
Final Report: Results and Foreground

 1

A General Toolkit for “GPUtilisation”
in SME Applications

 FP7-SME-2011-1 - 286545 – GPSME

Final Report: Publishable Summary

Final Report: Results and Foreground

 2

I.	
 PROJECT	
 CONTEXT	
 AND	
 OBJECTIVES	
 	

1.	
 Project	
 Context	
 	

The purpose of this project is to overcome the identified barriers for the SMEs in utilising the
GPU technologies by using an outsourced development team (the RTD performers) to create a
generic toolkit that SMEs can use to easily and cost-effectively harness the processing power
of GPUs and substantially increase their competitiveness in the marketplace.

SMEs (small and medium enterprises) face continued pressure to remain competitive in an
age of rapid technological change. This is particularly the case for SMEs with high-tech
innovative products whose direct competitors are often large multinational companies that
have vastly more resources at their disposal in product development.

The major challenges faced by the SMEs in these high-tech fields relate to a huge growth in
data processing requirements through increases in quantity, in resolution, in variety etc.
demanded by their applications. This leads to a continual upward pressure on computational
resources and processing speed, with major bottlenecks occurring that dramatically limit the
applicability of many SME applications. All of the SMEs in this project have found themselves
subject to these pressures.

For a SME to maintain a strong foothold in R&D, it must have access to facilities that are
powerful, that provide here-and-now availability and that are under its direct control. Local
computing power facilitates research exploration by allowing the developers to frequently
experiment with computing models and parameters. It also helps to address security and legal
problems as the SME’s data and software can remain in-house if no use is made of external
computing resources.

The initiative of this project came from the demands of the 4 SME participants. While providing
services in different areas, they all face a common problem: the quality of their products has
been inhibited by a lack of computing power - the product developed is constrained by the
computational resources of the likely user base. Hence, the availability and affordability of the
equipment necessary to use the SME’s products can affect their marketing and become a
major obstacle to their competitiveness in the future.

Parallel computing offers fast computing by splitting tasks into small components and
distributing them among multiple processors/threads. Many computing tasks exhibit a parallel
nature and are hence suitable for parallel computing. Conventional parallel computing takes
place using multi-core CPUs or via distributed, grid, high performance computers. The
remarkably increased power of Graphics Processing Unit (GPU) in recent years offers a very
attractive alternative, which can handle many demanding tasks by only harnessing local
computing resource in low-cost computer platforms.

The most important development in GPUs in recent years has been the marked increase in
their versatility. Their capabilities are now much more widely applicable and they have become
used in many computational areas - this is known as General Purpose GPU programming
(GPGPU). If the capacities of the GPU are harnessed properly, it is now the most powerful
processor in a desktop computer and its development continues to outpace developments in
CPUs. The GPU does, however, demand very specific skills to ensure that its potential is fully
realised. These skills are still in relatively short supply and, for the moment, it certainly makes
sense for an SME to outsource such work. This is the premise on which the current project is
based.

The GPSME project has developed a toolkit which enables the SMEs to take advantage of
current GPU capability without having the need for an in-depth understanding of GPUs and
committing resources for manual CPU2GPU conversion, which has been the major stumbling

Final Report: Results and Foreground

 3

block in adopting a GPU approach. This allows the SMEs to gain great speed performance
and help the advance of each application domain by allowing for advanced computing models
with high complexity.

1.1	
 IME:	
 Image	
 Forgery	
 Detection	

IME is a technology research-backed company focusing on digital imaging forensics analysis.
It is a leading innovator and technology provider for this field. The mission of the company is to
support the widespread usage of digital photos and videos by increasing their credibility
through deployment of the latest research results with exceptional reliability into the business
world. Based on over 7 years of research, it provides a unique and patent-pending technology
for verifying the trustworthiness of images, scanned documents and videos, detecting if digital
manipulation has taken place, detecting and verifying the source of the image/video, and
hence enhancing various industries by bringing a new revenue stream, fraud prevention
method, competitive advantage and increasing trust between users. This technology has
practical application in several fields, especially in insurance (i.e., during the processing of
insurance claims and new contracts), in crime investigation and the legal processing of
forensic evidence, in image search engines and in media production (e.g., newspapers and
journals). The technology does not use any watermarks or signatures, which is regarded as a
significant technical advantage.

IME provides forgery detection solutions via novel mathematical and computational algorithms,
which detect the traces of tampering in a blind way and bring considerable improvements in
the never–ending game between image forgery creators and image forgery detectors.
Detecting suspicious and altered parts of the image or video is a time consuming task and the
algorithms typically need high computational power. For example, when detecting cloning-
based forgeries, where part of the image is copied and pasted into another part of the image,
typically, with the aim to hide an important object or region of the image, we need to split the
image into millions of small overlapping blocks and process and represent each block
separately (e.g., using a Fourier-Transform-based representation). After that, a complex block-
similarity examination is carried out. Given the typical size of an image, 35-45min of
computational time is needed, on average, to process a single image. Since most newspapers
and photo agencies receive thousands of photos per day, this computational time is not
acceptable in practice.

Currently, the novelty and complexity of the detection methods employed puts IME in a very
distinctive position compared to its direct local or global competitors, for example, the US
based company Digimarc, which is the leading provider of invisible watermarking technology.
However, this is a new area with fast evolution. The company is facing increasing threats from
the growth of new technology and new competitors. The rapid advances in the field strongly
suggest the importance of updating their existing product with latest techniques. Currently, due
to speed limitations, the application of some advanced detection techniques developed by IME
has been postponed to the market.

The GPU techniques support major performance improvement, and allow the company to use
advanced detection techniques, and hence significantly increase its competitiveness. The
GPSME toolkit can rapidly decrease the cost of converting the CPU programs into its GPU
version. This main advantage results in a noticeably lower execution time for end-users,
allowing IME to bring more cutting-edge image forensics technologies to real-life markets such
as media, crime investigation and insurance, etc. This can lead to significant positive influence
on the market position of the company

1.2	
 ROTA:	
 Augmented	
 Reality	
 (AR)	
 book	

ROTA is a software entrepreneur company specialising in the field of Augmented Reality,
supported by the latest technology of real time image processing and 3D computer graphics.
ROTA has gained national and international awards through developing a number of AR

Final Report: Results and Foreground

 4

products using its unique technology. Its current product, Live Book, is the very first
commercialized AR book in the world. The Canlı Kitap products, which are patented by Turkish
National Patent Institute, have been released in Turkey before worldwide distribution. The
project has been supported by TUBITAK within industry research and development assistance.
ROTA provides two sets of AR books for pre-school and secondary school children. Given the
targeted market and customers, these products require real time performance at over 24
frames per second on modest platforms. Image processing speed is a bottleneck in the
current products. ROTA needs the toolkit to enhance the current product – Live Book by
performing real-time image processing. This can increase the effectiveness of the AR book.
There are various AR books produced in Germany, France, South Korea, U.S.A. etc.
Improving the quality of the products while maintaining the interaction speed constitutes one of
the keys to winning the market.

1.3	
 SCS:	
 Multimod	
 Application	
 Framework	
 for	
 VPH	

Super Computing Solutions (SCS), which develops software solutions and services for
computer aided medicine, is the primary designer and developer of the MAF(a software
framework for the rapid development of computer-aided medicine application). Its mission is to
translate research results in ICT and bioengineering into technology and services for
computer-aided medicine and to promote their adoption in the clinical practice. MAF is widely
used as the underlying foundation software in many VPH projects.

Local computing power based on GPUs facilitates research exploration by allowing the
scientists to frequently experiment with computing models and parameters. It also helps to
address security and legal problems in clinical practice since personal data from patients does
not need to be accessed by external computing resources. However, these performance gains
have not been widely noticed within VPH, and VPH is currently poorly placed to take
advantage of GPU developments. Current VPH projects make little use of the GPU, employing
them only for tasks that have traditionally been associated with computer graphics –
visualization, collision detection, image processing, etc.

SCS plans to use the GPSME toolkit to convert many parallelisable applications within the
current MAF into GPU execution to speed up the performance. Since MAF has been the
foundational software for many VPH projects, this movement will create profound benefit to the
VPH community. While many VPH applications are computationally demanding, some initial
experiments have shown a speed improvement of several orders of magnitude due to the use
of GPUs. GPUs now represent the most economical and effective route to high performance
computing available to the average VPH practitioner.

1.4	
 ANS:	
 Analysis	
 of	
 Eye	
 Images	
 for	
 Clinical	
 Applications	
 	

ANS is a research driven company specialising computer intelligent technology, service
provision and software development. By using cutting-edge technology to develop innovative
software applications, the company provides complete end-to-end intelligent software solutions
to allow easy information access, data management, data analysis and visualization across a
variety of platforms. The software applications are highly customizable to modern hand-held
devices, such as mobile phones, tablets, etc. Medical image analysis is one of the key
development interests of the company. Its current work on eye image processing, analysis,
tracking and detection aims at convenient tools that facilitate the diagnosis of eye diseases.

The company has a number of competitors who are also working on eye image processing,
including NewVision Fundus, Lickenbrock Technologies, faceLabTobii. The company
endeavours to enhance the performance of its products by making use of advanced computer
vision and image processing techniques.

The eye image analysis techniques adapted in the company have great potential in achieving
parallelization. Therefore, harnessing the parallelised resources of the GPU provides a great

Final Report: Results and Foreground

 5

boost to the performance. By making use of the power of GPU, many of the current techniques
can be scaled to higher complexities or dimensions to enhance the accuracy.

In summary, the GPSME toolkit allows the SME users to improve the speed performance of
their products quickly and economically by automatically identifying the parallelizable sections
of their programs and converting them into GPU implementations. Speed performance is the
bottleneck of many SME related applications. It is expected that the SME participants to
receive direct and immediate benefit from using the toolkit. This can not only significantly
reduce the computational time of their current products, but also allow them to involve more
advanced computational models to enhance the quality.

2.	
 Main	
 Objectives	
 	

The GPSME project has developed a toolkit which enables the SMEs to take advantage of
current GPU capability without having the need for an in-depth understanding of GPUs and
committing resources for manual CPU2GPU conversion, which has been the major stumbling
block in adopting a GPU approach.

The toolkit is capable of carrying out highly automatic CPU2GPU source-to-source translation
on moderately priced standard GPU cards and off-the-shelf GPU clusters. This allows the
SMEs to gain great speed performance and help the advance of each application domain by
allowing for advanced computing models with high complexity.

Technically, GPSME features adequate adaptation of automatic parallelization to modern GPU
structures.

The specific objectives of GPSME and measurable outcomes are given below

I. Techniques allowing adequate adaptation of automatic parallelization to GPUs by
taking full consideration of GPU compute architectures with a range of compute
capabilities.

II. A toolkit that performs GPUification suitable to the SME application areas.
III. Scientific validation of the GPSME toolkit in the application areas.
IV. Enhanced speed and computing precision in each of the SME applications, including

image forgery detection, AR book and MAF, eye image analysis, owing to the
contribution of the toolkit.

V. Dissemination and exploitation of the results to a wider community.

Final Report: Results and Foreground

 6

II.	
 FOREGROUND	

1.	
 Summary	
 of	
 Results	
 	

We identify three types of GPSME outputs.

• Products. These are tangible outputs in the form of new software
technologies/systems/models that are exploitable into the future.

Within the context of GPSME, this mainly refers to the C2GPU toolkit (which has been
named as C2GPU toolkit), as well as the SME applications that are enhanced by the
toolkit

• Publications. These can be scholarly articles by academic partners published in peer-
reviewed journals or presented at conferences, or printed marketing materials created by
SME partners to draw attention to new approaches or technologies.

Some project results have been published in conferences. These have been reported in
the Final Report: Impact, Dissemination and Exploitation, as well as in the dissemination
plan D6.3.

• Experiences. These are less tangible but can still play an important part in the exploitation
of project outcomes. They include: the experience and expertise gained by project
partners and individuals in the management and undertaking of (trans-national)
partnerships in a certain field, co-operation processes and methodologies; managerial
lessons and know-how; and exchange of ideas and good practice through the
establishment of networks, as well as events such as conferences, public awareness
campaigns, seminars, debates and symposia.

These formed the basis on which the collection of exploitable foregrounds. The rest of this
report will focus on the tangible output of the project, namely the C2GPU toolkit together with
the SME applications that have been enhanced by the toolkit.

2.	
 C2GPU	
 Toolkit	
 	

2.1	
 Requirement	
 Analysis	
 of	
 SMEs	

We have analysed the general expectations of the SMEs on the C2GPU toolkit. The products
of the SMEs involve a wide range of applicable areas including medical image processing,
image forgery detection and augmented reality book. The user requirement analysis activities
were led by a SME (IME) and these activities actively involved all the SMEs. Examples of the
common requirements are (not limited to):

• Use the toolkit without need to have an in-depth understanding of GPUs
• Fully or semi-automatic CPU-to-GPU source translation
• Support C/C++ programming language
• Support either CUDA or OpenCL as output source.
• Good performance gain without accuracy loss
• Source code protection for security reasons
• Support error diagnosis

Our research shows that none of the existing CPU-to-GPU source translators is capable of
fully satisfying the SMEs needs. The SMEs expect a toolkit that enables them to take

Final Report: Results and Foreground

 7

advantage of the latest GPU capability to effectively and economically speed up their products.
This is evidenced by the analysis of the user requirements in the following 4 categories:

• Acceleration: The SMEs expect their applications to be accelerated significantly on
moderate hardware platforms. They are interested in real time saving in their applications
instead of a high speed up ratio of GPU over CPU. However, the existing CPU-to-GPU
translators focus more on the speedup ratio of GPU over CPU rather than considering
their practical performance. Their acceleration results are mostly achieved by running
simple C code samples through advanced GPU hardware. Applying them to the SMEs
applications cannot achieve desired performance gain. Therefore, we face the challenge
from real-world applications instead of from simple sample code.

• Applicability: The SMEs expect the toolkit to have a wide applicability, allowing them to
solve time-consuming tasks in various types of products. Among the existing CPU-to-GPU
translators, algorithm skeleton based tools like Bones or Polyhedral have limited classes
therefore they cannot support applications with complex or diverse loop types. The
directive-based tools like OpenMP, HiCuda and PGI have a wide applicability owing to the
flexible usage of the pragmas. However, learning these pragmas is a challenge to non-
expert users. Thus, we need to achieve a balance between the applicability and directive
complexity - the directives of the toolkit should be simple but support all types of
algorithms skeletons and loop patterns.

• Usability: The SMEs have strong demands on the usability of the toolkits. Firstly, the input
and output language are C/C++ and CUDA/OpenCL, respectively; Secondly, the SMEs
suggested to use a web-service to achieve cross-platform (Windows and Linux) usage of
the toolkit; Finally, a user management system with source code protection scheme is
required for the web-service. Most of the existing tools use C-to-CUDA based command
lines under Linux. The SMEs need a toolkit with better usability for non-expert GPU users.

• Adaptability: The feature of easy-to-learn is paramount to the SMEs. GPU technology
and programming skills are hard to grasp. The existing CPU-to-GPU source translators
still need users to study the usage of the directives. In fact, the simplicity of the directives
is crucial to the adaptability of the toolkit. In this project, we have aimed to design simple,
flexible and efficient directives.

2.2	
 Progress	
 beyond	
 the	
 State	
 of	
 Art	

In recent years, GPU computing is very effective in dealing with computationally intensive
tasks. OpenCL and NVIDIA’s CUDA are two most popular GPU parallel programming
languages. The automatic CPU-to-GPU source translation techniques make GPU technology
more accessible to users.

Currently, numerous CPU-to-GPU source parallelization translation tools have been developed
for both academic and commercial purposes, which can be categorised into either fully-
automatic or semi-automatic tools.

• For the fully-automatic tools, the targeted GPU codes are translated by a specific
algorithm template mapping to CPU code. The algorithm class can be algorithm skeleton
or polyhedral model, such as SkePU, Bones, PLUTO, R-stream and Par4All. Fully-
automatic source translators have a good usability since they do not require users to have
a basic GPU knowledge to identify parallel regions. However, their applicability is not
good, since they are highly sensitive to the characteristics and data structure of the CPU
algorithm template. This drawback significantly limits their wide acceptances by general
users.

• The semi-automatic tools are also named as directive-based CPU-to-GPU translators,
which produce target GPU code by adding annotations in the CPU source code. With the
semi-automatic tools, users have to understand basic GPU knowledge and the usage of

Final Report: Results and Foreground

 8

the directives. Well-known semi-automatic tools include hiCUDA, MINT, PGI Accelerator.
In comparison to the fully-automatic source translators, the semi-automatic tools have a
better applicability in dealing with complex CPU algorithms. However, its usability is not
good since users have to identify parallelizable regions and manage complex memory
hierarchy by themselves. Also, the directives and unreadable output code in some tools
bring difficulties to the users. Consequently, there is no existing CPU-to-GPU source
translation tool reported in literature that provides an outstanding solution with good
acceleration ability, wide applicability, good usability and adaptability.

Within the GPSME project, a directive-based online CPU-to-GPU toolkit is developed for the
SME users to accelerate their applications. The main characteristics of the toolkit include:

• Several advanced pragmas have been defined to generate GPU kernel and to manage
differentiated GPU memory hierarchy. These pragmas improve the applicability of the
toolkit for the SMEs applications with complex algorithm skeletons.

• An annotation based programming model GPUSWO is presented to enable non-expert
GPU users to flexibly and effectively implement CPU-to-GPU code translation for image
filters applications.

A SWO (Sliding Window Operation) logical based kernel generation pragmas scheme is
introduced in the GPUSWO model. This scheme has enhanced usability and simplicity for
SWOs applications than the existing CPU-to-GPU translators.

• Also, the C2GPU toolkit supports triangular loops and the optimization of multi-
dimensional arrays. They significantly improve the acceleration ability of the toolkit.

• An easy-to-use web-based user interface is designed and integrated with the toolkit.
Compared to the typical command line based CPU-to-GPU translators, this interface offers
a much more friendly user interface.

These enhancements make the C2GPU toolkit more attractive to the SME users. A detailed
performance evaluation of the GPUSWO model is given in Section 3. This evaluation shows
that the GPUSWO model has an enhanced performance over other leading CPU-to-GPU
translators on many applications.

2.3	
 C2GPU	
 Toolkit	
 Overview	

The main system architecture of the C2GPU toolkit includes two components: GPSME web-
interface and GPSME core library. The GPSME web-interface is a JavaScript command line.

2.3.1	
 Web	
 Interface	

Driven by the potential difficulties of having a local GPSME installation, and also to increase
the visibility of the toolkit, we include access to the toolkit through a remote web server. The
web server can be accessed at http://gp-sme.co.uk/web_face/.

This service facilitates the translation of the user source code, not needing anything related to
the toolkit locally installed on the users’ machines. A screenshot from the online translator is
given in the image below.

Final Report: Results and Foreground

 9

Figure 1: Web-based Interface of the C2GPU toolkit

The typical usage of the GPSME web application is as follows:

• The user creates and account with their details.

• The user uploads a C/C++ file

• The users upload the necessary header files.

• The user selects the desired output type.

• The user initiates the code translation process.

• It takes a few seconds for the C2GPU remote server to process the user files.

• The results can be retrieved under the ‘Processed files’ tab.

Many users will not be running the toolkit locally on a Linux machine but will instead be making
use this remote web server. In this case you should keep the following points in mind in
addition to those raised previously:

• If you have an external dependency then it must be installed on the remote webserver in
addition to your local machine. You will need to contact you server administrator to get this
set up.

• When uploading a C++ file for parallelisation you must also upload any of your own
headers on which the C++ file is dependent. It is assumed that these belong in the same
directory as the C++ source file, so avoid paths in your #include statements.

The webserver can also be installed locally on SME servers and act as a demo for the
eventual customers.

2.3.2	
 System	
 Architecture	
 	

The core structure and translation flow of the C2GPU toolkit is illustrated in Figure 2.

Final Report: Results and Foreground

 10

Figure 2. C2GPU System Structure

The toolkit is developed under Linux based on ROSE. Its structure is quite similar to MINT but
with extended components. In each component, there are also some sub-components to
manage different tasks. The system structure and translation flow is illustrated in Figure 2.

Table 1. Listing of C2GPU directives

 Directives Descriptions

Basic
pragma

Parallel To identify a region generating kernel function

Parallel region To identify a parallel region containing parallel work

For To mark the succeeding for loop for GPU acceleration

Single To indicate serial regions in GPUSWO model

Memory

Manage
ment

CopyByTexture To create a CUDA texture on device, and bind or unbind with a 2D data

CopyMalloc1DArray To create a CUDA array on device, associating with CUDA texture on
device.

CopyMemcopy2D To create a CUDA cudamemcpy2D function to copy a matrix between
CPU and GPU memory

CopyMemcopy2DToArray To create a CUDA function cudaMemcpy2DToArray to copy data
between CPU and GPU memory.

CopyBindTexture To bind the created texture memory to CUDA global array.

Copy2DArrayTo1DArray To covert the array with different dimensions on CPU memory buffer.

Kernel

Generati
on

Initialisation To define a one dimensional array for storing the data in a sliding
window

Transfer To transform the code of putting the data in a sliding window into a local
variable within “For” loop

Final Report: Results and Foreground

 11

List 1 Translation of C2GPU Memory Creation
1: #pragma parallel region { // Loop start for whole image

2: ………………………..

3: #pragma copy2DArrayTo1DArray(W, toHost, I, J, W_1D,

 2DTo1D) // covert data

4: int i_1; int j_1;

6: for (i_1 = 0; i_1 < J; ++i_1)

7: for (j_1 = 0; j_1 < I; ++j_1) {

8: W_1D[i_1*I+j_1] = W[i_1][j_1]; }

13: #pragma copyMemcopy2D(W, HosttoDevice, I,

 J, pitch1, W_1D)// Transferring Data CPU-GPU

14: cudaMemcpy2D(d_dev_5_W,sizeof(float) * I,

 W_1D,pitch123,sizeof(float) * I, J,

 cudaMemcpyHostToDevice);

15: #pragma copyMemcopy2DToArray(W, DevicetoDevice,

 ROI_w, ROI_h, pitch1)

16: cudaMemcpy2DToArray(array_dev_4_W,0,0,

 d_dev_5_W,pitch123,sizeof(float) * ROI_w, ROI_h,

 cudaMemcpyDeviceToDevice);

17: #pragma copyBindTexture(W, DevicetoDevice,

 W, float, Bind)// Bind CUDA Array to Texture

18: cudaChannelFormatDesc desc_3;

19: desc_3 = cudaCreateChannelDesc<float>();

20: cudaBindTextureToArray(&tex_dev_4_W,

 array_dev_4_W,&desc_3);

17: #pragma parallel region {

 // Loop start for sliding window , calling kernel

18: ……………………..

19: … MedTex_2(float *d_out, unsigned int Pitch, int w, int

 h)………..

20: }

21: #pragma copyMemcopy2D(imDenoised_GPU, DevicetoHost,
I,

 J, pitch1, W_1D)// Transferring Data CPU-GPU

Remain To transform the operations on sliding window from CPU algorithm to
GPU kernel.

Assign To assign the new data to the relevant GPU buffer with correct index.

Final Report: Results and Foreground

 12

22: cudaMemcpy2D(W_1D,sizeof(float) * I,

 d_dev_6_imDenoised_GPU,pitch123,sizeof(float) * I, J,

 cudaMemcpyDeviceToHost);

23: #pragma copy2DArrayTo1DArray(W_1D, toHost,

 I, J, W, 1DTo2D) // covert data

24: int i_2; int j_2;

25: for (i_2 = 0; i_2 < J; ++i_2)

26: for (j_2 = 0; j_2 < I; ++j_2) {

27: imDenoised_GPU[i_2][j_2] =W_1D[i_2*I+j_2]; }

List 2 Translation of C2GPU Data Transfer
1: // Initialisation and set GPU memory.

2: #pragma copyByTexture(D, toDevice, N, M, Bind, char)

 // set CUDA Texture memory for whole image.

3: cudaChannelFormatDesc desc_1;

4: desc_1 = cudaCreateChannelDesc<unsigned char>();

5: tex_dev_3_D.normalized = false;

6: tex_dev_3_D.addressMode[0] = cudaAddressModeClamp;

7: tex_dev_3_D.addressMode[1] = cudaAddressModeClamp;

8: tex_dev_3_D.filterMode = cudaFilterModePoint;

9: cudaMallocArray(&array_dev_3_D,&desc_1,N,M);

10: cudaMemcpyToArray(array_dev_3_D,0,0,((char *)D),sizeof(char
) * N * M,

 cudaMemcpyHostToDevice);

11: cudaBindTextureToArray(tex_dev_3_D, array_dev_3_D);

13: #pragma copyByTexture(W, toDevice, I, J, NoBind, float)

 // set CUDA Texture memory for sliding window region

14: cudaChannelFormatDesc desc_2;

15: desc_2 = cudaCreateChannelDesc<float>();

16: tex_dev_4_W.normalized = false;

17: tex_dev_4_W.addressMode[0] = cudaAddressModeClamp;

18: tex_dev_4_W.addressMode[1] = cudaAddressModeClamp;

19: tex_dev_4_W.filterMode = cudaFilterModePoint;

20: cudaMallocArray(&array_dev_4_W,&desc_2,I,J);

22: #pragma copyMalloc1DArray(W, toDevice, I, J, pitch1)

23: cudaMallocPitch(((void **)(&d_dev_5_W)),&::pitch123,I *
sizeof(float), J);

25: #pragma copyMalloc1DArray(imDenoised_GPU, toDevice, I,
J, pitch1, InKernel)

26: cudaMallocPitch(((void

Final Report: Results and Foreground

 13

List 3 Translation of C2GPU Kernel Generation

CPU Code GPU Kernel

1:

2: #pragma parallel {

3: ……………

4: ……………

3: #pragma single
initialisation{

4: float v[9] =
{0,0,0,0,0,0,0,0,0}; }

5: #pragma for nest(2)
tile(16,16)

6: for (i = 1; i <= height ; i++)

7: for(j = 1; j <= width ;
j++){

8: #pragma single transfer{

9: v[0] = Image [i-1][j-1] ;

10: v[1] = Image [i-1][j] ;

11: ……………………..

12: v[8] = Image [i+1][j+1]; }

13: #pragma single remain{

14: for (m = 0 ; m < 9 ; m++)

15: for (t = m+1; t < 9; t++)
{

16: if(v[m] > v[t]) {

17: tmp = v[m];

18: v[m] = v[t];

19: v[t] = tmp ; }} }

20: #pragma single assign {

21: Image[i][j] = v[4] ; }

 }

 __global__ void kernel(int
Pitch, float *d_out, int w, int h){

// index caculation

int x = blockIdx.x * blockDim.x +
threadIdx.x;

int y = blockIdx.y * blockDim.y +
threadIdx.y;

int i = 0;

float v[9] = {0,0,0,0,0,0,0,0,0};

// data transfering

for (int xx = x - 1; xx <= x + 1;
xx++)

for (int yy = y - 1; yy <= y + 1;
yy++) {

if (0 <= xx && xx < w && 0 <= yy
&& yy < h) // boundaries

v[i++] = tex2D(tex_CFA_2,
0.5f+(float) x, 0.5f+(float) y);}

// directly copy from CPU code

 for (m = 0 ; m < 9 ; m++)

 for (t = m+1; t < 9; t++) {

 if(v[m] > v[t]) {

 tmp = v[m];

 v[m] = v[t];

 v[t] = tmp ; }}

// pick the middle one

float* row = (float*)((char*)d_out +
y * Pitch);

row[x] = v[4];

}

**)(&d_dev_6_imDenoised_GPU)),&::pitch123,I *

 sizeof(float), J);

27: #pragma parallel region { // Loop start for whole image

28: ……………………..

30: }

Final Report: Results and Foreground

 14

2.3.3	
 GPSME	
 Directives	
 and	
 Translation	

The details of the C2GPU pragmas are presented here, as seen in Table 1. The basic pragma
is similar to the pragma in MINT. The only difference is that Parallel Region indicates the start
of a parallel region containing parallel work. These regions within the block of this pragma will
be accelerated.

Parallel indicates the start of a region generating kernel function, which normally contains
some “For” loops. We differentiate these two pragmas by using a memory management
pragma “CopyByTexture”. The parallel node behind “CopyByTexture” is recognized as a
parallel region without generating a kernel function.

For memory management pragmas, we extend “Copy” pragmas regarding the memory
creation procedure, data covert and data transfer. Memory creation includes two copy based
pragmas :“CopyByTexture” and “CopyMalloc1DArray”. The pragma “CopyByTexture”
creates a CUDA texture on device, and binds or unbinds with a 2D data. This pragma is used
to allocate device memory for the input high-resolution image. This normally occurs in the step
of initiation.

The pragma “CopyMalloc1DArray” creates a CUDA array on device, associating with a
CUDA texture on device. Data transfer is responsible for transferring data between CPU and
GPU. It includes two copy based pragmas: “CopyMemcopy2D” and
“CopyMemcopy2DToArray”. The first one creates a CUDA function cudamemcpy2D to copy
a matrix between CPU and GPU memory. The second one creates another CUDA function
cudaMemcpy2DToArray to copy data between CPU and GPU memory.

Also, a pragma “CopyBindTexture” is defined to bind the created texture memory to CUDA
global array. The clauses of these pragmas include the name, the size of variable and the
means of data transferring. Data conversion is used to convert the array with different
dimensions on CPU memory buffer. Image processing applications normally use OpenCV
libraries so the dimension of data has to be ordinarily converted from 2D array to 1D array for
GPU use. One copy based pragmas are defined as “Copy2DArrayTo1DArray”. The clause of
this pragma includes the type of data conversion, such as 1DTo2D, 2DTo1D.

List 1-3 show the translation of GPSME memory creation directives, the translation of GPSME
data transferring and converting directives and the translation of GPSME kernel generation
directives, respectively.	

3.	
 Evaluation	
 	

3.1	
 Acceleration	
 	

Acceleration is the most important performance indicator of the C2GPU toolkit. In order to
evaluate this, we have compared the performance between original CPU code, revised CPU
code, machine-generated GPU code and manually-generated GPU code.

The original CPU codes were selected from the applications of the SME partners. They were
revised by the users in order to be processed by the C2GPU toolkit. The toolkit generated the
machine-generated GPU codes. For comparison purpose, we have also performed CPU to
GPU code conversion manually.

3.1.1	
 SCS	

The application from SCS is to extract a centerline from a given 3D model. The codes from
SCS are based on C++, which calls some VTK functions for centerline extraction. The
performance gain by the use of the toolkit is shown in Table 2.

Table 2 Acceleration performance of B3C centerline extraction

Final Report: Results and Foreground

 15

 Small 3D model Big 3D model

 CPU GPU Speedup CPU GPU Speedup

 Manual 921ms 202ms 4.56 28k ms 1.1k ms 24.38

 Toolkit 165ms 78ms 2.11 1408k ms 448 ms 3.14

Table 2 shows that on average the C2GPU toolkit can accelerate the application from SCS up
to 2-3 times.

3.1.2	
 IME	

Table 3 Acceleration performance of IME camera fingerprint measurement
The application from IME is to produce a camera fingerprint by applying de-noising methods to

a set of images that are known to come from a given camera. The sample codes from IME are
based on C++, which aim at implementing a 3×3 median filter de-noising to process their
image data. The image resolution is 3648 × 2736. The number of images is 39. The algorithm
split the images into a number Region of Interest (ROI), which can be processed in parallel.
Table 3 shows the performance gain by the use of the C2GPU toolkit.

Firstly, it shows that the accuracy of the IME application delivered by the GPU implementation
and the CPU implementation is exactly same, which means that the machine generated GPU
implementation does not affect the accuracy of the camera fingerprint in the IME application.
Secondly, it appears that on average the C2GPU toolkit accelerates the performance up to 3-4
times. If only considering the acceleration of the kernel region, the speedup performance can
achieve up to 6 times faster than the original CPU application. This proves that the GPU kernel
implementation is certainly capable of speeding up the CPU code in the parallel regions.

3.1.3	
 ROTA	

The application from ROTA uses ASIFT algorithm for feature extraction in augmented reality
applications. ROTA has successfully evaluated the ASIFT implementations on their own
dataset, as shown in Figure 3. The matching accuracy of the GPU implementation is almost
the same as the original CPU implementation. The performance evaluation results are shown
in Table 4.

 CPUs GPUs Times Accuracy Details

GTX
690

28.24 8.283 3.40 0.0 Whole Application (1 image)

GT 540 84.45 19.66 4.29 0.0 Whole Application (1 image)
GTX
690

16.56 3.912 4.23 0.0 Kernel Region (1 image)

GT 540 51.37 8.321 6.17 0.0 Kernel Region (1 image)
GTX
690

1118 288.7 3.78 0.0 Whole Application (39 image)

GT 540 3047 707 4.31 0.0 Whole Application (39 image)
GTX
690

663.7 153.6 4.35 0.0 Kernel Region (39 image)

GT 540 2023 325.8 6.21 0.0 Kernel Region (39 image)

Final Report: Results and Foreground

 16

Figure 3 ASIFT evaluation from RotaSoft

Table 4 Acceleration performance of ASIFT from RotaSoft

 Core i3@2.1GHz+GT520M

(time in seconds)

Core i7@3.4GHz+GTX680

(time in seconds)

Original 69.5 25.9

OpenMP 25.7 6.7

Manual GPU 12.5 1.9

Toolkit 14.6 3.2

It appears that on average the C2GPU toolkit accelerates the whole application performance
up to 6x times for a low-grade system, and up to 13.6x for a high performance system.

3.1.4	
 ANS	

The application from ANS is to recognize iris information from a high-resolution video by
applying some image processing methods. The iris detection algorithm is a Hough
transformation based method, which aims to find out the circle of the iris from a thresholded
eye image, as shown in Figure 4.

Final Report: Results and Foreground

 17

Figure 4 Iris Recognition by hough transformation from ANS.

After using the C2GPU toolkit, the performance evaluation results are shown in Table 5

Table 5 Acceleration performance of Hough Transformation from ANS

 CPU GPU Speedup

 Image 1 (261 × 168) 3193ms 2325ms 1.37

 Image 2 (220 × 135) 1117ms 1636ms 0.68

 Image 3 (320 × 240) 4521ms 2345ms 1.92

 Image 4 (640 × 480) 89602ms ×××× ×××

It appears that on average the C2GPU toolkit accelerates the iris recognition application up to
1-2x times. Normally, images with high resolutions can achieve more speedup than images
with low resolutions. However, the bottleneck is that limited register memory on GPU cannot
store the transformed 3D array from high resolution images.

The second application from ANS is to use morphological filter to detect the eye’s region
position from videos. While OpenCV provides some functions to detect the position of eye
regions, the performance is limited by a variety of reasons, such as lighting, head position,
noise, etc. Therefore, ANS has developed own morphological filter based algorithms to
segment the eye regions from videos. The morphological filter replies on the repeated use of
dilation and erosion operations on a binary image. However, the repeated use of dilation and
erosion is a very time-consuming task, particularly for high resolution images with large size of
window kernel. The C2GPU toolkit is capable of successfully accelerating the performance of
morphological filters. The results are as shown in Figure 5 and Table 6.

a) Original image b) CPU processed image

Figure 5 Eye detection by morphological filtering from ANS.

Final Report: Results and Foreground

 18

Table 6 Acceleration performance of 9 * 9 morphological filtering from AnSmart

CPU i7-2740 vs GPU MT 540 CPU GPU Speedup Times of

Dilation

Times of

Erosion

 Image 1 (1285 × 751) 452ms 285ms 1.58 1 1

 Image 2 (1279 × 721) 560ms 322ms 1.75 1 1

 Image 3 (640 × 480) 324ms 278ms 1.23 1 1

Image 1 (1285 × 751) 2458ms 847ms 2.91 2 2

 Image 2 (1279 × 721) 2870ms 780ms 3.72 2 2

 Image 3 (640 × 480) 1232ms 458ms 2.68 2 2

From Table 6, it appears that the C2GPU toolkit can effectively speed up the morphological
filtering for the ANS eye detection algorithm up to 3x. Increasing the number of iterations for
the dilation and erosion will lead to more acceleration in the performance of the C2GPU toolkit.
Another issue is that the window size of the running kernel could affect the acceleration
performance. 9x9 morphological kernel is used in this case. If the window size increases, the
speedup ratio can be enhanced significantly. Oppositely, for small window size kernel, the
performance of the C2GPU toolkit is not obvious.

To sum up, the acceleration performance of the C2GPU toolkit is generally accepted by all the
SME partners. On average their applications can speed up 3-4x times, even up to over 10
times on a high performance GPU system. This overall acceleration is very good and solves a
lot of problem in the practical applications.

3.2	
 Applicability	

Applicability is another important factor of the C2GPU toolkit. We expect the toolkit to be
applicable to a wide range of industrial applications. To this end, the SME partners have
evaluated the C2GPU toolkit in the area of Document Segmentation application and Sliding
Window Image Filtering.

3.2.1	
 Document	
 Segmentation	

Large-scale document digitalisation is a popular topic for many libraries and museums in
recent years. It involves a significant amount of document layout analysis, region segmentation
and text line segmentation. For large scale document digitalisation, this is a time-consuming
task due to the amount of the newspapers, magazines and other documents required to be
scanned at high-resolution on daily basis. The SME partners have used dilations and erosions
algorithms to process some sample newspaper documents images from IMPACT, which is the
most successful large-scale document digitalisation project in the last 10 years. The processed
newspaper document images are set to be evaluated by a region segmentation method. The
image resolution is 3595 × 5194. The C2GPU toolkit is capable of processing C++ code, and
the results are shown in Table 7.

Table 7 Acceleration performance of Document Segmentation

 CPU (s) GPU (s) Times Details

GTX 690 0.268 1.003 0.267 3 × 3 dilation operator
GT 540 3 × 3 dilation operator
GTX 690 1.195 1.289 0.927 5 × 5 dilation operator
GT 540 5 × 5 dilation operator
GTX 690 3.694 1.262 2.927 9 × 9 dilation operator
GT 540 9 × 9 dilation operator

Final Report: Results and Foreground

 19

GTX 690 0.247 1.032 0.239 3 × 3 erosion operator
GT 540 3 × 3 erosion operator
GTX 690 1.107 1.03 1.07 5 × 5 erosion operator
GT 540 5 × 5 erosion operator
GTX 690 3.354 1.17 2.867 9 × 9 erosion operator
GT 540 9 × 9 erosion operator

The evaluation results in Table 7 show that for dilation or erosion operator over 5 × 5 sub-
windows, the C2GPU toolkit can speed up the application performance up to 1-3 times. For
dilation or erosion operator less than 5 × 5 sub-windows, the GPU performance is even slower
than the CPU performance. This phenomenon implies that if the dilation or erosion operator is
less than 5 × 5 sub-windows, the benefit of GPU acceleration on kernel is cancelled out by the
introduced overheads (e.g. data transmission between CPU and GPU) and by other
commitment introduced on the CPU side, e.g. the extra CPU code employed for the purpose of
processing the pragmas, etc.

Figure 6 illustrates the evaluation results of using a region segmentation method to extract the
regions of the sample newspaper images. This region segmentation method is based on a
hybrid way of erosion and dilation. In the original newspaper image, a large amount of text
regions are missed due to the low density of characters. By using 3 × 3 dilation operators,
most of the text regions are segmented but there are two pieces of text region in the middle of
document are missed. By using 5 × 5 dilation operators, the performance is improved but there
is still one piece of text region in the middle of document missed. By using 9 × 9 dilation
operators, all text regions in the newspaper are successfully segmented.

a) Original newspaper image b) 3 × 3 dilation operator

Final Report: Results and Foreground

 20

 c) 5 × 5 dilation operator b) 9 × 9 dilation operator

Figure 6 Document Region Segmentation Results of GPUtisalition toolkit

Therefore, it is concluded that 9 × 9 dilation operators can give the best result for newspaper
document image segmentation. Considering the results in Table 7, C2GPU is capable of
speeding up the application performance up to 3 times.

3.2.2	
 Sliding	
 Window	
 Image	
 Filter	

Sliding Window Operation is a very popular technique in image processing. Typically, Sliding
Window Operation repeatedly applies an image filter to a predefined small size sub-window
that is shifted across a target image. This operation involves high computing complexity if
image filter contains many loops or iterations with high floating-point arithmetic intensity. This
particular structure fits very well with the GPU date parallel programming model.

The SME partners have implemented several statistic measurements based image filter
algorithms. Ten typical SWO image operators as benchmarks were selected to apply in a high-
resolution image by using different size of sliding windows. The benchmarks are listed in Table
8. The size of the evaluated sliding window is respectively given as 3×3, 5×5, 7×7, 9×9. The
resolution of the evaluated image is 3325×4765. The baseline is the performance of the
original CPU code running on conventional hardware without using multi-threads. It compares
the speedup ratio of C2GPU-generated CUDA, MINT-generated CUDA and OpenMP over this
baseline. The evaluation platform consists of an Intel Core i7-2670QM CPU and NVIDIA
GeForce GT 540M, and another system consisting of an Intel Core i7-3770K CPU and NVIDIA
GeForce GTX 690. Both the CPU and the GPU are programmed using NVIDIA GPU SDK
version 4.1. OpenMP programs were compiled using Visual Studio 2008. All computations
were run in double precision.

Table 8 Benchmarks for Evaluating the C2GPU model

Final Report: Results and Foreground

 21

The primary goal is to explore the acceleration performance of the C2GPU tookit over the CPU
code execution baseline. For the simplicity, here we only demonstrate the speedup ratio of the
above ten benchmarks with sliding window 5×5. The results are shown in Figure 7.

Figure 7. Performance evaluations of the SWO Image Filters

Figure 7 shows the acceleration performance of each benchmark over the baseline CPU
execution under two different platforms. On both platforms, except dilation and standard
deviation filter, the speedup ratios of the rest eight benchmarks are over one. Mean Filter and
Mid-Point Filter can be accelerated by the C2GPU toolkit up to 2-5 times. The performance of
the benchmarks with highly intensive computation (Median filter, Alpha-Trimmed Mean Filter
and Mode Filter) is particularly impressive by reaching up to 10-20 speedup ratios. This result
reflects that the C2GPU toolkit can effectively speedup the performance of different types of
SWO image filters, particularly effective on some intensive computation SWO image filters. But
for image filters with low computation, the effectiveness of the C2GPU toolkit is not obvious.
This is because the running time of the parallel regions in these filters takes a relatively low
proportion of the entire running time of the CPU algorithms. The speedup gained by the

Directives Descriptions
MinFilter Get maximum value among all elements
MaxFilter Get minimum value among all elements
MedianFilter Get middle value after all elements are sorted numerially
MidPointFilter Get an average value of maximum and minimum among all elements
AlphaTrimmedMeanF
ilter

Disgard the most atypical elements and calcuate mean value using the rest of them

StandardDeviationFilt
er

Used to emphasize the local variability in an image

ModeFilter Used to emphasize the local variability in an image
MeanFilter Used to emphasize the local variability in an image
Erosion Used to emphasize the local variability in an image
Dilation Used to emphasize the local variability in an image

Final Report: Results and Foreground

 22

C2GPU toolkit is diluted so that the overall running time of the CPU code and the GPU code
seems to be equal.

We have also evaluate different factors that influence the performance. The processing time of
the SWO image processing algorithms is decided by three factors:

• the size of the target image,

• the size of the sliding window

• the computation complexity of the image filters.

The first factor should have no impact on the C2GPU-generated GPU code. So we evaluate
the impact of the rest two factors on the acceleration performance of the C2GPU toolkit.

With respect to the influence of the size of the sliding window, we conclude the speedup ratio
of C2GPU-generated GPU code over CPU baseline with 3×3, 5×5, 7×7, 9×9. The result is
shown in Figure 8. Figure 8 demonstrates that as the increasing sliding window size, the
speedup ratios of each benchmark of the C2GPU-generated GPU code over the CPU baseline
are significantly enhanced. The performance of filter with intensive computation is continuously
accelerated up to 20 times by the C2GPU toolkit. The filters with low computation kernel also
have a higher speedup ratio at larger sliding window size. This phenomenon implies that the
C2GPU toolkit is well suitable to deal with large size sliding window based image processing
applications. However, it is important to note that both Median Filter and Alpha-Trimmed Mean
Filter do not have the figures on sliding window size 9×9. This is because the C2GPU toolkit
does not provide the optimization of using shared memory in the kernel. This causes the
problem of memory shortage if the filters have both large sliding windows and intensive
computation in the kernel. This is a limitation of the C2GPU toolkit.

Figure 8. The Impact of the Sliding Window Size on Speedup Ratio

To evaluate the impact of kernel computation complexity, the CPU code of ten benchmarks
using 5×5 sliding window were measured. In these kernels, the statements of “for” and “if” are
identified to measure the kernel computation complexity. For instance, if there are two “if”

Final Report: Results and Foreground

 23

statements within a “for” loop from 1 to 50, the kernel computation complexity is 50 by 2. The
impact of kernel computation complexity on speedup ratio is shown in Figure 9.

Figure 9 The impact of kernel computation complexity on speed ratio

From Figure 9, it appears that the positions of the benchmarks are distributed at the left-bottom
and right-top corners of the diagram. With a given size of sliding window, the acceleration ratio
dramatically increases as the growing complexity of the kernel computation. This trend reflects
that the C2GPU toolkit is well suitable to process SWO image filters with intensive kernel
computation.

According to the above evaluation findings, we can see that the C2GPU toolkit is capable of
effectively accelerating the performance of most of typical SWO image filters. The applicability
of the C2GPU toolkit is particularly suitable for large-scale image processing applications with
the use of highly intensive computation filters. The major bottleneck of the C2GPU toolkit is
that the limited size of global memory on some GPU devices cannot fully support the
application using both large size of sliding window and intensive computation filter.

3.2.3	
 Blur	
 moment	
 invariants	

Blur moment invariants are widely used in digital image processing. They are functional
invariant with respect to blur. In the SME applications, blur invariants of order p+q is generated
using the recursive equation shown below.

Final Report: Results and Foreground

 24

These blur invariants are employed by IME to identify near-duplicated regions in a digital
image. This is carried out in a few main steps:

1. Tiling the image with overlapping blocks,
2. Moment blur invariants representation of the overlapped blocks,
3. Principal component transformation,
4. K-d tree representation,
5. Blocks and neighbors analyses (matching),
6. Near-duplication map creation.

The image is tiled by overlapping blocks of R × R pixels. Blocks slide by one pixel along the
image from the upper left corner right and down to the lower right corner. The total number of
overlapped blocks for an image of M × N pixels is (M – R + 1) × (N – R + 1). For instance, an
image with the size of 2000 × 2000 with blocks of size 16 × 16 will product 3.940.225
overlapped blocks. Moment blur invariants representation of each block is computed
separately which makes the run-time of the method too expensive. Thus, this is the part in we
can accelerate using the C2GPU toolkit. The experimental results are shown in Table 9

Table 9 Evaluating the C2GPU in blur moment invariant
 CPU CPU without

OpenCV
Manual GPU Auto GPU by

C2GPU toolkit
Speedup
Ratio

Photos of
1000 × 1000

70.167s 69.694s 22.563s 23.438s 2.99

Photos of
 2000 × 2000

287.165s 285.496s 90.557s 96.163s 2.98

Photos of
3000 × 3000

652.001s 647.388s 207.514s 218.002s 2.987

From Table 9, it appears that the revised CPU application by removing the use of OpenCV
library has a slightly faster performance than original CPU code. The auto GPU code
generated by the C2GPU toolkit can speed up the original CPU application about 3x. The
manual GPU application has a slightly improved performance over the machine generated
GPU code. Also, the resolution of the target images has no strong impact on the performance
of the C2GPU toolkit.

Final Report: Results and Foreground

 25

3.2.4	
 PRNU	
 estimation	
 in	
 video	
 signals	

PRNU stands for photo response nonuniformity (PRNU) and it is the key information estimated
from the video signals enabling us to provide image and video ballistics services. Having a
video signal consisted of thousands of frames, PRNU is estimated from each frame separately
which is computationally very expensive. An essential step in estimating PRNU is de-noising
the image in every JPEG block (compressed block) separately. Moreover, in every block we
need to compute the residual of the image and its de-noised version. This should be done in
thousands of frames for an HD video. For example, 1280×720 pixels video of 10 minute length
having 30 frames per second generates 4.320.000 blocks which should be analyzed
separately. Thus, the need to GPU acceleration is obvious. The experimental results are
shown in Table 10

Table 10 Evaluating the C2GPU in PRNU estimation in video signals
 CPU CPU without

OpenCV
Manual GPU Auto GPU by

C2GPU toolkit
Speedup Ratio

Photos of 1000 ×
1000

0.344s 0.110s 0.143s 0.082s 4.19

Photos of 2000 ×
2000

1.348s 0.434s 0.257s 0.213s 6.328

Photos of 3000 ×
3000

2.988s 0.967s 0.495s 0.451s 6.625

Photos of 4000 ×
4000

5.252s 1.691s 0.821s 0.729s 7.204

Photos of 5000 ×
5000

8.21s 2.624s 1.192s 1.104s 7.436

Photos of 6000 ×
6000

31.435s 9.177s 3.892s 3.760s 8.36

From Table 10, it appears that the revised CPU application by removing the use of OpenCV
library has a significant improvement than the original CPU code (three times faster). The
machine-generated GPU code can speed up the original CPU application about 6-8x. The
C2GPU toolkit is well suitable to deal with this application.

3.3.	
 Competitivity	

In order to know how the C2GPU toolkit behaves compared to other CPU-to-GPU translators,
we attempt to use MINT, Bones, Par4All, Polyhedral Benchmark, OpenACC and OpenMP to
evaluate some sample codes.

We identify a number of typical directive based source translators and compare their
performance in Table 11. OpenACC and PGI are both commercial GPU programming tools
with stable applicability but not outstanding speedup performance in practical applications.
CUDA-lite introduces some directives to improve memory hierarchy of CUDA, but it cannot
directly support C++. hiCuda can optimize CUDA code by dealing with global memory and
transformations to leverage the complex memory hierarchy. But it requires users to have some
GPU programming experience. Compared to hiCuda, MINT is an easy-use CPU-to-GPU
source translator containing only five types of pragmas. It is designed for accelerating stencil
computations on the NVIDIA GPU. This translator accepts the input of C source with some
intuitive MINT directives, and then generates CUDA C with speedup performance up to 10x.

Table 11. Comparison of properties of typical directive-based tools

 hiCUDA[7] PGI (OpenACC)[9] MINT[5] CUDA-lite [6] C2GPU toolkit

Language support C-to-CUDA C/Fortan-to-CUDA C-to-CUDA CUDA-to-
CUDA

C/C++-to-
CUDA/OpenCL

Final Report: Results and Foreground

 26

The following issues have been observed towards these existing CPU-to-GPU translators.
• Applications written in C++ cannot be processed by most of the above tools. Bones and

Par4All do not accept C++ language as an input source, so they cannot process the given
applications. Polyhedral Benchmark also has similar problems. Meanwhile, Bones and
Polyhedral Benchmar are algorithm skeleton based tools, their applicability is quite limited.

• Secondly, while MINT and OpenMP can be extended to support C++ language, it is
indispensable to rewrite the original CPU code as an acceptable format CPU code for
each tool. The actions of removing the use of external library and breaking up the
variables dependence in parallelized regions are required. Consequently, we evaluate
them to process three intensively computation filters: Mean Filter, Mode Filter,
AlphaTrimmed MeanFilter. The input applications are written by C++ under Visual Studio
2008, with using external library OpenCV 2.4.3. The sliding window is given as 5×5 and
9×9, the tested image resolution is 3325×4765. The evaluation platform is under CPU i7-
3770 (3.5GHZ) and GPU GTX 690. The results are shown in Figure 10

Figure 10. C2GPU toolkit performance over OpenMP

Easy-use of

directives

Complex Very complex Easy Easy Easy

Applicability Good Outstanding Limited Good Outstanding

Speedup
performance

Good Good Outstanding Good Good

Optimisation
option

Use of

shared

memory

No particular

one

Shared memory
and loop

aggregation

Improved
memory
hierarchy

Improved memory
hierarachy (use
CUDA Texture)

Readability of

GPU code

Moderate No Good Good Outstanding

Final Report: Results and Foreground

 27

Figure 10 shows that for normal hardware, the C2GPU toolkit can accelerate the typical
benchmark filers up to 12-27x, which is much higher than OpenMP’s performance. It suggests
that the C2GPU toolkit has a significantly competitive advantage than OpenMP.

We do not demonstrate its speedup performance of MINT in this Figure 10 because the
generated results have huge error. This is because MINT is particularly designed for solving
stencial computing problems..

To sum up, the C2GPU toolkit is highly competitive against the state-of-the-art CPU-to-GPU
source translators. Apart from its outstanding acceleration performance, it also supports C++
language as input source code. This advantage makes it as a more end-user friendly than
other research focused tools, such as hiCUDA, MINT, Par4All and Bones. Compared to the
commercial products like PGI, the output code of the C2GPU toolkit is more readable and
revisable CUDA or OpenCL code. This feature gives users the opportunities to learn GPU
technology and to further modify the existing code.

3.4	
 Other	
 issues	

3.4.1	
 Security	

The security requirement aims to protect the source code of the SME users. The current
C2GPU web-interface provides a user registration system to access the toolkit. It provides the
registered users with private-keys to view their source code. In general the security scheme
can satisfy the user requirement to protect their code. One issue that needs some further
attention is that the user password and private key are currently stored into the cookie of the
browsers unless users delete the cookies.

The users can also delete their uploaded files. If they do not delete their files, these files are
encrypted to store on server for 30 days. After 30 days, the files will be deleted so users have
to upload the files again if they need.

3.4.2	
 Usability	
 	

The usability of the C2GPU toolkit mainly lies in the friendliness of the C2GPU web-interface.
The SMEs partners have used the C2GPU web-interface to upload, convert their C/C++
source code, and download the machine generated CUDA or OpenCL code. The evaluation
procedure involves the test of the server functions, user-friendliness, efficiency and accuracy.

Most of the essential functions stated in the user requirements have been achieved by
providing the server service. This includes the transfer of source codes for analysis, converting
CPU source code for GPU processing, running performance diagnostics with the toolkit,
validation of converted source codes and creating reports/logs. In addition, the sample files
can be accessed in the web-interface of C2GPU toolkit after user log in; a reminder message
for private key automatically occurs when users log in at their first time; users can add pragma
by either keying in or using a dialogue box.

The efficiency of the C2GPU toolkit is good. The processing time of running the toolkit for each
operation is less than 5 seconds, which is acceptable by all the SME partners.

3.4.3	
 Adaptability	
 	

The adaptability of the C2GPU toolkit indicates how easily and efficiently for novices to learn
how to use the C2GPU toolkit. GPU programming requires a steep learning curve for novices.
The C2GPU toolkit features a great potential in bringing a cost-effective solution for accessing
GPU power. The evaluation of the adaptability involves four parts, including the understanding
of loop patterns, algorithm skeletons, pragmas and warning messages. In summary, the
adaptability of the C2GPU toolkit is good. While the understanding of the kernel generation
pragmas is still hard to new users, the loop pattern and algorithm skeleton appear to be easy
to understand by users. Also, the use of warning messages are well-received by users.

Final Report: Results and Foreground

 28

4.	
 Conclusions	
 and	
 Recommendations	

In conclusion, the C2GPU toolkit has satisfied all the essential requirements from SMEs’
requirements to accelerate their applications with god the usability and adaptability of the .The
C2GPU toolkit is highly competitive in the state-of-the-art automatic CPU-to-GPU source
translators.

The SME users feel the benefit of the toolkit is visible and it can save a lot of time, especially
for those programmers who do not have rich experience in GPU programming. A parallelized
version can be generated using the C2GPU toolkit without going into the details of CUDA or
parallel programming.

The consortium members also have investigated the work for future development.

• To strength some automatic dependencies analysis of CPU code, which is capable of
assisting users to accurately identify where need to be parallelized.

• To improve user experience of editing source codes online by using some popular 3rd
party libraries.

• To further improve the speedup performance of the C2GPU toolkit by introducing further
optimisation methods.

Final Report: Results and Foreground

 29

III.	
 IMPACT	

1.	
 Project	
 Impact	
 	

The overall benefit of the GPSME toolkit (which is now branded a new title called C2GPU
toolkit) includes:
• Significant performance gain by utilising the latest GPU architecture in a fully automated

manner.
• Easy and automatic access to GPU power without modifying the structure of the targeted

software.
Consequently, the users (programmers) are able to convert their written CPU code into GPU
implementation with an expectation of significant performance gain. An attractive feature of the
toolkit is that it keeps the current structure of the targeted software and thus does not affect the
other software components. The toolkit will require only very limited GPU knowledge and
labour/time input from the users. They will be able to continue to use their familiar language
and environment to construct their program, which will later be converted into the GPU version
to obtain significant performance gains.
By this means, the SME participants are able to improve the performance of their techniques
to allow execution within practically acceptable runtimes. Moreover, many advanced
techniques and computing models that are prohibitive to CPUs due to their excessive
requirement of computing resources can be adopted owing to the involvement of GPU.

1.1 IME
IME is set to use the toolkit to reduce the processing time of the advanced forgery detection
techniques developed by the company. The accelerated techniques will be integrated into the
main product, which the company will continuously invest in the following years after the
completion of the project. The easy access to the GPU power will boost the performance and
hence significantly increase the competitiveness of the company.

IME initially plans to incorporate the results of GPSME into two projects of the company. IME’s
major product, Verifeyed, enables digital image and video authentication and the results
obtained in the GPSME project have shown the power and benefit of GPU acceleration of
imaging forensics methods. In particular, the running-time of several methods including the
detection of copy-move forgery detection have been accelerated by, on average, 3x to 6x. This
increase in efficiency enables them to integrate computationally extensive advanced methods
into Verifeyed, and these will have values for law enforcement, in the digital forensic market,
and in media industry, resulting in a competitive advantage for the company. Specifically, so
far, the method searching for near-duplicated (enhanced by the C2GPU toolkit) has also been
released to the public.

GPU-accelerated image-forensic methods will be integrated into Verifeyed step by step, and in
several phases. In the first phase, they will enter a new vertical market (the media industry)
and will attract a selected set of clients of this sector to become early adaptors of advanced
image and video authentication methods. These selected end-users will receive beta versions
of the GPU-accelerated product. This phase will be followed by user experience and feedback
collection in order to finalise the GPU-accelerated product for market release (Q1 of 2014).

IME also has an on-going video categorisation project which has lacked effective
implementation because of its heavy computational demands. The results of the GPSME
project and the associated GPU acceleration have made it possible for IME to re-start this
project. This is likely to have a noticeable impact on the video categorisation market and the
fight against videos that contain inappropriate content.

Final Report: Results and Foreground

 30

The target market will be insurance companies, media, police and forensic laboratories,
scientific journals and publishers. There are strong indications of great potential in the future
market from forgery image detection based on the evidence of growth in the targeted areas.
For example, the insurance industry is growing extremely fast, particularly in developing
countries such as China and India, but there is evidence that it is impeded by fraud in many
countries. A UK report identified an increasing number of fraudulent applications, and one of
the main reasons behind losses to insurance industry is fraud.

Disklabs, which commands more than 50% of the computer forensics market, has predicted
that the expansion of computer forensics is a significant trend that points to an untapped
market with tremendous potential. In scientific journals, it has been reported that the overall
journal growth characteristics clearly show the predominance of 3.3% compound annual
growth under a number of different socio-political climates. Given the number of high profile
fraud cases in scientific research, such as the doctored images published by Professor Hwang
Woo-Suk in stem cell research, IME expects an increase of activities and demands for fraud
prevention in scientific journals.

The business model is based on licensing and providing professional services. The sales force
will directly offer the system to the European potential customers. For the US and other non-
European customers, the company has established a partnership with international software
integrators (e.g. Accenture, IBM, Logica). Using distributive channels via an international
system integrator is a good choice for increasing sales and system integration capabilities. The
next stream is to build a partnership with software companies that specialise in insurance fraud
management systems such as SAS Institute, Adastra, etc. The company will implement the
solution according to the customer application portfolio; implementation by selected partners
is also possible.

GPSME will improve the main product of IME, which will be continuously invested by the
company in the following years after the completion of the project. Therefore, the company has
a very long term commitment and business plan for the product. IME is a relatively new
company with a high level of innovation and growth potential. The product is based on many
years of research and is very distinctive in the market at the moment. Having easy access to
the computational power of GPUs will open possibilities for IME to develop more forgery
detection methods that have runtime performance within acceptable limits by directly using the
toolkit after the project. This will help them to strengthen the current position and attract new
customers

The C2GPU toolkit has also been introduced to, and discussed with, the Plug and Play Tech
Center, one of the largest technology incubators in the US (specifically to VP of Technology of
Fund). Since a high number of technology startups are potential users of the C2GPU toolkit,
the Plug and Play Tech Center might refer potential users to the GPSME website.

The capability of the GPSME project and corresponding acceleration of image forensic
methods have also been pitched to The National Center for Missing & Exploited Children
(specifically, to Michael T. Geraghty Vice President, Chief Information Officer). There is on-
going discussion about a pilot project in which the results obtained from the C2GPU toolkit
would be applied to the photo database of The National Center for Missing & Exploited
Children.

1.2 ROTA
ROTA works on Augmented Reality and uses image-processing techniques in most of its
projects. The G2CPU Toolkit provides the ability to create applications optimised for the use of
graphics cards which are faster than the standard products.

The company will exploit the C2GPU Toolkit regularly in its existing product line and in its
continued product development, with the intention of introducing an extended and diversified
product range and, it is predicted, an improved revenue stream. The new product will feature

Final Report: Results and Foreground

 31

improved immersiveness by having more advanced capacity in image processing and
analysis. ROTA will firstly start to convert one of their books using the C2GPU toolkit.

The sales of electronic books (e-books) are expanding exponentially compared with traditional
books. In the USA, it is predicted that digital textbook sales will surpass 18% of combined new
textbook sales for the Higher Education and Career Education markets. Similar cases are also
reported in Europe. A new French study shows that between 15% and 20% of the book-
reading public will own electronic devices and up to 25% of books will be sold in digital form by
2015.

ROTA has a long-term commitment to, and business plan for, the AR book. It is one of the
main products of ROTA, which will be continuously invested into by the company in the years
following the project. To make the company more competitive, ROTA will continue to work on
different types of Augmented Reality systems, such as IR camera based systems, inertial AR
systems, to which the results of GPSME will also contribute. For example, the new projector-
based AR system that they are working on for the education market can also use the C2GPU
toolkit.

In common with many other SMEs, ROTA has difficulty in recruiting staff capable of GPU
programming. The use of the C2GPU Toolkit will enable new products to be developed using
GPU technology and brought to the market much more cheaply (and more effectively for the
long-term health of the company) than if external contractors were employed to supply the
necessary expertise.

1.3 B3C
B3C continues to develop an open software framework called MAF (www.openmaf.org), which
is a widely used software library for medical imaging vertical applications. Those applications
often contain either image processing or computational geometry algorithms that are
computationally intensive; within the GPSME project, an exemplar of these algorithms is used
as a test case, the centerline extraction, which is one of the most time-consuming steps in
vascular imaging applications. Beside this, there are other notable examples, such as the
customisation of a level-set algorithm for segmentation purposes in a vascular imaging
application; an innovative semi-automatic curved multi planar reconstruction for a dental
application; an impingement detection engine based on collision detection techniques in an
orthopaedic application (HipOp). These tasks typically hang the application for a time that may
range between one and thirty minutes: as the intended user is a clinical professional, this delay
causes great inefficiency in the productive workflow of the customer. Besides, a sensible
improvement will greatly enhance the user experience.

It is not possible to quantify an economic impact of these enhancements on product sales, as
these applications are currently prototypes in the engineering phase, but on the costs side, the
benefit is evident. In fact, the programmers estimate that the time needed to port these pieces
of code to the GPU by normal means as six months: as our programmers are typically involved
in consultancy contracts, the cost of such development can be seen as lost revenue of €50k
for each feature. We expect that, by using the C2GPU Toolkit, these development costs can
be reduced by a factor of 80%, while retaining the same level of performance speed-up.

1.4 ANS
ANS is involved in developing mobile apps for use in a medical context. It has a collaboration
with Moorfields Eye Hospital, the leading centre for ophthalmology in the UK, covering several
different applications all of which are, as one may expect, highly involved with images and their
analysis for which the GPU is particularly suited. Mobile apps are becoming ever more
sophisticated and computationally demanding, and the evolution of GPU technology to mobile
platforms is making it possible to consider extending the applications and broadening their
range even further.

Final Report: Results and Foreground

 32

Mobile phones are also increasingly being connected to devices that can be used to capture
data from subjects. This can take place, for example, if a physician needs to monitor a specific
condition remotely, where the readings can take place automatically or be under the control of
the patient, or if general citizens themselves wish to exert greater control over their general
health and lifestyle. In the context of ophthalmology, the recent introduction of a high quality
lens that can be attached to a smartphone to enable remote capture of the retina, is a very
exciting development that can greatly change the way in which certain conditions can be
treated, so this is a field that we anticipate will grow rapidly in the near future.

ANS is using the C2GPU toolkit to further enhance its eye image analysis techniques. The
C2GPU toolkit allows ANS to improve the processing speed of their products by a large margin
and hence supports the execution of the detection within clinically acceptable runtime. The
new product is expected to be ready within approximately two to three years from the
completion of GPSME.

ANS is also considering building a web service to offer free eye image analysis information on
eye disease. In this way, the company expects to attract attention from the general public.

The eye image analysis software is one of the series healthcare products developed at ANS.
The successful application of the C2GPU toolkit will lead to further enhancement of many
products, all of which place great demands on processing speed. The healthcare series for
ophthalmic patients are the company’s key products, and ANS will commit to the work by
making continuous investment into the long term. To this end, GPSME has been very timely
for ANS in terms of help[ing to steer its future direction.

Notably, ANS has been providing the host for the web-based C2GPU toolkit in the duration of
the project. It has been confirmed that such a host will continue after the completion of the
project. ANS has organised event and started to broadcast news of the toolkit in its network.
The online service is described in other technical deliverables of the project. Through the
online web service, ANS will take charge of building a user community for the C2GPU toolkit
from the registered users. Once the user base has reached a critical mass, further community
services will be supported by ANS in the form of a forum, wiki, etc.

ANS will continue to carry out evaluation to the toolkit for any possible future development. An
online user evaluation page is provided alongside the online web service, which allows users
to provide feedback to the service.

2.	
 Dissemination	
 Activities	
 	

2.1 Project Website
The GPSME website available at http://www.gp-sme.eu, and it contains both a public and a
private area. The following figure shows the page to access the C2GPU toolkit with newly
designed logo and image.

Final Report: Results and Foreground

 33

Figure	
 1	
 	
 A	
 newly	
 designed	
 interface	
 for	
 the	
 online	
 web	
 service	

2.2 International Conferences and Courses	

The project and its related work have been presented in a number of events worldwide.

• Course: Introduction to GPGPU and CUDA programming - 9-10 May, 2013 Bologna

• International Conference on Parallel Processing and Applied Mathematics, 8-11 Sept,
2013, Warsaw, Poland

• International Conference on High Performance Computing & Simulation, 1-5 July,
Helsinki, Finland

• International Conference on Computer Medical Applications, 20-22 Jan, 2013, Tunisia

• 6th Pacific-Rim Symposium on Image and Video Technology
October 28th - November 1st, 2013. Guanajuato, México.

2.3 Publications
The following papers have been published on the following refereed conferences.

1. D. Williams, V. Codreanu, P.Yang, B. Liu, F. Dong, B. Yasar, B. Mahdian, A. Chiarini, X. Zhao and

J.B.T.M. Roerdink, Evaluation of autoparallelization toolkits for commodity graphics hardware, In

Proceedings of 10th International Conference on Parallel Processing and Applied Mathematics, Sept 8-

11, 2013 (accepted).

2. V. Codreanu, F. Dong, B. Liu, J.B.T.M. Roerdink, D. Williams, P. Yang and B. Yasar , GPU-ASIFT: A

Fast Fully Affine-Invariant Feature Extraction Algorithm. In International Conference on High

Performance Computing & Simulation 2013, July 1-5. IEEE, 2013.

3. D. Williams, V. Codreanu, J.B.T.M. Roerdink, P. Yang, B. Liu, F. Dong and A. Chiarini. Accelerating

Colonic Polyp Detection Using Commodity Graphics Hardware. In Proceedings of the International

Conference on Computer Medical Applications. 2013.

4. B. Mahdian, S. Saic, P. Yang, B. Liu, and F. Dong, Source camera identification using multiplicative

sensor noise component, PSIVT 2013: 6th Pacific-Rim Symposium on Image and Video Technology 28

Oct - 1 Nov 2013, Guanajuato, Mexico

Final Report: Results and Foreground

 34

2.4 Flyers & Posters
We have created flyers and posters and distribute them in various events that the consortium
members participated. Figure 2 shows a sample of the project flyer and poster.

	

Figure	
 2	
 Project	
 Flyers	
 	

2.5 Videos
The project has created a number of videos for project introduction as well as for tutorial
purpose. The videos have been uploaded onto the project website & Youtube
(http://www.youtube.com/watch?v=XjVv8AoRHZ8). Figure 3 shows a snapshot of the tutorial
video.

	

Figure	
 3	
 An	
 illustration	
 of	
 the	
 tutorial	
 videos	

2.6 Press interviews and articles
There have been a number of interviews with press. Figure 4 provides a snapshot.

Final Report: Results and Foreground

 35

Figure	
 4	
 a	
 snapshot	
 of	
 GPSME	
 in	
 Press

2.7 Dissemination activities at individual partners	

ALL the partners have been actively involved in a very wide variety of dissemination activities,
which have all been reported in D6.3. We do not repeat them here due to the page limit.

2.8 Plan for the future dissemination
The SMEs are interested in the potential of the project and will be committed to further
dissemination activities. The result of GPSME will be further exploited through a range of
activities, leading to further investigations on business avenues for commercial activities:

• The web-based C2GPU toolkit will be used as one of the major means for dissemination
and exploitation by offering free services to programmers. Once a considerable user base is
achieved, we will consider starting to build user communities by using social network .

• All the project resources, including the course materials, open-source toolkit will be carefully
maintained.

• New academic papers, GPSME courses and tutorials, exhibition will be submitted to
journals and conferences to create impact among research and industry communities,
taking into account the IPR protection issues.

• Joint dissemination activities can be carried out with established research communities in
which GPU has a great potential.

• We will disseminate news to computer giants such nVidia for possible future collaboration.
• We will continue to use Trade fairs, user meetings and in-house magazines to promote the

C2GPU toolkit. Exhibition days will be arranged to demo the latest work to the public.
Subject to further arrangement, we will run similar exhibitions at conferences.

Final Report: Results and Foreground

 36

• Courses and symposiums will open to the public, which is expected to attract the
communities and may lead to opportunities for presenting the work at other locations.
Tutorial on the C2GPU toolkit will be presented at future events that the SMEs are going to
participate.

• The materials of the GPSME project, such as flyers and posters will be constantly updated.
E-newsletters will be developed and be made available to the public.

• Updated video-clips about GPSME will be made and uploaded to the Youtube where
necessary.

• At some stage, publishers will be approached to see if there is interest in producing a book
(or ebook) presenting the C2GPU toolkit (e.g. dummies guide to the C2GPU toolkit).

These activities will target the general public(including school students, local developers,
industries and funding bodies) to raise the recognition of the GPSME results, which will
enhance the public engagement.

3.	
 Exploitation	
 	

3.1 Exploitable foregrounds of Individual Partners
The exploitable foregrounds of the SMEs were introduced in Section 1. More details of the
exploitation from individual partners were also described in Deliverable D6.4.

3.2 Competitor analysis of the C2GPU toolkit
A comparative study is carried out to identify the main competitors of the C2GPU toolkit by
looking into its strengths and weaknesses. Currently, the main competitor of the C2GPU toolkit
are MINT, OpenACC, hiCUDA and CUDA-lite.

While OpenACC and PGI are commercial GPU programming tools with stable applicability,
they do not have outstanding speed-up performance in many practical applications.

MINT is an easy-use CPU-to-GPU source translator containing only five types of pragmas. It is
designed for accelerating stencil computations on the NVIDIA GPU. This translator accepts the
input of C source with some intuitive MINT directives, and then generates highly optimized
CUDA C with speedup performance up to 10x. but the range of programming patterns that can
be handled by MINT is very limited.

OpenACC is a relatively new technology, with a first version finalised in 2011 and the latest
version, OpenACC 2.0, finalised during 2013. Coupled with the lack of freely available and
mature implementations, this has meant that the technology has not yet been widely evaluated
by the academic community. The few available evaluations focused primarily on small test
cases though some application to real-world code has also been performed; in all cases,
significant speedup was observed on sections of parallelisable code. It should be noted that
the OpenACC compilers are still undergoing rapid development due to the standard being so
new.

Performance between OpenACC and our toolkit is very close, which is to be expected since
they perform a similar set of operations and are running on the same hardware, with slightly
better performance by the C2GPU Toolkit (due to efficient register and shared memory usage),
though it should also be noted that OpenACC is more generic and so may perform better on
other applications.

CUDA-lite introduces some directives to improve memory hierarchy of CUDA, but it cannot
directly support the CPU language.

hiCuda can optimize CUDA code by dealing with global memory and transformations to
leverage the complex memory hierarchy, but it requires considerable user knowledge of GPU
programming experience to specify the use of threads and threads block.

Final Report: Results and Foreground

 37

3.3 Exploitation of the C2GPU Toolkit
The only collective exploitable item is the C2GPU Toolkit. This provides a useful means of
enhancing the computational capabilities of SMEs.

Successful GPUified products developed by the SMEs in the consortium serve as convincing
case studies and strong proof of concept of the C2GPU Toolkit. A systematic demonstration
activity framework will provide an effective introduction to the market of the results that can be
achieved by use of the Toolkit and provide incentives for its deployment in other areas.

To achieve these goals, the following actions can be performed:
• market-oriented adaptations, integrations, and testing;
• develop and release an open web service for automatic GPUification;
• put into production the SMEs’ results obtained by automatic GPUification;
• provide end-users and SMEs with suitable technical support and maintenance;
• create success stories, feasibility studies, and proofs of concept.

Possible models for software developers include toolkit-centred products, online services or
integration into existing products. Of these, the first two are viable options for the C2GPU
Toolkit being developed in GPSME, and these suggest the following three specific possibilities:

a) make the code available as a “sealed” product that users can acquire;
b) make the source code available to users so that they can incorporate it into their

products;
c) provide a service by which users submit code and receive the outcomes of the

processing performed by the C2GPU Toolkit.

All of these can either be either sold or provided at no cost.

It is likely that many industries will be able to benefit directly from the ability to convert written
CPU code into GPU implementation with an expectation of significant performance gain.
Examples provided were Bioinformatics, Computational Finance, Computational Fluid
Dynamics, Data Mining, Defence, Electronic Design Automation, Imaging and Computer
Vision, Material Science, Medical Imaging, Molecular Dynamics, Numerical Analysis, Physics,
Quantum Chemistry, Oil and Gas/Seismic, Structural Mechanics, Visualization and Docking,
Weather and Climate.

3.3.1	
 Open	
 Services	
 and	
 Open	
 Source	
 Software

Given the early stage of development of the toolkit, it is not yet feasible to market it as a fully
fledged commercial product, so there are three main priorities for the immediate future:

• to create a user base to give the product credibility and demonstrate a level of
acceptance;

• to apply it to a wide variety of CPU software to ensure its versatility and robustness;
• to establish it as a “brand” that has reliability, effectiveness and efficiency.

These priorities are inter-related and steps taken to establish address one of them will
generally also have an impact on the other two.

Once the user base is established and the software has gained acceptance, services such as
consultancy or training can be offered to the user community to further enhance the brand.

It is considered that, at its current state of development, the C2GPU Toolkit is not viable as a
commercial product in the form of option (a) above at present, and that the priorities listed
above can be achieved most effectively by its release as a free product, at least in the short
term. However, the experiences of the SME partners have already demonstrated that it
provides a useful means of enhancing the computational capabilities of SMEs and the

Final Report: Results and Foreground

 38

successful GPUified products they are developing will serve as convincing case studies and a
strong proof of concept of the C2GPU Toolkit.

Option (c) above, the web-based translation service, will be offered in the first instance. This
will suit companies who wish to treat the Toolkit as a “black box” and simply implement the
code that it produces without modification, which is the most suitable option for the SME
market in its current state of awareness of GPU technology.

This service will be provided as an open service to users at its current site http://gp-
sme.co.uk/web_face/. Users will be able to sign up to the service for their free account, from
which they can upload, convert and then download their code. The service comes with an
online editor, with which the users can edit their code, taking advantage of the editing facilities
available (e.g. semi automatic pragma insertion).

To supplement the GPSME website, which will continue in operation after the conclusion of the
project, partner ANS will also make available the existing tutorials (and any further such
materials) on its web site and the other SME partners will provide descriptions of success
stories resulting from use of the Toolkit and will retain links to the GPSME site for the
information of visitors.

The service will be free in the initial stages. Once a stable user base is reached, and the
software has been further developed to include advanced features, we will introduce fee-
charged services; by that time, it may also be possible to start to attract advertisements.

Option (b) above, the provision of the code as open source, would be more suited to
companies that have a sizeable IT department with personnel capable of understanding the
code and the context in which it is applied in the GPU processing pipeline. This will be
developed in the second phase when the code is more mature. This would be linked with the
creation of a programmer-based User Group which would bring in assistance to develop
further the functionality available in the Toolkit; Partner ANS has expressed a willingness to
coordinate such activities. Certain websites provide support for code sharing and relevant user
groups, and these would be used to assist in this. Subsections below discuss a number of
licence options under this category.

This business model is very important for open source products. We anticipate offering the
basic software for free, while charging for the premium software which would have advanced
features. The purpose would be to attract new users and hence to promote the sale of our
advanced product or the use of our advanced services, which would both be associated with a
fee charge. The financial return on open-source software can also come from selling services,
such as training and support, rather than the software itself. Advertising can be another
important avenue for business exploitation - the more traffic we have, the more we can charge
for adverts.

3.3.2	
 Licensing	
 &	
 Protection	
 	

The precise form of licence to be used for any open source distribution of the C2GPU Toolkit
will be kept under review. Possible choices include:

Open	
 Source	
 Licences	

Many developers want to release their software as open-source projects as they want others to
be able to build on and share their code. The open-source community is vibrant because of
this. For this, licensing is an alternative to either simply releasing the work into the public
domain or granting permissions on a case-by-case basis. In the former case, the author
relinquishes any copyright, and nobody using the work is obliged, formally or informally, to
recognise him/her as the originator. The latter case may require a lot of unproductive time to
be spent dealing with individual permissions.

GNU	
 General	
 Public	
 License	
 (GPL)	

Final Report: Results and Foreground

 39

The GPL is possibly the most commonly used licence for open-source projects. It grants and
guarantees a wide range of rights to developers working on open-source projects, allowing
them legally to copy, distribute and modify the software.

There is also a Lesser General Public License (LGPL) which grants fewer rights to a work than
the standard GPL.

BSD	
 License	

BSD licenses have fewer restrictions on distribution than the GNU General Public License. The
most frequently used versions are the New BSD License/Modified BSD License, and the
Simplified BSD License/FreeBSD License, both of which have been verified as GPL-
compatible free software licences, and have been accepted as open source licences by the
Open Source Initiative.

MIT	
 License	

The MIT License is the shortest and probably broadest of all the popular open-source licences,
and It basically says that anyone can do whatever they want with the licensed material, as long
as it is accompanied by the licence.

Apache	
 License	

The Apache License, Version 2.0, grants a number of rights to users; these can be applied to
both copyrights and patents (some licences can be applied only to copyrights and not to
patents). The Apache License allows the following:

• Rights are perpetual and irrevocable – once they have been granted, they cannot later
be rescinded, nor is there a time limit on their use.

• Rights are worldwide – once granted in any country, they are granted in all countries.
• Rights are granted for no fee or royalty – there is no upfront fee nor are any fee related

to usage.
• Rights are non-exclusive – you can use the licensed work, and so can anyone else.

