitate data sharing. To this end, the data management system implements 
the ISA-TAB-Nano data exchange format. 

 

 
Figure 7. Web interface of the nanoDMS system showing the ISA-TAB_Nano structure.  
The nano Data Management System2 (nanoDMS, see Figure 7) developed in MODERN is 
available from the project website in different formats including source code, pre-pacakged 
binaries or virtual machines based on docker containers. Within MODERN, the use of the data 
management system has been complemented by the development of procedures for the curation 
of data so that data quality and provenance information are ensured. The usability of the system 
has been evaluated in collaboration with other modelling projects (e.g., nanoPUZZLES3, 
Marchese Robinson et al., 2015). The system provides different access control levels to protect 
data confidentiality, integrity and preserve intellectual property rights. The system developed in 
MODERN also offers support for server federation, allowing the easy deployment of a distributed 
nanosafety cloud. 
 
Objective: Data generation (via targeted experiments using MODERN’s nanoparticle 
library) and collection (via data sharing agreements and manual literature data curation) 
to populate MODERN’s nanosafety data repository. 
 
In the context of experimental data generation, MODERN has contributed to advance the science 
of nanosafety in the following two areas. First, in the analysis of published nanotoxicity. Second, 
																																																								
2 http://nanodms.biocenit.cat 
3 http://www.nanopuzzles.eu/ 
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in the generation (and analysis) of toxicity data by targeted experiments with bacteria, protozoa 
and algae, using MODERN’s nanoparticle library. 
 
Analysis of published literature data. Data on some of the most widely used antimicrobial 
eNPs, such as ZnO, CuO and Ag eNP were collected from the published literature, analyzed and 
summarized (Bondarenko et al. 2013). The toxicity of these particles to algae, crustaceans, fish, 
bacteria, yeast, nematodes, protozoa and mammalian cells was compared to that of soluble salts 
of Zn, Cu and Ag.  
Despite varying test methods and inconsistencies in particle characterization some trends in the 
toxicity data could be observed. For example, it was found that the toxicity values of CuO and 
ZnO NPs to mammalian and bacterial cells, varied in a relatively narrow range: 16-fold and 20-
fold for ZnO NPs and 8-fold and 14-fold for CuO eNPs, compared to the toxicity values of Ag 
NPs varied 275-fold for mammalian cells in vitro and 500-fold for bacteria (Fig. 8). This 
difference can be attributed to nanoparticle coating: while the ZnO and CuO NPs were all 
uncoated, most of the studied Ag eNPs had various coatings (PVP, peptide, mono- and 
disaccharides etc.). It also appeared that the uncoated Ag eNPs were remarkably less inhibitory 
to bacteria than coated NPs. Nanoparticle coating was thus identified as a crucial element of safety 
analysis.  
The relationship between particle size and toxicity was found only when comparing values 
presented in a single paper, or even using a single endpoint in a single paper. For example, when 
plotting all the toxicity values of PVP-coated Ag eNPs to mammalian cells against particle size, 
no correlation was observed (r2 = 0.1), however, when using data from just one paper the 
correlation became evident (r2 = 0.4) and improved further with the selection of just one cell line 
(r2 = 0.8). Similar observations for other particles/test systems indicate inter-laboratory variations 
in preparation of eNP suspensions and testing conditions that complicate data comparison. 
It was found that the toxicity of ZnO eNPs and Zn ions to different organisms was similar; 
indicating that the toxicity of ZnO eNPs can be explained by dissolved Zn. As illustrated in 
Figure 8, the L(E)C50 values of Ag and ZnO eNPs correlated well with the respective values of 
the soluble salts (r2=0.84 and 0.85, respectively), whereas the plot of CuO NPs and Cu ions 
formed two clusters, distinguishing mammalian cells, yeast and bacterial cells from all other 
organisms. 

 
Figure 8. Plots of the median L(E)C50 values of Ag, CuO and ZnO NPs versus the median L(E)C50 values 
of the respective soluble metal salts to different organism groups, from Bondarenko et al. (2013). 
 
A further literature review of Ag, ZnO and CuO toxicity was compiled with a focus on toxicity 
mechanisms (Ivask et al. 2014a). For that, 167 publications related to (eco)toxicology and 
mechanism of action of Ag NPs, ZnO NPs and CuO NPs were analyzed. Three major phenomena 
were found to drive the toxicity of the selected nanoparticles: a) dissolution of nanoparticles, b) 
organism dependent cellular uptake and c) induction of oxidative stress and consequent cellular 
damage. It was noticed that the published studies exploring Quantitative Nanostructure-Activity 
Relationships rely on a few and tailor-made experimental datasets.  
 
MODERN’s targeted experiments. The set of 12 eNPs in MODERN’s library (ZnO, CuO, 
TiO2, Fe3O4, Co3O4, Mn3O4, SiO2, Al2O3, WO3, Sb2O3, MgO and Pd) were used for model 
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development and safe-by-design hypothesis testing based on previously published toxicity and 
solubility data. The particles, synthesized using FSP, were characterized in terms of their 
physicochemical properties by X-ray diffraction, Brunauer–Emmett–Teller (BET) analysis and 
TEM imaging (Ivask et al. 2015). In addition, bioactivity characterization was performed and 
included the following acute toxicity assays:  
 
1) Vibrio fischeri kinetic bioluminescence inhibition assay (a Flash-test);  
2) Bacterial and algal viability assay ‘spot-test’ using Staphylococcus aureus RN4220, 

Escherichia coli MG1655 and the alga Pseudokirchneriella subcapitata 
3) Cell viability assay with the protozoan Tetrahymena thermophila 
4) Algal growth inhibition assay with P. subcapitata 
 
EC50 values were calculated from the continuous toxicity data obtained from the above assays 
(Figure 9). The algal growth inhibition test was clearly the most sensitive assay, yielding EC50 
values for 10 out of the 12 NPs, whereas only 4 and 5 NPs showed significant toxicity to the 
protozoan and bacterium respectively.  
 

 
 
Figure 9. Toxicity of 12 nanoparticles to alga Pseudokirchneriella subcapitata, protozoan Tetrahymena 
thermophila and bacterium Vibrio fischeri. Arrows indicate EC50 values above 100 mg/l. From Aruoja et 
al. (2015) 
Experimentally determined EC50 values based on P. subcapitata growth inhibition values ranged 
from 0.10 mg/l for ZnO and 0.43 mg/l for CuO to 57.8 mg/l (WO3), spanning three orders of 
magnitude. Only MgO and Sb2O3 were not toxic to algae (EC50 >100 mg/l). Besides the effects 
of soluble ions of zinc and copper, the most significant mechanism of algal toxicity was co-
agglomeration of NPs and cells that physically isolated the alga from nutrients/light energy. The 
formation of agglomerates that contained algal cells and NPs was observed for most of the studied 
NPs, only excluding ZnO, WO3, SiO2 and Sb2O3. However, based on the results of the viability 
assay it is likely that the cells inside the agglomerates were alive. For example, the EC50 of Pd in 
the growth inhibition test was 0.4 mg/l, whereas the minimal biocidal value (24 h MBC) in DI 
water based on the ‘spot’ assay was 10 mg/l. Nevertheless, algal growth inhibition assay has 
proven far more sensitive than the ‘spot’ assay also for “conventional” soluble chemicals that do 
not entrap algae, such as AgNO3: the 24 h MBC (in DI water) was 10 mg AgNO3/l (Suppi et al. 
2015) whereas the 72 h EC50 in the growth inhibition assay was 0.007 mg Ag/l. (Ivask et al. 
2014b) The algal toxicity mechanisms were studied in detail, revealing solubilisation as a 
probable cause of ZnO toxicity, whereas formation of ROS in abiotic conditions correlated with 
the toxicity of other NPs in the library (see Aruoja et al. 2015 for details). 
In addition, the bacterial and algal cells were incubated with NPs in deionized water for 24h and 
then plated on agar media in order to determine the minimal biocidal concentrations. This 
eliminated the effects related to the interaction of NPs with components of test media (Suppi et 
al. 2015). Results obtained this way show relatively less toxicity compared to other assays used 
(Table 3). 
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Table 3. The minimal biocidal concentrations (MBC) of 12 metal containing nanoparticles to bacteria 
Escherichia coli , Staphylococcus aureus and alga Pseudokirchneriella subcapitata. The presented toxicity 
values are based on nominal exposure concentrations used in testing. 
 

NP 

24h 
MBCa 
E. coli 

(Gram -)  

24h 
MBCa 

S. aureus 
(Gram +) 

24h MBCa 
P. 

subcapitata 

 mg compound/l 
ZnO 10 10 100 
Pd 10 100 10 

CuO 1 0.1 100 
Co3O4 100 >100 >100 
TiO2 >100 >100 >100 

Mn3O4 >100 100 >100 
Fe3O4 100 100 >100 
Al2O3 >100 >100 >100 
SiO2 >100 >100 >100 
WO3 >100 >100 >100 

Sb2O3 >100 >100 >100 
MgO >100 >100 >100 

a - The lowest tested conentrations that completely 
inhibited visible growth on the agarized test medium 
at 25°C after 24h of incubtion. 

 
The absence of buffer in the test medium may cause pH-related effects on toxicity values. 
However, this did not appear to be the case since neither the sample with the lowest nor the highest 
pH (Sb2O3, pH=4.2 and MgO, pH=9.6, respectively) inhibited bacterial/algal growth.  Among 
the 12 tested NPs in MODERN the greatest antibacterial activity was shown for CuO, ZnO and 
Pd (Table 3). 
 
In order to compare the toxic effects of the studied 12 NPs to different test species, NPs were 
grouped according to assay type and EC50 values (Table 4). Despite different species and test 
formats there were common features in terms of toxic effects. CuO and ZnO were the most toxic 
NPs to all the species regardless of the assay and endpoint. Also Pd was toxic to alga and bacteria 
E. coli at relatively low concentration (<10 mg/l) and Co3O4 showed toxic effects to the alga (<10 
mg/l) and E. coli (<100 mg/l). MgO was the only NP that was not toxic to any test organism in 
any test setting (i.e. EC50 or MBC > 100 mg/l), in addition to MgO, for the majority of test species 
and test settings Al2O3, Co3O4, Fe3O4, Mn3O4, SiO2, TiO2 showed no toxic effects below 100 mg/l.  
The most sensitive test was algal growth inhibition assay according to which only MgO and Sb2O3 
proved not toxic even at 100 mg/l and CuO, ZnO and Pd showed growth inhibitory effects at very 
low concentrations (< 1 mg/l). 
 
Table 4 Categorization of NPs based on the toxicity values (EC50 or MBC, mg compound/l) to bacteria, 
protozoa and algae. All NPs were tested in nominal concentrations from 0.01 up to 100 mg/l.  
 
 
EC50 or MBC, 
mg compound/l 72 h EC50 24 h EC50 30 min EC50 24 h MBC 24 h MBC 

Organisms: Algae Protozoa Bacteria Bacteria Bacteria 
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Species: Pseudokirchneri
ella subcapitata 

Tetrahymena 
thermophila 

Vibrio fischeri  
(G-) 

Escherichia coli 
(G-) 

Staphylococcus 
aureus (G+) 

Exposure 
medium: Mineral medium DI water 2 % NaCl DI water DI water 

0.1-1 CuO, ZnO, Pd None None CuO CuO 

>1-10 Co3O4, Fe3O4, 
Mn3O4, TiO2 

CuO, ZnO CuO ZnO, Pd ZnO 

>10-100 Al2O3, SiO2, 
WO3 

Fe3O4, TiO2 
ZnO, Pd, WO3, 
Sb2O3 

Co3O4, Fe3O4 
Fe3O4, Mn3O4, 
Pd 

>100 MgO, Sb2O3 

Al2O3, Co3O4, 
MgO, Mn3O4, 
Pd, Sb2O3, 
SiO2, WO3 

Al2O3, Co3O4, 
Fe3O4, MgO,  
Mn3O4, SiO2, 
TiO2 

Al2O3, MgO, 
Mn3O4, Sb2O3, 
SiO2, TiO2, WO3 

Al2O3, Co3O4, 
MgO, Sb2O3, 
SiO2, TiO2, WO3 

 
Objective: Development of QNPRs/QNARs based on selected properties and 
ecotoxicological endpoints and development of nanoparticle signatures integrating 
biological information at multiple levels. 
 
The main reason for developing novel nano-descriptors in the framework of MODERN was the 
fact that while several previous Quantitative Structure-Activity/Property Relationships had been 
developed considering the properties of nanoparticles, these nano-QSARs (QNARs) relied 
typically just on the chemical composition of the nanoparticles rather than considering (also) the 
single most characteristic feature of nanoparticles – their size. Indeed, prior to the launch of 
MODERN, no QNAR took into account the size or shape of nanoparticles. Such models can only 
perform meaningfully under certain conditions (e.g., no size distribution in dataset, very limited 
or inconsistent experimental data leading to noisy unstable models and perhaps overfitting) and 
cannot, thus, be considered as true QNARs.  
 
Identification of structure-activity relationships from nanoparticle’s electronic structure 
descriptors. In recent years it became apparent that besides the often-discussed redox activity of 
nanoparticles that may induce reactive oxygen species (ROS), other toxicological pathways may 
play a role. In this context, a particular issue is phagocytosis (Trojan horse) as highly efficient 
route of uptake into the cell, offering the possibility of metal-specific toxicity at very high concen-
trations upon intracellular dissolution. In the following, MODERN generated algal toxicity data 
in terms of 72-h EC50 (i.e., growth inhibition 50%) values were analyzed from the viewpoint of 
quantum chemical reactivity parameters calculated for eNP monomers, including trend analyses 
of the electronic structure characteristics when going from the monomers to clusters with increas-
ing molecular size. 
Algal toxicity data in terms of 72-h EC50 [mg/L] values -effective concentration inhibiting the 
growth by 50%- for a subset of metal oxide nanoparticles (Al2O3, CuO, Fe2O3, MgO, Sb2O3, SiO2, 
TiO2 and ZnO) were used as endpoint. For their conversion from the original mass-based unit to 
mol/L, the molar mass of the respective unit cell was divided by its number of metal atoms, 
considering the fact that in this way, the toxicity is normalized to the concentration of metal ions. 
Taking the Al2O3 NP as an example, the crystal monomer is Al2O3, yielding AlO1.5 as formal basis 
for the NP molar mass. The resultant log EC50 [mol/L] values were used for comparison with 
electronic structure characteristics. 
The starting geometries for the metal oxide clusters were prepared in the following way. For each 
cluster, a part was cut out of the solid-state crystal structure of the material, such that the number 
of metal atoms (which were used as a measure for the cluster size) was as desired. The cutting 
was performed in such a way that the surface of the resulting cluster is completely terminated 
with oxygen atoms. Subsequently, hydrogen atoms have been added to exposed oxygen atoms in 
order to obtain a neutral charge, turning some oxygen atoms into hydroxyl groups and others into 
water molecules. This creates a microsolvation around the cluster, and keeps the coordination 
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number of the metal atoms at the same value as in the bulk phase. To give an example, the cluster 
containing one aluminum atom was cut out of the corundum lattice as formal “AlO6”, because 
aluminum has six nearest oxygen neighbors in the lattice. Subsequently, hydrogen atoms were 
added, turning three of the oxygen atoms into hydroxyl groups and the remaining three into water 
molecules, thus yielding a final cluster of Al(OH)3(H2O)3 that is neutral in charge. 
The quantum chemical calculations were performed with the program package Orca, employing 
density functional theory (DFT) with the PBE functional  and Grimme’s empirical D3 dispersion 
correction. Atom-centered basis sets of the type def2-TZVPP were used for all atoms. The SCF 
convergence criterion was set to “VeryTight”. The starting structures of all metal oxides (i.e., 
monomers and clusters containing an increasing number of monomer units) have been cut from 
the corresponding solid state lattices, and subsequently the exposed surfaces have been saturated 
by hydroxide ions to obtain charge-neutral species. Water molecules were added to account for 
solvation effects (“microsolvation”). Based on these structures, geometry optimizations 
(convergence criterion “Tight”) was performed to determine equilibrium geometries. IP, EA, εF 
(–EN) and HD as electronic structure characteristics have been calculated from the respective 
DFT orbital energies based on Koopmans. 

Trend analysis. The data distributions of log EC50 [mol/L] of the eight eNPs vs. calculated IP, 
EA, εF (= –EN) and HD of the NP monomers (saturated by H atoms) are shown in Figure 10. As 
can be seen from the top left plot, NP toxicity vs. IP suggests a separation between the main-
group metal oxides MgO, Sb2O3, SiO2 and Al2O3 on the one hand, and the transition-metal oxides 
CuO, ZnO, Fe2O3 and TiO2 on the other hand. 

 

Fig. 10 Algal toxicity in terms of logarithmic-scale 72-h EC50 of eight NP metal oxides vs. calculated 
ionization potential (IP, top left), electron affinity (EA, top right), Fermi level (εF, bottom left) and hardness 
(HD, bottom right) from the DFT HOMO and LUMO energies employing Koopmans theorem.  

Whereas both subsets overlap in their IPs as estimated through Koopmans theorem from the 
HOMO energies, the high toxicity end of the former (log EC50: from –2.6 for MgO to –3.4 for 
SiO2) differs by 1.5 log units from the low toxicity end of the latter (log EC50: from –4.9 for Fe2O3 
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to –5.9 for ZnO). Moreover, eNP toxicity increases with decreasing IP for the transition-metal 
eNPs, which contrasts with the opposite trend observed for the main-group counterparts. Since 
the IP is inversely related to the ease of electron donation, the latter appears to play a toxicity-
enhancing role only for algal toxicity of the transition-metal oxide eNPs, suggesting a redox-
mediated toxicity pathway in contrast to a different toxicological mode of action for the main-
group oxide NPs. 
In the top right plot of Figure 10, a similar discrimination between the main-group and transition-
element metal oxide eNPs is shown with EA as eNP monomer property. In this case, increasing 
EA corresponds to an increase in algal toxicity for the transition metals, indicating that the latter 
is enhanced with increasing capability of accepting excess electronic charge. Regarding the Fermi 
level of the eNP monomers (bottom left in Figure 10), eNP toxicity increases with increasing εF, 
suggesting that the NP electron donor strength provides a significant contribution to the algal 
toxicity. The corresponding decrease in toxicity with increasing EN (= –εF) is in line with this 
interpretation and indicates that in contrast to the main-group metal oxides, the transition-metal 
eNPs show a decrease in toxicity with increasing initial electron attraction. 
When analyzing log EC50 from the viewpoint of the electronic hardness (that is inversely related 
to the polarizability), a similar between-group separation is accompanied by less pronounced 
within-group trends. In this case, the main-group metal oxides show a weak increase in toxicity 
with increasing HD, which would also hold with regard to ZnO as compared to the other three 
transition-metal oxides, but not otherwise. Taking all four plots of Figure 10 together, the level 
of significant approximation regarding eNP electronic properties should be kept in mind, which 
concerns both fundamental and methodological issues (eNP monomer vs eNP bulk vs eNP 
surface, Koopmans theorem, DFT computational chemistry). 

 

Fig. 11 Dependence of electronic reactivity parameter (top left: IP; top right: EA; bottom left: εF; bottom 
right: HD) on cluster size of the metal oxide (Al2O3, Fe2O3, SiO2, TiO2) expressed through the number of 
metals ions included; Fe α and Fe β refer to the α and β spin orbital subsets (see text).  

To explore the property trend when increasing the cluster size of the atomic-level description, 
respective calculations have been undertaken for Al2O3, Fe2O3 (α and β spin orbital subsets 
resulting from high-spin open-shell calculations), SiO2 and TiO2. The results are summarized in 
Figure 11, showing dependence of IP, EA, εF and HD on cluster size in terms of its number of 
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monomer units (ranging from 1 to 6). For most properties and clusters, reasonably monotonic 
trends are seen, with notable exceptions for Al2O3 as well as for IP.  
In summary, the above quantum chemical analysis of the algal toxicity of metal-oxide eNPs 
suggests a significant difference in mode of action between the subgroups of transition metals and 
main-group elements. For the former, toxicity increases with increasing electron-donor capability, 
indicating that a redox-mediated process involving electron transfer to reactive oxygen species 
(ROS) plays a crucial toxicological role. Alternatively, and considering the experimental setting 
with exposure to light and thus radiation energy, the increase in toxicity with decreasing IP may 
also reflect an increased probability for electronic transitions into the excited state and thus a 
phototoxic contribution to the observed algal growth inhibition in terms of 72-h EC50 values. For 
the main-group elements, the lack of respective EC50 dependencies suggests a non-ROS mode of 
toxic action. 
 
QNAR development from size-dependent nanodescriptors. The principal novel 
concept in MODERN’s size-dependent nanodescriptor approach relied on the variation 
of interatomic potential energies as a function of atom types and coordination, thus 
capturing both the role of chemical identity as well as that of surface to volume ratio. In 
order to verify the performance of the developed descriptors, QNARs were constructed. A sample 
data set for QNAR modeling was obtained from Pathakoti et. al.4 containing  E. coli EC50 data of 
metal oxides, measured in the dark.  
 
Table 5. Experimental and predicted log(1/EC50) values of nanoparticles, calculated nanodescriptors 
(ND) and diameters. 

  log(1/EC50) Nanodescriptors NP size 
NP Exp. Pred. D3(eV) D4(eV) Diameter (nm) 
Al2O3 2.42 2.7 -30.85 -5.75 55 
Bi2O3 3.55 3.52 -17.69 -7.25 144 
CoO 3.13 3.57 -20.12 -6.34 55 
Cr2O3 2.06 2.77 -30.83 -5.55 47 
CuO 4.24 3.83 -20.33 -5.45 28 
Fe2O3 2.4 2.69 -30 -6.04 68 
In2O3 2.83 2.91 -28.19 -5.9 60 
La2O3 4.96 4.3 -12.53 -6.36 65 
NiO 3.79 4.16 -20.11 -4.55 14 
Sb2O3 3.12 2.74 -28.4 -6.34 84 
SiO2 2.54 1.97 -42.44 -4.52 20 
SnO2 2.53 2.56 -38.11 -4.19 15 
ZnO 5.8 5.77 -19.64 -2.10E-07 71 
ZrO2 2.58 2.76 -32.63 -5.02 27 
TiO2 2.14 1.84 -40.87 -5.5 42 

 

The developed model had the following equation: 
 

log(1/EC50) = 7.69 + 0.10D3 - 0.34D4,  (3) 
 

where D3 is the descriptor “Average potential energy of atoms in core region of nanoparticle” in 
eV, D4 is the “Lattice energy of nanoparticle per unit volume” in eV/Å3, both given in electron 
volts. The statistical parameters of the model were found to be: squared correlation coefficient R2 
= 0.87; squared cross validated correlation coefficient R2

cv = 0.80; Fisher criterion F = 39.08; 
squared standard deviation s2 = 0.18. Table 5 presents the observed and predicted log(1/EC50) 
values using Eq.3 together with descriptor values and eNP sizes. 
																																																								
4 Pathakoti, K. et. al.  J. Photochem. Photobiol. B 2014, 130, 234-240. 
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Figure 12. Plot of observed vs. predicted log(1/EC50) values of metal oxide nanoparticles 
 
Using the same approach, another QNAR model was constructed using data (Table 6) taken form 
Puzyn et al.(2011).  

Table 6 Experimental and predicted log(1/EC50) values of nanoparticles, calculated 
nanodescriptors (ND) and size information. ND1 is the Average potential energy of atoms in the 
shell region of the eNP and ND2 is Average potential energy of oxygen atoms in the core region 
of the eNP.  

 log(1/EC50) Nanodescriptors NP size 
NP Exp. Pred. ND1 (eV) ND2 (eV) Diameter (nm) 

ZnO 3.45 3.38 -19.36 -19.70 21.0 
CuO 3.20 3.34 -21.25 -21.60 48.0 
V2O3 3.14 2.72 -28.60 -19.47 20.0 
Y2O3 2.87 2.75 -27.19 -18.00 32.7 
Bi2O3 2.82 3.01 -17.04 -8.36 51.0 
In2O3 2.81 2.75 -27.88 -18.94 59.6 
Sb2O3 2.64 2.74 -28.04 -18.97 20.0 
Al2O3 2.49 2.49 -32.79 -20.80 31.0 
Fe2O3 2.29 2.71 -29.64 -20.71 20.0 
SiO2 2.20 1.96 -41.98 -23.11 20.0 
ZrO2 2.15 2.22 -32.16 -14.06 25.0 
SnO2 2.01 2.11 -37.23 -19.27 21.0 
TiO2 1.74 1.77 -43.31 -21.05 15.0 
CoO 3.51 3.37 -19.83 -20.14 20.0 
NiO 3.45 3.37 -19.92 -20.33 20.0 

Cr2O3 2.51 2.68 -30.37 -21.09 20.0 
La2O3 2.87 2.77 -12.12 4.24 24.6 
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Using the information in Table 6 and the size-dependent nanodescriptors, a two parameter 
multilinear QNAR was developed: 

 
 log 1

𝐸𝐶?@ = 3.82 + 0.07𝑁𝐷G − 0.05𝑁𝐷I (4) 
 

Where ND1 in eq 4 corresponds to the nanodescriptor Average potential energy of atoms in the 
shell region of the nanoparticle in electron volts, and ND2 is the nanodescriptors corresponding 
to the Average potential energy of oxygen atoms in the core region of the nanoparticle in electron 
volts. The QNAR shows acceptable statistics for performance and stability: 

 

 

𝑅I = 0.87
𝑅0JI = 0.81
𝐹 = 45.26
𝑠I = 0.04

 

 
Figure 13 shows a plot of the experimental versus predicted endpoint values. 

 

Fig. 13 Plot of observed vs. predicted log(1/EC50) values of nanosized metal oxides, based on the two 
nanodescriptor model (Eq. 4).  

Model interpretation. The first nanodescriptor -  ND1 - in equation 4 is a very obvious choice, 
since many of the outstanding characteristics of eNPs are related to the uncompensated potential 
energies of the atoms at or near the surface of the particle. The descriptor is not that much 
composition dependent, instead it relates to the shape and size of the particle. The second 
nanodescriptor - ND2 - is more composition specific, as the potential energy of the oxygen atoms 
in the unperturbed lattice of an oxide depend both on the lattice structure and the metal atom 
involved.  Therefore, with just two descriptors the model can account for the chemical 
composition, the lattice structure, the size, and the shape of eNPs. 
The computational method described above was designed to be expandable to allow the 
development of a more accurate representation of nanoparticles and more complex descriptors. 
While at the moment the descriptors were calculated from single-point energies, it is easily 
expandable to include full or partial minimization of the geometry of the nanoparticle before the 
calculation of descriptors or even perform molecular dynamics simulation of these systems to 
replicate the pyrolysis conditions used in the synthesis of nanoparticles. In this way, even the 
synthesis conditions can be included in the model facilitating their used for safe-by-design and 
for the optimization of nanoparticle’s properties. Computationally more expensive potential 
improvements include the use of solvent and coating materials around the nanoparticle. In order 
to prove the benefits of such more elaborate approaches, however, a very consistent and accurate 
experimental dataset has to be used with known and controlled particle size distribution and other 
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variables. The successful modelling of the two nanoparticle toxicity datasets confirmed the 
potential of the newly-developed nanodescriptors. 
 
Objective: Establishment of a data mining framework and basic categorization criteria for 
the identification of nanoparticle categories (WP3). 
 
The large number of nanotechnology enabled products and the multitude of different types of 
nanomaterials makes impracticable, in terms of time and costs, their exhaustive hazard and risk 
assessment. Nanomaterial categorization criteria are needed to develop “grouping schemes” that 
will make nanosafety assessment more efficient. From a computational nanotoxicity perspective, 
the large number of possible nanoparticle types (e.g., diverse combinations of core composition, 
surface modifications and functionalizations) hinders the development of “universal” models. It 
is thus fundamental to develop similarity metrics involving different nanomaterial characteristics 
(e.g., nanostructure descriptors, physicochemical property profile and biological activity) across 
their entire life cycle. The use of appropriate similarity metrics will facilitate the grouping of 
nanoparticles into homogeneous categories where more accurate and reliable models can be 
developed and validated. The establishment of eNP categories will also enable the ranking of their 
environmental and human health impact paving the way to the development of a risk assessment 
framework for nanomaterials.  
Within MODERN, different techniques and algorithms have been used to group the metal and 
metal oxide nanoparticles into similar groups using different types of information. The different 
category schemes developed in the current analysis are discussed in terms of the soluble, active 
and passive groups proposed by Arts et al., 2015 in their DF4nanoGrouping framework. In what 
follows, a given eNP is considered as active if it has EC50 values lower than 100 mg/L for at least 
one of the tested species. 
The data set in Table 6, covering material characters and hazard estimates for nanoparticles in 
MODERN’s library have been used to illustrate the application of the hierarchical analysis.  

Table 6. Toxicities of nanoparticle (eNP) suspensions to algae Pseudokirchneriella subcapitata, protozoa 
Tetrahymena thermophila and bacteria Vibrio fischeri.  

eNP Algae 
EC50 

Protozoa 
EC50 

Bacteria 
EC50 

BET 
Size 

(BET) 

Hydrodinamic 
size  

(nm, DI 
water) 

Zeta 
Potential 
(mV, DI 
water) 

Oxidation 
level 

ZnO 0.1 1.84 11.52 20.4 171 16.4 2 
CuO 0.43 2 1.78 13.1 130 17 2 
TiO2 1.26 52.6 100 12.2 171 -13.6 4 
Fe3O4 1.93 26.03 100 9.7 128 22.2 2.67 
Co3O4 1.11 100 100 11.5 99 23 2.67 
Mn3O4 1.34 100 100 15.2 395 -14.4 2.67 
Pd 0.41 100 55.42 15.1 127 -27.8 0 
SiO2 35.58 100 100 7.8 148 -33.2 4 
Al2O3 30.8 100 100 11.4 95 39.2 3 
WO3 57.8 100 87.07 10.6 63 -45.2 6 
MgO 100 100 100 13.6 1964 6.9 2 
Sb2O3 100 100 73.74 20.5 125 -24.3 3 

Categories derived from nanodescriptors. Figure 14 depicts the most significant groupings of 
nanoparticles obtained using a bootstrapped hierarchical clustering algorithm. Grouping was 
generated by using only information related to nanoparticles’ structure through the complete set 
of 35 size-dependent nanodescriptors developed in WP1. Consistent groupings are obtained after 
changing nanoparticle’s primary sizes from 5 nm to 30 nm. The analysis of the toxicity data for 
a set of 24 eNPs extracted from literature shows that the grouping, based solely on structural 
information, is unable to capture the toxicity of the eNPs. Active nanoparticles showing significant 
in vitro toxicity to BEAS-2B and RAW 264.7 cell lines are grouped together with passive eNPs 
(i.e., not triggering relevant cytotoxic responses).  For instance, the group formed by {ZnO, CuO, 
NiO, CoO, MgO} includes both active and passive eNPs. A closer look at the fine structure of the 
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categories, reveals that the most soluble eNPs (i.e., ZnO, CuO), which are also know to share a 
toxicity mechanism driven by solubility and ion shedding are grouped together. The high 
structural similarity of these nanoparticles, that has a parallel in some of their physicochemical 
properties (e.g., solubility) as well as in their bioactivity profile can be subsequently used for 
model development and nano read-across.  

 

 
Figure 14. Hierarchical clustering of a library of 24 metal oxide (MeO) nanoparticles based on the size-
dependent descriptors developed using molecular modeling. Clusters identified with high confidence (i.e., 
with p-values ≥ 95) after a multiscale bootstrap sampling process with 10 different sizes and 1000 replicates 
for each size are indicated by rectangles. (Top) Groups for spherical MeO nanoparticles of 5 nm. (Bottom) 
Groups for spherical MeO nanoparticles of 30 nm. 

Categories derived from physicochemical properties. Categories can be developed from 
measured physicochemical properties of the eNPs. Figure 15 depicts the categories obtained 
using the Self-Organizing Map (SOM) algorithm to group the 11 metal oxide nanoparticles in 
MODERN’s library. Each SOM map unit ((i.e., circles in Figure 15) can be interpreted as a 
cluster. Accordingly, nanoparticles assigned to the same unit form a category. The features used 
for grouping included BET size, hydrodynamic diameter in DI water, zeta potential in DI water 
and the oxidation level (see Table 6). Prior to SOM development, data were centered and scaled. 
Map topology was defined as toroidal (i.e., periodic boundaries) to avoid border effects and the 
map grid was rectangular with a dimension of 3x2 units. The position of eNPs within each unit 
reflects their similarity (i.e., the closer the labels the more similar the eNPs). In addition, the 
distance of a nanoparticle to the unit center (i.e., center of each circle) is related to the ability of 
a given nanoparticle to act as a representative element for the group of eNPs assigned to the unit. 
The SOM analysis identifies 6 different groups of nanoparticles.  
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Figure 15. Self-Organizing Map (SOM) clustering of metal oxide nanoparticles in MODERN’s library. 
Clustering was performed based on the group of physicochemical properties reported in Table 6. (Top) 
Identification of eNPs in each category. (Bottom) Physicochemical property profile of each category  

Data in Figure 15 provides the basis for the interpretation of the categories obtained from SOM 
analysis. Category 1 is formed only by ZnO and its main characteristics are large BET size and a 
moderate positive ZP in DI water. The distinctive features of Category 2 {WO3} are the oxidation 
level and a highly negative surface charge.  Category 3 comprises {SiO2, TiO2}, the main 
characteristics of this group are the oxidation level and negative surface charge. The 
representative eNP of this category is TiO2. The fourth category includes {Mn3O4, Sb2O3} and its 
main features are similar to category 1. However, BET sizes are smaller and the surface charge 
in DI water is negative. The representative eNP of this category is Mn3O4. Category 5 is the most 
populated {CuO, Al2O3, Fe3O4, Co3O4} and contains positively charged eNPs. The category 
representative is Fe3O4. Finally, category 6 is formed by MgO and its distinctive property is the 
hydrodynamic size with large values. Categories 1, 2, 3 and 5 include eNPs which are either 
soluble or active to the species tested (EC50 < 100 mg/L). Category 6 includes a passive eNP 
whereas category 4 mixes active with passive eNPs. 

Categories derived from the ecotoxicity profile. Using a data-driven grouping approach based 
on community detection on complex networks three categories of eNPs were automatically 
detected. Complex networks are graphs containing a set of nodes, representing nanoparticles, and 
a set of edges connecting pairs of nodes. The grouping of nanoparticles inside the network was 
done looking for what it is called the analysis of the community structure of the networks, i.e. a 
partition of the network into communities, which are subsets of nodes more strongly connected 
between them than with the rest of the nodes in the network. 
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Interestingly, the category that contains soluble and active eNPs, formed by {ZnO, CuO, Fe3O4 
and TiO2}, is consistent with the grouping observed in the trend analysis of electronic structure 
descriptors (Figure 10). The second category that comprises {Mn3O4, Co3O4, SiO2, and Al2O3 
also corresponds to active eNPs. Finally, the third category that includes {WO3, MgO and Sb2O3} 
corresponds to eNPs which are passive from the ecotoxicity viewpoint (i.e., EC50 > 100 mg/L for 
at least two species).  

 
Figure 16. Categories identified from the integrated (algae + protozoa + bacteria) ecotoxicity profile. Color 
codes correspond to different eNP categories  

Categories identified from integrated structure-physicochemical and ecotoxicological data. 
Relevant eNP categories can be identified from data by integrating heterogeneous information 
related to multiple aspects of the nanomaterial. Figure 17 depicts the categories identified using 
complex network analysis after integrating three different types of information including 
structure, physicochemical properties and ecotoxicity. The soluble category includes ZnO and 
CuO whose toxicity is driven by solubility. The category corresponding to the active nanoparticles 
is formed by three subgroups with different activity levels and includes Fe3O4, TiO2, Mn3O4, 
Co3O4, SiO2, Al2O3 and WO3. Finally, the passive category is formed by Sb2O3 and MgO. 
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Figure 17. Grouping obtained using complex network analysis techniques. Data used for 
grouping includes size-dependent nanodescriptors, physicochemical properties (BET size, ZP in 
DI water, oxidation state) and ecotoxicity profile for algae, bacteria and protozoa. The size of 
each node is proportional to nanoparticle’s BET size. Colors correspond to communities (groups) 
of eNPs identified using modularity.  

Objective: Development of a hazard ranking scheme suitable to rank eNPs and their 
categories according to their potential environmental and human health impact.  
 
What is missing is a robust regime, where the present knowledge on nanomaterial (NM) 
characteristics and hazard information can lead to robust decisions in relation to risks. The 
decisions should preferably be based on a regime involving comprehensive models that 
implement simple and logical algorithms, as this will ensure a robust frame with a wide 
distribution and fast implementation to many stakeholders. The foundation for such tools has been 
developed within MODERN.  
In MODERN, a framework which makes use of the molecular descriptors and toxicological 
profiling of engineered Nanoparticles (eNPs) was developed. The development and 
implementation focused on (i) a robust hazard ranking scheme suitable to prioritise and rank eNPs 
and (ii) a more detailed data mining framework that is suitable to identify similarity in eNP 
patterns according to their potential environmental and human health impact. To develop this, the 
central information on eNPs Environmental, Health and Safety (EHS) related descriptors has been 
identified and evaluated. This includes the identification of physicochemical descriptors that 
identify the eNPs (e.g. size, surface area) and related biological descriptors (e.g. effect 
concentrations for cell viability).  
Hence, MODERN developed ranking models that enabled risk regulators to have a robust tool 
for prioritising, ranking and reading across information between materials. The tool was based on 
ordering techniques that imply that the results are robust and consistent, even if more complex 
models are applied based on the same information. The conclusions drawn from this tool do not 
adopt the added uncertainty coming from the task of aggregating several parameters to form one 
single ranking value based on non-validated weighing factors or relationships. Hence, the tool 
can be the first and robust steps in risk evaluation of eNP. It was shown how hazard data from 
different species could be ranked together using a dataset developed within MODERN that 
consists of 12 different nanomaterials with toxicity data for three aquatic species (in vivo) and 
three cell types (in vitro). Further, it was possible to identify when major differences in toxicity 
between species occurred. This ranking could be combined and correlated to ranking based on 
physical-chemical parameters. In this way, it was possible to show the rank of nanomaterial versus 
the toxicity values for different species and to identify the material characteristics that best 

Soluble

Passive

Active
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correlated with the toxicity values. Similar calculations were performed with datasets obtained 
from the literature. It was further discussed how to deal with missing information and how 
possible classification schemes and risk banding regimes could be identified.  
In MODERN, more comprehensive tools were developed based on e.g. step-wise regression, 
principal component analysis, and self-organising maps. The latter techniques, compared to the 
prior ranking tools, are not able to handle categorical data, but can include quantified distance, 
complex distributions and, hence, more information. These sophisticated data-mining techniques, 
such as the Self-Organizing Map or algorithms to generate Association Rules combined with 
feature selection methods, provided an adequate framework for knowledge extraction from 
nanosafety datasets. These techniques were enhanced by automatic category interpretation via 
ontology-based inference and expert validation, which provided the required science based 
criteria for grouping of eNPs. It was shown from both literature and MODERN’s generated data 
how the nanomaterials could be grouped based on their physical-chemical parameters. 
In summary, it is here outlined how various techniques can be used for risk assessment with focus 
on decision making in regard to read across. The hazard ranking approaches developed in 
MODERN may further support a priori or posterior group of the materials and in this way 
optimize the risk characterization.  
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POTENTIAL	IMPACT	
 
MODERN outcomes will contribute to the assessment of eNP effects and to the reduction of 
animal testing by facilitating the development of methods for inferring toxicity of eNP via the 
integration of in vivo/in vitro studies and in silico models. These two elements will serve in the 
long-term as the basic building blocks of a predictive framework that will guide the production 
of new safe-by-design eNPs. In what follows, the potential impact of MODERN is presented in 
the context of each RTD work-package.  
 
WP1: Physicochemical, molecular and structural properties of eNPs 
MODERN has established a novel understanding regarding chemical and/or biological 
mechanisms governing eNP impact. The project developments will trigger new research 
opportunities and increase awareness regarding the safe use of nanoproducts (safe-by-design 
strategies). Using FSP, a library of ultrafine, single crystalline metal and metal oxide eNPs has 
been synthesized and fully characterized. Data generated within MODERN will be available to 
the Nanosafety Community from the nanoDMS system. In fact the data management system is in 
itself a significant outcome of the project since it implements the first ISA-TAB-Nano compliant 
database for nanosafety data. 
The computational characterization of the molecular structure and physicochemical properties of 
eNPs carried out in WP1 will impact at two different levels. First, MODERN has developed new 
nanodescriptors suitable to describe the structure of eNPs from the viewpoint of their electronic 
structure as well as from the view point of their size effects. The main importance of these 
scientific results lies in breaking the barrier of the description of nanoparticles. From the former 
chemical composition or small fragment based approach to the description of full particles, 
including their shape and size. For the first time, it is possible to build nanoparticle – activity 
models that reflect the true character of nanoparticles, without making specific assumptions on 
the source data that is being modelled, in particular the size distribution (or lack thereof). This 
conceptual improvement not only allows the creation of better performing quantitative models, 
but brings new options to the general understanding and ways of analysis of nanoparticle 
properties or characteristics.  
 
WP2: In silico profiling of the environmental and health impact of eNPs 
MODERN has also contributed to the establishment of new QNARs from the nanodescriptors 
developed in WP1. The analysis of the eNP properties obtained and characterized in WP1 together 
with the biological activity profiles determined in WP2 has contributed to identify data gaps and 
has the potential to be subsequently used as a diagnostic and design tool to respectively 
trigger/drive new experimental characterization work for safe-by-design nanomaterials. 
MODERN will facilitate open access to the rich dataset of ecotoxicity data for three species 
(algae, protozoa and bacteria) exposed to the eNPs in MODERN’s library. These data will also 
be useful to validate and extend current nanotoxicology models. In summary, the data-driven 
approach for the in silico characterization of the effects produced by eNPs on biological systems 
(aquatic and terrestrial ecosystems) developed in MODERN will impact the nanosafety 
community since the statistical analysis and mining of these data will provide the basis for in 
silico profiling of mechanisms of action and for the establishment of more advanced quantitative 
nano structure-activity relationships describing the biological activity and the toxicity behavior 
of eNPs in the human body and in the environment.  
 
WP3: Identification of eNP categories and basic hazard ranking 
The eNP signatures, obtained from the information collected/generated in WP1 and WP2, have 
served to identify similarities in the structural, molecular, physicochemical property profiles, and 
biological activity for categorizing nanoparticles and establishing relations between experimental 
and calculated properties. Both the in silico models and the categorization methodology will 
contribute to advance towards the design of integrated testing strategies (ITS) for nanomaterials 
suitable for regulatory purposes. The contribution of MODERN’s research to the development of 
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an ITS scheme for eNPs will provide the framework and technical basis to fulfill safety levels and 
animal welfare goals, while being practicable from a technical and an economic perspective. 
Specifically, the in silico models developed in MODERN will contribute to the ethical goal of 
animal welfare facilitating the replacement, reduction and refinement of animal testing, in 
accordance with general public and societal needs and as laid down in Directive 86/609/EEC on 
the Protection of Laboratory Animals. 
Regarding hazard ranking and risk assessment, decisions should preferably be based on 
comprehensive models implemented into simple and logic algorithms since this will ensure a 
wide distribution and the fast implementation to many stakeholders. The foundation for such tools 
has been developed within MODERN. Hence, the impact of the methodologies and tools 
developed in MODERN is at least two-fold, (i) the MODERN model progresses the scientific 
basis for read across models, which enable the identification of eNP descriptors that correspond 
to certain toxic effects. The other impact is the applied side, i.e. the industrial and regulatory 
aspect, where the developed framework allows industrial (i) material developers to construct safer 
by design materials. Our framework for risk assessment also allows regulators to (i) model, rank 
and prioritize the available information and, hence, pinpoint where more research is needed, and 
(ii) to identify risk banding tools and potential groups of toxic nanomaterials. These modelling, 
prioritization, ranking and grouping approaches are fully in line with regulatory initiatives, where 
robust grouping and ranking (based on inclusion of comprehensive information) paradigms are 
requested. This is similar to ongoing initiatives for prioritization of chemicals. 
 
Impact on the nanosafety community 
The identification of eNP categories and the development of the basic hazard ranking scheme 
developed in WP3 will represent a step towards the promised eNPs safety for success. MODERN 
has generated information and computational methods relevant for the understanding on nano-
bio interactions in cells (in vitro), and terrestrial and aquatic species (in vivo). The knowledge on 
nano-bio- interactions obtained will serve to further refine eNP categories and to explain their 
mechanisms of toxicity. Accordingly, MODERN has contributed to the implementation of the EC 
Action Plan for Nanotechnology by (i) generating and collecting nanosafety-relevant data; 
(ii)  developing novel QNAR models suitable to support regulatory demands; (iii) providing new 
information to support the mechanistic interpretation of toxicity effects across relevant species 
for ecotoxicity studies; (iv) creating new protocols for eNPs categorization and hazard ranking; 
(v)  promoting the safe-by-design development and production of products from nanotechnology; 
and (vii)  contributing to the development of new guidelines for the sustainable and responsible 
development of nanotechnologies.   
 
European dimension and social awareness 
The activities carried out by MODERN Consortium members have contributed to the 
reinforcement of the international dimension of European research and collaboration between 
industry, researchers, environmental agencies, authorities (at Member State and European level) 
and international standardization bodies. The hazard ranking and risk assessment strategy 
developed in MODERN will contribute to support governance in nanotechnology by facilitating 
informed decision-making to EU regulatory bodies, agencies and authorities. Policies could, thus, 
be established to safeguard consumers while taking full advantage of the advancements that the 
new generation of safe nanomaterials will bring to the economy and competitiveness of EU 
industry. In this context, MODERN outcomes will contribute to secure the responsible 
development of nanotechnologies and to assist public engagement on discussing their risks. Thus, 
it will help establishing sound social awareness on the benefits that eNPs have in daily use 
consumer products. Given the leading role that Europe has to maintain in the future worldwide 
market underpinned by nanotechnology, the results of the project have the potential to contribute 
to the necessary acceleration of the commercialization of the new generation of nanomaterials via 
safe-by-design strategies. The sound collaboration with the other modeling projects funded in the 
NMP.2012.1.3-2 has also reinforced the European dimension of the project.  
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In summary, both the novel nanodescriptors and the new and improved models enable to bring 
the understanding of the nanoparticle world out from the scientific community and research 
facilities and closer to the average citizen, thus potentially avoiding uninformed reactions of the 
public in either direction to anything considered as “nano”, as we have seen to happen in recent 
years. The improved understanding of the benefits of nanoparticles should allow new businesses 
and products to emerge, boosting economy. The improvement of the quality of materials and 
products due to the superior properties of nanomaterials is expected to be also accompanied by 
both reduced costs as well as reduced impact to the environment, as less bulk material is required 
for obtaining the same target properties. 
 
Improved understanding of the safety issues of nanomaterials should have twofold impact. First, 
a more knowledgeable public will be less accepting to poor practices of material handling and 
safety by the producers. Also producers of various nanomaterials would have an improved 
understanding of both the beneficial characteristics of their potential products but also the hazards 
at workplace and requirements for material handling. Regulators would have new and improved 
tools for assessing the safety of nanomaterials. Last, but not least, a knowledgeable public would 
be less likely to fall for any mass campaigns, either for or against the use of nanomaterials without 
analyzing the benefits and risks related to the real exposure scenarios in each particular case.   
 
In conclusion, the overall expected impact of MODERN is the progress in understanding and 
describing the properties of nanomaterials, at scientific, production, regulatory and general public 
levels. 

References	
 
1. Marchese Robinson, R. L., Cronin, M. T. D., Richarz, A.-N. & Rallo, R. An ISA-TAB-

Nano based data collection framework to support data-driven modelling of 
nanotoxicology. Beilstein J. Nanotechnol. 6, 1978–99 (2015). 

2. Nel, A. et al. Understanding biophysicochemical interactions at the nano–bio interface. 
Nat. Mater. 8, 543–557 (2009). 

3. Krug, H. F. & Wick, P. Nanotoxicology: an interdisciplinary challenge. Angew. Chem. 
Int. Ed. Engl. 50, 1260–78 (2011). 

4. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–
78 (2012). 

5. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made 
Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). 

6. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio 
parametrization of density functional dispersion correction (DFT-D) for the 94 elements 
H-Pu. J. Chem. Phys. 132, 154104 (2010). 

7. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and 
quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. 
Chem. Chem. Phys. 7, 3297–305 (2005). 

8. Puzyn, T. et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. 
Nat. Nanotechnol. 6, 175–8 (2011). 

9. Arts, J. H. E. et al. A decision-making framework for the grouping and testing of 
nanomaterials (DF4nanoGrouping). Regul. Toxicol. Pharmacol. 71, S1–27 (2015). 

10. Zhang, H. et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm 
for oxidative stress and acute pulmonary inflammation. ACS Nano 6, 4349–68 (2012). 

11. Liu, R. et al. Development of structure-activity relationship for metal oxide nanoparticles. 
Nanoscale 5, 5644–53 (2013). 

 


