

List of participants					
MAN Diesel & Turbo	Niels Freese	Niels.Freese@man.eu			
University of Erlangen	Thomas Seeger	thomas.seeger@yahoo.de			
Germanischer Lloyd	Benjamin Scholz	benjamin.scholz@gl-group.com			
Jönköping University	Ingvar Svensson	Ingvar.Svensson@jth.hj.se			
Kistler Instrumente Wintherthur AG	Walter Meier	'walter.meier@kistler.com'			
Lund University	Mattias Richter	'mattias.richter@forbrf.lth.se'			
Sandvik Powdermet	Tomas Berglund	tomas.berglund@sandvik.com			
TGE Marine Gas	Hans-Christian	'hans-christian.haarmann-			
Engineering	Haarmann-Kuehn	kuehn@tge-marine.com'			
Uppsala University	Staffan Jacobson	'staffan.jacobson@angstrom.uu.se'			

Environmental benefits				
NO _x	24% reduction			
CO ₂	23% reduction			
Methane 'slip':	0.2-0.3 g/kWh			
РМ	85% reduction			
СО	Very low			
SO ₂	Very low. From pilot oil			
Smoke	Almost eliminated			
Thermal efficiency	Very high			

Running-in and testing of the gas fuelled research				
engine, 14 April 2011 – 31 December 2013				
Engine operation on gas (1)	420 hours			
Consumption of gas	301 tonnes			
Consumption of N ₂	5.046 m3			
Consumption of LIN	143 tonnes			

(1): Within WP1 and for testing in WP2, 3, 8 and 9

 N_2 is used for purging of the engine, and liquid N_2 is used for purging of the fuel gas supply system.

Sketch of the gas fuelled Diesel engine

Gas injection valve

The top of the gas engine

Tests carried out				
Туре	Results	Period		
WP1-WP2, Confirmation	A well functioning engine and positive results	April-May 2011		
of basic gas operation	compared with diesel operation			
and performance.				
Verification of test set-up				
WP2, Gas parameter test,	Emissions and performance compared with	August 2011		
stage I. performance and	diesel operation			
baseline				
WP2, Performance and	Emissions and performance compared with	February-March 2012		
emissions. Reference test	diesel operation			
and baseline				
WP3 Gas+EGR	Compliance to TierIII NOx emission limits	September 2013		
	demonstrated through use of EGR. Emission			
	and performance compared to diesel operation			
WP3 Gas pre-injection	Single cylinder tests of early gas injection	October 2013		
	established limits of stable ignition			
Туре	Results	Period		
WP3 High-speed imaging	Ignition and flame development in diesel and	January 2011		
	gas operation visualized using borescope and	May 2011		
	high-speed camera	October 2013		
WP3&8 Spectrometer	Spectral emission of gas and diesel combustion	March 2012		
survey	characterized			
WP3&8 UV high-speed	UV high-speed imaging of gas ignition	September 2012		
imaging	attempted, problems with UV borescope			
	performance encountered			
WP3&8 Thermographic	Laser based surface temperature	November 2012		
phosphors test	measurements demonstrated			
WP3&8 Thermographic	Fibre based probing of surface temperatures	December 2013		
phosphors via fibre	tested			
WP3&8 Laser induced	Laser sheet imaging of gas jet attempted,	December 2013		
fluorescence imaging	problems with window failure encountered			
WP10 Preliminary test of	On-line gas composition analysis at medium-	March 2012		
gas sensor	pressure demonstrated			
WP10 Final test of gas	On-line gas composition analysis at high-	September 2013		
sensor	pressure demonstrated			

SFOC and specific NO_x emissions for gas and diesel operation

Left: Emission of unburned hydrocarbons for gas and diesel oil operation and methane emission (slip) for gas operation. Right: Green house gas emission from gas and diesel oil operation.

SFOC for gas and diesel oil reference tests and for NOx/SFOC tuning tests.

SFOC and NO_x emissions for gas and diesel operation, with and without EGR

4.46 ms	4.64 ms	4.82 ms	5.0 ms 🚽	5.18 ms	5.36 ms	5.54 ms	5.71 ms
6.25 ms	6.79 ms	7.32 ms	7.86 ms	8.39 ms	8.93 ms	9.46 m	10.0 m
11.07 pt	12.14 (15.	13.21 ms	14.29 ms	15.36 bs	16.43 ms	17.5.ms	18.57 ms
19.64 ms	20.71 ms	21.79 ms	22.86 ms	23.93 ms	25.0 ms	26.07 ms	27 14 ms

High-speed sequence of pilot ignited gas combustion.

Gas cover

Camera insert

Mounted laser and camera inserts

Diesel pilot (red), gas flame (cyan)

2-stroke exhaust valve

HIP compound spindle disc capsule

Control system

Gas control strategy

Fuel Oil Compensation for Gas Principle During Engine Load Up

With auto-intermittent gas operation the gas amount is being fast-ramped

Reference Sensor & HCD

Safety: collision scenario

The Helios lab scale test rig, allowing two simultaneous reciprocating sliding tests (left) and a close up of one of the two the sample fixtures (right). Letter A) corresponds to the stationary ring and B) to the reciprocating cylinder sample. The arrow shows the movement of sample B.

Graphite lamella closing mechanism studied in cross section.

a) Illustration of the reservoir mechanism of open graphite. These reservoirs may appear small but our tests have shown that initial addition of a 1 μ m oil film (\approx 1 g/m2) is enough to prevent scuffing for thousands of cycles in the test rig. b) Reduction in number of cycles to scuffing caused by only a low degree of closing graphite.

Scheme of the sensor system