

Figure 1. ComPair Logo

Figure 2. Stage 1 (300mmx300mm) CFRP & GFRP samples with defects - D: Delamination; I: Impact; C: Countersink; B: Burned drill hole; O: Secret defects

Figure 3: Stage 2 (600mmx600mm) CFRP & GFRP samples with 1 paper inclusion defect

1300mm Figure 4: Stage 3 (1mx1.3m) CFRP & GFRP samples with impact damage and delamination (poly-insert)

Material	<i>E</i> ₁ , GPa	<i>E</i> ₂ , GPa	<i>v</i> ₁₂	V ₂₃	G ₁₂ , GPa	ho, kg/m ³	
CFRP (AS4/8552), thickness 6mm	141	10	0.32	0.487	5.3	1570	
GFRP, thickness 8.4mm	42.5	10	0.26	0.4	4.3	1828	

Table 1: Elastic properties for CFRP and GFRP along the x-axis

Figure 5. Dispersion curves for GFRP model with 8.4mm thickness using semi-analytic finite element method

CFRP (or GFRP) plate Figure 6. Experimental contact test-set up for composite sample

Figure 7. |Theoretical and experimental dispersion curves in 8.4mm thickness GFRP plate

Sensor type	Operating Frequency range (KHz)	Resonant frequency (KHz)	S/N
WDI	100 - 1000	125 [500]	AS.F2
R6	35 - 100	55 [90]	AS.H1
R6	35 - 100	55 [90]	AS.H2
PICO	200 - 750	250 [500]	AS.E1
Micro 30	100 - 600	125 [225]	AS.K1

Preamplifier type	Operating Frequency range (KHz)	Amplification (dB)	S/N
1220A	20 - 1200	40	AP.B1
1220A	20 -1200	40	AP.B4

Software	Туре	Version
AE-Win for PCI-2	AE Acquisition software	E3.52
NOESIS [5]	AE data Analysis software	5.3.36

Figure8. AE sensors, hardware and software

Figure 9. Individual thermal picture taken from the sequence using FLIR P640 on the 300mm x300mm CFRP sample

Figure 10. Close-up image of a 6.35mm countersink defect, (a); Processed NIR image of countersunk defect, (b).

Figure 11. Processed NIR image of a 5mmx5mm delamination defect, (a); Processed NIR image of the reverse side of the same delamination.

(a) (b) Figure 12. Results by NIR vision, (a); thermography (processed using pulsed phase thermography), (b)

Figure 13. Attenuation characteristics of qausi-isotropic GFRP using MFC sensors as Tx and Rx

Figure14. Plot of S0 wave mode velocity, right; and A0 wave mode velocity, left, using the mode time of arrival from data collected using bi-directional GFRP

Figure 15. Normalised dispersion curves – bidrectional GFRP sample

Figure 16. Pre-scanning measured parameters showing 4 degrees of freedom (X, Y, Z, ϕ)

Figure 17. Mounting fixture on robotic scanner for transient thermography camera

Figure 18. Mounting fixture on a robotic scanner for NIR camera

Figure 19. ComPair inspection software – Full Width Half Maximum (FWHM) implemented on impact related defect

el Profile	Panel Profile	Define System	Robot Arm Position	Standards In	spect Image S	itch Sentence				
ne System ot Arm	Image Sitch Resource Files Image Sitch Settings									
ndards vect	Overlap	Pixels (X) 50	-				and and			
tence	Overlap	Pixels (Y) 40	1							
	Load	l Images XML File								
	Overlap	Algorithms				Sector Walds				
	O Dis	tance Weight						2 - 5		
									10-2	
	Stite	n Images								

Figure 20. ComPair inspection software showing Image Stitching

Figure 21. ComPair Inspection procedure of the CFRP sample

Figure 22. ComPair Inspection software identifies impact defects from the individual thermographic inspections

Figure 23. ComPair software complete stitched image of the individual thermographic results

Tensile Test Specimen

Figure 24. ComPair Monitoring AE/LRU system during a tensile test on 800mmx70mmx4mm GFRP coupon

Figure 25. ComPair Monitoring system software showing detection of tensile loading cycle: AE activity to destruction, left; LRU GW activity to destruction, right

Strengths	Weaknesses
 The experience of the development team on similar projects (i.e. Research expertise & IT expertise) Innovative content based on European R&D results International applicability. Global technical information and superior technology available Realisation of sophisticated and innovative tool/s. Sufficient financial resources for the prototype realisation Important and very nourished potential users list and good relationship with some important customers Unique approach to continuous inspection and maintenance Experience of the development team on competent projects The evaluation phases on prototypes performed by all partners The final product of the project can be expanded into other applications, outside Unique technology The realisation of the prototype/s followed by a market response evaluation in all the participating members. 	 Still under development Absence of end users in the consortium Requirement for constant updating of the technical content. The ComPair project products are based on existing, well known technologies, which entails an increase in operating costs for the future updating Slow and less flexible decision making process during the commercial phase of the project due to the involvement of many partners
Opportunities	Threats
 Development of European procedures as an integrated tool for NDT approaches manufacturing stage, real time monitoring and in service inspection of composites repairs in vehicles. Contribution to facilitate the way to implement the EU Directives especially the ones targeting directly for detection of defects of transport sector materials. Composites transport materials market is expected to expand in the next future. This is a clear signal about the opportunities to identify new commercial opportunities in other sectors, for example: aerospace components as propellers, bicycle frames or storage tanks. A strategy will be produced in the next future Opportunities for new employment, contribution to solving societal problems 	 Influence of current economic crunch Reduction in R&D budget Bureaucratic process to exploit the results Decreasing consumer spend Other competing technologies insufficient / incompetent knowledge (end users & manufacturers) Fear of something new - resistance to change A project based on a content that is presented for the first time and that introduces new services may not be easy to use by its potential users Long process to perform project guide lines to European standards

interconnected with current	
unemployment situation in Europe	
 Increasing public awareness on 	
"Probability of Detection" at a higher	
confidence level, reducing of accident	
rate and increasing of the safety level.	
(Positive contribution in accident rate)	
The increasing competition amongst	
ND1 researchers and professionals	
urges for additional and new skills in	
themselves on the market. Thus the	
ability to produce ippoyative tools may	
be seen as a means to expand job	
opportunities.	
 Transport sector is one of Europe's 	
strengths. Ensuring customer	
satisfaction and safety and improving all	
safety aspects through innovative real	
time monitoring services and in service	
inspection open the market potentialities	
and create opportunities for widespread	
licensing.	
Requirement for real monitoring	
 Positive contribution to the maintenance and the repair time 	
and the repair time	
 Increasing power-to-weight ratio East response to obnormalities on the 	
 Fast response to abnormalities on the composites, prevention of serious 	
breakdowns	
 Requirement for increased reliability and 	
robustness	
 Build up stronger industrial contact 	
database.	
 Reliability for both transport and 	
composites.	
Requirement for modern technology	
Competitive advantage for the European	
transport industry.	
 Increased transportation safety 	
 Improved service providence 	

Figure 26: SWOT analysis for WinTur project