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Executive Summary 
This document presents the updated version of the first MobileCloud Networking architecture, which 
was reported in D2.2. This architecture is one that is based on the requirements and scenarios, as set 
out in Deliverable 2.1 (D2.1, 2013) and positions itself as the core architecture to which all other 
technical work should adhere to in Mobile Cloud Networking. The key principles of Cloud 
Computing, as defined by NIST and Service Oriented Architecture still hold for the MCN architecture. 

In order to reach to a stable architecture, implementations were provided. Based on the knowledge and 
experience acquired, a feedback process was employed to receive inputs for any updates required of 
the architecture. This detailed work is reported in the various technical work package deliverables, the 
most recent and up to date being D3.4, D4.4 and D5.4. However and importantly the experiences of 
each individual service owners are recounted and recommendations on how best to architect MCN 
services are presented.  

This deliverable details any incremental change, the management interfaces that have been used 
throughout all the services developed and/or used in MCN. A technical reference implementation of 
the MCN architecture is presented and recommendations for architecting MCN services based on 
learnings is presented. Not only has the first architecture remained valid but so too has the mappings 
from it to the ETSI NFV architecture. 

Summarily, there were no changes to the MCN lifecycle and the following logical architectural 
components still remain true to the first architecture: 

● Service Manager: it provides an external interface to the EEU so that they can request the 
creation of supported services offered. A service provider (business domain) operates this and 
the SM manages all service orchestrators, which in their turn perform internal and offer 
external management of and to the EEU’s service instance.  
The architecture of this component has not changed. 

● Service Orchestrator: it oversees the end-to-end orchestration of a service instance and is a 
domain specific component, particular to the service provider. Each service instance is 
managed by a SO.  
The architecture of this component has changed with the addition of the Resolver 
component. 

● Cloud Controller: It is responsible for supporting the service orchestrators requirements and 
complementing the service orchestrators’ service life-cycle management needs in 
MobileCloud Networking. It provides the means to create and access services that higher level 
services need to build upon.  
The architecture of this component has not changed. 
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1 The MCN Architecture and Framework 
Here we briefly describe the current MCN logical architecture, noting any particular changes since 
D2.2.  

1.1 Key Motivations 
Before detailing each logical architectural components, the key motivations and architectural 
principles of MCN are as follows.  

The overall motivations for MCN and the architecture was introduced in D2.2. However the following 
goals MCN seeks to address are still valid. These are: 

1. How can CAPEX/OPEX be optimised, offering the same service at a lower cost or with 
greater profit and, 

2. How can existing subscriber bases be incentivised to use new and innovative services by 
efficiently leveraging the vast amounts of infrastructure at their disposal and in doing so create 
new revenue streams? 

It was these very questions that MCN seeks to address. MCN is focused upon two key ideas as a 
means to address these challenges. 

1. The first idea is to exploit cloud computing as infrastructure for future mobile network 
deployment and operation. At the core, MCN is about the movement from systems that are 
self-hosted, self-managed, self-maintained, on-premise designed and operated, to cloud-
native-based software design that respects existing standards and management and operation 
of those designs instantiated as services or indeed, network function services.  

2. The second idea is more visionary and forward looking. It envisions how future service 
providers endorse and adopt cloud computing services. These providers will leverage these 
services by building value-added services to commercially exploit as new innovative services, 
both traditional telecom services as well as new composed, end-to-end (E2E) services. These 
scenarios were documented in D2.1. 

From these motivations, MCN naturally chose the NIST definition (Grance, 2011) of cloud computing 
and the principles of service oriented architecture. These principles have not changed and remain key 
stalwarts of the MCN architecture. Further information about them can be read in D2.2, section 2.1 
and 2.3. Related to this are various definitions of terms used in MCN. These also have not needed 
updates and remain as previously agreed within the consortium. These can be referred to in D2.2, 
section 2.2. 

1.2 MCN Service Management Framework 
The MCN service management framework consists of two main areas of definition. The first is on the 
lifecycle used within the framework and the second is on the key MCN architectural logical entities. 
Both of these areas were defined in D2.2 and have not required any significant update based on 
implementation experiences and feedback.  
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 MCN Service Lifecycle 1.2.1
MCN still maintains the lifecycle as defined in D2.2. This section merely provides a summary of what 
was detailed in that deliverable. In MCN, the service lifecycle has been divided into two distinct 
phases, the business phase and the technical phase. The MCN service lifecycle is related to the TMF 
service lifecycle and its mapping can be understood in D2.2. The first phase of the MCN lifecycle is 
the business phase, Figure 1, contains all activities related to the conceptualisation of the service, 
discovery and research of potential business partners that can offer services to be combined in the new 
service, the agreements of contracts between partners. This phase is largely a human- and manual-
based process.  

 
Figure 1 Business Phase Lifecycle 

 
 

The second phase of the MCN lifecycle is the technical phase, as illustrated in Figure . It includes 
essentially all activities from technical design all the way through to technical disposal of a service. It 
is guided and governed by the business phase decisions and agreements between providers.  

 

 
Figure 2 Technical Phase Lifecycle 

 
At this phase, all aspects related to the business phase have taken place: 

• Design: Design of the architecture, implementation, deployment, provisioning and 
operation solutions. Supports Service Owner to "design" their service 

• Implementation: of the designed architecture, functions, interfaces, controllers, APIs, etc. 

• Deployment: Deployment of the implemented elements, e.g. DCs, cloud, controllers, etc. 
Provide anything such that the service can be used, but don't provide access to the service.  

• Provisioning: Provisioning of the service environment (e.g. NFs, interfaces, network, 
etc.). Activation of the service such that the user can actually use it. Examples: 
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• Operation and Runtime Management: in this stage the service instance is ready and 
running. Activities such as scaling, reconfiguration of Service Instance Components 
(SICs) are carried out here. 

• Disposal: Release of SICs and the service instance itself is carried out here. 

 Key MCN Service Architectural Entities 1.2.2
Below is a very quick visual overview of the key entities, each of which being briefly summarised in 
the following sections. In the diagram of Figure 3 the blue entities are MCN key logical entities. Those 
in white are entities that are general and defined in D2.2.  

 

 
Figure 3 Key MCN Entities 

1.2.2.1 Service Manager 
The architecture of the Service Manager (SM) has not changed since D2.2. Nonetheless it has been 
heavily used by all services delivered out of MCN. For the all services in MCN, the implementation of 
the SM has been done such that there is minimal work for each service owner/developer, with a focus 
on the technical delivery of a the owner’s service. Currently all that is required by owners and/or 
developers is to declare their service and what information that service offers to Enterprise End Users.  

 
The service manager’s architecture has satisfied all service owners in MCN but nonetheless, for 
completeness its architecture and a short summary of its functionalities and components are detailed 
below. 
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Figure 4 Service Manager 

 
The SM provides an external interface to the EEU and is responsible for managing service 
orchestrators. It takes part in the Design, Deployment, Provisioning, Operation & Runtime 
Management and Disposal steps in the MCN Technical Lifecycle.  

 
The SM’s programmatic interface (northbound interface, NBI) is designed so it can provide either a 
CLI and/or a UI. Through the NBI, the SM gives the EEU or SO, both classed as tenant, capabilities to 
create, list, detail, update and delete (EEU) tenant service instance(s). The “Service Catalogue” 
contains a list of the available services offered by the provider. The “Service Repository” is the 
component that provides the functionality to access the “Service Catalogue”. The “SO Management” 
(SOM) component has the task of receiving requests from the NBI and overseeing, initially, the 
deployment and provisioning of the service instance. Once the instantiation of a service is complete, 
the SOM component can oversee tasks related to runtime of the service instance and also disposal of 
the service instance. Service instances are tracked in the “SO Registry” component. 

1.2.2.2 Cloud Controller 
The current implementation of the Cloud Controller it based on the architecture described in D2.2 and 
D3.1. The architecture has not changed since then. For completeness its architecture is shown below. 

f 
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Figure 5 CloudController 

 
The CloudController (full updated detail in D3.4) provides a key feature in the architecture of MCN. It 
abstracts from specific technologies that are used in MCN. Such examples are OpenStack Heat1, 
Monasca2 and Foreman3. This by having such a logical component and from the implementation 
perspective, should another provider that wishes to use another technology, they simply need to 
implement the relevant CloudController component.  

1.2.2.3 Service Orchestrator 
There has been minimal architectural changes to the service orchestrator over the implementation 
periods of WP3, 4 and 5. Where it has evolved has been in the understanding and consequent update 
of the software interface of the SO that a SO implementer must implement.  

Another more significant change in the SO itself has been in the support of allowing SOs create 
external service instances in order to access functionality provided by those services. This 
functionality is provided by the SO’s Resolver component, as depicted in Figure 6. The developer of 
the service does not need to implement anything, except to declare the required service dependencies. 
The declaration of these services are done in the service template graph and is technically realised by 
what is called a service manifest. Details of the resolver and the service manifest can be found in D3.4. 

 

                                            
 
1 https://wiki.openstack.org/wiki/Heat 
2 https://wiki.openstack.org/wiki/Monasca 
3 http://theforeman.org/ 
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Figure 6 Service Orchestrator 

1.2.2.4 Service Template Graph and Infrastructure Template Graph 
These are two major concepts realised as templates, which play a role in the MCN framework. The 
concept of service and infrastructure template graphs has remained and remain the main way to 
logically describe the resources and services required by a service provider to offer their service. Both 
these concepts have been realised and implemented. The technical details of these can be found in 
D3.4. They are represented in the form of graphs with nodes and edges: 

1. the Service Template Graph (STG) which defines how services can and should be composed 
together. For example the EPCaaS can have a requirement on the MaaS. This requirement is 
hence represented as a dependency. The STG interface can be queried through the Service 
Manager’s NBI 

2. the Infrastructure Template Graph (ITG) which defines how resources should be composed to 
be able to host Service Instance Components. For example the Analytics service requires two 
virtual machines: one to handle compute execution and one to handle the storage backend, 
both of which are connected through a network. Within the MCN framework ITGs are 
handled by templates documents which can placed upon different infrastructure service 
providers such as CloudSigma, Amazon EC2 as well as OpenStack and  Joyent Smart Data 
Center. The Service Orchestrator can hold multiple ITGs, allowing for multi-region/zone 
deployments, in the SO bundle as well compute them on the fly. 

Once a service instance is created the STG and ITG are instantiated. We define them then as: 

1. The Service Instance Graph (SIG), which shows which service instance is connected to which 
other service instance. E.g. the EPCaaS instance ‘1’ uses the MaaS instance ‘101’. This 
information is represented through the NBI of the SM. 
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2. The Infrastructure Instance Graph (IIG) which represents how resources instances are 
connected to each other. This include detailed information about the virtual resource instances 
- such as MAC & IP address, instance size and type definitions. This graph is handled within 
an SO instance. 

1.2.2.5 Composing End-to-End Services 
The MCN architecture has always had the basic requirement to be able to take multiple service types 
and be able to combine them and deliver them working as one "end-to-end" service. This requirement 
comes from MCN's adherence of the 'composable' service oriented architecture principle. According to 
this services may "compose others, allowing logic to be represented at different levels of granularity. 
This allows for reusability and the creation of service abstraction layers and/or platforms."  

It is the delivery of a service instance that can potentially span multiple administrative and business 
domains that we in MCN define as a End-to-End service instance. The ability to compose services in 
MCN is a functionality of the service orchestrator. 

Where the MCN architecture differs from many orchestration frameworks is that it ensures the 
creation and management of not only the foundational virtual resources required to operate the target 
service logic but also the external service requirements. These dependencies are executed upon 
specifically by the SO's "Resolver" component. 

In order to operate, the resolver component requires to understand the service dependencies a specific 
service requires. This information is part of the SO's bundle that is instantiated to manage the creation 
of an EEU requested service instance.  

These requirements are logically described by the SO bundle's STG. The service template graph 
describes not only the service offered but the service types that the target service requires to operate 
(for example, the DSS service requires the CDN service to operate).  

In the context of a SO creating a service the following order of resource and service instance creation 
is followed: 

1. Dependencies defined in both the ITG and the STG are deployed. This is possible as at this 
stage only the dependencies are to be created. The agreed rule here is that all services 
developed in MCN must be able to be independently deployed and then at a later stage 
provisioned with parameters. This separation is given by the MCN lifecycle and proves to be 
very useful by maximising parallelisation of the deployment phase.  

2. Once all dependencies of the ITG and STG have been deployed, the STG dependencies are 
provisioned. In this case, the required parameters of the respective service dependency is 
supplied by the resolver component. The result of this is a graph of STG dependencies that are 
fully configured and readied for use by the ITG dependencies. It is the separation of 
deployment and provisioning phases that is a large advantage in also allowing for simple and 
effective configuration (provisioning phase). 

3. Now with all STG dependencies deployed and provisioned the ITG dependencies of the 
service instance can now be configured with the endpoints of the external STG dependencies. 
Once this is complete, the service instance is then ready to provide service. 

The logical sequence of the deployment and provisioning of a composed service instances is shown 
below. The implementation of providing composed service instance is further detailed in D3.4.  
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Figure 7 Sequence of Service Composition 
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2 MCN Management Interfaces 

2.1 Service Common Interfaces 
The MCN reference implementation was faced with a challenge early. This was given the number of 
services, how to maintain interoperability and a common interface and model between the difference 
services. To solve this, the Open Cloud Computing Interface (OCCI)4 was selected as it had specified 
all the the basic needs of both the SM and SO northbound APIs in both its core model specification. 
OCCI also contains a common means to render that model and transfer it over a RESTful interface. 

OCCI comprises a set of open, specifications documents delivered through the Open Grid Forum 
(OGF). The OCCI working group is developing the specification around the ideas of integration, 
innovation, portability, and, at the core, interoperability. OCCI’s modular approach allows for 
extensibility, flexibility, and the discovery of capabilities. In order not to repeat the whole model here, 
this (Richardson, 2012) is a very useful, short and complete reference to OCCI. 

The OCCI specification is setup like a toolbox allowing you to pick the parts you need and leaving out 
the parts which are unneeded. One central part is the core model which all types of OCCI compatible 
interface must realize. The core model is a meta-model which can be extended for particular uses 
cases. For example for modelling orchestration and management interface such as those used in MCN. 
By extending the core model for each individual service (through the help of the service manager 
library (D3.4)) services of arbitrary description can be served to EEUs. 

The core model of OCCI defines a type model for linked resources. This model can then be rendered 
using an RESTful HTTP based interface. This is defined by the OCCI protocol and rendering 
specifications. The MCN project has greatly contributed to the development (D7.2.2) of OCCI 
revision 1.2. 

Thanks to the extensibility feature of OCCI we had to define some base type for our Orchestration and 
Management interface. Since we have been working with the concept of STGs and ITGs - in form of 
graphs - the linked resources model of OCCI plays well with what we are trying to achieve. 

Since an OCCI compatible interface can be queried to understand the capabilities of a resource, and 
those capabilities can be overloaded with the concept of Mixins, we get a scalable orchestration 
framework. So the base type for orchestrators is generic for all Service Orchestrator Instances in 
MCN, specific parts to the service could however still be model thanks to the Mixin capabilities. This 
means that the basic operations to trigger the life cycle of a service are defined in the orchestrator type 
while specific operations to a service are defined by an overloading mixin (deploy, provision, destroy 
vs set_dns_endpoint). 

2.2 Service Specific Management Interfaces 
The common OCCI interface to all service managers only provides the means to create, delete, update 
and get details of the service instances that have been provisioned for an Enterprise End User. For the 
specific service this is not enough however as with this alone no service-specific interface can be 
exposed. These service specific interfaces are provided in the details of a service instance and are 

                                            
 
4 http://www.occi-wg.org 
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typically RESTful based interfaces but specific to the service. These service specific interfaces are 
detailed in the services’ relevant deliverable. The common interface specification and that of the 
specific interface for the relevant service can be found as part of D6.4. 
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3 Updating the MCN Architecture 
In order to update the MCN architecture bi-weekly calls were held with owners of service 
implementing the MCN architecture. These inputs were first compiled and then another set of 
discussions were held to first see if: 

1. the logical architecture already covered the comment,  

2. if the comment was a technical comment more so directed at the MCN reference 
implementation of the architecture 

If the comment did not fit these criteria, then the comment was accepted to be dealt with as an 
architectural update. Regardless of how each input received, a decision on how it was dealt with was 
agreed upon and recorded. Below is a table that lists the rationalized inputs received from service 
implementers and what the agreed decision was made regarding it. 

 
Table 1 Architecture Inputs for Update 

ID Summary Description Decision 

1 Scaling Services 
and SICs 

Here clarification was sought on 
how should scaling be 
approached and if scaling cloud 
be automatically done. 

Ability for scaling was already supported in the architecture 
of the Service Orchestrator. 
Service specific 
 

2 Monitoring How can monitoring be 
provided for services instances 
and their SOs that needed to be 
monitored. 

This was specific to the reference implementation and the 
means to access a monitoring service was integrated into the 
MCN SDK. 

3 Registration of 
services 

A means to register service 
manager endpoints was 
required.  

This was specific to the reference implementation and 
implemented accordingly. No update to the logical 
architecture was required. 

4 Infrastructure 
graph management 

This item dealt with how to get 
the latest version of the ITG as 
deployed through the 
CloudController so that it could 
be inspected and updated by the 
respective SO.This is related to 
#8 

This was a question of the reference implementation. Here 
the solution was to use the MCN SDK to get and update the 
current ITG. 

5 Orchestrator 
topologies 

Here the item to address was if 
there should be an orchestrator 
per service or a common 
orchestrator. 

This aspect was already answered in the first architectural 
deliverable, D2.2, section 3.5 

6 Service Graphs A way was needed to represent 
dependencies in the service 
graph. 

This was an aspect of how the STG and ITG were 
implemented in the MCN reference implementation. It was 
realised through both the service manifest, heat templates. 
The STG was realised as a set of interlinked OCCI 
resources. Details of these solutions are in D3.4. 

7 What technologies 
can be used and 
shared by all? 

There are a number of technical 
functions that individual 
services/SOs share. How can 
these functions be shared? 

This was related to the MCN reference implementation. The 
solution to this was to introduce the MCN service 
development kit (SDK), which contains a set of functions 
that can be shared. The SDK also allows service developers 
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easily create an instance of a required service. 

8 Scaling there an 
impact/conflict 
possible with the 
SLA service? 

The consideration here was if a 
service instance was bound by a 
SLA, should it be possible for 
the service instance to be 
manually scaled by the EEU. 
This is related to #10.  

This item was one related to the MCN reference 
implementation and in particular the MCN SLA service and 
the service which is guaranteed by the SLAaaS. As such it 
was considered service specific and did not require an 
update of the logical architecture. 

9 Scaling manually 
done by EEU 

The request was a question if 
the architecture could support 
EEU requests to scale their 
service instance.  

This is possible as each service manager implementation is 
specific to the provider, who can decide to offer such 
capabilities out of the service manager interface. As such 
there was no requirement on the MCN logical architecture 
to change. Technically the support to enable this was added. 

10 Revision of MCN 
Lifecycle 

A build process is missing from 
the lifecycle. Including this will 
add notions of continuous build 
and integration into MCN, 
aiding agility fast deployment. 

Where as it was agreed that this step in the technical phase 
could be added it was not pursued and was given low 
priority over other technical work. 

11 Detail how and 
where OCCI is 
used 

OCCI is used extensively in the 
MCN reference implemented. It 
should be explained where 
OCCI is used. 

This was a comment against the reference implementation 
of the MCN architecture. However,  it was agreed that it 
should form part of the architectural deliverable (D2.5). 

12 Service state model The service state model should 
be detailed to include the 
following states: 

● initialise 
● activate 
● deploy 
● provision 
● active (entered into 

runtime ops) 
● update 
● destroying 
● failed 

This was deemed to be specific to the technical 
implementation and so no update to the logical architecture 
was required, given that the lifecycle described in the 
architecture covered these states. The states listed here have 
been implemented as part of the MCN reference 
implementation. 

13 Topic of 
microservices 
should be dealt 
with and placed in 
the context of 
telco/NFV 

Given the existing relationship 
of MCN to service oriented 
architecture, that relationship 
should be explained in context 
to the current development of 
microservices 

This was accepted and is explained in this deliverable 
(D2.5). 
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4 Recommendations for Architecting MCN Services 
In order to function optimally in a cloud computing environment, MCN services need to be carefully 
architected for it. In fact, running applications in the cloud efficiently requires much more than 
deploying software in virtual machines, it needs continuous management. 

This section will discuss in which way the MCN architecture supports the task of architecting MCN 
services as cloud-native applications. Moreover, we will discuss the common pitfalls of cloud design 
as well as recommended architectural best practices. 

4.1 Cloud-native applications 
The term cloud-native is often used to indicate an application/service that: 

• is optimized to run in the cloud (IaaS or PaaS), i.e., it is designed to be elastic (avoiding 
over and under-provisioning and resilient) 

• takes full advantage of the cloud environment 

• considers the drawbacks of the cloud environment 

There are several advantages in embracing the cloud, but in essence they typically fall in two 
categories: either operational (flexibility / speed) or economical (costs) reasons. 

From the former perspective, cloud computing offers fast self-service provisioning and task 
automation through APIs which allow to deploy and remove resources instantly, reduce wait time for 
provisioning dev/test/production environments, enabling improved agility and time-to-market facing 
business changes. Bottom line: increased productivity. 

From the economical perspective, the pay-per-use model means that no upfront investment is needed 
for acquiring IT resources or for maintaining them, companies pay only for effectively used resources. 
Moreover, handing off the responsibility of maintaining physical IT infrastructure, companies can 
avoid capex in favor of opex and can focus on development rather than operations support. 

However, even after a set of architectural patterns and best practices for cloud application 
development have been distilled e.g.,  (Wilder, 2012), (Fehling et al., 2014) (Homer et al., 2014), the 
challenge of bringing an existing application to the cloud (i.e., making it “cloud enabled”) or 
developing a “cloud-native” application from scratch is still very relevant in cloud development. 

On one hand, a pay-per-use model only brings cost savings with respect to a dedicated (statically 
sized) system solution if 1) an application has varying load over time and 2) the application provider is 
able to allocate the “right”' amount of resources to it, avoiding both over-provisioning (paying for 
unneeded resources) and under-provisioning resulting in QoS degradation. 

On the other hand, years of cloud development experience have taught practitioners that commodity 
hardware and switches often do break. Failure domains help isolate problems, but one should “plan for 
failure”, striving to produce resilient applications on partially reliable infrastructure. 

More in detail, the main factors that contribute to failures and outages in cloud services are: 

• Unreliable infrastructure: cloud computing infrastructures are based on commodity 
hardware. Failures in large commodity data centers are the norm rather than the exception 
(Bonvin et al, 2010), (Cockcroft. 2012) (Gill et al. 2011). 
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• Unreliable third party services: many services are obtained as the composition of atomic 
services possibly from different third party providers. A failure or a slow-down in one 
atomic service can potentially hinder the functioning of the whole composition (Filieri et 
al., 2012). 

• Varying load: running conditions of services typically vary in time in terms of load 
intensity, workload mix, position of the users. For instance, public facing services are 
exposed to an external load which is not controllable and varies (sometimes extremely 
e.g., in the so-called slashdot effect) over time. Exposed to highly varying load, most 
simple services will break and become completely unavailable in the worst case, or in the 
best their response times will become so high to render the service practically unusable for 
its purpose. In other terms their quality of service (QoS) and experience (QoE) will 
degrade beyond repair. 

Unreliable infrastructure in cloud computing means an application provider cannot expect any of the 
services from the cloud providers to be immune from failures: issues may span from hardware 
malfunctions in single hosts resulting in virtual machines disappearing, all the way to availability zone 
(AZ), or data center wide compute, networking, storage, or power failures resulting in entire AZs or 
data center services becoming unavailable. 

Third party services delivering inconsistent QoS results in service compositions with highly variable 
response times and require discovering and utilizing multiple service instances and providers to 
mitigate risks. 

Finally, unpredictable spikes in load require reactive management and admission control to prevent 
rendering a service inoperative. 

Considering these aspects, providing reliability for services amounts to being able to face uncertainty 
and react to the changing conditions of the service, be them infrastructural, depending on third party 
services, or load. 

Given the nature of the issues and the need for immediate reaction, automated management 
functionalities dealing with the above and other issues are the commonly adopted solutions in cloud 
development practice. In other words, management functionalities are essential to achieve reliable ICT 
services in the cloud. 

The MCN architecture takes these requirements into account and provides hooks for automated 
management, in particular with respect to scalability, reliability, and placement management 
functionalities. The following subsections will deal with each of these aspects separately. 

4.2 Cloud-native architectural principles 
Drawing on service-oriented principles, cloud native applications are generally based on loosely 
coupled architectures and leverage asynchronous, non-blocking communication patterns. Key to a 
successful cloud-native design is accommodating features like resource pooling, multi tenancy, on 
demand and self-provisioning, and prominently scaling behaviour. The latter for instance, is based on 
monitoring target metrics as resources are added or removed. Against these metrics, logic runs such 
that when demand increases new resources are automatically added based on proactive and/or reactive 
actions. This is known as scaling out. The inverse applies too; when demand reduces resources are 
removed and is known as scaling-in. This scaling behaviour bring further reliability into the target. 
Scaling behaviour can deal with events so the target has no perceived downtime or quality of 
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experience degradation, including transient failures. Inline with this, a cloud-native target should 
exhibit upgrades with no perceived downtime. As scaling actions are mainly part of the runtime phase 
of a target, it also presents the opportunity to carry out optimisations such as optimising for cost by 
reducing the number of resources when not necessary or placement of resources in the best 
geographical area to minimize latency. A recent embodiment of the above principles is in the 
microservices architectural style. 

Applying cloud-native architectural principles to MCN services can be very challenging in practice. In 
fact, some of the assumptions of generic cloud computing (e.g., virtually unlimited resources, 
virtualization and abstraction from physical resources) are not valid in the context of some MCN 
services which, by providing network function virtualization are tightly bound to specific physical 
resources and geographic locations (e.g., consider for instance RANaaS). 

 Microservices 4.2.1
The “microservices”5 architectural style has recently received considerable attention as a viable 
solution to building Internet scale applications by using composition of small, simple, isolated single-
functionality services (i.e., microservices) into coherent applications. The MCN architecture was 
designed before these principles became best practices. 

Microservices architecture is in opposition to the so-called “monolithic” architecture where all 
functionality is offered by a single logical executable. 

 
 

                                            
 
5 Martin Fowler. http://martinfowler.com/articles/microservices.html 
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Figure 8 Microservice Scaling6 

 
The principles behind microservices are: 

• Loosely coupled services with clear boundaries defined by interfaces 

• Microservice independence: 

o performance and failure isolation 

o delegation to a single team 

o own release cycle 

o best technology for the task 

o decentralized data management 

• Infrastructural automation 

• Design for failure 

While many of the principles stem mostly from the requirement of making the continuous 
development and deployment process scalable in terms of involved teams, reducing dependencies and 
need for inter-team coordination, strong technical advantages of this architectural style are failure and 
performance isolation so that applications can (partially) continue to function even while some 
functionalities are not available. 

                                            
 
6 Image credits: http://martinfowler.com/articles/microservices.html 
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The main drawback of the microservices architectural style is that applications become more complex 
with several moving parts that need to be monitored and managed, so that extensive automation needs 
to be in place. 

 

 
Figure 9 Microservice Hetrogenity7 

Microservices can use different development languages and database technologies in building a 
coherent modular service composition. Microservices are typically provided and managed by a single 
application provider, but it's easy to see how the same management principles needed to deal with 
(third party) service compositions need also to be applied “internally” to microservice compositions 
for the same overall service reliability goal. 

In microservice architectures, several patterns can be used to guarantee resilient, fail-fast behavior. For 
instance, the circuit-breaker pattern (Nygard, 2007) or client-side load balancing such as in the Netflix 
Ribbon library8. The typical deployment has multiple instances of the same microservice running at 
the same time, possibly with underlying data synchronization mechanisms for stateful services. The 
rationale behind this choice is to be able to deploy microservice instances across data centers and 
infrastructure server providers and letting each microservice quickly adjust to failures by providing 
alternative endpoints for each service type. 

 Scalability 4.2.2
In the MCN architecture, scaling decisions are taken by the SO Decision module.  

                                            
 
7 Image credits: http://martinfowler.com/articles/microservices.html 
8 http://techblog.netflix.com/2013/01/announcing-ribbon-tying-netflix-mid.html 
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The architecture leaves total freedom to the MCN service developer to decide how to implement the 
scaling decision logic. 

The common approach used by several MCN services has been to leverage the Monitoring as a 
Service component (MaaS) and have the SO Decision module poll monitoring data periodically in 
order to take scaling decisions. Actual scaling actions are taken by the SO Execution module which 
typically uses the CC to deploy or update a Heat template in OpenStack (e.g., see Figure 25 in D5.2). 
Indeed the key patterns in the MCN architecture are: 1) runtime module, 2) SO decision and 3) 
analytics (AaaS) triggering changes, however not in that order or combination. However the 
combination of the 3 is powerful. 

In the last release, the MCN SDK has been extended to include and provide a reference 
implementation of the event detection and notification logic triggering auto-scaling decisions. 

The implementation is based on Monasca, an “open-source multi-tenant, highly scalable, performant, 
fault-tolerant monitoring-as-a-service solution9 that integrates with OpenStack”. Details of this is 
available in D3.4. 

The third approach include the usage of the Analytics service to do in depth analysis of service 
performance and actuate based on the outcomes of that analysis. 

Appropriate scaling actions are service-specific and depend on the nature of the service and its 
components. Combining or picking one ot the 3 above offered approaches demonstrate how the MCN 
architecture allows for elastic on-demand usage of services. 

For instance, stateless SICs can be deployed and disposed of without considering their internal state. 
Stateful components will require appropriate actions for state initialization, replication, reconciliation 
and migration.  

In MCN, many services deal with network functions and are closely tied with physical infrastructure 
and communication flows. For instance, a service can include stateful data path entities requiring a 
fixed TCP connection between endpoints with real-time data exchange. 

In this case scaling decisions imply reconfiguration actions to be coordinated in an atomic fashion to 
avoid (or minimize) service disruptions. 

 Reliability 4.2.3
The reliability of a service depends on its ability of being resilient to failures and environmental 
changes (e.g., in terms of load).  

Scaling a service and setting admission control policies are also fundamental aspects of catering for 
service reliability. The previous section dealt in particular with adapting a service to changing load to 
avoid under-provisioning (and inherent QoS degradation all the way to non-availability) as well as 
over-provisioning (wasting resources). Here we discuss how to provide a reliable service on top of 
unreliable infrastructure and third party services. 

The classic approach to mitigate failures is redundancy. In this aspect, cloud computing is novel and 
economically more viable with respect to traditional enterprise-grade systems in that it relies on 

                                            
 
9 https://wiki.openstack.org/wiki/Monasca 
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software automation (replicating and restarting software components) rather than (more) expensive 
hardware redundancy to provide resilience and availability on top of commodity hardware. 

Redundancy against infrastructural failures boils down to replicating service components across 
different failure domains to achieve the desired level of availability. Spreading SICs respectively 
across different physical hosts, availability zones, data centers, and geographical regions results in 
lower probability of concurrent failures and higher availability. 

Load balancing techniques and cloud-native architectural patterns (e.g., circuit breaker) can be used to 
distribute the load across components hiding failures from end users. 

The same considerations we made in the previous section for stateless with respect to stateful service 
components or components depending on physical infrastructure apply here. 

In particular, stateful components will require state replication mechanisms while service components 
tightly bound to physical devices or a specific geographic location will need to rely on some sort of 
physical redundancy. 

Redundancy at service composition level can be achieved by orchestrating several service instances of 
the same service type in case of MCN services, or relying on more than one instance of functionally 
equivalent third party services. 

4.3 Placement Based on Resource Requirements 
The general problem of service placement and routing in cloud-native applications deals with planning 
and deciding what kind of resources to deploy, using which cloud provider and data center in order to 
maximize revenue providing the required QoS to the application’s users. 

 

This optimization can be seen as an instance of the stochastic bin packing problem (Shabtai et al., 
2015.). Cloud resources have different performance, start-up and minimum billing life-time (e.g., one 
hour for Amazon EC2 on demand VMs) impacting on their costs per unit of time. In general longer-
lived resources (e.g., reserved instances in Amazon EC2) have a lower cost per time unit than on 
demand resources.  

The application provider wants to minimize the total cost of running his application subjected to a 
variable load coming from different locations over a given time horizon. Routing of traffic from 
different locations to specific data centers is also part of the control logic. 

 

In the context of MCN, different considerations with respect to the general service placement problem 
apply.  

As we also mentioned in the previous sections, some MCN services provide networking functionality 
and are tightly bound to the infrastructure they manage and use. 

For these services (e.g., RANaaS) optimizing placement might not really be an option since the service 
itself requires to run at the specific geographic location requested by the EEU. 

Other services involving both networking and compute components are more amenable to placement 
optimization, in particular with respect to the compute or storage part. 
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Placement optimization can be addressed before deploying a service that does not change its location 
(static placement), or while the service is running to optimize the placement according to the 
(changing) location of the end users. The latter approach is called dynamic placement and the logic 
controlling it is typically service-specific. 

For instance, the Follow-Me-Cloud (FMC) algorithm in ICNaaS is responsible to take decision on the 
content to migrate according to the user movement and their interests. As such, the FMC is responsible 
for placing the information close to the point where the user is connected, or where the user will be 
connected in a short future. The underlying concept of FMC can be applied to allow the placement of 
services in MCN, by considering criteria such as current of future user location and user preferences.  

For instance, if the user is close to testbed A, a specific service, using the MCN architecture, can 
provide its functionalities relying on this information. Moreover, the follow-me-cloud has associated 
mobility predictions, targeting to estimate the user location in a certain future. Based on this location 
services can be placed close to the location of users. 

  

Summing up this recommendation section, we can state that albeit the MCN architecture and services 
were designed before the microservices design pattern came to be, MCN architecture and services still 
follow most of the ground principles of microservice architectures and cloud-native applications, 
namely by adopting service composition patterns and automation to cater for resilience, scaling, and 
placement of service instances. 

The specific nature of some MCN services that provide connectivity in or across geographic locations 
(e.g., RANaaS) makes them inherently different from purely cloud-native applications. The former can 
rely on the cloud provisioning model spawning new (virtual) resources only for compute and storage 
resources in the cloud and not for resources that are tightly bound to a specific hardware or geographic 
location. For the latter kind of resources traditional approaches to reliability (i.e., physical redundancy) 
and “scaling” (i.e., capacity planning) have to be in place and are still extremely important. 
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5 Technical Reference Implementation of MCN 
Architecture 
The reference implementation of the MCN has closely followed the prescribed architecture which was 
delivered as part of D2.2. In principle, the architectural elements are influenced by SOA principles, 
and constructs are in place to facilitate the service lifecycle management. The detailed representation 
of each architectural element is already shown earlier, each individually represented by a FMC 
diagram. In this section, we will analyze the technologies used to realize the full reference 
implementation of this architecture. 

 
Figure 10 Technological Components of Reference Implementation 

 
Figure 10 shows the static technology components’ relations and use in the implementation of the 
reference architecture even though it shows a simple scenario with only one service depicted. In order 
to understand the interactions of these components please refer to the following sequence diagram 
(note: it is split in two for easier reading) which walks through the process of creating a service 
instance. Note that the interactions with the SO and its Resolver component are detailed in section 
1.2.2.5. 
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Figure 11 Service Composition 

5.1 Python 
Most of the implementation was done using Python10, which is generally very handy for a quick 
prototypical implementation. Python comes with a huge collection of libraries for virtually any task 
which helped a lot in the fast turnaround time for the architecture reference implementation. 

Python was selected as the default language for implementing MCN components as it is an ideal 
language for fast prototyping of architectural concepts.  

                                            
 
10 https://www.python.org/  
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It should be noted that the reference implementation of the MCN architecture is not bound to python 
as OpenShift that executes the SOs has support for many languages including Java11. This would make 
is easy and possible to deploy a Java SO and there would be minimal changes to the reference 
implementation.  

5.2 PySSF 
The Python Service Sharing Facility library12 is an OCCI compatible implementation that is available 
on pypi13. It provides an OCCI compatible frontend and provides a Python Web Server gateway 
Interface, WSGI14, application can can run on most web frameworks. PySSF formed the core of the 
OCCI interfaces in MCN reference implementation, and helped us implement a uniform interface that 
brought interoperability among all the services developed within MCN. 

Each service is defined by extending the OCCI core model as implemented by PySSF, which provides 
a model that is easy to extend and provides interoperability out of the box. A typical service definition 
is shown below, in this case the EPC service.  

 

                                            
 
11 https://www.java.com/ 
12 http://pyssf.sourceforge.net/ 
13 https://pypi.python.org/pypi 
14  https://www.python.org/dev/peps/pep-3333/  
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Figure 12 Service Definition 

In the figure above, it can be seen that a service type is given an identity (http://schemas.mobile-cloud-
networking.eu/occi/sm#epc) and then has a set of parameters defined. These parameters can be easily 
discovered from the query interface that is supported from the deployed service manager.  

Although the amount required to declare and service an interoperable and MCN-compliant service is 
rather minimal, this has been further simplified by the introduction of the service manifest, a technical 
output that is described in D3.4. 

 OCCI 5.2.1
OCCI, as explained in Section 2.1, forms the core of the interfaces exposed by the Service Manager, 
CloudController and the Service Orchestrators. Using an open standard allowed MCN service 
interfaces to be developed in an uniform manner, which maximizes interoperability, and saved a lot of 
time in development as the interface realization using PySSF was quick and painless. OCCI is also the 
specification used by the northbound interface of the CloudController. 
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5.3 Cloud Controller 
The Cloud Controller is realized true a set of modules: design, deployment, provisioning, runtime and 
disposal. Each of the modules is modeled as a service itself. We defined those as the Cloud 
Controller's internal services as part of D3.1.  

A preselection was made on which technologies could be used and extended in earlier deliverables. 
D3.4 gives a final overview of the selections made. The selections made are obviously abstracted 
away using the Service Development Kit and through the OCCI compatible interfaces. Hence a 
vendor/technology lock-in is not given.  

For now the CC’s internal services for the implementation of the CloudController are listed here: 

• Design - Provided through reusing the OpenStack Keystone service. 

• Deployment - provided by the PaaS OpenShift15 for Service Orchestrators and OpenStack 
Heat for virtual resources. OpenStack heat was extended through plugins to support the 
different platform in place (OpenStack, Joyent SDC and CloudSigma). 

• Provisioning - Realized by different technologies to provide a diversity of choices to the 
service developers. Realized in the easiest form through cloud-init functionalities passed 
through OpenStack heat. Ad-hoc changes can be done by sending commands through 
SSH, while the most feature rich solutions is provided through Foreman. 

• Runtime - Provided by OpenStack Monasca16 but is pluggable and can also be realized by 
other means. 

• Disposal - related to both deployment and provisioning so implicitly pluggable 

The NBI of the PaaS based deployment module is exposed as an OCCI interface and this interface 
definition has been submitted and accepted by the OCCI workgroup as “Open Cloud Computing 
Interface - Platform” and will figure as part of the OCCI 1.2 set of specifications. 

5.4 Service Development Kit 
The Service Development Kit was introduced to support service developers and those who write code 
to manage services. It server two main purposes: 

1. Service Development Kit (SDK) supports the basic functionalities for the lifecycle 
management of any service by allowing the SOs to interact with the various internal services 
of the Cloud Controller (CC). Again changes to the internal implementation of the CC will 
have no impact on the code written, as the SDK abstract the technologies used. 

2. Provide access to the support service developed within the MCN project. Focus here is on 
abstracting the concrete technologies away again. This will allow for service developers to e.g. 
interact with a DNS service is a certain way, regardless how the DNS service is implemented. 

 
For more details, refer to the deliverable D3.4. 
                                            
 
15 http://www.openshift.org 
16 https://wiki.openstack.org/wiki/Monasca 
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5.5 Service Bundle 
Every service, while implementing the Service Manager has to provide the Service Bundle which has 
all necessary details for the deployment. It contains the Service Manifest details, which comprises of 
Service Template Graph (STG) where dependencies on other external services are encoded, and 
Infrastructure Template Graph (ITG), which is realized as a Heat Template which encodes all the 
details for the deployment of the service itself. The service bundle also contains the service 
orchestrator logic, aka the application code. Below is an example of a Service Manifest. 

 

 
Figure 13 Service Manifest 
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The Service Manifest is a JSON document and of note is the section named “depends_on” (Line 22). 
In this section the service dependencies the offered service requires are listed. A service dependency is 
noted by the service type identifier and the set of the required attributes (identified by name) a service 
request needs. The resolution of these service types and the required parameters is carried out by the 
SO’s Resolver component. 

Upon receipt of a service creation request, the SM creates an application container in OpenShift, and 
when the container is ready, pushes the service bundle into the container and deploys it. Once the SO 
is ready, the various lifecycle phases of the service are activated depending on how the SO logic was 
written. 

 Realising the STG and ITG 5.5.1
From the perspective of the reference implementation, the STG is implemented as part of the generic 
service manager library and is part of the service manifest. The STG can be accessed through the 
Query Interface (QI) of the OCCI compatible interface of the SM (realized through pySSF). The SIG 
is represented through the linked OCCI resource entities within the RESTful OCCI compatible 
interface. 

The ITG is implemented through the use of AWS Cloudstack or OpenStack Heat compatible 
templates. For the needs of multi-region deployments support of more than one ITG (one per zone) is 
supported. IIGs are managed within SO instance. Both the STG and ITG are deployed as part of the 
SO Bundle. Technical details of this is available in D3.4. 

 Deploying a SM and SO Bundle 5.5.2
Currently SMs and their related SO bundle has an easy means to be deployed. The SM includes the 
means to have it run and serve requests using the highly optimised Tornado17 library. The SM and SO 
bundle can be deployed onto any platform that supports Python.  

5.6 CloudSigma, OpenStack and SDC Infrastructures  
OpenStack is the cloud management framework that allows the lifecycle management of virtual 
machines. It provides infrastructure cloud services, referred in MCN as atomic services, namely 
compute, storage and networking. The OpenStack project is one of the biggest community driven 
project, similar to the scale of the Linux project. Because of this fact, this platform was chosen for the 
MCN reference implementation compared to other IaaS cloud frameworks such as CloudStack, 
OpenNebula, etc. OpenStack features include some of the key support services out of the box. These 
are VPNaaS, LBaaS, DBaaS among others. And the Heat orchestration module allows deployment of 
MCN services as one logical unit instead of a collection of number of virtual machines. The set of 
python development libraries and availability of several automation tools and scripts helped 
tremendously in quick developmental cycles in the MCN project. 

Once the initial prototype was tested with OpenStack cloud, the MCN project successfully integrated 
CloudSigma’s cloud infrastructure and are almost finished with including support for Joyent’s Smart 

                                            
 
17 http://www.tornadoweb.org/en/stable/ 
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Data Center18 (SDC). The glue for supporting these platforms was Heat. A Heat implementation for 
CloudSigma’s cloud, and SDC has been developed by the consortium that would enable the MCN 
reference architecture to support multi-region, geographically distributed service deployments and 
management, and possibly support cloud federations in the near term. 

                                            
 
18 https://github.com/joyent/sdc/ 
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6 Implementing the Architecture & Experiences 
What follows in the next sections are the individual lessons learnt for each service implemented and 
used in MCN. 

6.1 MCN Services 
Below is a set of all the services that are either implemented or delivered out of MCN, using its 
conceptual architecture.  

 

 
Figure 14 Services of MCN 

 

 RANaaS 6.1.1
RANaaS describes the service lifecycle of an on-demand, elastics, and pay as you go 3GPP RAN on 
the the top of cloud infrastructure. MCN architecture provided a good support for the development of 
the RANaaS SO/SM in view of achieving the required scalability and reliability (see Section 4.2). 
However, to support the scale in/out, RANaaS requires to adjust the maximum cell capacity and the 
resulted processing load to what is available. For this purpose, number of attached terminals, their 
context and stats have to be managed. In terms of  reliability, the terminal and network contexts have 
to shared among different RANaaS instances.In the following, we summarize the lessons learnt during 
the development and experimentation of the RANaaS component: 

• Processing time deadline:  
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o FDD LTE HARQ requires a round trip time (RTT) of 8ms that imposes an upper-
bound for the sum of BBU processing time and the fronthaul transport latency. 
Failing to meet such a deadline has a serious impact on the user performance.  

o Virtualized execution environment of BBU pool must provide the required 
runtime.  

• Containers (LXC and Docker) vs Hypervisor (KVM) 

o Containers are more adequate for GPP RAN as they offer near-bare metal 
performance and provide direct access to the RF hardware. KVM performance is 
also good, but requires pass through mechanisms to access the RF hardware to 
reduce the delay of the hardware virtualization layer. 

o In case of containers, RAN requires low latency kernel in the host. 

o In case of full virtualization (KVM), hypervisor has to support real time/low 
latency task (different techniques requires for type 1 and 2), and also the guest OS 
requires  low latency kernel.   

o Optionally, dynamic resource provisioning/sharing, load balancing to deal with 
the cell load variations (scale out and in). 

• Hardware:  

o Management and sharing of hardware resources  

o Probe the existing RF for their capabilities (FDD or TDD, frequencies, transmit 
power, etc) and select the one that is required for the target RAN configuration. 

o support of RRH:  

§ Frontahul (BBU to RRH link): a full-duplex 10Gbps link is required. 
There are certain ETH configuration to be done here. 

§ Either EXMIMO 2 (PCI-x if), and/or NI/ETTUS (USB3 if) 

• Flexible Configuration, build, run, and monitoring:  

o (Semi-)Automatic generation of the RAN configuration file through the UI or 
selection and editing of predefined configuration files. The same holds for the 
compilation (e.g. Rel 8 or Rel 10) and execution (e.g. enable disable hooks). 
Example of a config file can be found here19. 

o Dynamic Monitoring of the status of RAN 

• IP address: RAN requires to know the ip address of the available MMEs, S-GW, and P-
GW.  

Virtual Radio Resource Management: An important change in the RANaaS architecture 
was the introduction of the functionality of Virtual Radio Resource Management (VRRM) 

                                            
 
19 https://svn.eurecom.fr/openair4G/trunk/targets/PROJECTS/GENERIC-LTE-
EPC/CONF/enb.band7.tm1.exmimo2.conf 
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as a part of SO, as described in deliverable D3.3. In a multi-tenant scenario, a single 
RANaaS SO instance can serve multiple EEU tenants using heterogeneous access 
infrastructures. EEU’s requirements are characterised by an SLA. VRRM manages the 
resources to guarantee that each EEU’s requirements are met. The shared SO contains 
information from all tenants without losing isolation between them. The SO is now 
capable of dealing with one or multiple EEUs. For it, a VRRM functionality was added to 
the SO, to compute the policies for management of the RAN, in order to guarantee EEU’s 
SLAs. Also, an adaptation of the RAN scheduler was introduced to a) receive and apply 
VRRM’s policies per EEU and to b) guarantee a feedback loop to VRRM, on the 
performance of the various EEUs. This enables to distinguish users of different EEUs, and 
enforce adequate scheduling policies through prioritization mechanisms.  

All the functionalities of RANaaS are documented in D3.1, D3.2, D3.3 and D3.4. Final evaluation 
results are reported on D6.4.e 

 EPCaaS 6.1.2
Overall, the MCN architecture provided a good support for the development of the EPCaaS SO, 
proving that the initial design was overall sound and powerful. The “lessons learnt” during 
development of a MCN-compliant EPCaaS Service Orchestrator are summarized here: 

• OCCI interfaces has been used for SM and SO interfaces, which simplified interaction 
with the supporting services and in particular facilitated service parameters passing from 
the SM to the SO. 

• Particular attention was put into the synchronization of the different operations inside SO. 
For example, the start of the runtime phase (where the decision engine starts) must wait 
for the completion of the deploy and provisioning steps. Moreover, since the SM can send 
commands asynchronously, events generated by SM are checked continuously: e.g. the 
reception of a dispose command sent by the SM triggers the stop of the runtime phase. 

• A basic service-specific decision engine has been developed, that triggers scaling-out/in 
based on pre-configured thresholds. However, the design of the EPCaaS SO was planned 
to be modular: the Policy Engine class, which encapsulated the decision making 
algorithm, enables coding of more elaborate decision algorithms and the use of external 
decision engines (e.g. like the one provided by the CC, e.g. Monasca), with no change to 
the rest of the code. 

• Since the provisioning module in the CC was not ready and due to time constraints, some 
parameters were pre-provisioned in the service components. This has actually proved to be 
a very inflexible approach, since it supports only one pre-defined configuration of the 
service. Instead, operators want to be able to define their service parameters, specific for 
each deployment. The provisioning module in the CC will help, along with a flexible 
configuration mechanism on OpenEPC. 

• According to the MCN Service Management Framework, the service components (e.g. the 
VMs) are created in the “deployment” phase and initially configured in the “provisioning” 
phase. But, if the service needs some parameters that rely on other Support or MCN 
Services (e.g. the IP address of a MaaS instance), created together with the main service, it 
must wait until these services are running and the parameters are actually available. If this 
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is the case, the main service cannot be really started in the runtime phase, until an update 
has been received by the SM, which provides the necessary parameters to the SO. The 
Update of a running service, i.e. a running OpenStack Heat stack, proved to be particularly 
challenging. Heat provides a mean (named “Software Configuration”20) to change the 
internal configuration of a running stack (i.e. the IIG, in MCN terminology) simply 
updating the stack template (i.e. the ITG). Unfortunately this convenient feature was 
unavailable: this forced us to implement an alternative mechanism, which forced the SO to 
wait for the first update by the SM (with all the correct parameters) to actually deploy the 
service. 

• Regarding scalability, image size impacts the time needed to instantiate a new OpenEPC 
VM. This means that the time needed to complete a scale-out is longer. Lighter VM 
images should be used in the future, with only the needed modules and configuration files 
included 

• Service Orchestrator is currently deployed on OpenShift PaaS. As this platform runs 
outside the OpenStack environment, VMs that need interacting with SO, for example for 
configuration purposes, must assign public IP addresses. If the number of VMs increases, 
this approach is obviously not feasible, since public IPs are a scarce resource. The 
OpenStack Heat feature mentioned above can represent a solution to this problem, since 
the SO only needs to send an updated template to OpenStack, to change configuration of 
running VM, without accessing them directly. In other cases this is unavoidable, 
especially when services are configured by means of RESTful APIs. 

 IMSaaS 6.1.3
Task 5.1 considered since the beginning of the project only the main signalling elements part of the 
3GPP IMS architecture due to the limited amount of resources available for this subtask. In particular, 
they analysed and documented in the course of the first year of the project several architectural options 
in order to make the IMS infrastructure "cloud-ready”. Following cloud principles, three different 
deployment models have been proposed for the implementation of a cloud-based IMS platform and 
documented firstly in D5.1 [reference] and consequently in a paper (Magedanz, 2014): 

• The first model is the Virtualized-IMS that is an implementation 1:1 of the IMS platform 
as standardized by 3GPP.  

• The Split-IMS architecture, in which each network function has been implemented using a 
three-tier model typical for web services.  

• The Merge-IMS is the last architectural model proposed, in which the network functions 
are grouped together and offered on a subscriber-based way.  

In all of those models the scalability problem of the IMS infrastructure has been addressed. For 
instance, for the HSS has been proposed a separation between the front-end and the database, using 
cloud storage services, like the one provided by DBaaS (Section 6.2.8). 

Some experiences have been gained while designing and developing all of those architectural options:  

                                            
 
20 http://docs.openstack.org/user-guide/enduser/hot-guide/hot_software_deployment.html 
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• Using heat in the deployment module in the Cloud Controller was a good choice. But, not 
having an abstraction on top of heat (for instance TOSCA and translated to Heat using the 
heat-translator21) was a limitation. The main motivation is that the SO developer was 
forced to produce heat templates as implementation of the ITG template for requesting 
resources to the cloud(s), requesting in this case a specific knowledge of what the different 
clouds are offering. An abstraction on top of heat would have simplified the way the SO 
requests resources to the lower layers.  

• In order to retrieve the details of the deployed virtual resources it is required to declare the 
expected output parameters directly into the ITG template. It would have been better to 
receive from the Cloud Controller all the available information about the deployed 
resources, without having to specify them into a static template.  

• The deployment of the SO on top of a different network than the one where the services 
are running reduces the way of communication between service instances and SO. In most 
of the cases, where the EMS interface is exposed by the service instances, it is required a 
floating IP in order to control them.  

• Most of the functionality provided by the SOs implemented are similar for all type of 
services. Probably would have been better to increase the functionalities provided by the 
SDK creating out of it a ETSI NFV-compliant NFVO.  

Additional features that could be useful for further developments:  

• The Cloud Controller should integrate mechanisms from T3.1 for network function 
placement, exposing them to the upper layer (the SO) as high level requirements. For 
instance the SO might request network requirements in terms of high throughput and low 
bandwidth among two service instances. It is then the task of the cloud controller to select 
the datacenters where to deploy such virtual resources in order to meet those requirements. 

All the functionalities of IMSaaS are documented in D5.1, D5.2 and D5.3. The evaluation results are 
reported on D5.4. 

 ICNaaS 6.1.4
Within the development of ICNaaS, several lessons were learned. These can be split into different 
types: solutions from the service to deal with architecture limitations and improvements to the 
development process brought by the underlying platform. Below we highlight a number of lessons of 
both types: 

• There is no pre-defined approach to deal with communication between internal service 
components, given the implementation specific nature of each service. In ICNaaS, most 
operations are performed using RESTful web services, SSH and, naturally, the CCNx 
protocol for content delivery. At the same time, there was no standardized approach to 
perform communication between services, and service owners had to agree on a service to 
service basis. 

                                            
 
21 https://github.com/openstack/heat-translator 
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• As with OpenShift the Service Orchestrator is instantiated at a network, which is not the 
same as the one used by the service instances, all the service internal components need to 
have a public IP to be managed (for provisioning and reconfiguration operations). With 
the current limitation of IPv4 address assignments and the slow adoption of IPv6, this was 
frequently an issue for larger scale tests of the service. 

• The versions of HEAT and OpenStack should have been defined at a given phase of the 
project (sort of a code freeze) and maintained afterwards. As this was not the case, updates 
to ITG and adaption of the use of certain version-specific features (e.g. network and 
floating IP assignment) had to be performed somehow frequently for ICNaaS 
orchestration components (every couple months). Such things taught developers a fair 
amount of lessons but also created some overhead and a few minor work peaks during 
critical periods, temporarily removing resources from the core development of the service 
(service internal components). 

• With the MCN platform there was no common approach for service scalability decisions 
given the implementation-specific nature of services. The process of dynamically updating 
a service or part of it should be investigated. For ICNaaS, it meant that both a decision 
engine and a template generator had to be developed in order to handle service-scaling 
operations, however the new features of the CC runtime module can be considered for 
integration. 

• As sometimes the documentation about the Service Development Kit and other resources 
to be used in the development of the service was not complete, due to ongoing 
development, for ICNaaS there was an extra effort of trial-error debugging and external 
code analysis in order to be able to proceed with the development of certain features. 

• When considering the end-to-end scenario, it is positive that composed services can be 
easily created by a base service (e.g. DSSaaS), with the addition of the Resolver 
component. 

• OCCI standard was a very good addition in terms of development simplification, 
transparency and abstraction. In fact, it should have been also implemented from the early 
stages in the SO without other temporary solutions. 

All the functionalities of ICNaaS are documented in D5.1, D5.2 and D5.3. The evaluation results are 
reported on D5.4. 

 DSSaaS 6.1.5
A summary of experiences gained while development of a DSSaaS solution is provided here: 

• According to the current MCN architecture, Service Orchestrator is deployed on through 
the CC. As this platform runs outside the IaaS service it is mandatory to assign a public IP 
address to each service instance component to reach them from SO. Alternatively, a proxy 
server could be configured to redirect requests to desired SIC. 

• More development effort has been done to handle provisioning tasks as using init-cloud 
scripts is limited according to the architecture and the built-in provisioning module of CC 
was not ready. For DSSaaS an internal agent has been implemented for SICs to handle 
these tasks. 
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• The approach for handling internal communication between Service VMs was not defined 
as this is service specific. In case of DSS a RESTful interface has been implemented and 
used. Another possible option was using a messaging service like ZeroMQ. Inclusion of 
an ESB was discarded due to the complexity. 

• OCCI interface has been used for SM and SO interfaces. Keeping the OCCI standard in all 
these communications and also simplicity of interacting with this interface reduced the 
complexity of development and testing of DSS SM and DSS SO interfaces. 

• Also availability of the MCN SDK in combination with Heat made deployment and 
updating the service instances simple to manage. 

• Automatic generation of and dynamic modifications on DSS service template 
management has been done by designing a specific module for DSS SO as a generic 
approach was not defined. Some other options has been evaluated like Troposphere library 
that was not finally used as it was specific to Amazon CloudFormation but might be useful 
for dynamic template generation. 

• Decision engine for handling scales and dynamic adaptations of the service has been 
managed by designing and implementing a specific module for DSS service as this engine 
was not provided by the CC itself. 

• Internal decision engine for handling scaling has been developed considering that it should 
be able to work as a standalone module or use an external decision engine provided by 
cloud controller like Monasca, which only provides part of the solution (it is still under 
consideration however). 

• OpenStack Networking (Neutron) reduces the complexity of network configurations. The 
ability of defining security groups for OpenStack tenants made it much easier to manage 
network security and firewalls. Neutron Load Balancer as a Service simplifies the 
horizontal scaling procedures allowing you to attach new components to an already 
existing VIP. Thanks to the dynamic attachments and detachment of VMs to the Neutron 
LBaaS, it is possible for an OTT application to grant reliability to non-stateful 
components.  

• Scaling out DB instances can be done by creating BD clusters but as Trove integration 
with Heat is currently poor and does not support clusters, a lot of effort is needed to 
manage (deploy/provision) DB clusters manually. 

• Current scale up feature implies a down time for the scaled component so it is almost 
impossible to keep the service reliable just by scaling up a component. 

• Scaling in implies some issues like state management of active sessions on the 
components that are going to be disposed. For an OTT application, keeping a live copy of 
the session information in an in-memory DB node across all the components can provide 
session persistence despite of scale-in processes. 

Apart from the pros, cons and limitations described above, MCN architecture is flexible enough to 
address all the needs of a cloudified DSS service. Main DSSaaS achievements are described in the 
following bullets:     

• The MCN platform allows two possibilities to demonstrate E2E. 
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o First is DSS as a stand-alone service (managing composition internally). MCN 
SDK made it possible to request for another service needed by DSS, simply by 
requesting a service object. This service object can be used for all further 
interaction between the two services which to a high degree reduces the 
complexity of integration. 

o Second approach is to deploy all the required services by an external E2E SM 
then feed the DSS instance with the necessary EPs. Later DSS service can interact 
with any provided service using these EPs. Thanks to OCCI interface used for SM 
and SO, all these EPs can be pushed to DSSaaS by a simple OCCI call. 

• Availability of the support services significantly reduces the amount of code of DSS 
service. Using simple interfaces we can benefit from: 

o MaaS to have all the service instances monitored. 

o AAAaaS simplified DSS authentication management. 

o DNSaaS for assigning the required domain names. 

o RCBaaS retrieves and processes billing information directly from MaaS. 

o DBaaS provides shared storage. 

o LBaaS simplifies scalability and provides fault tolerance. 

o SLAaaS provides service level agreement. 

• Availability of the content delivery services CDNaaS and ICNaaS removes the necessity 
of deploying Content Cache Repositories (CCR) as a part of DSSaaS instance and at the 
same time increases the reliability and provides fault tolerance and smart content location 
for content delivery. 

All the functionalities of DSSaaS are documented in D5.1, D5.2 and D5.3. The evaluation results are 
reported on D5.4. 

6.2 Support Services 

 MaaS 6.2.1
Monitoring-as-a-Service (MaaS) addresses the design, implementation and test of monitoring 
mechanisms, from the low-level resources to the high-level services, across the four different domains: 
radio access network, mobile core network, cloud data center and applications. MaaS is considered as 
a full-stack monitoring system equipped with the capabilities to provide monitor and metering 
functionalities in a large scope of telecommunication systems. While developing MaaS within MCN, 
several lessons have been learned and are summarized in the following. 

• The continuous process of updating the requirements from stakeholders on MaaS was the 
success for building a MCN service highly suitable for the project demands. A 
questionnaire has been initially used to derive required metrics from stakeholders, after 
which bilateral direct discussions followed and specified the requirements in more detail. 
This process has been kept during the implementation phase, in order to include changes 
in requirements as early as possible. 
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• The supporting service MaaS has been required from many other MCN services. 
Therefore a stable and specified reference points was required right from the beginning. 
First a static version with stable reference points has been released, later on an extended 
version has been released which supports the MCN life cycle. 

• It turned out to be very important to have an early and well-documented prototype for 
handing over to the consortium for early testing and integration. MaaS has been the first 
MCN service that has been integrated with other services (IMSaaS and EPCaaS) within 
the project. A detailed documentation has been made available to the consortium for the 
use of MaaS. 

• It has been recognized due the development that the use of MaaS would have required 
MCN service owner to perform similar developments for configuring and using MaaS. 
Therefore in order to avoid duplication of work, a decision has been made, to place such 
logic right into the SDK that is used frequently by other MCN services. Those functions 
are e.g. get_maas() and get_item(). As a result, a speed up in MCN service realization 
time, simplified deployment and usage has been achieved. 

• A simplified process has been introduced for service owners to create and configure 
generic or individual service metrics. In addition, a subscription for requested metrics has 
been realized as well as the definition of threshold definitions for triggering an appropriate 
action (e.g. scaling in/out). 

• Service stability of MaaS has been achieved by making use of solid and established open 
source projects such as Zabbix.  

• Scalability of this supporting service has not been included in the DoW, but has been 
ensured partly by identifying potential performance bottlenecks and according resolutions. 
One of those potential solutions is the use of DBaaS within MaaS. More details on 
scalability and reliability can be found in the D34 section on MaaS. 

• Challenges with MCN testbed infrastructure have been blocking the fluent development 
slightly. The ability to test MaaS on a single testbed made the availability of the testbed 
crucial. Due to version updates of OpenStack, developments of E2E SM and E2E SO, 
OpenShift updates, testbed capacity limitations, testbed availability in the end delayed the 
development, integration and test phase slightly.  

• Several different monitoring systems exist which are directly or indirectly usable for 
OpenStack deployments. During the initial phase of the project, the Zabbix toolkit has 
been selected for MCN, with the motivation given in D3.1 and D3.2. During the runtime 
of the MCN project, new OpenStack monitoring systems appear. Those do not substitute 
MaaS or Zabbix in terms of functionality and stability, but this might change in the future 
in upcoming releases. In order to keep the agility of MaaS also for other/new monitoring 
systems, a design decision has been made for the support of heterogeneous monitoring 
systems with MaaS. Therefore a level of transparency has been introduced in the concept 
and its implementation of MaaS by abstracting the MaaS features from the open source 
toolkit Zabbix. The simplified implementation of new monitoring systems is therefore 
supported through implementing the main interfaces of MaaS. Tests of MaaS on the 
CloudSigma testbed showed that MaaS is operating with multiple cloud platforms 
including OpenStack, but MaaS is not limited to OpenStack. 
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All the functionalities of MaaS are documented in the previous deliverables D3.1, D3.2 and D3.3. 

 DNSaaS 6.2.2
The DNS as a Service (DNSaaS) allows to cloudify DNS and is employed in MCN as a support 
service from the early beginnings. The implementation experiences can be summarized as follows: 

• The decision to include support services in the MCN CC Service Development Kit (SDK) 
should have been performed in early phases of the project. For services relying on DNS, it 
would have facilitated the integration with DNSaaS. The get_dnsaas() method allowed an 
easier integration with other services, such as EPCaaS, IMSaaS, DSSaaS, avoiding, as 
well, the use of repeated code. 

• The versions of the deployment module and associated software, such as OpenStack and 
Heat lead to testing different methods for provisioning the DNSaaS, for instance to 
configure the IP of MaaS in the DNSaaS instance to enable resource and performance 
monitoring. This fact also required changes in DNSaaS to allow configuration of instances 
after their deployment. Different infrastructure template graphs were configured and tested 
(e.g. heat templates). 

• The use of MaaS to support scalability issues was a good decision, considering the MCN 
architecture and the different services. With MaaS a constant performance monitoring is 
possible, which enable scaling decisions for DNSaaS not tied to a specific cloud 
infrastructure. 

• The employment of OCCI facilitated the exchange of information between the service 
manager and the service orchestrator of DNSaaS, for instance parameters and the status of 
the service (i.e., if deployed or updated). 

• The management of services composition was one of the latest features that was 
introduced. This fact also did not facilitate the integration of services with dependencies, 
however will in the future. For instance, this will facilitate the integration between 
DNSaaS and MaaS.  

• The evaluation performed regarding scalability of DNS demonstrated that the chosen 
architecture for DNSaaS was reliable in terms of failures in the backend servers 
(PowerDNS Servers) and adapted to the load requested by DNS clients.    

All the functionalities of DNSaaS are documented in D3.1, D3.2 and D3.3. The evaluation results are 
reported on D3.4.  

 CDNaaS 6.2.3
CDN-as-a-Service (CDNaaS) aims to improve the performance of, efficiency and ease of retrieving 
content in mobile networks. Its development has been stopped and it is considered feature-complete 
and ready to use by other services. The implementation experiences are as follows: 

• CDNaaS is an exception compared to most of the services within MCN as it does not 
deploy any virtual resources: It has no infrastructure graph as part of its SO. Early in 
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development, the choice has been made to avoid reinventing storage components when 
CDNaaS could instead fully exploit well established tools such as OpenStack Swift22. As a 
result, the added value of CDNaaS instead lies on the management of the underlying 
infrastructure, creating and correctly configuring accounts and user preferences on-
demand. Looking back, this was the best choice to create an optimised service in line with 
the requirements of MCN. 

• It could have been possible to use an object storage infrastructure directly from the 
provider, from instance using a CC call to retrieve an account and credentials, but it was 
not a requirement of testbeds to provide object storage in general, and Swift in particular. 
In that regard, it was decided at the time of the design of the service to completely manage 
Swift from the service perspective, rather than relying on the underlying MCN 
architecture. As service orchestrators implementation is completely up to the service 
developer, this was in line with the MCN framework and allowed us to create and manage 
its own instance of Swift distinct from the MCN testbeds. 

• CDNaaS was initially envisioned as a full service, but after the first year architecture 
design, it was decided to instead view it as a support service. This choice was made as 
CDNaaS in the framework of MCN is not made to be deployed as a single service. It is not 
one of the traditional telco services which MCN aims to move to the cloud, but is an 
essential part for services which aim to distribute content efficiently to their clients, as 
such it fits the definition of a support service. 

• Consumers for the CDN service are typically the main services of MCN, though the main 
user is the DSS service which has to distribute a high volume of content to clients. In 
hindsight, the service could thus have been tailored more specifically for DSS, for instance 
by integrating more content management policies such as customizable time-to-live 
according to types of content. 

• Scalability of the service is handled directly by the storage backend, that is Swift in our 
implementation. While it removes some control from the service orchestrator which can 
not use the runtime module to monitor virtual resources, it leaves scaling and replication 
policies to the storage infrastructure which in the case of Swift has been optimized over 
the years and can be deployed in an optimized manner. 

• While exploiting Swift, CDNaaS still offers customization and replication possibilities, as 
the CDNaaS central server can manage multiple Swift instances, offering automatic 
replication of content within Points of Presences chosen by the user at creation time. This 
makes scenarios such as service instance shutdown possible by offering the user a way to 
put the content to multiple locations. By exploiting DNS techniques, a service orchestrator 
using both the DNS service as well as CDN can also seamlessly offer a unique address for 
each object uploaded to the CDN instance, irrelevant of their actual locations, which is 
useful to redirect an end user to the closest location hosting the requested content. 

• As no resources are actually deployed using the SDK, and thus no runtime control can be 
defined in the service orchestrator, scalability and reliability depends upon the CDNaaS 

                                            
 
22 http://swift.openstack.org 
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service provider. As per the architecture described in D5.2, both the frontend servers 
(which are in essence web applications) as well as the backend Swift need to be highly 
reliable. The former can be achieved using typical frameworks for availability of web 
services, e.g. HAProxy23 in combination with multiple instances of the backend database, 
while in the latter case we rely on the architecture of Swift, where multiple copies of each 
file are stored in different locations, to provide for a reliable object storage service. 

• CDNaaS is well integrated within the MCN framework, a CDN service instance can be 
created through an OCCI call to its service manager directly, but the latest version is also 
integrated with the Cloud Controller SDK with a get_cdn() method, offering an easy way 
for a service to instantiate a new CDN service. 

It has successfully been demonstrated as part of the Year 2 review as part of the DSS end-to-end 
demo. With its main user being satisfied with the current version of the service and all required 
features having been implemented, we decided to stop further developments to focus on services 
which required more work. All functionalities are described in D5.2 with an update in D5.3.  

 SLAaaS 6.2.4
Overall, the lessons learnt during the design and development of the SLAaaS can be summarized in 
the following points: 

• The use of the OCCI SLAs specification for the realization of the provisioning and 
northbound APIs resulted effectively in a rich and powerful interface for the SLA 
Management System. 

• The integration of existing frameworks and solutions for certain functionalities (e.g. 
Intellect24 framework for the Rules Engine and SAA for the SLO assurance) was 
necessary for the efficient development of the overall system. 

• The Collector component had to select during runtime the appropriate monitoring 
interface for each SLO and metric defined in an agreement, based on the infrastructure a 
device is hosted. Such functionality is very important for the interoperability and 
extensibility of the implemented system. 

• The SLAaaS is a wsgi python application based on the PySSF25 framework with a 
Mongodb in the backend to support the persistence of the resource, thus the scalability and 
reliability of the system can be managed by assigning more resources to the SLAaaS host 
VM. More details about the performance and evaluation of the framework can be found on 
the D5.4. 

The architecture of the SLAaaS has been slightly changed from the one presented in D2.2. Most of the 
changes are described in D5.3 and concern the removal of the agent mechanism and the feedback 
component, and the clarification of the SLA assurance and the measurements collection process. As 
explained in D5.3, the SLA agents’ capabilities will be performed by the monitoring agents of the 

                                            
 
23 http://www.haproxy.org/ 
24 https://pypi.python.org/pypi/Intellect 
25 https://pypi.python.org/pypi/pyssf 
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MaaS, thus there is no need of implementing an additional information collection module. What is 
more, the Feedback component has been eliminated from the architecture while the functionalities 
provided by it are incorporated within the SLA Rules Engine. Specifically, the feedback actions 
towards the RCBaaS and the Service Orchestrator are being given through the policy enforcement 
process within the SLA Rules Engine for each individual agreement. Finally, the Cloud Controller is 
depicted in the architecture of the SLAaaS while it provides the Aggregator with the necessary 
information for the correlation of each device in an agreement (e.g. VM resources) with the respective 
provider’s infrastructure. 

 RCBaaS 6.2.5
The RCB as a Service (RCBaaS) allows to cloudify Rating Charging and Billing. RCBaaS is 
employed in MCN as a support service that takes as input the service consumption metrics, processes 
them, calculates the price to be charged to the user, and generates the invoice for payment. The 
implementation experiences can be summarized as follows: 

• The availability of the MCN SDK in combination with CC deployer and provisioning 
module makes it possible to deploy, provision and update the service instances in a simple 
way. 

o For RCBaaS - an innovative charging platform, Cyclops26 for cloud+ (cloud and 
any services offered over any IaaS cloud) services, the uniformity of development 
strategy made possible because of the SDK ensured that the Cyclops team just had 
to create the correct Heat template and base VM images, and the MCN framework 
allowed Cyclops to be offered as a service with minimal effort. For the SM 
implementation, just the declaration of service specific attributes was all that was 
needed. The SO was realized by essentially re-using the sample SO 
implementation provided by the MCN WP3. The development effort for ensuring 
Cyclops-aaS was minimal and was as expected from the MCN framework. It is 
important to point out here that the Cyclops framework itself has no dependencies 
on any of the main or support MCN services, which probably lead to minimalistic 
effort on our development teams, and made ample time available for the 
development of the service’s core features. 

• Monitoring as a Service (MaaS) is used for collecting charging data coming from MCN 
services (like DSS i.e.) through MaaS charging agent. The integration of MCN services 
could be easily extended beyond DSS by adopting the MaaS charging agent. 

• The CCC make available methods for provisioning the RCBaaS. For example, in case it is 
needed to configure the IP address of the MaaS in the RCBaaS instance in order to enable 
resource and performance monitoring. 

• In order to retrieve the details of the deployed virtual resources it is required to declare the 
expected output parameters directly into the ITG.  
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• The decision engine for scaling and dynamic adaptations of the service has been managed 
by designing and implementing a specific module for RCB service as this engine was not 
provided by the CC itself, however the runtime module of the CC can be considered for 
integration. 

• A limitation arising from the use of third-party software (JBilling27) for generating 
invoices is that a set-up of the JBilling plug-in is due for the configuration of each new 
MCN services to be integrated in RCB. 

• A further evolution of the service in terms of reliability could be provided by using the 
DBaaS that could replace the internal DB used to store charging data before sending to 
billing system. 

All the functionalities of RCBaaS are documented in D5.1, D5.2 and D5.3.  

 AAAaaS 6.2.6
The AAA as a Service (AAAaaS) allows to cloudify Authentication and Authorization procedures in 
the MCN framework. The AAAaaS is classified as a support service in MCN and can be instantiated 
through its SM. 

The service is based on the OpenAM28 Identity Management (IdM) framework and it offers an 
authentication mechanism for seamless access to Web services in Single Sign-On, based on OpenAM 
Policy Agents. 

Registration to the service is allowed only to users that are valid Telco subscribers, by verification of 
users' private identities (like IMSI or IMPI) derived from HSS. The user’s subscription profile is 
extended with attributes belonging to the Telco domain that allows the inter-working of digital 
identities in both the IMS and Internet domains thus making it possible to support more sophisticated 
business scenarios. 

The OpenAM framework has been extended for adding user's profile attributes. The application 
framework has been designed in order to expose information related to the IMS/Telco domain (e.g. 
subscriber’s info from HSS or presence status) to 3rd parties via standard web APIs. The experiences 
derived from the design and the implementation of the AAAaaS service can be summarized as 
follows: 

• Reliability is strongly related to the communication with the HSS. The service has been 
designed in order to work regardless the availability of the HSS during the authentication 
phase. On the other hand, in case the HSS is not reachable, it is not possible to check 
whether the user is a Telco subscriber, thus invalidating the registration phase. 

• Scalability has not been taken into account for this service because it is strongly related to 
HSS behaviour that in principle could scale independently. In order to set up an efficient 
mechanism, HSS and AAAaaS should scale in a coordinated way that is not currently 
supported by the MCN framework. However, some evaluations will be carried out in order 
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to assess the performance of the AAAaaS service to cope with increasing workload (as 
foreseen in D5.4). 

• Integration of MCN services could be easily extended beyond DSS by adopting suitable 
OpenAM Policy Agents for Single Sign-On. However, this implies the installation of the 
policy agent software and manual configuration for each federated service. 

All the functionalities and details of AAAaaS are documented in D5.1, D5.2 and D5.3.  

 MOBaaS 6.2.7
Many lessons/experiences were collected during/after the development process of Mobility and 
bandwidth prediction as a service (MOBaaS). These can be further divided into three different types 
according to the development tasks: issues about the service itself, issues about the service deployment 
on the test-bed, and issues during the phase of integrating MOBaaS with other MCN services. Details 
of each lesson are listed below: 

• The introduction of the OCCI mechanism simplifies the interface between SM and SO. 
This helps to transmit service specific parameters between SM and SO. 

• After the implementation, a service has to be integrated with other MCN services. The use 
of OCCI and now soon in the Resolver implementation of the SO will enable such 
integration of other MCN services. However, for the integration of service instance 
components this still remains a service specific task and it would be helpful if a common 
means would be investigated.  

• MOBaaS requires certain amount of historical user movement data to make prediction. 
This data is supposed to be ready at MOBaaS service instance before receiving any 
prediction request such that whenever a request is received, the prediction can be made out 
of the data. However, the big size of local-stored data will increase the size of the image, 
which will increase the time to instantiate a new MOBaaS VM when scaling operation is 
needed. Future plan is to remove the local data storage and to use DBaaS as the storing 
medium, which will make the scalability operation more smoothly. 

 DBaaS 6.2.8
Database as a Service required no development efforts on the behalf of MCN. It’s logical architecture 
was presented in D2.2 and has not required any update. DBaaS was provided by the OpenStack 
ecosystem. The implementation used was Trove29. There has been no further and additional 
development of Trove as it suited the basic needs of other services.  

One thing that made Trove initially more difficult was the limited means to install it, however this has 
improved greatly over the past months, especially with the release of a puppet module30 and 
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integration with packstack31 one of the OpenStack deployment tools used on some of the testbed. 
Scaling out DB instances can be done by creating DB clusters in Trove32. 

Another alternative solution for the DBaaS implementation would have been to use the database 
services offered by OpenShift (this is already used to provide a runtime environment for SOs), 
however due to the limitation in OpenShift version 2 of not being able to publicly expose (IP address) 
these services this approach was not chosen. The DBaaS is used mainly within the DSSaaS and 
IMSaaS. 

 LBaaS 6.2.9
Just as with DBaaS, Load Balancing as a Service required no development efforts on the part of MCN. 
It’s logical architecture was presented in D2.2 and has not required any update.  LBaaS is provided by 
the OpenStack Neutron core project. The actual implementation used is the default one, HAProxy33, 
which can load balance all IP-based communications. It should be noted that this particular load 
balancer is typically used for web and over-the-top type applications and has limited applicability 
within the services of RAN, EPC and IMS. The details of this are reported in D4.2, D4.3. 

 Analytics Service 6.2.10
The analytics service is a generic cloud-native service which allows for running complex machine 
learning/data analytics algorithms in the cloud. In doing so it allows specifically for deeper insights 
into system and performance behaviour based on the USE methodology34, infrastructure instance 
graphs as well as monitoring data. A detailed description of the service can be found in D3.3. 

It has deemed very helpful to have a service which enables the investigation of the service 
performance in correlation with the elastic topology of the infrastructure. Although still a topic which 
can be expanded upon the USE methodology has deemed very helpful here. 

The fact that the analytics service is itself cloud-native allows for a scalable system. The Micro-
Service architecture (realized with help of docker containers) allows for the creation of e.g. Complex 
Event Processing (CEP) based systems where continuous running analytics algorithms are realized. 
While this might require some compute power based on the algorithms run, we can unburden service 
orchestration instance. Instead of doing the calculation itself the SO instance can now be signalled by 
the analytics service. Having the loosely coupled systems also allows to high reusability of the 
analytics service in different scenarios. 

6.3 Atomic Services 

 IaaS 6.3.1
Infrastructure as a Service (IaaS) in MCN remains to be provided by OpenStack and CloudSigma. As 
a result of work carried out in WP3, MCN can now also support virtual resources hosted on the 
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SmartDataCenter platform. Other than various means to deploy IaaS at different testbeds, nothing 
significant has changed. The key reason for this is primarily due to the abstraction offered by both the 
Heat Orchestration Template language and secondarily the abstraction offered by the Cloud 
Controller. This is a feature that is highly appreciated and has save much development effort. What 
modifications to this foundational service type is reported in D3.4 and details of how it’s deployed 
upon testbeds is detailed in D6.4. 

The interconnection between resources across data centers relies on secure mechanisms, such as  
VPNaaS that can be established dynamically when required as defined in the ITGs. On the other side, 
the intra DataCenter connectivity relies on OpenDaylight and on Neutron plugins that allow this one to 
act as OpenFlow Control Adaptor. The APIs and components allowing such connectivity are 
documented in D3.3 and D3.4. 

 PaaS 6.3.2
In order to execute SOs in an isolated and tenant-based environment a PaaS framework was chosen for 
the reference implementation. The technology selected was OpenShift which can provide the required 
features. This was a significant time saving choice as no work was required to develop the framework 
to support the execution of SOs. By taking this approach, the option to implement SOs in any 
language that the PaaS framework, coupled with OCCI RESTful interfaces, supported was also 
possible. Details of how it’s deployed upon testbeds is detailed in D6.4. 
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7 Revised View of MCN and ETSI NFV 
ETSI NFV Industry Specification Group (ISG) was set up in November 2012, coincidentally around 
the same time the MCN project was taking its first baby steps. Being a closed working group, the 
activities of most of the working groups were not in public domain until their first documents came 
out in the form of the white papers around October 2013. MCN project’s overall architecture 
specification came out in the form of D2.2 in October 2013 too. Even though the two activities were 
happening in parallel, the architectural specifications from MCN as well as ETSI NVF ISGs were 
aligned with each other in most of the aspects except the nomenclatures used to refer to different 
architectural elements. 

 
Figure 15 ETSI NFV Reference Architecture 

 
Figure 15 shows the ETSI NFV reference architecture framework taken from the latest available 
reference document (GS NFV-002). We looked into the description of each architectural element in 
GS NFV-002 reference document, along with the various interface descriptions (actions supported by 
the interfaces, information flow through it, etc), and used the two sets of information to map ETSI 
architectural elements to the corresponding MCN components. This functional mapping is shown in 
Table 2. 
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Table 2 ETSI NFV Mapped to MCN 

ETSI NFV 
architectural 
element 

Functionality Corresponding 
element in MCN 
architecture 

Functionality Exact 
Map 
(y/n) 

NFVI NFV Infrastructure: 
Allows for NFVs to be 
deployed, executed and 
managed. 

Cloud data centers 
providing 
compute, storage 
and network. 

Allows for MCN service 
to be deployed, executed 
and managed. 

Y 

VIM Manages the interaction of 
a VNF with computing, 
storage and network 
elements 

Cloud Controller + 
Cloud Managers 
such as OpenStack 

Manages the interaction 
of a MCN service with 
computing, storage and 
network elements 

Y 

VNF Managers Allows for VNF lifecycle 
management, 
instantiation, update, 
query, scaling, 
terminations 

Service 
Orchestrators 

Allows for main services 
lifecycle management, 
instantiation, update, 
query, scaling, 
terminations 

Y 

Service, VNF 
and 
Infrastructure 
Description 

Data-set contains VNF 
forwarding graph, 
deployment templates, etc. 

STG: Service 
Template Graph 
+ 
Infrastructure 
Template Graph 

Allows service 
components to be 
described and the 
deployment order, 
geographical placement 
hints, etc. 

Y 

OSS/BSS OSS/BSS of an operator AAAaaS + 
RCBaaS & various 
other MCN 
support services 

Provides on demand 
OSS/BSS components 
along with monitoring, 
load balancing and other 
MCN services. 

Y 

NFV 
Orchestrator 

In charge of orchestration 
and management of NFVI  
and realizing network 
services on NFVI, NFV-O 
sends configuration 
information to VNF-M. 

Service Managers 
and related SO. 

Allows for state and 
endpoint exchange 
between the MCN 
services and users, also 
passes the configuration 
hints to the service 
orchestrators for lifecycle 
management. 

(N) 

Element 
Management 

EMs in ETSI can perform 
scaling and load balancing 
of various VNFCs 

Each service in 
MCN implements 
its own scaling 
logic which 
manages each 
“element” i.e. a 
service instance 
component. 

Allows scaling decisions 
of MCN service instance 
components based on 
monitoring data 

(Y) 
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The MCN architectural elements largely remains unchanged from the previous iterations, and the 
ETSI VNF reference architecture also has not changed, thus apart from the lexical differences, the two 
architectural frameworks remain largely compliant with each other, with elements of the two mapped 
one-to-one in most cases as the table above demonstrates. The significant difference being in the NFV 
Orchestrator elements, which is the single functional entity in ETSI, whereas in MCN there are service 
managers, one for each type of service. This approach in MCN allows for better scalability of the 
overall orchestration experience, as well as removal of a single point of failure. A slight difference is 
in how the Element Management (EM) is represented in ETSI reference architecture as an external 
element with which the VNF-Manager interacts, in MCN architecture, the EM functionality is 
embodied within the Service Orchestrator manifested as sub-components SO-D and SO-E. 

The ETSI NFV ISG Phase 1 completed in December 2014, with the industry specification group now 
in its phase 2, is focusing on evaluations of the proof of concepts, integration of SDN in the NVF 
architectural framework, security and interoperability aspects. The MCN consortium having adopted 
OCCI in all the interfaces between the various elements of the architecture, have already taken a big 
stride towards supporting interoperability, and the consortium with its demonstrators is ready to 
provide valuable feedback to ETSI in this aspect, if needed. 
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8 Conclusions 
This deliverable presented the updated version of the MobileCloud Networking logical architecture 
that was created by all participants of Task 2.3.  

Resulting from numerous architectural discussions, the architecture as presented in D2.2 is largely 
unchanged as little modification was required. Where modifications have been required these are 
noted within the document. The process around any updates to the logical architecture was discussed 
and detailed.  

This deliverables also includes a view upon the reference implementation of the architecture and an 
updated evaluation of the logical architecture against the current ETSI NFV architecture. Through the 
implementation of the architecture, experiences and learnings of the individual services' are also 
detailed in the deliverable. These learning are expected to be further understood through the evaluation 
phase that is reported in D6.4. 

More broadly, from our work in architecture, we can say that although the MCN architecture and 
services were designed before the microservices design pattern came to be, MCN architecture and 
services still follow the principles service-oriented architecture and cloud-native applications, namely 
by adopting service composition patterns and automation to cater for resilience, scaling, and 
placement of service instances.  

However MCN architecture and usage of cloud viewed from a NFV perspective is different. Whereas 
NFV leverages the use of frameworks like OpenStack the focus is upon the virtualisation of what was 
once ran on a physical device, MCN goes beyond this and asks question about how best the 
implementation of that network function might be designed better with cloud native applications, 
microservices and SOA approaches.  

We foresee that future implementations of Services use the Microservice paradigm and this indeed is 
the industry trend (for example netflix, soundcloud, halo are all early adopters of this). This can be 
very powerful to example to move service instance components within a mobile network from a data 
center towards the edge for performance and agility reasons.  

We also foresee that it would be beneficial if the core services themselves to applythe Microservice 
paradigm. This might not always be possible based on existing and legacy systems and protocols but 
for new service instance components as well as service instance components being replaced this might 
be of highly value. This is a step-by-step approach which is started by decomposing the service 
instance components (applying cloud-native design patterns) into smaller parts within the MCN 
project (e.g the work of WP4; D4.1-4). And we foresee this trend going on and eventually leading to a 
Microservice based edge-to-edge cloud based mobile core network. 

In the summary of D2.2 it was said that "it is foreseen that other services can fit into this architecture" 
and we can safely state that this prognosis was correct. Of the work noted to continue in D2.2, was to 
develop and understand the data schemas required for the services such that interoperability between 
all services is ensured. This was achieved by the adoption of a current Cloud Computing standard, 
OCCI and the experiences of implementing this were positive. Looking towards the future the 
relationship of MCN to a burgeoning area of work, namely cloud native application design, was 
detailed and also key recommendations on developing MCN services from the perspective of 
scalability, reliability and placement was reported.  
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