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Abstract  
 

D1.7 reports the final status of the network planning tool prototype developed within the 
project. The deliverable includes an executable file with the final version of the PLATON 
planning tool and this document, which includes both a configuration and programming 
guide together with a performance analysis of the planning tool. 
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1 Executive summary 

Dynamicity at the optical layer has been kept rather limited so far as a result of the large 
traffic aggregation performed in the upper network layers. Hence, optical transport networks 
are currently statically configured and managed. In fact, long planning cycles upgrade and 
prepare optical transport networks for the next planning period, where spare capacity is 
usually installed to ensure that traffic forecast and failure scenarios can be supported. 
Nevertheless, forecasts predict huge yearly global growth due to the introduction of new 
services such as live-TV distribution, datacenter interconnection, etc. 

In addition, changes in traffic will affect not only its volume but also its distribution. Periodical 
planning needs from as exact as possible predictions for the expected traffic volume and 
distribution, which, although feasible for static traffic scenarios, is unreal when dynamic traffic 
is considered. Hence, efficient planning methods are needed to increment the capacity of 
optical networks while reducing overprovisioning costs.  

Aiming at reducing network expenditures, a pay-as-you-grow approach can be implemented 
to add capacity to the network according with traffic growth. Let us assume that a periodical 
planning cycle is in charge of the design of the network; as a result, new network nodes can 
be installed and a reduced number of spare equipment (e.g. line-cards and transponders) 
can be purchased and made available in some warehouses distributed over the geography 
or even placed on-site. In addition, just-in-time (JIT) techniques can be used to keep enough 
spare cards always available. Spare equipment availability is often stored in an inventory 
database, together with information about optical cables, optical amplifiers, fiber usage, etc. 
When the capacity of the optical backbone network becomes exhausted in some parts, new 
capacity needs to be installed. 

Dealing with traffic dynamicity requires automating connection provisioning, which explains 
the development of centralized architectures based on the software-defined networking 
(SDN) concept, such as the application-based network operations (ABNO) one [RFC 7491]. 
Operating the network dynamically might bring cost savings but it also might cause non-
optimal network resource utilization. To solve that, network resources can be made available 
by applying in-operation network planning. 

It is clear from the above that the classical network life-cycle has to be extended to support 
both on-demand incremental capacity planning and in-operation planning. Figure 1 presents 
the proposed augmented network life-cycle. Once the network is in operation, its 
performance is monitored so either incremental capacity planning or in-operation planning 
can be triggered when a threshold has been exceeded.  

To add a new link, the planning algorithm needs to know the current state of the network 
including the state of the resources and established connections. Furthermore, it needs 
information about physical resources, even those not yet installed. A planning tool can decide 
the equipment and connectivity to be installed at the minimum cost; the planning tool needs 
access both, the inventory database and the current state of the network stored in operation 
databases, i.e., the TED and the LSP-DB. Note that those databases are also needed for in-
operation planning to compute re-optimizations. 
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Figure 1: Extended network live-cycle. 

Figure 2 presents an architecture to support both on-demand incremental capacity planning 
and in-operation planning. The architecture might support any planning algorithm that need 
to access both, operational and inventory databases. A centralized management element, 
e.g. ABNO, has global view of the resources and network topology as well as of the 
established connections. The central element is our PLATON planning tool that receives 
planning requests from the NMS and the PCE inside ABNO. To access data stored in the 
operational databases, the planning tool can be implemented as a back-end PCE and use 
BGP-LS and PCEP protocols. 
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Figure 2: Management architecture. 
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The following table shows PLATON’s development plan along the proyect.  

 

Task %Done 

PLATON  100% 
 Architecture 100% 
  REST/API 100% 
  PCEP 100% 
  BGP-LS 100% 
  Manager 100% 
  Optimization Framework 100% 
 Algorithms 100% 
  After Failure Repair Optimization 100% 
  Spectrum Defragmentation 100% 
  Multicast Provisioning 100% 

 

This document presents the final architecture of the PLATON network planning tool, as the 
configuration and programming guides, and the evaluation of the performance for the 
implemented algorithms. 

Together with this document, a Linux version of PLATON, a set of configuration and include 
files, and an example of algorithm developed in C++ are delivered. 
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2 Introduction 

2.1 Purpose and Scope 
This is part of the seventh deliverable from Work Package 1 of Idealist project that includes 
PLATON software. The motivation and an overview of this deliverable have been provided 
in the Executive Summary. The main document is organized into four main sections to cover 
the architecture, configuration, programmation, and performance evaluation of PLATON 
planning tool. 

2.2 Reference Material 

2.2.1 Reference Documents 
[1] IDEALIST Deliverable D1.2 “Network Planning Tool: Architecture and Software Design,” 

2013. 
[2] IDEALIST Deliverable D1.4 “Design and Tests of the On-Line Optimisation Framework,” 

2014. 
[3] D. King, A. Farrel, “A PCE-Based Architecture for Application-Based Netwowk 

Operations,” IETF RFC 7491, 2015. 
[4] J. Ash, J.L. Le Roux, “Path Computation Element (PCE) Communication Protocol - 

Generic Requirements,” IETF RFC 4657, 2006. 
[5] H. Gredler, J. Medved, S. Previdi, A. Farrel, S. Ray, “North-Bound Distribution of Link-

State and TE Information using BGP,” IETF work in progress, 2014. 
[6] IDEALIST Deliverable D3.2 “Design and Evaluation of the Adaptive Network Manager 

and Functional Protocol Extensions,” 2014. 
[7] E. Crabbe, J. Medved, I. Minei, R. Varga, "PCEP Extensions for Stateful PCE," IETF 

work in progress, 2014. 

2.2.2 Acronyms 
ADT Abstract Data Type 

API Application Programming Interface 

BGP-LS Border Gateway Protocol – Link State 

bPCE Back-end PCE 

BVT Bandwidth Variable Transponders 

CAPEX Capital Expenditures 

CLI Command-Line Interface 

DB Database 

EC2 Elastic Compute Cloud 

fPCE Front-end PCE 

GMPLS Generalized Multi-Protocol Label Switching 

GUI Graphical user Interface 

ILP Integer Linear Programming 

LSP Label Switched Path 
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NMS Network Management System 

NP Nondeterministic Polynomial time 

OF Objective Function 

OPEX Operational Expenditres 

OSS Operations Support System 

PCC Path Computation Client 

PCE Path Computation Element 

PCEP PCE communications Protocol 

PCRep Path Computation Reply 

PCReq Path Computation Request 

PCRpt Path Computation Report 

PLATON Planning Tool for Optical Networks 

PLIs Physical Layer Impairments 

QoT Quality of Transmission 

RMLSA Routing, Modulation Level and Spectrum Allocation 

RSA Routing and Spectrum Allocation 

RWA Routing and Wavelength Assignment 

SaaS Software as a Service 

SBVT Sliceable Bandwidth Variable Transponders 

SEC Spectrum Expansion/Contraction 

SSH Secure SHell 

SVEC Synchronization VECtor 

TED Traffic Engineering Database 

UML Unified Modelling Language 

WDM Wavelength Division Multiplexing 

WP Work Package 

 

2.3 Document History 
Version Date Authors Comment 

Draft 1.09.15 Luis Velasco Contains placeholders 
for all contributions 

Version 1 25.09.15 Lluis Gifre, Luis 
Velasco 

First Integrated 
version. Contains a 
first version of 
PLATON architecture, 
configuration, 
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programming guides 
and performance 
evaluation. 

Version 2 16.10.15 Lluis Gifre, Luis 
Velasco 

Second integrated 
version after minor 
revisions. 

Version 3    
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3 Architecture of the PLATON Planning Tool 

In this chapter, the UPC’s in-operation PLAnning Tool for Optical Networks (PLATON) 
architecture is described. The chapter is organized in two sections. Firstly, the architecture 
of PLATON is updated from the version presented in [1], [2] detailing its architectural 
components: the communication interfaces, the manager, the network databases, the 
algorithms framework, the workflow engine and workflow lifecycle. Next, the generic 
operations running inside PLATON are described including: the topology database update, 
the lightpath database update, and the computation request. 

3.1 Architecture of PLATON 
PLATON is implemented as a back-end Path Computation Element (bPCE) extending the 
classical PCE in the ABNO architecture [3]. The bPCE offloads the complex computations 
from the front-end PCE (fPCE) so as the latter only needs to deal with network handling and 
path provisioning. 

The PLATON architecture, depicted in Figure 3, consists of 5 components: the 
communication interfaces, the manager, the network databases, the algorithms framework, 
and the workflow engine. Computation algorithms are defined as dynamically loadable 
workflows that use the offered public APIs enabling third parties to develop and plug their 
own algorithms. 
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Figure 3.Architecture of PLATON 

3.1.1 Communication Interfaces 
The communication interfaces are the gateway for all incoming and outgoing messages 
encoded using standard protocols; these messages are used by PLATON to synchronize its 
internal databases and to handle computation requests. The supported protocols include 
REST API, PCE Protocol (PCEP) [4], and Border Gateway Protocol – Link State (BGP-LS) 
[5] protocols. 

For the BGP-LS interface, PLATON operates as a BGP listener and attends for BGPUpdate 
messages. Each of these messages specifies the reachability or unreachability of a single 
node or link. To maintain the TED updated, all the BGPUpdate messages must be 
processed. PLATON’s implementation of BGP-LS supports the advertisement of Sliceable 
Bandwidth Variable Transponders (SBVTs) using the Port Label Restriction extensions 
proposed in [6]. 

In contrast, the PCEP interface has been implemented supporting stateful extensions [7] to 
allow reception of Path Computation Report (PCRpt) messages, in addition to the standard 
PCReq and PCRep ones. Each received PCRpt message contains the attributes of sets of 
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lightpaths in the network, including the operation to be performed, i.e. creation, update, or 
deletion. To maintain the LSP-DB updated, all the PCRpt messages must be processed. 
Likewise, PLATON’s implementation of PCEP supports the control subtransponders in 
SBVTs using the Explicit Transponder Control (ETC) sub-object proposed in [6]. 

The PCReq and PCRep messages are used to encode incoming computation requests and 
path computation replies, respectively. An OF object embedded in the PCReq message can 
be used to select the desired workflow to be instantiated by PLATON. 

Finally, REST API implemented in PLATON supports messages encoded in XML and JSON. 
The RESTReq and RESTRep messages are used to encode incoming computation requests 
and path computation replies, respectively. The workflows can be bind to paths in the REST 
API server so that the desired workflow to be instantiated by PLATONcan be selected based 
on the REST API resource path specified by the user in the RESTReq message  

Configuration details for this component are provided in section 4.2. 

3.1.2 Manager 
The Manager component is responsible for configuring and coordinating the rest of 
components. In addition, each message received by the communication interfaces is routed 
to the manager who creates a job, schedules it by kind and issues it to the corresponding 
component in the proper order, jobs belonging to the same type are processed in arrival 
order, to update databases, to trigger the instantiation of a new workflow, or to provide 
pending messages to running workflows. 

The TED update jobs are executed with the highest priority, the LSP-DB updates with 
medium priority and the computation requests with lower priority. This prioritization ensures 
that the topology will be always up to date when a new lightpath needs to be updated and, 
similarly, the computation requests will always be executed with an updated copy of the TED 
and LSP-DB databases. Details on each kind of job are provided in section 3.2. 

Configuration details for this component are provided in section 4.3. 

3.1.3 Network Databases 
The network databases component provides in-memory storage to PLATON. Currently 
implemented databases are the Traffic Engineering Database (TED) and the Label Switched 
Path Database (LSP-DB). Databases can be preloaded with specific topologies and paths. 
Convenient methods and functions to manage database contents, e.g. create node, create 
link, connect node to link, create lightpath, allocate lightpath, etc. are provided. 

Messages from the communication interfaces component are used to update databases. In 
addition, the network databases can be configured to synchronize their changes to other 
external modules. For instance, BGPUpdate messages can be used to flood internal TED 
changes to other external modules, while PCRpt messages can be used for the LSP-DB. 

Configuration details for this component are provided in section 4.4. 

3.1.4 Algorithms Framework 
The algorithms framework provides a set of methods and functions common to every 
workflow for agile algorithm development including routing algorithms, optical spectrum 
handling functions, metaheuristic frameworks, etc. Besides, protocol helper functions for 
rapid message handling are provided. All those functions are available through an API. 
Additional details of this API can be found in section 5. 
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3.1.5 Workflow Engine 
Finally, workflows are implemented as finite state machines (FSM) in PLATON. Two 
elements are needed to add a new workflow to PLATON: a XML file defining the workflow 
and a dynamically linkable file containing a number of algorithms. Configuration details for 
this component and workflow definition are provided in section 4.5 and programming details 
for the dynamic linkable file are described in section 5. 

Since workflows are defined as FSMs, a number of states and transitions between states 
are defined in the XML file; a different algorithm is executed in each state of the workflow. 
Workflow state algorithms use the algorithms API previously described. 

The workflow engine, see Figure 4, is responsible for initiating new workflow instances, and 
coordinating their execution subject to incoming messages. The engine contains a message 
table storing identifiers of messages pending to be received and the workflow instance 
awaiting each message. 

Workflow Engine

RESTReq [path]
PCRequest [OF]

Workflow Instance

DataSet
Alg1 Alg2 Alg3

FSM State

Pending
Message IDs

Workflow
Instances

RESTRep
PCRep

Instantiate
Workflow

Wake-up Workflow &
Provide Message

 

Figure 4. PLATON Workflow LifeCycle 
Each workflow has: i) a triggering message to initiate the workflow, ii) the set of states, iii) 
the set of transitions between states based on incoming message types, iv) the initial state 
of the FSM, v) the algorithms to be run on each state of the FSM, and vi) an internal DataSet 
storing the workflow internal data, which can be defined by the workflow programmer. 
Workflows use the algorithms framework and workflow engine APIs to interact with PLATON. 

Incoming RESTReq and PCReq messages trigger workflow instances creation. When 
RESTReq messages are received, the REST API resource path that user specified to issue 
the request is used to select the desired workflow. Besides, an Objective Function (OF) 
object can be included in PCReq messages to specify the desired workflow to be run; a 
default workflow must be defined for those PCReq messages without any OF object. 

When a workflow is started, a workflow instance is created by the workflow engine containing 
the current state of its FSM and internal workflow data, thus enabling workflow concurrently. 

To select the appropriate function in the dynamic library implementing a given workflow state 
algorithm, its name must be the same as the name of the state. Workflow state algorithms 
can execute any generic algorithm and send messages to other external modules using 
functions in the APIs. At the end of the state algorithm execution, the list of pending 
messages to be received is reported to the workflow engine, which updates the messages 
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table with the expected identifiers in RP and SRP objects. If no pending messages are 
reported, the workflow has been finished. 

3.2 Operation Descriptions 
In this section the internal operations performed by PLATON are described by means of 
sequence diagrams. Due to each kind of message need to perform different operations, one 
sequence diagram is provided for each kind of message. 

3.2.1 Topology Update 
Figure 5 depicts the sequence diagram for a topology update operation. In the event of 
receiving a BGP-LS Update message (labelled as 1 in Figure 5), the communication interface 
component requests a topology update to the Manager component (2). The Manager creates 
a new topology update job and schedules it for future execution (3). When the job is selected 
by the scheduler (4), it is executed (5) firstly checking the databases consistency (6) and 
then performing the TED update (7). When the update is completed, the job returns control 
to the scheduler (8) to select the next job to be executed. 

Communications

BGP-LS Update

Manager

Job

Update Topology
Create

Databases

Check consistency
Run

Update TED

Scheduler

1
2

4
5

6

7

8

3

 
Figure 5. Sequence diagram for Topology Update 

3.2.2 Lightpaths Update 
Figure 6 depicts the sequence diagram for a lightpaths update job. In the event of receiving 
a PCEP PCReport message (labelled as 1 in Figure 6), the communication interfaces 
component requests a topology update to the Manager component (2). The Manager creates 
a new lightpaths update job and schedules it for future execution (3). When the job is selected 
by the scheduler (4), it is executed (5) firstly checking the databases consistency (6) and 
then performing the LSP-DB update (7). When the update is completed, the job returns 
control to the scheduler (8) to select the next job to be executed. 
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8  
Figure 6. Sequence diagram for Lightpaths Update 

3.2.3 Computation Request 
Figure 7 depicts the sequence diagram for a compute algorithm job. In the event of receiving 
a PCEP Request (REST Request) message (labelled as 1 in Figure 7), the communication 
interfaces component requests an algorithm computation to the Manager component (2). 
The Manager creates a new compute algorithm job and schedules it for future execution (3). 

When the job is selected by the scheduler (4), it is executed (5). Job execution requests to 
the workflow engine to process the message related to the job (6). The workflow engine 
detects that it is a computation request, so it instantiates a new workflow (7) selecting its type 
based on OF object contained in the request (the REST API resource path) and issuing the 
message to that new workflow instance (8). The workflow instance selects the proper state 
algorithm (9) as function of the current state’s name and, when the algorithm is ready, it is 
executed passing the received message as parameter (10). 

The algorithm is organized in three steps: first the input message is transcoded into an 
internal workflow instance’s dataset (11), next the computation algorithm itself is executed 
over the dataset (12) and then, the solution in the dataset is transcoded (13) and replied by 
means of a PCEP Reply (REST Reply) message (14, 15). When the state algorithm finishes 
(16), the workflow instance notifies the identifiers of pending messages to be received (if 
any) (17). PLATON considers a workflow instance as finished when no pending messages 
are reported by the workflow instance. Finally, the workflow engine returns execution control 
to the job (18) and the latter to the Manager (19), who can select the next job to be executed. 

Note that this workflow enables sending intermediate requests to other external modules 
such as an inventory database, and leaving the workflow instance in standby until the 
external module replies. In such cases, the received reply will enter through the 
communication interfaces (1) and will request a computation job to the Manager (2). The 
Manager will create and schedule a job (3). When the job is selected, the message will be 
passed to the workflow engine (6), who will locate the existing workflow instance that is 
waiting for the received message on its internal message routing table. Then, the received 
message will be issued to that workflow instance (8) forcing a state transition on its internal 
FSM, thus selecting a new state algorithm. The rest of the sequence is as described in the 
workflow instance creation. 
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Figure 7. Sequence diagram for Compute Algorithm 

4 Configuration Guide 

The overall configuration of PLATON is done by means of XML files having well-defined 
sections for each of the architectural components. 

In this chapter, the configuration details of PLATON planning tool are described. The chapter 
is organized by architectural components and configuration examples are provided for each 
of them. 

4.1 PLATON main configuration file 
PLATON main configuration file, see Table 1, is organized in 5 main sections: i) the System 
and Log sections for the module configuration, ii) the Interfaces section for the 
communication interfaces component, iii) the StartupSequence section for the Manager 
component, iv) the Network section for the network databases component, and v) the 
WorkflowEngine section for the workflow engine component. 

Table 1. Config file– Sections 
<iONEConfig> 
  <System .../> 
  <Log .../> 
  <Interfaces> ... </Interfaces> 
  <StartupSequence> ... </StartupSequence> 
  <Network ...> ... </Network> 
  <WorkflowEngine> ... </WorkflowEngine> 
</iONEConfig> 
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The System and Log sections, detailed in Table 2, define, respectively, the module name, 
and the path of the log file to be used an the verbosity log level which can be set, in 
decreasing order of verbosity, to one of: DEBUG, INFO, NOTICE, WARNING, ERROR, CRITICAL, 
ALERT, EMERGENCY. 

Table 2. Config file– Main Module configuration 
<iONEConfig> 
  <System module="PLATON"/> 
  <Log filePath="logs/platon.log" level="INFO"/> 

... 
</iONEConfig> 

4.2 Configuration Interfaces 
The Interfaces section defines the set of interfaces to be set-up in PLATON. An arbitrary 
number of interfaces for each protocol can be configured using a XML file; Table 3 shows a 
fragment of such a file where two interfaces are defined. Interfaces can be defined as servers 
or client; when it is defined as server a list of client IPs is provided grouped as TrustedPeers, 
whereas when is defined as client, only one peer must be configured, the one configured as 
server. The XML file defines a number of protocol-specific parameters such as keep alive 
and hold timers. 

Table 3. Config file– Communication Interfaces configuration 
<iONEConfig> 

... 
  <Interfaces> 
    <Interface name="bgp" proto="bgp" role="server" ip="10.0.0.5" port="179"> 
      <BGPConfig> 
        <KeepAlive max="50" min="0" default="40"/> 
        <HoldTime max="150" min="0" default="120"/> 
        <AS id="102"/> 
        <BGPLS id="52"/> 
      </BGPConfig> 
      <TrustedPeers> 
        <Peer ip="10.0.0.3"/> 
        <Peer ip="10.0.0.4"/> 
      </TrustedPeers> 
    </Interface> 
    <Interface name="pcep" proto="pcep" role="server" ip="10.0.0.5" port="4189"> 
      <PCEPConfig> 
        <KeepAlive max="50" min="0" default="30"/> 
        <DeadTimer max="200" min="0" default="120"/> 
        <Capabilities stateful="true" 
                      instantiation="true" 
                      update="true" 
                      synchro="true"/> 
      </PCEPConfig> 
      <TrustedPeers> 
        <Peer ip="10.0.0.3"/> 
      </TrustedPeers> 
    </Interface> 
  </Interfaces> 

... 
</iONEConfig> 
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4.3 Manager 
The StartupSequence section configures the sequence of startup actions that the Manager 
has to execute at startup time; these actions include: setting up a protocol session on a 
specific interface, waiting for an incoming connection through a specific interface, introducing 
a specific delay in the startup sequence, etc. For instance, in Table 4 a BGP client interface 
is first started, connected to a server and a BGP session is established 1 second before the 
PCEP interface is started. 

Table 4. Config file– Startup Sequence configuration 
<iONEConfig> 

... 
  <StartupSequence> 
    <Step action="startInterface" interface="bgp"/> 
    <Step action="waitForSession" interface="bgp"/> 
    <Step action="delay" delayMS="1000"/> 
    <Step action="startInterface" interface="pcep"/> 
    <Step action="waitForSession" interface="pcep"/> 
  </StartupSequence> 

... 
</iONEConfig> 

4.4 Network Databases 
The Network section configures the network databases component. Currently implemented 
databases include the TED and the LSP-DB. The databases can be pre-loaded by means of 
XML files and configured to synchronize their content through specific communication 
interfaces, as shown in Table 5. For instance, a BGP-LS interface can be configured to 
handle BGPUpd messages to synchronize the TED, while a PCEP interface can synchronize 
the state of the LSP-DB using asynchronous PCRpt messages. 

Table 5. Config file – Network Databases configuration 
<iONEConfig> 

... 
  <Network spectrumSizeGHz="4000" granularityGHz="6.25" minSpAllocGHz="37.5"> 
    <Topology filePath="data/topology.xml"/> 
    <LSPDB filePath="data/lspdb.xml"/> 
    <NotifyUpdatesTED   enabled="true" interface="bgp"/> 
    <NotifyUpdatesLSPDB enabled="true" interface="pcep"/> 
  </Network> 

... 
</iONEConfig> 

4.5 Workflow Engine and Workflow Definition 
The WorkflowEngine section, shown in Table 6, configures the workflow engine component 
and defines the set of workflows to be loaded by PLATON specifying the path to the XML file 
containing the definition of the workflow. A default OF code for those PCReq messages not 
containing an OF object, can be defined using the tag named as DefaultPCReqOFCode. 

Table 6. Config file – Workflow Engine configuration 
<iONEConfig> 

... 
  <WorkflowEngine messageRetryDelayMS="100" messageRetryMaxRetries="5"> 
    <Workflow filePath="workflows/platon_WF1_definition.xml"/> 
    <Workflow filePath="workflows/platon_WF2_definition.xml"/> 
    <Workflow filePath="workflows/platon_WF3_definition.xml"/> 
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    <DefaultPCReqOFCode ofCode="1"/> 
  </WorkflowEngine> 

... 
</iONEConfig> 

Each workflow is defined as an FSM, which is configured by means of an XML file as 
explained in section 3.1.5. The workflow definition file, example listed in Table 7, contains: i) 
the triggering message to initiate the workflow, ii) the set of states, iii) the set of transitions 
between states based on incoming message types, iv) initial state of the FSM, v) the path to 
a dynamic linked library implementing the algorithms to be run on each state of the FSM, 
and vi) a workflow state algorithms configuration file to define parameters and constants. 

Table 7. PLATON Workflow Definition file 
<Workflow name="WF3" libraryFile="platon_WF3.so" 
                     configFile="platon_WF3_config.xml"> 
  <TriggeringMessage message="PCReq" ofCode="39"/> 
 
  <State name="Alg1"/><State name="Alg2"/><State name="Alg3"/><State name="Err"/> 
 
  <Transition fromState="Alg1" inputMessage="PCRep" toState="Alg2"/> 
  <Transition fromState="Alg1" inputMessage="PCErr" toState="Err"/> 
  <Transition fromState="Alg2" inputMessage="PCRep" toState="Alg2"/> 
  <Transition fromState="Alg2" inputMessage="PCRpt" toState="Alg3"/> 
  <Transition fromState="Alg2" inputMessage="PCErr" toState="Err"/> 
 
  <InitialState name="Alg1"/> 
  <ErrorState name="Err"/> 
</Workflow> 

5 Programming Guide 

PLATON provides an API for implementing new workflows. The API has two parts: the first 
one defines the class signatures that each workflow must implement, while the second 
defines the set of functions and methods exported by PLATON to be used by the algorithms. 

The API is designed to be used in a C++ for Linux environment. To implement algorithms 
using a different programming language or platform, a wrapper needs to be implemented by 
the user. All the C++ classes composing an algorithm must be compiled and linked together 
into a standard Linux shared object library. 

In this chapter, the programming details to implement a new workflow for PLATON planning 
tool are described. The chapter is organized in three sections: firstly, the workflow interface 
is described, next the algorithms framework API is listed and finally, an example is provided 
to illustrate the implementation of a workflow. 

5.1 Workflow Interface 
Each workflow in PLATON, inherits from the generic IWorkflowImpl workflow listed in Table 
8. New workflows must re-implement the set of class members of the generic IWorkflowImpl 
workflow detailed in Table 9. These definitions are the minimum set of functions to be 
implemented to construct a new workflow. 

The IWorkflowImpl algorithm throws an exception in case of executing any of its functions, so 
leaving a workflow member not re-implemented will cause an exception to be thrown. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Design and Tests of the On-
Line Optimisation 

Framework 
 

 

 

Page 19 of 48 

Table 8. PLATON IWorkflowImpl workflow 
class IWorkflowImpl 
{ 
  public: 
    CREATE_EXCEPTION_KIND 
 
    explicit IWorkflowImpl() { } 
    virtual ~IWorkflowImpl() { } 
 
    virtual void configure(const std::string& configFilePath) 
    { THROW_EXCEPTION("Workflow does not implement method configure()"); } 
 
    virtual void setNetwork(LN::Network* network) 
    { THROW_EXCEPTION("Workflow does not implement method setNetwork()"); } 
 
    virtual void setInterfaces(LI::Interfaces* interfaces) 
    { THROW_EXCEPTION("Workflow does not implement method setInterfaces()"); } 
 
    virtual void clear() 
    { THROW_EXCEPTION("Workflow does not implement method clear()"); } 
 
    virtual LWE::MessageSet runState(const std::string& stateName, LWE::Message* message) 
    { 
      THROW_EXCEPTION("Workflow does not implement method runState()"); 
      LWE::MessageSet emptyPendingMessageSet; 
      return(emptyPendingMessageSet); 
    } 
 
    virtual void gracefulAbort() 
    { THROW_EXCEPTION("Workflow does not implement method gracefulAbort()"); } 
}; 

Table 9. Class methods to be implemented in a new workflow 

(constructor) 

The constructor member must be used to allocate dynamic memory for the workflow 
internal data. When dynamic memory is not required by the workflow, this member should 
be re-implemented with an empty body. 

(destructor) 

The destructor member must be used to deallocate the dynamic memory reserved by the 
workflow’s constructor. When dynamic memory is not required by the workflow, this 
member should be re-implemented with an empty body. 
void setNetwork(LN::Network* network) 

The setNetwork member must be used to acquire the pointer to PLATON’s network 
databases to be used for the workflow’s computations. If the workflow does not require 
access to the network databases, this member should be re-implemented with an empty 
body. 
void setInterfaces(LI::Interfaces* interfaces) 

The setInterfaces member must be used to acquire the pointer to PLATON’s 
communication interfaces to be used to issue requests to external modules during the 
workflow execution. If the workflow does not require issuing requests to external modules, 
this member should be re-implemented with an empty body. 
void configure(const std::string& configFilePath) 

The configure member must be used to load the set of configuration parameters for the 
algorithm. When necessary, the configFilePath parameter can be used to provide the 
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algorithm’s configuration path. If the algorithm does not require any parameter to be 
configured, this member should be re-implemented with an empty body. 
void clear() 

The clear member must be used to initialize internal data structures after loading the 
workflow’s configuration parameters. If the algorithm does not require initializing any data 
structure, this member should be re-implemented with an empty body. 
LWE::MessageSet runState(const std::string& stateName, LWE::Message* message) 

The runState member must be used to execute the state algorithm corresponding to the 
current state in the workflow. The stateName parameter contains the name of the current 
FSM state, while the message parameter points to the incoming message to be passed to 
that state algorithm for further processing. This function is the core of the workflow 
execution, so it must be always re-implemented. Further details on implementing this 
function are given below. 
void gracefulAbort() 

The gracefulAbort member must be used to gracefully terminate, e.g. by sending an error 
message to issuer of the request, the workflow in case of abnormal termination of PLATON 
execution. If the algorithm does not requires gracefull termination actions, this member 
should be re-implemented with an empty body. 

The core of the workflow, the runState member, needs to execute the proper internal state 
algorithm member function to be executed for the current state. Finally, it returns the set of 
pending message types and identifiers that the workflow instance is waiting for. Table 10 
lists an example of a runState method. 

Table 10. runState member example 
LWE::MessageSet MyWorkflow::runState(const std::string& stateName, LWE::Message* message) 
{ 
       if(!stateName.compare("alg1")) alg1(message); 
  else if(!stateName.compare("alg2")) alg2(message); 
  else                                 THROW_EXCEPTION("Unsupported state " << stateName); 
  return(dataset.pendingMessages); 
} 

Then, each of the state algorithms, named as alg1 and alg2 in the previous example, needs 
to do three main steps: translate the incoming message into easily usable input dataset, run 
the computation algorithm itself, and translate the solution returned by the algorithm into a 
reply message. Implement the full algorithm functionality in a single member is usually tricky 
and hard to debug, so we split each algX member in three members: algX_transcodeInput, 
algX_computeAlgorithm, and algX_transcodeOutput. Table 11 lists an example of how to split the 
run member. 

Table 11. alg1 member example 
void MyWorkflow::alg1(LWE::Message* message) 
{ 
  try 
  { alg1_transcodeInput(message); } 
  catch (std::exception& e) 
  { THROW_EXCEPTION("Unable to transcode input message. Exception: " << e.what()); } 
 
  try 
  { alg1_computeAlgorithm(); } 
  catch (std::exception& e) 
  { THROW_EXCEPTION("Unable to execute algorithm. Exception: " << e.what()); } 
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  try 
  { alg1_transcodeOutput(); } 
  catch (std::exception& e) 
  { THROW_EXCEPTION("Unable to transcode output. Exception: " << e.what()); } 
} 

The algX_transcodeInput member translates the received message, e.g. a Path Computation 
Request (PCReq), into programmer-defined data structures stored in workflow instance’s 
internal dataset and performs error checks on input data. The algX_computeAlgorithm member 
uses that data structures and the network databases, and computes the algorithm itself 
storing the solution back into the dataset. Finally, the algX_transcodeOutput member translates 
the solution into an output message (or a set of messages), e.g. a Path Computation Reply 
(PCRep), sends it (them) and stores in the dataset the pending message identifiers to be 
received, if any. 

The workflowInstanceMaker function listed in Table 12 must be included in the shared object 
library because it is used by PLATON to create new instances of the workflow on which the 
function is contained. 

Table 12. workflowInstanceMaker function 
extern "C" 
{ 
  IWorkflowImpl* workflowInstanceMaker() { return(new MyWorkflow ()); } 
} 

5.2 Algorithms API 
The PCEP API was defined in IDEALIST Deliverable D1.2 [1]. In this section, the meaningful 
functions of PLATON’s API are described. 

PLATON’s API is organized in namespaces, each of them containing a subset of classes. 
Namespace have alias names to make workflows easier to be written. The namespaces are 
defined in Table 13. 

Table 13. API Namespaces 

Name Alias Description 

Lib::Interface LI Contains communication interfaces-related 
classes. 

Lib::Network LN Contains network databases-related classes. 

Lib::RoutingAlgorithms LRA Contains routing algorithm-related classes. 

Lib::ProtocolHelpers LPH Contains protocol-related helper classes. 

Lib::WorkflowEngine LWE Contains workflow engine-related classes. 

5.2.1 Namespace LI definition 
The list of classes in namespace LI is defined in Table 14. 

Table 14. API Classes in Namespace LI 

Class Description Definition 
Interface Contains the generic definition of an Interface. Table 15 

InterfaceBGP Contains the specialization of Interface for BGP. Table 16 
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InterfacePCEP Contains the specialization of Interface for PCEP. Table 17 

InterfaceREST Contains the specialization of Interface for REST. Table 18 

Table 15. Class Interface API 
const std::string& getName() const 

Get interface name. 
Protocol getProtocol() const 

Get protocol configured in that interface. 
Role getRole() const 

Get the role of that interface. 
const Lib::DottedBytes4& getIP() const 

Get the local IP address on which this interface is bind to. 
uint32_t getPort() const 

Get the local port used by this interface. When role is server, is the port where the server 
is listening; otherwise, is the remote port where the client will try to connect to. 
const Lib::DottedBytes4Vector& getTrustedPeers() const 

Get the trusted peers allowed to connect to this interface. When role is server, contains 
the remote peers allowed to connect to the listening server; otherwise, is the remote IP 
address where the client will try to connect to. 

Table 16. Class InterfaceBGP API 
BGP* getBGP() 

Get BGP instance bind to the interface. 
Sessions& getSessions() 

Get active BGP sessions in the interface. 

Table 17. Class InterfacePCEP API 
PCEP* getPCEP() 

Get PCEP instance bind to the interface. 
Sessions& getSessions() 

Get active PCEP sessions in the interface. 

Table 18. Class InterfaceREST API 
Socket* createSession(AfterConnectHandler* ach) 

Create a new HTTP Session and execute an ach AfterConnectHandler action. 
AfterConnectHandler action needs to be specialized by user. 

5.2.2 Namespace LN definition 
The list of classes in namespace LN is defined in Table 19. 
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Table 19. API Classes in Namespace LN 

Class Description Definition 
FlexGrid Contains the definition of grid characteristics. Table 20 

Network Contains the definition of the network model. Table 21 

Table 20. Class FlexGrid API 
float_t getSpectrumSizeGHz() const 

Get spectrum size in GHz. 
Granularity getGranularity() const 

Get grid granularity. 
float_t getGranularityGHz() const 

Get grid granularity in GHz. 
float_t getMinSpectrumAllocGHz() const 

Get minimum spectrum allocation in GHz. 
std::size_t getMinSpectrumAllocNumSlices() const 

Get minimum spectrum allocation in number of frequency slices. 
std::size_t getNumSlices() const 

Get count of frequency slices in the grid. 
Channel getChannel(int32_t n, uint32_t m) const 

Convert a pair n, m from a label into a channel. 
Channel getChannel(NandM nAndM) const 

Convert nAndM into a channel. 
NandM getNAndM(uint32_t firstSlice, uint32_t numSlices) const 

Convert pair firstSlice, numSlices into an NandM pair. 
NandM getNAndM(Channel channel) const 

Convert channel into an NandM pair. 

Table 21. Class Network API 
const FlexGrid* gridGet() const 

Get grid model. 
std::size_t modulationFormatCount() 

Get count of modulation formats. 
ModulationFormat* modulationFormatAdd(ModulationFormatId id, const std::string& name, 
std::size_t spectralEff, float reachKm) 

Add modulation format with id, name, spectralEff and reachKm. 
ModulationFormat* modulationFormatAdd(ModulationFormatId id, const std::string& name, 
std::size_t spectralEff, float reachKm, const ModulationFormat::ConversionList& 
conversions) 
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Add modulation format with id, name, spectralEff, reachKm and conversions. 
bool modulationFormatExists(ModulationFormatId id) 

Check existence of modulation format with id. 
bool modulationFormatExists(const std::string& name) 

Check existence of modulation format with name. 
const ModulationFormat* modulationFormatGet(ModulationFormatId id) const 

Get modulation format with id. 
const ModulationFormat* modulationFormatGet(const std::string& name) const 

Get modulation format with name. 
const ModulationFormatVectorConstIterators modulationFormatGetIterators() const 

Get iterators to navigate through modulation formats. 
void modulationFormatRemove(ModulationFormatId id) 

Remove modulation format with id. 
void modulationFormatRemove(const std::string& name) 

Remove modulation format with name. 
std::size_t forwardErrorCorrectionCount() 

Get count of forward error corrections. 
ForwardErrorCorrection* forwardErrorCorrectionAdd(ForwardErrorCorrectionId id, const 
std::string& name) 

Add forward error correction with id and name. 
bool forwardErrorCorrectionExists(ForwardErrorCorrectionId id) 

Check existence of forward error correction with id. 
bool forwardErrorCorrectionExists(const std::string& name) 

Check existence of forward error correction with name. 
const ForwardErrorCorrection* forwardErrorCorrectionGet(ForwardErrorCorrectionId id) 
const 

Get forward error correction with id. 
const ForwardErrorCorrection* forwardErrorCorrectionGet(const std::string& name) const 

Get forward error correction with name. 
const ForwardErrorCorrectionVectorConstIterators forwardErrorCorrectionGetIterators() 
const 

Get iterators to navigate through forward error corrections. 
void forwardErrorCorrectionRemove(ForwardErrorCorrectionId id) 

Remove forward error correction with id. 
void forwardErrorCorrectionRemove(const std::string& name) 

Remove forward error correction with name. 
std::size_t nodeCount() 
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Get count of nodes. 
Node* nodeAdd(NodeType type, const NodeId& id, const std::string& name) 

Add node with type, id and name. 
bool nodeExists(const NodeId& id) 

Check existence of node with id. 
Node* nodeGet(const NodeId& id) 

Get node with id. 
NodeVectorIterators nodeGetIterators() 

Get iterators to navigate through nodes. 
void nodeRemove(const NodeId& id) 

Remove node with id. 
OperationalState nodeGetOpState(const NodeId& id) 

Get operational state of node with id. 
void nodeSetOpState(const NodeId& id, OperationalState opState) 

Set operational state opState to node with id. 
FailureState nodeGetFailState(const NodeId& id) 

Get failure state of node with id. 
void nodeSetFailState(const NodeId& id, FailureState failState) 

Set failure state failState to node with id. 
std::size_t portCount(const NodeId& nodeId) 

Get count of ports in node nodeId. 
PortTrunk* portAddTrunk(const NodeId& nodeId, const PortId& id, Layer layer) 

Add trunk port to node nodeId with id and layer. 
PortSBVT* portAddSBVT(const NodeId& nodeId, const PortId& id, Layer layer, float_t 
swCapGbps, std::size_t numSubTPTx, std::size_t numSubTPRx) 

Add trunk port to node nodeId with id, layer, swCapGbps, numSubTPTx and numSubTPRx. 
bool portExists(const NodeId& nodeId, const PortId& id) 

Check existence of port with nodeId and id. 
Port* portGet(const NodeId& nodeId, const PortId& id) 

Get port with nodeId and id. 
PortVectorIterators portGetIterators(const NodeId& nodeId) 

Get iterators to navigate through ports in node nodeId. 
void portRemove(const NodeId& nodeId, const PortId& id) 

Remove port with nodeId and id. 
OperationalState portGetOpState(const NodeId& nodeId, const PortId& id) 

Get operational state of port with nodeId and id. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Design and Tests of the On-
Line Optimisation 

Framework 
 

 

 

Page 26 of 48 

void portSetOpState(const NodeId& nodeId, const PortId& id, OperationalState opState) 

Set operational state opState to port with nodeId and id. 
FailureState portGetFailState(const NodeId& nodeId, PortId id) 

Get failure state of port with nodeId and id. 
void portSetFailState(const NodeId& nodeId, const PortId& id, FailureState failState) 

Set failure state failState to port with nodeId and id. 
std::size_t linkCount() 

Get count of links. 
std::pair<Link*, Link*> linkAdd(LinkType type, const NodeId& srcNodeId, const PortId& 
srcPortId, const NodeId& dstNodeId, const PortId& dstPortId, Layer layer, float_t 
defaultMetric, float_t distanceKm, bool bidirectional) 

Add link with type, srcNodeId, srcPortId, dstNodeId, dstPortId, layer, defaultMetric, 
distanceKm, and directionality bidirectional. 
bool linkExists(const LinkId& id) 

Check existence of link with id. 
bool linkExists(const NodeId& srcNodeId, const PortId& srcPortId, const NodeId& 
dstNodeId, const PortId& dstPortId) 

Check existence of link with srcNodeId, srcPortId, dstNodeId and dstPortId. 
Link* linkGet(const LinkId& id) 

Get link with id. 
Link* linkGet(const NodeId& srcNodeId, const PortId& srcPortId, const NodeId& dstNodeId, 
const PortId& dstPortId) 

Get link with srcNodeId, srcPortId, dstNodeId and dstPortId. 
LinkVectorIterators linkGetIterators() 

Get iterators to navigate through links. 
void linkRemove(const LinkId& id) 

Remove link with id. 
void linkRemove(const NodeId& srcNodeId, const PortId& srcPortId, const NodeId& 
dstNodeId, const PortId& dstPortId) 

Remove link with srcNodeId, srcPortId, dstNodeId and dstPortId. 
FailureState linkGetFailState(const LinkId& id) 

Get failure state of link with id. 
FailureState linkGetFailState(const NodeId& srcNodeId, const PortId& srcPortId, const 
NodeId& dstNodeId, const PortId& dstPortId) 

Get failure state of link with srcNodeId, srcPortId, dstNodeId and dstPortId. 
void linkSetFailState(const LinkId& id, FailureState failState) 

Get failure state failState to link with id. 
void linkSetFailState(const NodeId& srcNodeId, const PortId& srcPortId, const NodeId& 
dstNodeId, const PortId& dstPortId, FailureState failState) 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Design and Tests of the On-
Line Optimisation 

Framework 
 

 

 

Page 27 of 48 

Get failure state failState to link with srcNodeId, srcPortId, dstNodeId and dstPortId. 
std::size_t lightPathCount() 

Get count of lightpaths. 
LightPath* lightPathAdd(const PathId& id, const NodeId& srcNodeId, const PortId& 
srcPortId, const NodeId& dstNodeId, const PortId& dstPortId, float_t bandWidthGbps, bool 
bidirectional) 

Add lightpath with id, srcNodeId, srcPortId, dstNodeId, dstPortId, bandWidthGbps, and 
directionality bidirectional. 
LightPath* lightPathAdd(const NodeId& srcNodeId, const PortId& srcPortId, const NodeId& 
dstNodeId, const PortId& dstPortId, float_t bandWidthGbps, bool bidirectional) 

Add lightpath with srcNodeId, srcPortId, dstNodeId, dstPortId, bandWidthGbps, and 
directionality bidirectional. Identifier is generated automatically. 
bool lightPathExists(const PathId& id) 

Check existence of lightpath with id. 
bool lightPathExists(const EndPointId& srcEndPointId, const EndPointId& dstEndPointId, 
bool isBidirectional, const LinkIdVector& route, const Channel& downChannel, const 
Channel& upChannel) 

Check existence of lightpath with srcEndPointId, dstEndPointId, directionality 
isBidirectional, route, downChannel and upChannel. 
LightPath* lightPathGet(const PathId& id) 

Get lightpath with id. 
LightPath* lightPathGet(const EndPointId& srcEndPointId, const EndPointId& 
dstEndPointId, bool isBidirectional, const LinkIdVector& route, const Channel& 
downChannel, const Channel& upChannel) 

Get lightpath with srcEndPointId, dstEndPointId, directionality isBidirectional, route, 
downChannel and upChannel. 
LightPathVectorIterators lightPathGetIterators() 

Get iterators to navigate through lightpaths. 
void lightPathRemove(const PathId& id) 

Remove lightpath with id. 
Network* clone() 

Clone the network model into a new one, ensuring total independence from original 
network model. 
std::string dump(const char* strNewLine) 

Dump network model into a string. Use strNewLine as new line character. 

5.2.3 Namespace LPH definition 
The list of classes in namespace LPH is defined in Table 22. 

Table 22. API Classes in Namespace LPH 

Class Description Definition 
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BGPLS Contains the set of helper functions for BGP-LS. Table 23 

InterfaceHandler Contains the set of helper functions for interface and 
session location. 

Table 24 

PCEP Contains the set of helper functions for PCEP. Table 25 

REST Contains the set of helper functions for REST. Table 26 

SendAfterConnect
Handler 

Contains the definition of a class to send a REST 
request just after confirming the establishment of a 
connection with a remote module. 

Table 27 

Table 23. Class BGPLS API 
void floodNode(LI::InterfaceBGP* bgpInterface, LN::Node* node, Reachability 
reachability) 

Flood node node through BGP interface bgpInterface specifying reachability as 
reachability. 
void floodLink(LI::InterfaceBGP* bgpInterface, LN::Link* link, Reachability 
reachability) 

Flood link link through BGP interface bgpInterface specifying reachability as reachability. 

Table 24. Class InterfaceHandler API 
LI::InterfaceBGP* getClientInterfaceBGP(const std::string& interfaceName) 

Get BGP interface pointer for an interface named as interfaceName. 
LI::InterfacePCEP* getClientInterfacePCEP(const std::string& interfaceName) 

Get PCEP interface pointer for an interface named as interfaceName. 
LI::InterfaceREST* getClientInterfaceREST(const std::string& interfaceName) 

Get REST interface pointer for an interface named as interfaceName. 
BGPSession* getBGPSession(const std::string& interfaceName) 

Get BGP session pointer on interface named as interfaceName. 
PCEPSession* getPCEPSession(const std::string& interfaceName) 

Get PCEP session pointer on interface named as interfaceName. 

Table 25. Class PCEP API 
bool hasTLV(RP* rp, TLVType tlvType) 

Check if rp object has a TLV of type tlvType. 
LN::PathId getPathIdFromTLV(TLV* tlv) 

Get the PathId from TLV tlv. 
std::string getPathNameFromTLV(TLV* tlv) 

Get a string representing the path name from TLV tlv. 
TLV* getSymPathNameTLV(RP* rp) 

Get the Symbolic Path Name TLV from rp object. 
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LN::PathId getPathId(RP* rp) 

Get the Path Id from rp object. 
std::string getPathName(RP* rp) 

Get the Path Name from rp object. 
RequestId getRequestId(RP* rp) 

Get request identifier from rp object. 
bool getBidirectional(RP* rp) 

Check bidirectional flag from rp object. 
RP* getRP(PCEP_Request* request) 

Get RP object from request. 
EndPoints* getEndPoints(PCEP_Request* request) 

Get EndPoints object from request. 
Bandwidth* getBandWidth(PCEP_Request* request) 

Get Bandwidth object from request. 
TLV* createOrderTLV(const Order& order) 

Create Order TLV from order. 
Order getOrderFromTLV(TLV* tlv) 

Get Order from tlv. 
TLV* getOrderTLV(RP* rp) 

Get Order TLV from rp object. 
Order getOrder(RP* rp) 

Get Order from rp object. 
RP* createRP(bool p2mp, bool eroComp, bool loose, bool bidir, bool reopt, uint32_t reqId) 

Create RP object from p2mp, eroComp, loose, bidir, reopt, and reqId. 
RP* createRPwithTLVs(bool p2mp, bool eroComp, bool loose, bool bidir, bool reopt, uint32_t 
reqId, std::vector<TLV*> tlvs) 

Create RP object from p2mp, eroComp, loose, bidir, reopt, reqId and include TLVs in tlvs. 
EndPoints* createEndPointsIPV4P2P(const LN::NodeId& source, const LN::NodeId& 
destination) 

Create EndPoints object from source and destination. 
std::pair<LN::NodeId, LN::NodeId> getEndPointsIPV4P2P(EndPoints* endPoints) 

Get source and destination node identifiers from endPoints. 
Bandwidth* createReqBandwidth(float_t bandwidthGbps) 

Create Bandwidth object from bandwidthGbps. 
float_t getBandwidth(Bandwidth* bandwidth) 

Get bitrate from bandwidth. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Design and Tests of the On-
Line Optimisation 

Framework 
 

 

 

Page 30 of 48 

RO* createERO(LN::Network* network, const LN::LightPath* lightPath, bool 
addExplicitSubTPId) 

Create RO object of type ERO from network, lightPath, route and addExplicitSubTPId. 
No_Path* createNoPath() 

Create No_Path object. 
void setRP(PCEP_Response* response, RP* rp) 

Set rp in response. 
void setRO(PCEP_Path* path, RO* ro) 

Set ro in path. 
void setBandwidth(PCEP_Path* path, Bandwidth* bandwidth) 

Set bandwidth in path. 
void setNoPath(PCEP_Response* response, No_Path* noPath) 

Set noPath in response. 
void extractFromRO(RO* ro, LN::Network* network, LN::LinkIdVector& route, bool& 
bidirectional, LN::Channel& downSuperChannel, LN::Channel& upSuperChannel, 
LN::LightPath::SubTransponderPairConfigVector& downSubTranspondersConfig, 
LN::LightPath::SubTransponderPairConfigVector& upSubTranspondersConfig) 

Extract route representation from ro using network model network and storing components 
in output variables route, bidirectional, downSuperChannel, upSuperChannel, 
downSubTranspondersConfig and upSubTranspondersConfig.  
PCEP_SVEC* getPSVEC(PCEP_BundleComputation* pathComp, std::size_t index) 

Get index-th PCEP_SVEC from pathComp. 
OF* getOF(PCEP_SVEC* psvec, std::size_t index) 

Get index-th OF from psvec. 
SVEC* getSVEC(PCEP_SVEC* psvec) 

Get SVEC from psvec. 
void getRPIDs(SVEC* svec, RequestIdVector& requestIdVector, RequestIdSet& requestIdSet) 

Get request identifiers from svec and store them in requestIdVector and requestIdSet. 
IRO* getIRO(PCEP_SVEC* psvec) 

Get IRO from psvec. 
XRO* getXRO(PCEP_SVEC* psvec) 

Get XRO from psvec. 
PCEPAction* createSinglePathComp(PCEPSession* session) 

Create Single Path Computation PCEPAction for session. 
PCEPAction* createBundlePathComp(PCEPSession* session) 

Create Bundle Path Computation PCEPAction for session. 
PCEPAction* createBundlePathComp(PCEPSession* session, uint32_t ofCode) 

Create Bundle Path Computation PCEPAction for session including an OF object with ofCode. 
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PCEP_SingleComputation* getPathCompSingle(PCEPAction* action) 

Get PCEP_SingleComputation from action. 
PCEP_BundleComputation* getPathCompBundle(PCEPAction* action) 

Get PCEP_BundleComputation from action. 
PCEP_Request* addPCompRequest(PCEPAction* action) 

Add new PCEP_Request into action and return a pointer to the former. 
PCEP_Response* addPCompResponse(PCEPAction* action) 

Add new PCEP_Response into action and return the former. 
PCEP_Request* getRequest(PCEP_SingleComputation* pathComp) 

Get PCEP_Request from pathComp. 
std::size_t getNumRequests(PCEP_BundleComputation* pathComp) 

Get count  of requests in pathComp. 
PCEP_Request* getRequest(PCEP_BundleComputation* pathComp, std::size_t index) 

Get index-th PCEP_Request in pathComp. 
PCEP_Response* getResponse(PCEP_SingleComputation* pathComp) 

Get PCEP_Response from pathComp. 
std::size_t getNumResponses(PCEP_BundleComputation* pathComp) 

Get count of responses in pathComp. 
PCEP_Response* getResponse(PCEP_BundleComputation* pathComp, std::size_t index) 

Get index-th PCEP_Response in pathComp. 
PCEP_Path* addResponsePath(PCEP_Response* response) 

Add new PCEP_Path into response and return the former. 
PCEPAction* createPCNotif(PCEPSession* session) 

Create Path Computation Notification PCEPAction for session. 
PCEP_Notify* addNotify(PCEPAction* action) 

Add new PCEP_Notify into action and return the former. 
PCEP_Notification* getNotification(PCEPAction* action) 

Get PCEP_Notification from action. 
std::size_t getNumNotifies(PCEPAction* action) 

Get count of notifies in action. 
PCEP_Notify* getNotify(PCEPAction* action, std::size_t index) 

Get index-th PCEP_Notify in action. 
void sendPCError(PCEPAction* pcepAction, uint8_t errorType, uint8_t errorValue) 

Send pcepAction as a PCError message with errorType and errorValue. 
void sendPCReply(PCEPAction* pcepAction) 

Send pcepAction as a PCReply message. 
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Table 26. Class REST API 
void generateRequest(Lib::HTTPRequest* httpRequest, Lib::HTTPRequest::Method method, 
const std::string& url, ContentType contentType, const std::string& content) 

Fill httpRequest with method, url, contentType and content. 
void generateReply(Lib::HTTPReply* httpReply, Lib::HTTPReply::StatusCode statusCode, 
ContentType contentType, const std::string& content) 

Fill httpReply with statusCode, contentType and content. 

Table 27. Class SendAfterConnectHandler API 

(constructor) 

Construct an empty instance of the class. 

(destructor) 

Destroy the class instance. 
void setMethod(Lib::HTTPRequest::Method method) 

Set method. 
void setURL(const std::string& url) 

Set url. 
void setContentType(LPH::REST::ContentType contentType) 

Set contentType. 
void setContent(const std::string& content) 

Set content. 

5.2.4 Namespace LRA definition 
The list of classes in namespace LRA is defined in Table 28. 

Table 28. API Classes in Namespace LRA 

Class Description Definition 

P2MP_RSA Contains the definition of the routing and spectrum 
allocation algorithm for P2MP connections. 

Table 29 

P2MP_RSA::Config Contains the definition of configuration arguments for 
class P2MP_RSA. 

Table 
30Table 29 

R Contains the definition of the routing algorithm for P2P 
connections. 

Table 31 

RMSA Contains the definition of the routing, modulation format 
and spectrum allocation algorithm for P2P connections. 

Table 32 

RSA Contains the definition of the routing and spectrum 
allocation algorithm for P2P connections. 

Table 33 

Table 29. Class P2MP_RSA API 
P2MP_RSA(LN::Network* network, Config& config) 
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Construct an instance of P2MP_RSA using network and config. 
P2MP_RSA(LN::Network* network, std::map<LN::LinkId, double_t>& linkMetrics, Config& 
config) 

Construct an instance of P2MP_RSA using network, linkMetrics and config. 
void computeShortestTreeWithSpectrum(LN::EndPoint srcEndPoint, LN::EndPointVector 
dstEndPoints, uint32_t numSlicesRequired, std::list<SubTree>& solution) 

Compute the shortest tree with spectrum allocation between srcEndPoint and dstEndPoints 
looking for numSlicesRequired and store the solution in solution. 

 

Table 30. Class P2MP_RSA::Config API 
double getCostPerSlot() 

Get cost per slot. 
void setCostPerSlot(double costPerSlot) 

Set cost per slot to costPerSlot. 
double getCostPerHop() 

Get cost per hop. 
void setCostPerHop(double costPerHop) 

Set cost per hop to costPerHop. 
double getCostPerDestination() 

Get cost per destination. 
void setCostPerDestination(double costPerDestination) 

Set cost per destination to costPerDestination. 
double getMaxPathDistanceKm() 

Get maximum path distance allowed in Km. 
void setMaxPathDistanceKm(double maxPathDistanceKm) 

Set maximum path distance allowed in Km to maxPathDistanceKm. 
uint32_t getNumCandidatesPerDestination() 

Get number of candidates per destination. 
void setNumCandidatesPerDestination(double numCandidatePathsPerDestination) 

Set number of candidates per destination to numCandidatePathsPerDestination. 

Table 31. Class R API 
R(LN::Network* network) 

Construct an instance of R using network. 
R(LN::Network* network, std::map<LN::LinkId, double_t>& linkMetrics) 

Construct an instance of R using network, linkMetrics. 
void computeSP(LN::NodeId srcNodeId, LN::NodeId dstNodeId, bool bidirectional, 
LN::LinkVector& route, LN::LinkIdVector& routeIds, double_t& metric) 
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Compute the shortest path between srcNodeId and dstNodeId with directionality 
bidirectional and store solution in output variables route, routeIds and metric. 
void computeSP(LN::Node* srcNode, LN::Node* dstNode, bool bidirectional, LN::LinkVector& 
route, LN::LinkIdVector& routeIds, double_t& metric) 

Compute the shortest path between srcNode and dstNode with directionality bidirectional 
and store solution in output variables route, routeIds and metric. 
void computeSP(LN::EndPoint srcEndPoint, LN::EndPoint dstEndPoint, bool bidirectional, 
LN::LinkVector& route, LN::LinkIdVector& routeIds, double_t& metric) 

Compute the shortest path between srcEndPoint and dstEndPoint with directionality 
bidirectional and store solution in output variables route, routeIds and metric. 
void computeKSP(std::size_t k, LN::NodeId srcNodeId, LN::NodeId dstNodeId, bool 
bidirectional, std::vector<LN::LinkVector>& routes, std::vector<LN::LinkIdVector>& 
routesIds, std::vector<double_t>& metrics) 

Compute k shortest paths between srcNodeId and dstNodeId with directionality bidirectional 
and store solution in output variables routes, routeIds and metrics. 
void computeKSP(std::size_t k, LN::Node* srcNode, LN::Node* dstNode, bool bidirectional, 
std::vector<LN::LinkVector>& routes, std::vector<LN::LinkIdVector>& routesIds, 
std::vector<double_t>& metrics) 

Compute k shortest paths between srcNode and dstNode with directionality bidirectional 
and store solution in output variables routes, routeIds and metrics. 
void computeKSP(std::size_t k, LN::EndPoint srcEndPoint, LN::EndPoint dstEndPoint, bool 
bidirectional, std::vector<LN::LinkVector>& routes, std::vector<LN::LinkIdVector>& 
routesIds, std::vector<double_t>& metrics) 

Compute k shortest paths between srcEndPoint and dstEndPoint with directionality 
bidirectional and store solution in output variables routes, routeIds and metrics. 

Table 32. Class RMSA API 
RMSA(LN::Network* network) 

Construct an instance of RMSA using network. 
RMSA(LN::Network* network, std::map<LN::LinkId, double_t>& linkMetrics) 

Construct an instance of RMSA using network, linkMetrics. 
void compute(const LN::PathId& pathId, std::size_t maxSlotWidth) 

Compute the route, modulation format and spectrum allocation for pathId constraining to 
allocate at maximum maxSlotWidth frequency slices. 
void expandSlot(const LN::PathId& pathId, float_t bitRateGbps) 

Compute the route, modulation format and spectrum allocation expansion for pathId to 
serve bitRateGbps. 

Table 33. Class RSA API 
RSA(LN::Network* network) 

Construct an instance of RSA using network. 
RSA(LN::Network* network, std::map<LN::LinkId, double_t>& linkMetrics) 

Construct an instance of RSA using network, linkMetrics. 
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void computeSP(LN::NodeId srcNodeId, LN::NodeId dstNodeId, bool bidirectional, 
std::size_t numSlices, LN::LinkVector& route, double_t& metric, LN::Channel& downChannel, 
LN::Channel& upChannel) 

Compute the shortest path between srcNodeId and dstNodeId with directionality 
bidirectional, spectrum width of numSlices and store solution in output variables route, 
metric, downChannel and upChannel. 
void computeSP(LN::Node* srcNode, LN::Node* dstNode, bool bidirectional, std::size_t 
numSlices, LN::LinkVector& route, double_t& metric, LN::Channel& downChannel, 
LN::Channel& upChannel) 

Compute the shortest path between srcNode and dstNode with directionality bidirectional, 
spectrum width of numSlices and store solution in output variables route, metric, downChannel 
and upChannel. 
void computeSP(LN::EndPoint srcEndPoint, LN::EndPoint dstEndPoint, bool bidirectional, 
std::size_t numSlices, LN::LinkVector& route, double_t& metric, LN::Channel& downChannel, 
LN::Channel& upChannel) 

Compute the shortest path between srcEndPoint and dstEndPoint with directionality 
bidirectional, spectrum width of numSlices and store solution in output variables route, 
metric, downChannel and upChannel. 
void computeKSP(std::size_t k, LN::NodeId srcNodeId, LN::NodeId dstNodeId, bool 
bidirectional, std::size_t numSlices, std::vector<LN::LinkVector>& routes, 
std::vector<double_t>& metrics, LN::ChannelVector& downChannels, LN::ChannelVector& 
upChannels) 

Compute k shortest paths between srcNodeId and dstNodeId with directionality 
bidirectional, spectrum width of numSlices and store solution in output variables routes, 
metrics, downChannels and upChannels. 
void computeKSP(std::size_t k, LN::Node* srcNode, LN::Node* dstNode, bool bidirectional, 
std::size_t numSlices, std::vector<LN::LinkVector>& routes, std::vector<double_t>& 
metrics, LN::ChannelVector& downChannels, LN::ChannelVector& upChannels) 

Compute k shortest paths between srcNode and dstNode with directionality bidirectional, 
spectrum width of numSlices and store solution in output variables routes, metrics, 
downChannels and upChannels. 
void computeKSP(std::size_t k, LN::EndPoint srcEndPoint, LN::EndPoint dstEndPoint, bool 
bidirectional, std::size_t numSlices, std::vector<LN::LinkVector>& routes, 
std::vector<double_t>& metrics, LN::ChannelVector& downChannels, LN::ChannelVector& 
upChannels) 

Compute k shortest paths between srcEndPoint and dstEndPoint with directionality 
bidirectional, spectrum width of numSlices and store solution in output variables routes, 
metrics, downChannels and upChannels. 
void compute(const LN::PathId& pathId, std::size_t maxSlotWidth, LN::ModulationFormatId 
modFormatId) 

Compute the route, modulation format and spectrum allocation for pathId constraining to 
allocate at maximum maxSlotWidth frequency slices and to use modulation format 
modFormatId. 
void expandSlot(const LN::PathId& pathId, float_t bitRateGbps, LN::ModulationFormatId 
modFormatId) 

Compute the route, modulation format and spectrum allocation expansion for pathId to 
serve bitRateGbps using modulation format modFormatId. 
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5.2.5 Namespace LWE definition 
The list of classes in namespace LWE is defined in Table 34. 

Table 34. API Classes in Namespace LWE 

Class Description Definition 
IWorkflowImpl Contains the interface to define a workflow. Table 9 

Message Contains the definition of a generic message 
for the workflow engine. 

Table 35 

MessagePCEPPCError Contains the specialization of Message for 
PCEP PCError. 

Table 36 

MessagePCEPPCNotif Contains the specialization of Message for 
PCEP PCNotif. 

Table 36 

MessagePCEPPCReply Contains the specialization of Message for 
PCEP PCReply. 

Table 36 

MessagePCEPPCRequest Contains the specialization of Message for 
PCEP PCRequest. 

Table 36 

MessageRESTReply Contains the specialization of Message for 
REST Reply. 

Table 37 

MessageRESTRequest Contains the specialization of Message for 
REST Request. 

Table 38 

UniqueIdentifierGenerator Contains the definition of a unique identifier 
generator. 

Table 39 

Table 35. Class Message API 
Type getType() 

Type getType() const 

Get message type. 

Table 36. Classes MessagePCEPPCError, MessagePCEPPCNotif, MessagePCEPPCReply 
and MessagePCEPPCRequest API 

PCEPAction* getPCEPAction() 

Get PCEPAction in the message. 

Table 37. Class MessageRESTReply API 
Lib::HTTPReply* getHTTPReply() 

Get Lib::HTTPReply in the message. 

Table 38. Class MessageRESTRequest API 
Lib::HTTPRequest* getHTTPRequest() 

Get Lib:: HTTPRequest in the message. 
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Table 39. Class UniqueIdentifierGenerator API 
uint32_t get() 

Get a unique identifier. 

5.3 Workflow Example 
To make sense on how an algorithm must be implemented, the SinglePathRSA workflow is 
provided. Figure 8 shows the sequence diagram for this workflow; we assume that PLATON 
is connected to a PCE who issues a request to PLATON to compute a single path RSA 
between some endpoints with a specified bandwidth. The workflow in PLATON expects to 
receive the PCRequest message defined in Table 40, and replies to the PCE with the 
PCReply message defined in Table 41. 

PCE PLATON

Compute Single
Path RSA

PCRequest

PCReply

 
Figure 8. Single Path RSA 

Workflow’s sequence diagram 

Table 40 PCRequest message 
<PCReq Message> ::= <Common Header> 
                    <RP> 
                    <END-POINTS> 
                    <BANDWIDTH> 

Table 41 PCReply message 
<PCRep Message> ::= <Common Header> 
                    <response> 
where: 
      <response>::=<RP> 
                   <NO-PATH> | <ERO> 

 

The workflow consists in four files: i) SimplePathRSA.xml file, containing the XML workflow 
definition; ii) SimplePathRSA.h file, containing the workflow class definition and its data set 
definition; iii) SimplePathRSA.cc file, containing the implementation of workflow class 
member functions; and iv) the Makefile file used to build the binary file from source codes 
in files SimplePathRSA.h  a and SimplePathRSA.cc files. 

5.3.1 Source files 
Table 42 lists the workflow definition in XML used by PLATON to load the workflow 
containing: 

• The name of the workflow (line 3 in Table 42) 

• The path to the dynamic library (line 4) containing the workflow binary code, including 
the state algorithms to be executed in each state. Note that this file is generated using 
code in Table 43 and Table 44. 

• No config file is used in this workflow for the sake of simplicity. See configuration 
parameters hardcoded in method configure listed in Table 44. 

• The triggering message (line 6) is a PCReq with OF code 1. Note that in PCReq 
message defined in Table 40, no OF object was defined, so PLATON uses the default 
OF code configured, in this case 1. See section 4.5. 

• The states of the FSM (line 8): a single state, named as compute is considered, plus 
the error state, for this simple example. Note that error state is kept unused and 
unimplemented for the sake of simplifying the example. 
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• The FSM state transitions: in this simple example no transition is required since a 
single request and a single reply are required. 

• The initial and error states of the FSM (lines 10-11). 

• Table 42 SinglePathRSA_definition.xml 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

<?xml version="1.0" encoding="UTF-8"?> 
 
<Workflow name="Single Path RSA" 
          libraryFile="workflows/SinglePathRSA/SinglePathRSA.so" 
          configFile=""> 
  <TriggeringMessage message="PCReq" ofCode="1"/> 
 
  <State name="compute"/><State name="error"/> 
 
  <InitialState name="compute"/> 
  <ErrorState name="error"/> 
</Workflow> 

Table 43 lists the header file of the workflow and the instantiation function: 

• Class Config (lines 5-9) is used to define the configuration parameters required by 
the workflow and has one attribute: modFormatName stores the name of the 
modulation format to be used to convert the requested bitrate into a number of 
frequency slices. 

• Class Demand (lines 11-19) is used to define the data required for each demand to be 
computed and has two attributes: reqId stores the identifier for this computation 
request and lightPath points to the temporary path created to compute the RSA. 

• Class DataSet (lines 21-31) is used to store the internal algorithm data and has four 
attributes: config references the instance of the Config class for this computation, 
network points to the cloned PLATON’s network (see method setNetwork in next 
file), pcepAction points to the received PCEP Action containing the PCRequest and 
demand references the instance of the Demand class containing the request 
information. 

• Class SinglePathRSA (lines 31-57) defines the members and attributes of the 
workflow. Among others, the private attribute named as dataSet (line 37) references 
the instance of DataSet class, and two state algorithms are defined, named as 
compute (line 39) and error (line 44). Likewise, the compute state algorithm uses 
three private members: compute_transcodeInput (line 40), compute_algorithm 
(line 41), and compute_transcodeOutput (line 42) as described in section 3.2.3. 
Besides, the common members defined in IWorkflowImpl interface are defined 
(lines 50-56). 

• The instantiation function workflowInstanceMaker (line 61) is also provided to allow 
PLATON creating new instances of the workflow. 

Table 43 SinglePathRSA.h 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

#pragma once 
 
#include "Lib/WorkflowEngine/IWorkflowImpl.h" 
 
class Config 
{ 
  public: 
    std::string modFormatName; 
}; 
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10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 

 
class Demand 
{ 
  public: 
    LPH::PCEP::RequestId reqId; 
    LN::LightPath* lightPath; 
 
    explicit Demand(); 
}; 
 
class DataSet 
{ 
  public: 
    Config config; 
    LN::Network* network; 
    PCEPAction* pcepAction; 
    Demand demand; 
 
    explicit DataSet(); 
}; 
 
class SinglePathRSA : public IWorkflowImpl 
{ 
  public: 
    CREATE_EXCEPTION_KIND 
 
  private: 
    DataSet dataSet; 
 
    void compute(LWE::Message* message); 
    void compute_transcodeInput(); 
    void compute_algorithm(); 
    void compute_transcodeOutput(); 
 
    void error(LWE::Message* message); 
 
  public: 
    explicit SinglePathRSA(); 
    virtual ~SinglePathRSA(); 
 
    void configure(const std::string& configFilePath); 
    void setNetwork(LN::Network* network); 
    void setInterfaces(LI::Interfaces* interfaces); 
    void clear(); 
    void gracefulAbort(); 
 
    LWE::MessageSet runState(const std::string& stateName, LWE::Message* message); 
}; 
 
extern "C" 
{ 
  IWorkflowImpl* workflowInstanceMaker() { return(new SinglePathRSA()); } 
} 

Table 44 lists the implementation file of the algorithm: 

• The constructor members for classes Demand (line 7) and DataSet (line 8) are 
defined to initialize their attributes. 

• The constructor (line 10) and destructor (line 11) members for class SinglePathRSA 
are kept empty because that class defines reference members instead of pointers, 
so their dynamic creation and destruction are self-managed. 

• The configure member (lines 13-17) initializes the parameters in config with 
hardcoded values. In a complete workflow that value should be read from a 
configuration file. 
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• The setNetwork member (line 19) creates a clone of PLATON’s network database 
so as to keep the original one unmodified while running the current computation. 

• The setInterfaces member (line 20) is kept empty since that workflow does not 
need to issue requests to other external modules, so it does not need to deal with 
other interfacers. 

• The clear member (line 21) is kept empty because the algorithm does not need to 
initialize any data structure. 

• The gracefulAbort member (line 22) is kept empty because, for the sake of 
clarifying the example, the algorithm will not reply any error message when the 
workflow finishes abnormaly. 

• The runState member (lines 24-35) executes the correct state algorithm function 
based on the state name provided in the parameter stateName passing to that 
function the message pointer message (lines 26-29). Since the algorithm does not 
require issuing requests to other external modules an empoty set of pending 
messages is returned (lines 33-34). 

• The compute member (lines 37-56) checks that received message is a PCEP PCReq 
message (lines 39-40), casts that generic message into a PCEP PCReq message, 
extracts the PCEP Action containing the request and stores it into the data set (lines 
42-43). Then, it sequentially executes the methods compute_transcodeInput (lines 
45-47), compute_algorithm (lines 49-51) and compute_transcodeOutput (lines 
53-55) as described in section 3.2.3. 

• The compute_transcodeInput member (lines 58-73) uses the pcepAction attribute 
in the dataSet, obtains the request (lines 60-61), and fetches the attributes from the 
Request Parameters (RP) object (lines 64-66), the source and destination nodes from 
the EndPoints object (lines 67-68) and the bitrate from the Bandwidth object (line 69-
70) from that request. Finally, it creates a temporary lightpath with that attributes for 
the computation (lines 71-73). 

• The compute_algorithm member (lines 76-86) uses the config‘s attribute 
modFormatName to select the modulation format to be used (lines 78-79), instantiates 
an RSA Algorithm over the cloned network (line 81), and computes the path for that 
temporary lightpath (lines 82-85) specifying the path id of that temporary path, the 
number of slices computed from the lightpath’s bitrate and the selected modulation 
format. 

• The compute_transcodeOutput member (lines 88-123) fetches the pointer to the 
temporary lightpath in the dataset (line 90), uses the pcepAction to construct a 
PCResponse response (line 92), creates an RP object with the request identifier 
obtained from the request (lines 94-95), and creates a PCEP Path with an Explicit 
Route Object (ERO) and Bandwidth objects encoding the solution (102-106) if it was 
found, or a NoPath object if no solution was found (lines 112-113). Finally, a PCReply 
message with the PCEP response is sent (line 122). 

• The error member (lines 125-129) is kept unimplemented for the sake of clarity. 

Table 44 SinglePathRSA.cc 
1: 
2: 
3: 
4: 

#include "SinglePathRSA.h" 
 
#include "Lib/ProtocolHelpers/PCEP.h" 
#include "Lib/RoutingAlgorithms/RSA.h" 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Design and Tests of the On-
Line Optimisation 

Framework 
 

 

 

Page 41 of 48 

5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 

#include "Lib/WorkflowEngine/MessagePCEPPCRequest.h" 
 
Demand::Demand() : reqId(0), lightPath(NULL) { } 
DataSet::DataSet() : network(NULL), pcepAction(NULL) { } 
 
SinglePathRSA::SinglePathRSA() { } 
SinglePathRSA::~SinglePathRSA() { } 
 
void SinglePathRSA::configure(const std::string& configFilePath) 
{ 
  (void)configFilePath; 
  dataSet.config.modFormatName = "DP-QPSK"; 
} 
 
void SinglePathRSA::setNetwork(LN::Network* network) { dataSet.network = network->clone(); } 
void SinglePathRSA::setInterfaces(LI::Interfaces* interfaces) { (void)interfaces; } 
void SinglePathRSA::clear() { } 
void SinglePathRSA::gracefulAbort() { } 
 
LWE::MessageSet SinglePathRSA::runState(const std::string& stateName, LWE::Message* message) 
{ 
  if(!stateName.compare("compute")) 
    compute(message); 
  else if(!stateName.compare("error")) 
    error(message); 
  else 
    THROW_EXCEPTION("Unsupported state " << stateName); 
 
  LWE::MessageSet pendingMessages; 
  return(pendingMessages); 
} 
 
void SinglePathRSA::compute(LWE::Message* message) 
{ 
  if(message->getType() != LWE::Message::TYPE_PCEP_PCREQUEST) 
    THROW_EXCEPTION("Message received is not of PCEP_REQUEST type"); 
 
  LWE::MessagePCEPPCRequest* pcReq = static_cast<LWE::MessagePCEPPCRequest*>(message); 
  dataSet.pcepAction = pcReq->getPCEPAction(); 
 
  try { compute_transcodeInput(); } 
  catch (std::exception& e) 
  { THROW_EXCEPTION("Unable to transcode input. Exception: " << e.what()); } 
 
  try { compute_algorithm(); } 
  catch (std::exception& e) 
  { THROW_EXCEPTION("Unable to execute algorithm. Exception: " << e.what()); } 
 
  try { compute_transcodeOutput(); } 
  catch (std::exception& e) 
  { THROW_EXCEPTION("Unable to transcode output. Exception: " << e.what()); } 
} 
 
void SinglePathRSA::compute_transcodeInput() 
{ 
  PCEP_SingleComputation* pathComp = LPH::PCEP::getPathCompSingle(dataSet.pcepAction); 
  PCEP_Request* request = LPH::PCEP::getRequest(pathComp); 
 
  Demand& demand = dataSet.demand; 
  RP* rp = LPH::PCEP::getRP(request); 
  demand.reqId = LPH::PCEP::getRequestId(rp); 
  bool bidirectional = LPH::PCEP::getBidirectional(rp); 
  EndPoints* endPoints = LPH::PCEP::getEndPoints(request); 
  std::pair<LN::NodeId, LN::NodeId> nodes = LPH::PCEP::getEndPointsIPV4P2P(endPoints); 
  Bandwidth* reqBw = LPH::PCEP::getBandWidth(request); 
  float_t bitRateGbps = LPH::PCEP::getBandwidth(reqBw); 
  demand.lightPath = dataSet.network->lightPathAdd( nodes.first, LN::PortId(0), 
                                                    nodes.second, LN::PortId(0), 
                                                    bitRateGbps, bidirectional); 
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74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114: 
115: 
116: 
117: 
118: 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 

} 
 
void SinglePathRSA::compute_algorithm() 
{ 
  const LN::ModulationFormat* modFormat =  
        dataSet.network->modulationFormatGet(dataSet.config.modFormatName); 
 
  LRA::RSA rsaAlgorithm(dataSet.network); 
  rsaAlgorithm.compute( dataSet.demand.lightPath->getId(), 
                        modFormat->getNumSlicesFromBitRateGbps( 
                            dataSet.demand.lightPath->getBandWidthGbps()), 
                        modFormat->getId()); 
} 
 
void SinglePathRSA::compute_transcodeOutput() 
{ 
  const LN::LightPath* lsp = dataSet.demand.lightPath; 
 
  PCEP_Response* response = LPH::PCEP::addPCompResponse(dataSet.pcepAction); 
 
  RP* rp = LPH::PCEP::createRP( false, false, false, lsp->isBidirectional(), false, 
                                dataSet.demand.reqId); 
  LPH::PCEP::setRP(response, rp); 
 
  switch(lsp->getState()) 
  { 
    case LN::Path::STATE_ROUTEDANDSPECTRUMALLOCATED: 
    { 
      RO* ro = LPH::PCEP::createERO(dataSet.network, lsp, false); 
      Bandwidth* bw = LPH::PCEP::createLSPBandwidth(lsp->getBandWidthGbps()); 
      PCEP_Path* path = LPH::PCEP::addResponsePath(response); 
      LPH::PCEP::setRO(path, ro); 
      LPH::PCEP::setBandwidth(path, bw); 
      break; 
    } 
 
    case LN::Path::STATE_DEFINED: 
    { 
      No_Path* noPath = LPH::PCEP::createNoPath(); 
      LPH::PCEP::setNoPath(response, noPath); 
      break; 
    } 
 
    default: 
      THROW_EXCEPTION("Inconsistent LSP state"); 
      break; 
  } 
 
  LPH::PCEP::sendPCReply(dataSet.pcepAction); 
} 
 
void SinglePathRSA::error(LWE::Message* message) 
{ 
  (void)message; 
  THROW_EXCEPTION("NOT YET IMPLEMENTED"); 
} 

 

Table 45 lists the make file used to build the SinglePathRSA workflow. 

Table 45 Makefile 
1: 
2: 
3: 
4: 
5: 
6: 

all: 
 g++ -I"../../include" -c -fPIC -o SinglePathRSA.o SinglePathRSA.cc 
 g++ -shared -o SinglePathRSA.so SinglePathRSA.o 
 
clean: 
 rm SinglePathRSA.o SinglePathRSA.so 
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5.3.2 Environment pre-requisites 
PLATON’s binary code provided in this deliverable is built for 64-bit PCs running Linux 
operating system. All the tests executed on PLATON’s binary code provided were done in a 
PC system with an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 16 GB of RAM and 1 Tb of 
hard disk drive running Ubuntu Linux version 14.04.3 LTS. 

The libraries that must be installed in the system to be able to run PLATON and compile the 
workflows are: build-essential and libxerces-c-dev. They can be installed running the 
Ubuntu script in Table 46. 

Table 46 PLATON dependency installation script 
1: 
2: 

# apt-get –y update 
# apt-get –y install build-essential libxerces-c-dev 

5.3.3 Workflow compilation guide 
Assuming the environement configured as described in section 5.3.2, having the provided 
packet decompressed in folder $PLATON, where $PLATON has to be substituted by the 
path where reader decompressed the provided packet, the script in Table 47 have to be 
executed to build the shared library for the example workflow presented in section 5.3.1. A 
file named as SinglePathRSA.so should be created. If the tree structure provided is kept as 
is, the resulting binary file will be placed in the correct folder to allow PLATON to load it. 

Table 47 Example workflow compilation script 
1: 
2: 

$ cd $PLATON/workflows/SinglePathRSA 
$ make 

5.3.4 Execution guide 
Assuming the environement configured as described in section 5.3.2, having the provided 
packet decompressed in folder $PLATON, where $PLATON has to be substituted by the 
path where reader decompressed the provided packet, the script in Table 48 have to be 
executed to start PLATON. 

Important remarks: 

• A script named as make_interfaces.sh is provided to configure the IP addresses 
in this execution scenario as 172.16.0.1 for the PCE process and 172.16.0.2 for 
PLATON which corresponds to the provided configuration for PLATON. To run this 
script super-user privileges are required. 

• The provided configuration file data/platon_config.xml has the BGP interface 
disabled and a simple topology in file data/db/topology_4n_4l.xml is loaded 
using an XML file. If BGP interface is enabled, PLATON needs to be executed as 
super-user so as to be able to bind the privileged port 179 used by BGP protocol. 

Table 48 PLATON execution script 
1: 
2: 
3: 

# cd $PLATON/ 
# ./make_interfaces.sh 
# ./platon.sh 

5.3.5 Execution demonstration 
To demonstrate how the example workflow works, some screenshors are provided in this 
section. The simple network topology shown in Figure 9 has been encoded in the config file 
data/db/topology_4n_4l.xml and configured in data/platon_config.xml. Nodes are 
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in IP range 10.0.0.X, where X is the identifier of the node. Each node has 3 ports, the port 
identified with 0 is used as a client ingress/egress port, while ports 1 and 2 are trunk ports. 
Each link is configured with a metric of 10, and a distance of 100 Km. 

1 3

2

4

1

1

1

1

2

2

2

2

0

0

0 0

 
Figure 9. 4-node 4-link network topology 

To simplify the demonstration an application named as DummyClient is provided; this 
application starts a PCEP session with PLATON, issues a PCRequest message requesting 
a path from node 10.0.0.1 to node 10.0.0.3. After starting PLATON using the script in Table 
48, its log should see like in Figure 10. At that point, PLATON is listening for incoming PCEP 
connections at IP address 172.16.0.2 and will accept connections only from Trusted Peer 
172.16.0.1. 

 
Figure 10. PLATON log after startup 

Now, executing the DummyClient application using the script in Table 49, the DummyClient 
will report the byte-formated list of PCEP messages exchanged with PLATON as shown in 
Figure 11. 

Table 49 DummyClient execution script 
1: 
2: 

# $PLATON/ 
# ./DummyClient 

 

Figure 11. DummyClient execution log 
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If wireshark was enabled to capture the traffic and the display filter is set to “pcep”, the list of 
messages in Figure 12 should be seen. The capture file resulting from this test is provided 
in capture/capture.pcapng file contained in the binary package delivered together with 
this report. Note that total contribution of PLATON, including the round-trip-time for the 
request-reply sequence and the computation time took less than 0.6 ms. 

 
Figure 12. Example Workflow message list 

Figure 13 and Figure 14 illustrate the details of the PCReq and PCRep messages issued by 
the DummyClient and replied by PLATON, respectively. Finally, Figure 15 shows PLATON’s 
log after executing the example workflow. 

 

Figure 13. Example Workflow PCReq 
message details 

 

Figure 14. Example Workflow PCReply 
message details 

 

Figure 15. PLATON log after running example workflow 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Design and Tests of the On-
Line Optimisation 

Framework 
 

 

 

Page 46 of 48 

6 Performance evaluation 

To demonstrate the feasibility of the front-end / back-end PCE architecture, we have carried 
out a number of tests to evaluate its performance. In the experiments, we considered two 
different real backbone network topologies. The 22-node and 35-link BT network topology, 
and the 30-node and 56-link TEL network topology. The current status of each network is 
synchronized using BGP-LS. A number of bulk path computations of different sizes are 
generated, and can be solved in the front-end PCE or delegated to the back-end PCE.  

When the front-end PCE is in charge of performing the bulk computation, one single CPU 
thread is used; therefore, iterations of the provisioning algorithm are performed sequentially 
in the front-end PCE. In contrast, when the front-end PCE delegates the computation to the 
back-end PCE, the former opens a new PCEP session, creates a PCReq message 
containing every path request and a SVEC object, and forwards the message to the back-
end PCE. Upon receiving a PCReq message, the back-end PCE uses the GPU device to 
accelerate the computation; each iteration is executed into an independent thread block in 
the GPU, and all the threads inside a block collaborate in solving the RSA problem in parallel 
for each demand in the bulk. The back-end PCE sends a PCRep message containing the 
route and spectrum allocation for each demand (Figure 16). 

 

 
Figure 16: PCEP Messages 

Table 50 details the solving times for three different bulk sizes. As observed, as soon as 
either the size of the bulk or the topology increases, the front-end PCE cannot perform the 
requested computation within 100ms. Note that bulk sizes in the order of 40-50 demands are 
common in restoration and re-optimization. 
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Table 50. Solving times 
 BT network topology TEL network topology 

Bulk 
Size 

Front-end PCE 
Time (ms) 

Back-end PCE 
Time (ms) 

Front-end PCE 
Time (ms) 

Back-end PCE 
Time (ms) 

30 21.6 11.5 248.4 38.5 

40 72.4 16.9 466.3 65.4 

50 514.3 74.6 889.3 142.6 

 

Once the front-end - back-end architecrture has proved to provide solving times reduction, 
let us analyse the solving times obtained from running the implemented algorithms. To that 
end, the BT and TEL networks topologies defined for the previous experiments, where used. 
Table 51 presentes the obtained results. 

Table 51. Algorithms Solving times 

Use Case BT TEL 

Spectrum defragmenbtation (SPRING) 18 ms 35 ms 

Re-optimization (AFRO) 21 ms. 43 ms. 

Multicast Provisioning 3 ms. 12 ms. 
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7 Conclusions 

This deliverable focused on the network planning tools to deal with on-line algorithms for 
next generation flexgrid optical networks, named PLATON. 

Since PLATON focuses on in-operation network planning, it includes a BGP-LS interface to 
synchronize the state of network resources and a PCEP interface, which is used for both, 
synchronizing the estate of LSPs and receiving PCEP requests from a front-end PCE. 
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