Thermal fatigue degradation effects occurred at austenitic T connections:

- cyclic feeding (Civaux, FR)
- valve leakage (GKN, DE)

**Potential consequences?** 

- surface stresses
- crack initiation
- stresses in wall
- crack propagation





Figure 1: Turbulent mixing effects in piping system T connections



| Name                 | Country        | Organisation |
|----------------------|----------------|--------------|
| Wilke, U.            | Germany        | E.ON         |
| Faidy, C.            | France         | EDF          |
| Le Duff, J. A.       | France         | FANP-F       |
| Braillard, O.        | France         | CEA          |
| Cueto-Felgueroso, C. | Spain          | Tecnatom     |
| Varfolomeyev, I.     | Germany        | FHG          |
| Solin, J.            | Finland        | VTT          |
| Schippers, M.        | Germany        | FANP-D       |
| Stumpfrock, L.       | Germany        | MPA          |
| Nilsson, KF.         | Netherlands    | JRC          |
| Vehkanen, S.         | Finland        | FNS          |
| Seichter, J.         | Germany        | SPG          |
| Abbas, T.            | United Kingdom | CINAR        |
| Figedy, S.           | Slovakia       | VUJE         |
| Carmena, P.          | Spain          | ENDESA       |
| Cizelj, L.           | Slovenia       | JSI          |

### **Temperature loads**



Figure 4: Field experience on high cyclic turbulent temperature mixing

| Dimensions of T                     | Objective                               | Parameters                                                                 |               | Remarks                                                   | Status            |
|-------------------------------------|-----------------------------------------|----------------------------------------------------------------------------|---------------|-----------------------------------------------------------|-------------------|
| 50 x 50 (90°-T)                     | Flow Visualisation                      | Various Flow Directions and<br>Mass Flows                                  |               | Tests at Room Temperature                                 | Tests             |
| 50 x 50 (45°-T)                     | Flow Visualisation                      | Various Flow Directions and<br>Mass Flows                                  |               |                                                           | finished          |
| 70 x 24 (90°-T)                     | Flow Visualisation                      | Various Flow Directions and<br>Mass Flows                                  |               |                                                           |                   |
| 100 x 100 (90°-T)                   | Flow Visualisation                      | Flow Direction A<br>Mass Flows see table below                             |               |                                                           | Tests<br>finished |
| 50 x 50 (90°-T)                     | Electric<br>Conductivity<br>Measurement | Main Flow in kg/s:<br>2 and 4<br>Leak Flow in kg/s:<br>0.03, 0.06 and 0.12 |               | Tests at Room Temperature<br>→ Variation of Fluid Density | Tests<br>finished |
|                                     | Main Mass Flow i                        | Iss Flow in kg/s Leak Mass Flow in kg/s                                    |               | 3                                                         |                   |
| DN 100 x 100 (d <sub>i</sub> = 100) | 20<br>10                                |                                                                            | 0.015<br>0.03 |                                                           |                   |

Figure 5: SPG, glass models test matrix





### Figure 6: SPG, glass model, electrical conductivity measurement

## Steel models (pipe wall thickness 1 mm) Test matrix

|                                          | T and flow orientation | Main mass<br>flow<br>n¥ in kg/s | Leak mass flow<br>n∳ in kg/s          | Temperature<br>difference<br>(hot – cold<br>water)<br>∆T in K | Circumferential<br>measurement<br>position | Status            |
|------------------------------------------|------------------------|---------------------------------|---------------------------------------|---------------------------------------------------------------|--------------------------------------------|-------------------|
| DN 50 x 50<br>(d <sub>i</sub> = 48)      |                        | 3,9<br>1,95                     | 0.015<br>0.03<br>0.06<br>0.12<br>0.23 | 90<br>45                                                      | 6 12 o'clock                               | Tests<br>finished |
| DN 80 x 20<br>(d <sub>i</sub> = 78 x 20) |                        | 5,5<br>2,75                     | 0.015<br>0.03<br>0.06<br>0.12         | 90<br>45                                                      | 6 12 o'clock                               | Tests<br>finished |

# The THERFAT mock-up



## Fatherino facility overview

Figure 8: CEA, Fatherino II experiment, test rig





#### Fatherino II instrumentation

Figure 9: CEA, Fatherino II, test configuration

### THERFAT Example: turbulent-temperature load spectrum in branch



#### Figure 10: SPG, steel model, turbulent-temperature load spectrum

## THERFAT – WP 2.2Deliverable D8

### Thermo-hydraulic tests on steel models (50 x 50 and 80 x 20)

- Steady flow in main pipe one leg locked (closed valve) but leakage
- Temperature difference △T (main flow leakage) up to 90 K
- Temperature measurement outside and inside the wall (thickness 1 mm)
- **Results** Temperature alterations, load spectra (percentage of  $\Delta T$ )
  - Mean heat-transfer coefficients found by inverse temperature calculation

| T and                                    | flow orientation | Temp. alterations                          | Heat-transfer coefficient                                                                          |  |
|------------------------------------------|------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| DN 50 x 50<br>(d <sub>i</sub> = 48)      |                  | Dead leg: > 90 %<br>Main flow: $\leq$ 70 % | Dead leg: ≤ 4000 W/m²K (A)<br>≤ 7000 W/m²K (B)<br>Main flow: ≤ 6000 W/m²K (A)<br>≤ 10000 W/m²K (B) |  |
| DN 80 x 20<br>(d <sub>i</sub> = 78 x 20) |                  | Dead leg: negligible<br>Main flow: ≤ 70 %  | Dead leg: no relevant information<br>Main flow: $\leq 10000 \text{ W/m}^2\text{K}$                 |  |

Report BLP-SB/27-04

Figure 11: SPG, steel model, test results

## THERFAT – WP 2.2Deliverable D8

## Thermo-hydraulic tests with glass models (50 x 50 and 100 x 100)

- Steady flow in main pipe one leg locked (closed valve) but leakage
- Temperature difference  $\Delta T$  simulated by different specific fluid densities
- Electrical conductivity measurement
- **Results:** "Temperature" alterations (percentage of  $\Delta T$ )
  - Report BLP –SB/50-04

| T and flow   | w orientation        | "Temp." alterations   |  |
|--------------|----------------------|-----------------------|--|
| DN 50 x 50   |                      | Dead leg: $\leq$ 80 % |  |
| DN 100 x 100 | <b>↑</b><br><b>↓</b> | Dead leg: $\leq$ 40 % |  |



Figure 12: SPG, glass model, test results

## THERFAT – WP 2.3Deliverable D10/D11

CFD benchmark calculation by Technical University of Dresden (TUD)

Density versus time in the leakage pipe at 6-o'clock position



Figure 13: SPG, CFD benchmark analysis experiment/CFD analysis



Figure 14: Benchmark of CFD analysis SPG, FANP-D