
 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 1 of 69 

D1.2 - Network Planning Tool: Architecture and 
Software Design 
 

 Status and Version:  Final version 

 Date of issue:  04.11.2013 

 Distribution:  Public Report 

 Author(s):  Name  Partner 

 Luis Velasco (Editor) UPC 

 Lluís Gifre UPC 

 Gabriel Junyent UPC 

 Jaume Comellas UPC 

 Emmanouel (Manos) Varvarigos UPAT 

 Aristotelis Kretsis UPAT 

 Polyzwis Soumplis UPAT 

 Andrew Lord BT 

 Amanda Azañon TID 

 Ignacio Digon TID 

   

   

   

   

   

Checked by: Juan Fernandez-Palacios TID 

 

Ref. Ares(2014)573264 - 04/03/2014



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 2 of 69 

Abstract  
 

D1.2 describes the Network Planning tool in terms of modules, relations among them and 
external interfaces. Software design of the tool will be specified using UML diagrams.  

The proposed planning tool aims to support different routing and restoration mechanisms 
defined in the project and to be reported in D1.3.    



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 3 of 69 

Contents 
1 EXECUTIVE SUMMARY .......................................................................................................................... 5 

1.1 OFF-LINE PLANNING ................................................................................................................................. 5 
1.2 IN-OPERATION PLANNING .......................................................................................................................... 7 
1.3 PLANNING TOOLS .................................................................................................................................... 8 

2 INTRODUCTION .................................................................................................................................. 10 

2.1 PURPOSE AND SCOPE ............................................................................................................................. 10 
2.2 REFERENCE MATERIAL ............................................................................................................................ 10 

2.2.1 Reference Documents .................................................................................................................. 10 
2.2.2 Acronyms ...................................................................................................................................... 11 

2.3 DOCUMENT HISTORY ............................................................................................................................. 11 

3 MANTIS .............................................................................................................................................. 13 

3.1 OBJECTIVES AND REQUIREMENTS .............................................................................................................. 13 
3.1.1 Algorithmic Issues in Flexgrid Optical Networks .......................................................................... 15 

3.1.1.1 Accounting for Physical layer impairments ......................................................................................... 15 
3.1.1.2 Routing and Spectrum Allocation ....................................................................................................... 16 
3.1.1.3 Dynamic network operation ............................................................................................................... 16 

3.2 MANTIS ARCHITECTURE DESCRIPTION ........................................................................................................ 18 
3.3 SOFTWARE IMPLEMENTATION TECHNOLOGIES ............................................................................................ 20 
3.4 SOFTWARE DESIGN ................................................................................................................................ 21 
3.5 DEVELOPER GUIDE................................................................................................................................. 25 

3.5.1 The Plug-in Mechanism ................................................................................................................ 25 
3.5.2 Mantis Python Library .................................................................................................................. 28 

3.6 USER GUIDE ......................................................................................................................................... 29 
3.6.1 Algorithms included in the current version of Mantis .................................................................. 30 
3.6.2 User Interface ............................................................................................................................... 30 

3.6.2.1 Main UI areas ...................................................................................................................................... 31 
3.6.2.2 Defining topologies, traffic matrices and costs ................................................................................... 32 
3.6.2.3 Setting up a configuration .................................................................................................................. 34 
3.6.2.4 Setting up a projection ....................................................................................................................... 35 
3.6.2.5 Status and results ............................................................................................................................... 35 
3.6.2.6 Social Characteristics .......................................................................................................................... 37 

4 PLATON .............................................................................................................................................. 39 

4.1 OBJECTIVES AND REQUIREMENTS .............................................................................................................. 39 
4.1.1 Objectives ..................................................................................................................................... 39 
4.1.2 Requirements ............................................................................................................................... 39 

4.2 ARCHITECTURE DESCRIPTION .................................................................................................................... 40 
4.3 SOFTWARE SPECIFICATION ....................................................................................................................... 41 

4.3.1 Cluster manager specification ...................................................................................................... 41 
4.3.2 HPC agent specification................................................................................................................ 45 
4.3.3 Communication protocol specification ......................................................................................... 46 

4.4 SOFTWARE DESIGN ................................................................................................................................ 47 
4.4.1 Cluster manager design ............................................................................................................... 48 

4.4.1.1 Job Scheduler’s priority queue ........................................................................................................... 51 
4.4.2 HPC agent design ......................................................................................................................... 51 
4.4.3 Create/Execute/Retrieve Job sequence diagram ......................................................................... 53 

4.5 DEVELOPER GUIDE ................................................................................................................................. 55 
4.5.1 Path Computation Element API .................................................................................................... 55 

4.5.1.1 Session configurable parameters........................................................................................................ 55 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 4 of 69 

4.5.1.2 PCEP .................................................................................................................................................... 55 
4.5.2 PCEP Finite State Machine (FSM) ................................................................................................. 56 
4.5.3 PCEP Session ................................................................................................................................. 56 
4.5.4 Transaction................................................................................................................................... 57 
4.5.5 PCEP objects ................................................................................................................................. 59 
4.5.6 Examples ...................................................................................................................................... 60 

4.5.6.1 PCC test program ................................................................................................................................ 60 
4.5.6.2 Planning Tool with integrated PCEP interface .................................................................................... 62 

4.6 USER GUIDE ......................................................................................................................................... 65 

5 CONCLUSIONS .................................................................................................................................... 69 

  



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 5 of 69 

1 Executive summary 

Several planning tools are being developed within WP1, as a result of the wide range of 
problems to be solved. Those problems are related to the assignment of optical spectrum 
across specific network routes to meet traffic demands. This Routing and Spectrum 
Assignment (RSA) is an NP complete problem, and therefore highly computationally 
intensive. It therefore requires carefully crafted heuristic approaches to give solutions in 
realistic time scales, especially as the number of network nodes increases. 

Two main categories of planning can be distinguished: 

• Off-line planning. Here we have a network with some traffic requirements and we 
wish to optimise the location of equipment and the routing and spectrum allocations 
for the various traffic demands. Time can be taken to explore different scenarios to 
yield the best solution for the given requirements [1]. 

• In-operation planning. Here, the network is up and running and new real-time RSA 
decisions need to be made [2].  

1.1 Off-line planning 
Off-line planning is usually related to periodical planning to update the network. Figure 1 
illustrates the classical network planning life-cycle, where a number of steps are performed 
sequentially. The initial step receives inputs from the service layer and from the state of the 
resources in the already deployed network and configures the network to be capable of 
dealing with the forecast traffic, for a period of time. That period is not fixed and actual time 
length usually depends on many factors, which are operator and traffic type specific. Once 
the planning phase produces recommendations, the next step is to design, verify and 
manually implement the network changes. While in operation, the network capacity is 
continuously monitored and that data is used as input for the next planning cycle. In case 
of unexpected increases in demand or network changes, nonetheless, the planning 
process may be restarted. 

Planning & 
Forecast

Architecture 
& Design

Design 
Implementation

Network 
Operation

Monitor 
and 

Measure 

New Services Population grow

 
Figure 1: Classical network planning life-cycle. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 6 of 69 

Off-line planning is performed, probably taking as input the current state of the network, 
inventory information, etc. The following list of inputs involved in the process can be 
assumed:  

• The Network Management System (NMS) managing the core network, implementing 
fault, configuration, administration, performance, and security (FCAPS) functions. 

• A Planning Department administrating the planning process, i.e., analysing the network 
performance and finding bottlenecks, receiving potential clients’ needs, evaluating 
network extensions and new architecture, etc. 

• An inventory database containing all equipment already installed in the network, 
regardless they are in operation or not. 

• An Engineering Department, performing actions related to equipment installation and 
set-up. 

• A planning tool in charge of computing solutions for each migration step. Several sub-
problems related to network reconfiguration, planning, and dimensioning, among 
others, need to be solved. 

Network
Reconfiguration

Planning Tool

Planning DepartmentInventory

Engineering 
Department

NMS

yes

no
Purchasing,

Installing,
Reconfiguring,

Testing

Requirements 
met?

Planning 
requests

Reconfiguration
requests

Network Upgrading

Creating/exten
ding flexgrid 

islands

Enlarging to 
un-deployed 

areas

Extending to 
border metro 

areas

 
Figure 2: Off-line planning flow chart. 
 

Off-line planning begins when the planning tool receives a request that can be originated in 
different systems responding to different reasons (Figure 2): 

• Operators analysing data gathered by the NMS detect that a migration step can be 
attempted to improve the performance of the current network. E.g., bottlenecks have 
been detected in some parts of the network and its current configuration will not be able 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 7 of 69 

to allocate expected traffic, so reconfiguration can be attempted. Note that these 
triggers arise asynchronously (i.e., without a predefined schedule). 

• Planners request network re-planning to serve new clients or cover new areas. 
Contrary to reconfigurations coming from NMS, planning requests can be better 
synchronized with other network departments, such as the engineering department. 

After a solution is found, new equipment needs to be purchased, installed and configured, 
before entering into operation. 

1.2 In-operation planning 
As technologies are developed to allow the network to become more agile, it may be 
possible to provide response to traffic changes by reconfiguring the network near real-time. 
In fact, some operators have deployed Generalized Multi-Protocol Label Switching 
(GMPLS) control planes, mainly for service set-up automation and recovery purposes. 
However, those control only parts of the network and do not support holistic network 
reconfiguration. This functionality will require an in-operation planning tool that interacts 
directly with the data and control planes and operator policies via Operations Support 
System (OSS) platforms, including the NMS. 

Assuming the benefits of operating the network in a dynamic way are proven, the classical 
network life-cycle has to be augmented to include a new step focused on reconfiguring and 
re-optimising the network, as represented in Figure 3. We call that step in-operation 
planning and, in contrast to the traditional network planning, the results and 
recommendations can be immediately implemented on the network. 

Planning & 
Forecast

Architecture 
& Design

Design 
Implementation

Network 
Operation

Monitor 
and 

Measure 

New Services Population grow

Reconfigure / 
Re-optimise

 
Figure 3: Augmented networks life-cycle. 
 

Figure 4 illustrates the proposed control plane architecture to support flexgrid network re-
optimisation, which also facilitates human verification and acknowledgement of network 
changes. When Router A needs a new connection to Router B, it sends a request to the 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 8 of 69 

control plane of the optical network (1). After checking admission policies, a PCE Protocol 
(PCEP) message is sent to the PCE (2), which invokes its local provisioning algorithm (3). 
In the event of insufficient resources being available, e.g. due to spectrum fragmentation, 
the active PCE recommends the defragmentation of relevant nodes and connections, 
utilising the right algorithm to provide such re-optimisations. Let us assume that the back-
end PCE providing such algorithm will perform the computation (4) upon receipt of a 
request. When a result is obtained (5), it is sent back to the front-end PCE (6). In case that 
an operator need to approve implementing the computed solution in the network, a request 
can be sent to the NMS/OSS (7). When the solution has been verified and acknowledged 
by the operator, the NMS/OSS informs the PCE (8) and existing connection reallocations 
are requested. Once the dependent connections have been setup, the responsible PCE 
will invoke the local provisioning algorithm for the original connection request between 
routers A and B and sends a PCEP message to the originating control plane node (9). 

TED

LSP-DB

PCE Back-end

TED LSP-DB

Active 
SolverPCEP

Server
PCEP

1

2

4 5

6

7

8

PCC

Conn. 
Controller

Res. 
Mngr.

PCC

Conn. 
Controller

Res. 
Mngr.

PCEP

RSVP-TE

Flexi-grid Core Network

OXC

Provisioning
Algorithms

9

NMS / OSS

Active Stateful PCE

Router A Router B

In-operation Planning

Service Layer Inventory 
Databases

PCEP
Server

3

 
Figure 4: Proposed control plane architecture and network re-optimisation. 
 

1.3 Planning Tools 
With the above in mind, two distinct tools are being developed to handle the offline and in-
operation planning paradigms: 

• MANTIS. Predominantly off-line processing tool. Provides a repository for networks 
and algorithms – thus allowing easy comparison of different approaches and a ready-
made benchmarking tool. Potential availability as a Cloud service via a web interface. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 9 of 69 

• PLATON. Off-line and In-operation planning tool. Addressing problems such as 
flexgrid design, post-repair optimisation and spectrum defragmentation.  

Whilst a version of MANTIS existed pre-Idealist, PLATON is a new tool, being developed 
within the Idealist project to specifically address problems requiring real time decisions. 
The following table shows the intended development plan for PLATON.  

 

Task %Done Year #1 Year #2 Year #3 

PLATON 47%       
  Cluster Manager 75%       
    Requests Database 100%       
    Manager 100%       
    Management Web Server 100%       
    Web-services Server 50%       
    PCE Server 75%       
  HPC Agent 50%       
    Communications 60%       
    Optimization Framework 40%       
  Deliverable D1.2 95%       
  Algorithms year #2 17%       

    
Single Layer Flexgrid Network Design 
Problem 50%       

    
After Failure Repair Optimization 
(AFRO) 0%       

    Spectrum Defragmentation (SPRESSO) 0%       
  Algorithms year #3 0%       
    Define Algorithm Set 0%       
    Implement Algorithms 0%       

 

This deliverable presents MANTIS and PLATON network planning tools. The several topics 
are presented for each tool: 

a) Objectives and requirements 
b) Tool Architecture 
c) Software specification and design 
d) Developer and user guides 

The planning tools will be used to solve network design problems, such as the Single Layer 
Flexgrid Network Design Problem, or re-optimisation problems such as After Failure Repair 
Optimization (AFRO) and Spectrum defragmentation (SPRESSO) [3]. 

 

  



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 10 of 69 

2 Introduction 

2.1 Purpose and Scope 
This is the second deliverable from Work Package 1 of Idealist. The motivation and an 
overview of this deliverable have been provided in the Executive Summary. The main 
document is organized into three main sections to cover MANTIS and PLATON tools, as 
well as an example of algorithm for a specific planning problem. 

2.2 Reference Material 

2.2.1 Reference Documents 
[1] M. Ruiz et al., “Planning Fixed to Flexgrid Gradual Migration: Drivers and Open 

Issues,” accepted in IEEE Communications Magazine, 2014. 
[2] L. Velasco et al., “In-operation Network Planning,” accepted in IEEE Communications 

Magazine, 2014. 
[3] IDEALIST Project, “Deliverable D1.1 – Elastic Optical Network Architecture: reference 

scenario, cost and planning,” 2013. 
[4] Mantis: http://www.mantis-tool.net/ 
[5] Mantis Python API: api.mantis-too.net 
[6] Cython C-Extensions for Python: http://www.cython.org/ 

[7] Ruby on Rails open source web framework: http://rubyonrails.org/ 

[8] The Dojo toolkit:  http://dojotoolkit.org/ 

[9] PostgreSQL open source object-relational database system: 
http://www.postgresql.org/ 

[10] Qt framework: http://qt-project.org/ 

[11] Python Programming Language: http://www.python.org/ 

[12] Raphaël JavaScript Library: http://raphaeljs.com/ 

[13] Cisco Visual Networking Index -Forecast and Methodology, 2010–2015. 

[14] T. Stern, et al. “Multiwavelength Optical Networks: Architectures, Design and Control”, 
Cambridge University Press, 2nd Edition, 2008. 

[15] O. Gerstel et al., “Elastic Optical Networking: A New Dawn for the Optical Layer?”, 
IEEE Communications Magazine, 2012. 

[16] K. Christodoulopoulos, I. Tomkos, E. Varvarigos, “Time-Varying Spectrum Allocation 
Policies in Flexible Optical Networks”, IEEE Journal on Selected Areas in 
Communication, 31(1), 2013. 

[17] K. Christodoulopoulos, P. Soumplis, E. Varvarigos, “Planning Flexgrid Optical 
Networks under Physical Layer Constraints”, accepted for publication in IEEE/OSA 
Journal of Optical Communications and Networking. 

[18] A. Patel et al., “Defragmentation of transparent flexible optical WDM (FWDM) 
networks”, OFC, 2011. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 11 of 69 

[19]  Ll. Gifre, L. Velasco, and N. Navarro, “Architecture of a Specialized Back-end High 
Performance Computing-based PCE for Flexgrid Networks,” in Proc. IEEE 
International Conference on Transparent Optical Networks (ICTON), 2013. 

[20]  JP. Vasseur, JL. Le Roux, “Path Computation Element (PCE) Communication 
Protocol (PCEP),” IETF RFC 5440, 2009. 

[21]  I. Nishioka, D. King, “Use of the Synchronization VECtor (SVEC) List for Synchronized 
Dependent Path Computations,” IETF RFC 6007, 2010 

2.2.2 Acronyms 
ADT Abstract Data Type 

API Application Programming Interface 

BVT Bandwidth Variable Transponders 

CLI Command-Line Interface 

FCAPS Fault, Configuration, Administration, Performance, and Security 

GMPLS Generalized Multi-Protocol Label Switching 

NMS Network Management System 

OSS Operations Support System 

PCC Path Computation Client 

PCE Path Computation Element 

PCEP PCE communications Protocol 

PLIs Physical Layer Impairments 

QoT Quality of Transmission 

RMLSA Routing, Modulation Level and Spectrum Allocation 

RSA Routing and Spectrum Allocation 

RWA Routing and Wavelength Assignment 

SaaS Software as a Service 

SBVT Sliceable Bandwidth Variable Transponders 

SEC Spectrum Expansion/Contraction 

SSH Secure SHell 

SVEC Synchronization VECtor 

UML Unified Modelling Language 

WDM Wavelength Division Multiplexing 

2.3 Document History 
Version Date Authors Comment 

Draft 1 6.9.13 Luis Velasco 1st draft. Contains 
placeholders for all 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 12 of 69 

contributions 

Draft 2 14.10.13 Manos Varvarigos UPAT contributions on 
Mantis 

Draft 3 14.10.13 Lluís Gifre UPC contributions on 
PLATON 

Draft 4 22.10.13 Luis Velasco First Integrated 
Version 

Draft 5 25.10.13 Andrew Lord Review and comments 

Draft 6 28.10.13 Luis Velasco Second Integrated 
Version 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 13 of 69 

3 MANTIS 

Mantis is one of the two IDEALIST network planning and operation tools for designing the 
next generation flexgrid optical networks. It includes novel flexgrid optical network 
algorithms for planning and operation functions. Mantis architecture permits fast execution 
of the included mechanisms, efficient usage of the computational resources utilized and 
enables the deployment of the tool in various computing environments (desktop, software 
as a service). 

In what follows we start by outlining our motivation for building such a tool (Section 3.1), 
and then we focus on the Mantis tool. In Section 3.2 we present the architecture of Mantis 
tool and then in Section 3.3 we specify the technologies that we used to build it. In Section 
3.4 we give details about Mantis execution process and then in Section 3.5 we present a 
short developers’ guide for writing and incorporating in Mantis new algorithms. Finally in 
Section 3.6 we include a basic users’ guide for Mantis, including many screenshots to 
guide the users to Mantis web-interface.  

3.1 Objectives and requirements  
Network planning is an important operation for all kinds of networks, and particularly for 
optical core networks that interconnect the other networks together. This makes network 
planning and operation tools for core networks a key part of all network performance and 
design. 

Recent research efforts on optical networks have focused on architectures that support 
variable spectrum connections as a way to increase spectral efficiency and reduce capital 
costs. Flexgrid optical networks (elastic, or spectrum-flexible are other terms used to 
describe them) appear as a promising technology for meeting the requirements of next 
generation networks that will span across both the core and the metro segments, and 
potentially also across the access segment all the way to the end user. A flexgrid network 
migrates from the fixed 100 or 50GHz grid that traditional (Dense) Wavelength Division 
Multiplexing -WDM networks utilize [14], with granularities of 12.5 GHz or 6.25 GHz under 
discussion at standardization bodies, and can also combine the spectrum units, referred to 
as slots, to create wider channels on an as needed basis. This technology enables a fine-
granular, cost- and power- efficient network able to carry traffic that may vary in time, 
direction and magnitude. Flexgrid networks [15] are built using bandwidth variable switches 
that are configured to create appropriately sized end-to-end optical paths of sufficient 
spectrum slots. We will refer to such a connection as a flexpath, a variation of the word 
lightpath used in standard WDM networks. Bandwidth variable switches operate in a 
transparent manner for transit (bypassing) traffic that is switched while remaining in the 
optical domain. Network equipment vendors and operators and the IDEALIST project are 
already looking into this technology.  

A key enabler for the introduction of flexgrid technology will be the creation of network 
planning and operation tools that will run what-if scenarios and perform scalability and 
comparison studies to evaluate the benefits and enable the adoption of the candidate 
technology in real systems.  

Also, the optical transport network, which currently relies on the slowly changing circuit 
switching paradigm, becomes more dynamic and moves towards the software defined 
networking paradigm. Among others, the transmission parameters that can be controlled 
include the baud rate (symbols processed per second), the modulation format (number of 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 14 of 69 

bits encoded per symbol), the forward error correction (FEC) used, the spectrum slots 
employed, the useful bit rate, and the spectrum space left between flexpaths. The multiple 
degrees of freedom present in future optical networks make connection establishment a 
more complicated problem, where a centralized controller will make the important 
networking decisions, in close collaboration with a Network planning and Operation Tool. 
Figure 5 presents an example of a flexgrid network that is controlled by a centralized 
Network planning and Operation Tool.   

 

DSP
Bandwidth 

variable 
transponders

(BVTs)

DSP

Client

Optical Network Planning and 
Operation Tool

web ui

Tool Engine

Algorithms
Algorithms In the cloud

JSON/REST API

JSON/REST API

JSON/REST API

Network 
Management 
System (NMS)

control

control

control 

control

N3

1 2
31

2 3

Link N1-N2

Link N2->N4

Link N2->N3
Link N3->N2

3

Freq.

Freq.

Freq.
Freq.

Bandwidth 
variable 

OXC
Bandwidth 

variable 
OXC

1

2

DSP
Bandwidth 

variable 
transponders

(BVTs)

Bandwidth 
variable 

OXC

DSP

Client

DSP
Bandwidth 

variable 
transponders

(BVTs)

DSP

Client

 
Figure 5: A flexgrid network, comprising bandwidth variable optical switches and 
transponders that it is operated by an optical network planning and operation tool. 
 

It is evident that the future increase of requested network capacity, the emergence of flex-
grid technology and software defined networking paradigm along with new application 
methodologies (clouds, SaaS, social by design) require not simply the extension of existing 
network planning tools, currently available from several major players, but the 
implementation of new ones. In what follows, we describe the basic algorithmic challenges 
that a network planning and operational tool for flex-grid optical networks should address, 
and present such a tool, called Mantis, that contains a rich library of algorithms that is 
currently extended to meet the majority of related challenges. Mantis was designed and 
implemented so as to accommodate both desktop and cloud execution. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 15 of 69 

3.1.1 Algorithmic Issues in Flexgrid Optical Networks 
Network planning typically occurs before a network is deployed and focuses on how to 
better accommodate the current and foreseen network traffic. Greenfield planning refers to 
the case where the network, including its physical topology, is designed from scratch, and 
can be very demanding, since many costs, such as the cost of digging ducts to lay the fiber 
cables, and the cost of the fibers, amplifiers, switches, transponders and regenerators to 
be installed, have to be accounted for. More common in optical transport networks is to 
plan the network assuming that the fibers are already installed, which is the reality for tier-1 
and tier-2 operators. In this case the topology is given and the purpose is to decide the 
equipment (transponders, regenerators) to be purchased and where to deploy it, and the 
switches that may have to be replaced. The objective is to minimize the equipment cost 
and the resources used for serving the given traffic (saving resources for future use or, in 
case of infrastructure leasing, for cost minimization). In the network operation phase, the 
demands are generally processed upon their arrival, one or a small set at a time, and the 
traffic is accommodated using the equipment already deployed in the network or when 
necessary some little additional equipment. Therefore, the operation process must take 
into account any constraints posed by the current state of the network. Following the 
above, the algorithms for optical transport networks can be broadly classified into (i) static 
(planning) and (ii) dynamic (operating) algorithms. In both cases, the issues that have to be 
addressed for flexgrid optical networks are: 

• Accounting for physical layer impairments 
• Routing, spectrum allocation, and choice of modulation format  
• Serving dynamic traffic fluctuations and spectrum fragmentation 

 

3.1.1.1 Accounting for Physical layer impairments 
Optical transport networks have evolved over recent years from opaque (point-to-point) to 
transparent networks, as a way to reduce CAPEX and OPEX costs. In the latter case, 
optical switches are configured to transparently handle transit traffic; the signal remains in 
the optical domain, saving on the cost of transponders used in the past to terminate and 
retransmit traffic at intermediate hops. Since optical connections may span over many and 
long links, physical layer impairments (PLIs), such as noise, dispersion, interference, 
accumulate and affect the quality of transmission (QoT). Accounting for PLIs is a challenge 
for algorithm designers, especially with respect to their exact modelling and the 
interdependencies introduced. 

PLIs affect both fixed grid WDM and flexgrid networks, but there are distinct differences 
between the two cases. When tuneable transponders are present in flexgrid networks, 
there are a number of transmission parameters that can be controlled that change the 
effects of the PLIs and directly or indirectly affect the connection establishment decision. 
Note that flexgrid networks are expected to use coherent detection and DSP, implying that 
impairments, particularly those related to dispersion, will be substantially reduced or fully 
compensated. However, the transmission configurations of the transponders have to be 
included in the RSA problem, and the multiple degrees of freedom present in flexible 
optical networks and their interdependencies make connection establishment in such 
networks more complicated than in traditional fixed grid networks. On the other hand, in 
WDM networks, PLIs, even though more significant under the assumption that coherent 
detection is not used, can be accounted for quite accurately, since fewer parameters are 
involved (non-tunable transponders and constant guard-band) and analytical models 
successfully capture these effects. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 16 of 69 

So the most difficult part in accounting for the physical layer in flexgrid networks is the 
interrelation between the physical layer, the transponders’ configuration parameters, and 
the connection establishment process. 

3.1.1.2 Routing and Spectrum Allocation 
The problem of establishing connections in fixed grid WDM networks is typically referred to 
as the Routing and Wavelength Assignment (RWA) problem, known to be NP-complete. 
Connection establishment in flexgrid networks is more complicated for several reasons. 
First, in contrast to WDM networks where each connection is assigned a single 
wavelength, in flexgrid networks, spectrum slots can be combined to form variable width 
channels, leading to the so-called Routing and Spectrum Allocation (RSA) problem. 
Additionally, the transponders’ (BVTs’) adaptability yields many transmission options, each 
with different transmission reach and spectrum used (see discussion in previous 
subsection). Algorithms that try to capture, to varying degrees, the problem of jointly 
allocating recourses and selecting the transmission configurations are referred to as 
Distance Adaptive Spectrum Allocation or as Routing, Modulation Level and Spectrum 
Allocation (RMLSA) algorithms.   

Another difference between the RWA and RSA problems relates to the number of 
connections served by a transponder. In WDM networks, a transponder is allocated to a 
single connection. In flexgrid networks, researchers are considering powerful BVT, called 
sliceable bandwidth variable transponders (SBVT), which can be shared to serve more 
than one connection. SBVTs introduce an additional degree of flexibility in that multiple 
flexpaths can be assigned to SBVTs, in order to keep them highly utilized and reduce their 
number and total cost. 

Both RWA and RSA include as a sub-problem the placement of regenerators in the 
network. Given the BVTs’ limited transmission reach, due to PLIs, regenerators are used to 
establish lengthy connections. However, in contrast to WDM networks where the 
capabilities of the BVT and regenerators are given, in flexgrid networks the transmission 
reach depends on the transmission configuration of the tunable transponder and can be 
controlled. Thus, regenerator placement in flexgrid networks also involves choosing the 
BVTs’ configurations making it more complicated than in fixed grid networks.  
 

3.1.1.3 Dynamic network operation 
The network is typically initiated with an offline/planning algorithm assuming an 
oversubscribed traffic matrix, meaning that actual traffic is on average as low as 30% of the 
traffic described in the matrix, to absorb short term fluctuations (e.g. daily cycles) and avoid 
frequent network upgrades (long term traffic increases eventually require upgrades, of 
course). Thus, the network is operated in an incremental manner, with new connections 
added sporadically, when utilization between endpoints exceeds a certain percentage, and 
existing connections rarely (if ever) terminated. This practice is rather different than the 
dynamic scenarios usually considered in the literature that assume the dynamic 
establishment and release of connections and measure the blocking probability over time. 
Thus, a more appropriate model for fixed grid WDM networks would be to incrementally 
add connections and observe when the first connection blocking occurs. Flexgrid networks 
using adjustable transponders (BVT) require a different approach as their operation will be 
more dynamic, having time scales at which optical connection rate changes occur probably 
1-2 orders of magnitude smaller than in fixed grid networks. Flexgrid can bring the optical 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 17 of 69 

layer closer to the IP layer, making the IP layer able to “dial”/control the bandwidth that it 
uses. 

Dynamic traffic variations in flexgrid networks can be accommodated at two different levels. 
We consider the first level to be the establishment of new connections, as in fixed grid 
networks. Given the high capacity that flexgrid BVTs are expected to transmit (designs of 
400 Gb/s or higher have appeared in the literature), relatively long periods of time will pass 
until a new connection is established, probably longer than in WDM networks. A second 
level is to absorb changes in the requested rate that are short- or medium-term by adapting 
the BVT, e.g., tuning the modulation format and/or the number of spectrum slots they use, 
a feature not available in WDM systems. 

 

 
Figure 6: Flow diagram of a generic approach to operate a flexgrid Network. 
 

Figure 6 describes a generic approach for operating a flexgrid network. The offline 
algorithm used to initialize the network, or the dynamic online algorithm that subsequently 
adds flexpaths, assigns to each flexpath a path and a reference frequency. A flexpath 
occupies a certain amount of spectrum slots around that reference frequency, and traffic 
variations can be absorbed by the BVT by tuning the modulation format or 
expanding/contracting the spectrum they use. Slots that are freed by a flexpath can be 
assigned to different flexpaths at different time instants, obtaining statistical multiplexing 
gains. To enable the dynamic sharing of spectrum, we need Spectrum 
Expansion/Contraction (SEC) policies [16] to regulate how this is performed. An example of 
such a policy would be to increase and decrease the spectrum slots in a symmetric way, 
i.e., alternate between expanding towards the higher and lower spectrum slots of the 

RSA
Routing and 

Spectrum 
Allocation 

New connection 
request

Traffic parameters 
(e.g. λ,μ)

                 Spectrum Flexible network

Decide path p and 
reference frequency 

Fp

N1

N3

N2

N4

F1

F3

Link N2-
N4

Link N2-N3
Link N3-N2

1

2

3

F2

Link N2-N3

F2

F1 F3

Establish 
connection and 

check requested rate 

SEC
Spectrum 

expansion/
contraction 

policy

When SEC cannot serve the 
traffic variation, RSA can be 

called to route the excess traffic 
or reroute the entire connection

Established connections 
and SEC policy used

Rate 
Variation

Rate variation 
can be 

accommodated
?

No

Yes
Expand/contract 

slots



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 18 of 69 

reference frequency of the flexpath, until it reaches a slot already occupied by another 
connection, at which point we allocate slots from the side that we can. An RSA operation is 
performed again when a SEC policy cannot absorb traffic variations by granting additional 
spectrum slots, or when the requested rate exceeds the transponder capabilities. Then, 
RSA is called to route the excess traffic over a different flexpath, or reroute the entire 
connection (to save in guard-bands).  

After establishing and tearing down multiple flexpaths in a flexgrid network the spectrum 
slowly becomes fragmented, reducing its ability to accommodate new connections [18]. 
This problem is much less significant in fixed grid WDM networks, where each connection 
is assigned a single wavelength. A number of defragmentation solutions have been 
proposed for flexgrid networks, broadly classified into proactive and reactive approaches. A 
proactive approach can be an RSA algorithm that avoids fragmentation by trying to leave 
spectrum voids that are usable, while a reactive approach can be a special 
defragmentation algorithm that reroutes/re-optimizes the network and frees spectrum for 
new connections.  

 

3.2 Mantis architecture description 
Mantis is a network planning and operation tool for designing the next generation optical 
networks. Our approach was to build a tool that provides fast execution, efficient 
computation resources usage, basic fault tolerance, scalable with the demand and can be 
easily extended with new algorithms and features. Another key feature of Mantis is that it 
has been designed to run as a desktop application but also in the cloud as a software as a 
service (SaaS). 

Mantis components are organized in three layers: the access layer, the application layer 
and the execution layer. In addition, there are two common interfaces whose primary 
purpose is to provide loose coupling between the application layer and the other two 
layers. By using these interfaces we can have the same access and execution layers for 
both versions of the tool (desktop and cloud) while we can extend their functionality without 
breaking the implementation of the other components. Figure 7 shows Mantis architecture 
and its main components. 

The access layer handles the interaction with the users through a web-based user 
interface and its exposed RESTful API. Through the Mantis simple web-based interface, 
users can have access to all tool’s functionalities, perform easily all the supported 
operations and collaborate with other users. Furthermore, there is available a Python 
library that utilizes the RESTful API for communicating with the tool and provides almost 
the same functionality with the web-based interface. More interfaces to the Mantis 
functionalities can be added by extending the access layer to include a command-line 
interface (CLI) and to provide appropriate interfaces in order to expose Mantis’s online 
algorithms to network management tools for optical networks providing path computation 
element (PCE) functionalities.  

 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 19 of 69 

 
Figure 7. Mantis general architecture and its main components. 
 
The execution layer consists of the execution engine and the library of available network 
planning and operation algorithms. Execution engine receives requests, for starting or 
terminating algorithm executions, through the common interface from the application layer 
and is responsible for performing all the required actions, including the preparation of the 
execution environment, the monitoring of the execution progress and the handling of the 
final results or possible failures. Furthermore, it is responsible to monitor the resources of 
the node where is executed and to return details such as the number of available cores, 
the used cores, the total and used memory etc. There is also a limit on the number of 
concurrent executions at every execution node which depends on the computation capacity 
and the number of the available cores. 

The application layer implements the application logic and orchestrates the execution of 
user requests. It is the only layer that differs between desktop application and cloud service 
deployment as there are different requirements and operations that should be performed.  

When Mantis is deployed as desktop application there is a server that contains the desktop 
application engine and the execution layer implementations (Figure 8). The desktop 
application engine receives requests from the access layer and stores them in a local 
queue and a disk file that provides a simple fault tolerance mechanism, eliminating the 
possibility of requests getting lost or not served due to server problems. Then the users’ 
requests are forwarded to the local execution node. Furthermore, the desktop application 
engine is designed to limit the number of concurrent executions based on the capabilities 
of the hosting machine in order to avoid resources saturation since the algorithms are 
executed only in the machine where the server is deployed.  

 

ACCESS LAYER

HIGH LAYER COMMON INTERFACE

CLOUD APPLICATION 
ENGINE

DESKTOP 
APPLICATION 

ENGINE

LOW LAYER COMMON INTERFACE

ALGORITHMS

EXECUTION LAYER

APPLICATION LAYER

EXECUTION ENGINE



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 20 of 69 

 
Figure 8. Mantis as desktop application. 
 

When Mantis is deployed as cloud service, the application layer should implement the 
cloud application engine that handles the interaction with the cloud infrastructure. Figure 9 
presents Mantis when deployed as cloud service. In this case, there is available one cloud 
engine but multiple execution engines, one at every computing node in the available cloud 
resources.  

 

 
Figure 9. Mantis as Cloud service. 

3.3 Software Implementation Technologies 
In this section we present the technologies that we used in order to implement the various 
components of the Mantis architecture. Since, there are many different technical solutions 
available today it was necessary to select one of them based on some criteria. For Mantis 
implementation, we used software technologies and toolkits that are open source, mature, 
widely supported, have good performance and are able to scale in order to have a robust 
software system that fulfils all the design goals. 

The access layer implementation is based on Rails [7] web application development 
framework, which is written in Ruby language. We have chosen Rails since is well-matched 
to the practices of agile software development, particular in its emphasis on software 

- HTML5 WEB UI
-RESTFul API

Desktop Application Engine

Desktop Application Server

Algorithms

Execution Layer

Execution Engine

HIL

LIL



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 21 of 69 

testing and “convention over configuration”, as a means of avoiding writing the same code 
repeatedly. In Rails we have implemented both the RESTful API and the access layer’s 
application logic that handles the interaction with the database and other tool’s layers.  The 
web-based user interface is a client-side rich internet application based on the Dojo [8] 
JavaScript toolkit. Dojo is an open source high quality toolkit where everything is 
customizable and which provides all the necessary modules to create a rich and full 
functional user interface. Regarding the system database we have selected the 
PostgreSQL [9], an open source and robust object-relational database system that features 
all the necessary characteristics and which is compatible with all the other implementation 
technologies.  

In the execution layer, the execution engine is written in C++ programming language using 
the cross-platform Qt [10] framework that is widely used for developing application 
software. Qt runs on the major desktop platforms and includes among others a unified 
cross-platform API for SQL database access, thread management and network support. 

Mantis algorithms are written either in C++ or in Cython [6] and are accessible from the tool 
through the execution engine’s custom plug-in mechanism. This mechanism leverages the 
Qt capabilities for extending an application’s functionality by defining and implementing a 
common interface through which various modules interact with the application and expose 
their functionalities. 

 

3.4 Software Design 
In this section we give details on the execution of Mantis process through various basic use 
cases diagrams. Furthermore, we present the Mantis database structure. 

In Mantis users can interact with the following main entities: 

• Network topology: represents a fixed network, providing details for the nodes, 
links and their lengths. 

• Traffic demands: a square matrix that includes the request demands between the 
network nodes. 

 Configuration: a set of parameters required for the execution of a planning or 
operation function (algorithm). 

 Instance: an executed configuration. 

 Projection: a parameterized version of some configuration, which causes a set of 
instances to be generated that differ in the value of one initial parameter (e.g., 
number of wavelengths). 

 Charts: Visualize the results from various executions. 

 

We provide examples of use case diagrams that describe the various interactions between 
a user and Mantis. Generally, users are able to create, edit, delete, share and clone 
network topologies, traffic demands, configurations and charts (Figure 10).  

 

https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Application_software


 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 22 of 69 

Configurations

Create, Edit, Delete
Traffic Demands

Network Topologies

Charts

Clone, Share

 
Figure 10. Available actions for the main entities. 
 

Before users can request the execution of any algorithm it is necessary to create a 
configuration that provides the values for all required parameters. Initially, a user should 
select the algorithm for which the configuration will be defined and then should select a 
network topology, traffic demands and specify the other configuration parameters (Figure 
11). 

 

 
Figure 11.  Procedure to create a new configuration. 
For every configuration, users can request either its execution or the creation of a new 
projection (Figure 12). In the second case, it is necessary to select the parameter in which 
the projection’s instances will differ and define also a range of values for it. 

 

 
Figure 12. A configuration can be either executed or used to create a projection. 
 

For every successfully executed instance users can view its analytical results, export the 
proposed solution and use its results to create charts (Figure 13). 

 

 
Figure 13. Available actions for successfully executed instances. 

Instance (Status Done)

Show Proposed Solution

Export Proposed Solution

Create Charts



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 23 of 69 

 

Furthermore, users can create charts to visualize the results from various executions by 
combining the results of successfully executed instances in various data series, while each 
chart can contain one or more data series (Figure 14).  

 

 
Figure 14. Procedure to create charts using the results from various instances. 
 

Database is an essential component for the Mantis operation, since it contains both system 
and user data. This information is accessed mainly from the access layer and the available 
client library. Furthermore, access to database has also the application layer in order to 
setup an algorithm execution or to store its results. Mantis database model includes ten 
tables and is presented in Figure 15. 

 

Instance (Status Done)

Instance (Status Done)

Instance (Status Done)

Instance (Status Done)

Instance (Status Done)

Data Series B

Data Series A
Chart

Instances (Status Done)



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 24 of 69 

 
Figure 15. Mantis database model. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 25 of 69 

3.5 Developer Guide 
 

In this section we outline the process that developers have to follow to write and integrate 
to Mantis new algorithms. Also we present the Mantis Python library that users can utilize 
to interact programmatically with the tool. 

 

3.5.1 The Plug-in Mechanism 
One primary concern during Mantis design was to build a system that not only will execute 
the algorithms in reasonable time but also will provide all the necessary functionality and 
features so as to be easily extendable with new algorithms and features without breaking 
the current implementation of its components.  

According to Mantis architecture the execution layer is composed from the execution 
engine and available network planning and operation algorithms. Mantis algorithms are 
accessed from the execution engine through a custom plug-in mechanism. This 
mechanism enables new algorithms to be added in the tool without any modification in the 
application layer and the execution engine.  

In the current version of the tool, algorithms can be implemented either as Python/Cython 
modules or as Qt plug-ins written in C++.  

Generally, the procedure for adding a new algorithm in Mantis is relatively simple and 
comprises the following steps:  

1. Implement an algorithm either as Python/Cython module or as Qt plug-in using the 
common interface. 

2. Create input parameters and results descriptions based on the Mantis JSON 
schemas (presented next) and provide any dependencies in software packages and 
libraries. 

3. Insert into tool’s database the necessary information about the new algorithm 
(name, short description, description in JSON format for its input parameters and 
results).  

4. Add new algorithm in the execution engine's library. 

5. Update the web-based interface with the appropriate forms to create configurations 
for the new algorithm. 

 

The first four steps are mandatory, while the fifth one that involves the implementation of 
the appropriate forms in the user interface can be omitted. However, in this case the users 
will be able to interact with this algorithm only through the Python Mantis library (Section 
3.5.2). Developers of new algorithms perform only the first two steps while the remaining 
steps are performed by the Mantis administrator. In the current version of the tool the 
necessary steps for adding a new algorithm are executed manually. Nevertheless, we plan 
in future releases to automate as much as possible the execution for steps 3 and 4 as 
Mantis vision is to enable users to develop their own algorithms and plug them into the 
core platform, for evaluating their performance and comparing them with existing ones. 
The execution engine’s plug-in mechanism exposes a common interface, independently 
from the implementation technology, which determines explicitly the syntax of the input 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 26 of 69 

parameters and the results for all algorithms.  This common interface uses the JavaScript 
Object Notation (JSON) as data-interchange format for providing the input and output 
parameters for all Mantis algorithms. 

In particular, every algorithm in Mantis returns the output results as JSON object and takes 
as input the following four parameters, using predefined JSON schemas; in the order they 
are presented: 

1. Network topology description 

2. Traffic demands description 

3. Algorithm specific parameters 

4. CAPEX/OPEX parameters 

 
The JSON schema used for describing the traffic demands for a network topology of N 
nodes, contains an object with one variable named “traffic_matric”, of array type; this 
array contains N arrays of number type with size 1xN.  This variable describes the traffic 
demands between each pair of adjacent nodes (Figure 16). A network topology with N 
nodes is defined in JSON format, as an object with two elements the “number_of_nodes” 
and the “links” of array type. Each element of the array is another object that describes a 
unidirectional link in the network topology. These objects have two elements the “length” 
that describes the link’s length in kilometers and the “nodes” which is a 1x2 array that 
contains the link’s nodes. 

In Figure 16 we present an example for a network topology with six nodes and nine 
unidirectional links, while Table 1 shows the corresponding Mantis JSON schemas 
descriptions for the network topology and the traffic demands. 

 

 
Figure 16.  A 6-node network topology. 
 

{ 
    "number_of_nodes": 6, 
     "links": [ 
          { "nodes":[0,1] , "length":500 }, { "nodes":[0,2] , "length":600 }, 
          { "nodes":[1,0] , "length":500 }, { "nodes":[1,2] , "length":300 },   
          { "nodes":[1,3] , "length":400 }, { "nodes":[1,4] , "length":500 }, 
          { "nodes":[2,0] , "length":600 }, { "nodes":[2,1] , "length":300 },   
          { "nodes":[2,4] , "length":400 }, { "nodes":[3,1] , "length":400 },   

 

{                                      
    "traffic_matrix": [                                                                     
          [0, 300, 200, 300, 100, 50],                          
          [10, 0, 100, 20, 80, 90],                                
          [430, 340, 0, 40, 20, 20],                                
          [10, 10, 20, 0, 120, 140],                                
          [130, 320, 220, 220, 0, 80],                                

2 4

3 5

1 6

500

600

400

400

300300

500

500

600



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 27 of 69 

          { "nodes":[3,4] , "length":300 }, { "nodes":[3,5] , "length":500 },   
          { "nodes":[4,1] , "length":300 }, { "nodes":[4,2] , "length":400 },   
          { "nodes":[4,3] , "length":300 }, { "nodes":[4,5] , "length":600 },  
          { "nodes":[5,3] , "length":500 }, { "nodes":[5,4] , "length":600 }   
     ] 
} 

          [130, 210, 120, 10, 40, 0]                                  
    ]                                                                         
} 

                                                               (a)                                                                                           (b) 

Table 1. (a) 6-node topology in Mantis JSON (b) traffic demands description 
example.  
 

Furthermore, the access layer and the execution engine need to know for each algorithm 
the detailed description of its input and output parameters in order to be able to prepare the 
execution and handle its results. However, this information is different for each algorithm 
and cannot be automatically determined by the tool. For this reason, whenever we 
integrate a new algorithm in Mantis execution layer, it is necessary to provide the 
description of its input and output parameters. 

The JSON schema used for describing the input parameters contains an object with three 
members named “container_name”, “input_parameters” and “output_parameters”.  
The first member provides the name of the module or plug-in that contains the algorithm 
implementation, while the other two that are arrays of objects describe the input and output 
parameters. Each object has the following three members: 

• name: object's member name that contain the  parameter 

• description: a short description for the input or output parameter 

• type: parameter’s data type, supported types integer, float, string, dictionary, list 
and list-2 (two-dimensional arrays)  

 
Table 2 presents the description for an algorithm which expects its input parameters to be 
members of an object with names "param1" and “param2”. The algorithm’s results are 
returned as an object with three members named as “result_1”, “result_2” and 
“result_3”. 
 

{ 
          “container_name”: “new_algorithm”, 
          “input_parameters”: [ 
                    {“name”:”param_1”, ”description”:”short description”, ”type”:”integer” }, 
                    {“name”:”param_2”, ”description”:”short description”, ”type”:”float” } 
          ], 
          "output_parameters": [ 
                    {"name":"result_1","description":"short description", "type":"integer"}, 
                    {"name":"result_2","description":"short description”, “type":"float"}, 
                    {"name":"result_3","description":"short description", "type":"list"} 
           ] 
} 

Table 2. Algorithm’s input and output parameters description  
 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 28 of 69 

3.5.2 Mantis Python Library 
The access layer exposes all Mantis functionality through a RESTful API which enables the 
Mantis usage directly over HTTP. The RESTful API can be useful when users want to 
utilize Mantis services without using the existing web-based interface and Python library or 
when want to integrate their own existing tools and environments. All requests to the 
RESTful API are authenticated with HTTP Basic Authentication, which is based on the 
users’ username and password in Mantis, while the responses are formatted in JSON, 
which is the default option, or in XML.  

We have developed a Python library that utilizes this RESTful API for communicating with 
the tool. Users can easily install it and interact programmatically with the tool, while the 
only requirement in order to use the library is to have a valid account in the online tool. 

Mantis Python library is composed of four main modules traffic, topology, configuration and 
instance that handle the interaction with the corresponding entities in the tool. These 
modules contain all the necessary methods for retrieving network topologies, traffic 
demands, configurations, instances and for retrieving detailed information regarding their 
characteristics and their status.  

A user through the Mantis Python library can create, edit, delete, clone and make public or 
private network topologies, traffic demands and configurations. In addition, the library 
contains methods for filtering the returned information based on various parameters, 
monitoring the execution of all running instances, executing configurations and querying 
their current status.  The complete documentation for the Mantis Python library is available 
on [5]. 

For example, the method get_instance with argument an instance identifier ‘1010’, returns 
(in JSON format) the following information about the specified instance:  
 

• instance unique identifier (id) 
• configuration name from which the instance has been created (config_name) 
• instance name that is automatically created from the system (instance_name)  
• execution results (results) 
• current execution status code of the instance (status) 
• current status description (reason) 
• timestamps for the creation (created_at) and the last update (updated_at)  

 

Table 3. Details about some instance.  
 
In the current version of the tool, users cannot directly deploy and execute their own 
developed algorithms. However, they can still compare the results from their own 
algorithms, which are executed locally in their own machines, against the results from the 
ones already incorporated in the tool by using the provided Python library.   

   { 
       ‘id': 1010, 'config_name':'ofdm_test_1', 'config_id': 21, 
       'instance_name': 'ofdm_test_1_6175', 'results': { }, 'status': 3, 'reason': 'RUNNING',  
       'created_at': '2013-06-26T08:42:55Z', 'updated_at': '2013-06-26T08:43:04Z' 
   }  



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 29 of 69 

In Table 4 we present an example of using the library for that purpose.  Initially, a user 
identifies from the user interface an instance whose proposed solution he wants to 
compare with his algorithm. Using the available methods he is able to retrieve all the 
configuration details (network topology, traffic demands, CAPEX/OPEX and input 
parameters) along with the detailed solution for the specified instance. Hence, he is able to 
compare the results of his own locally executed algorithm with the initial instance using the 
same network topology, traffic demands and any other input parameters. 
 

Table 4. Get all the required information using the Mantis Python library. 
 

3.6 User Guide 
Mantis comes with a functional User Interface (UI) that is web-based. In what follows we 
outline this interface, including many snapshot images so as to guide the users throughout 
the process of defining experiments, running them, and collecting the produced outputs. 

A primary purpose of Mantis is to create a common benchmarking environment with social 
characteristics where researchers share topologies, traffic matrices and CAPEX/OPEX 
parameters, and evaluate their algorithms under common conditions. In this way, Mantis 
could also evolve as an online collaboration platform for optical network researchers, 

 
  import mantis.traffic 
  import mantis.topology 
  import mantis.instance 
  import mantis.configuration 
 
  # Return the details for the instance with name instance_111 
  instance_details = instance.get_instance({“name”:”instance_111” }) 
 
  # From the available information, keep detailed solution and configuration id   
  config_id = instance_details[“config_id”] 
  instance_results = instance_details[“results”] 

 
  # Get details about the instance’s  configuration 
  configuration_details = configuration.get_configuration({id:config_id}) 
 
  # Get network topology and traffic demands ids 
  topology_id = configuration_details[“topology_id”] 
  traffic_id = configuration_details[“traffic_id”] 
 
  # All configure parameters and their values 
  configuration_input_params = configuration_details[“input_params”] 
 
  # Get details and description for network topology with the specified id 
  # topology_details[“params”] contains the description of the requested network topology  
  topology_details = topology.get_topology_by_id(topology_id) 
 
  # Get details and description for traffic demands with the specified id 
  # traffic_details[“params”] contains the description of the requested traffic demands  
  traffic_details = traffic.get_traffic_by_id(traffic_id) 
 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 30 of 69 

improving the comparability, quality and reliability of the results presented in various 
research articles and projects.  

In Mantis users can define various parameters (e.g., network topology, traffic demands, 
equipment, devices monetary and energy cost) and select among algorithms for routing 
and wavelength assignment, routing and spectrum allocation for spectrum-flexible 
networks, for impairment awareness, for equipment placement, such as regenerators and 
transponders. Algorithms evaluate future network plans and demands and report a detailed 
solution including the required bandwidth to serve the demands, the number and 
configurations for transponders and regenerators, total monetary cost and total required 
energy, connections that could not be established either due to physical layer impairments 
or due to bandwidth unavailability. 

3.6.1 Algorithms included in the current version of Mantis 
The current Mantis version includes network planning and operation algorithms for fixed-
grid single-line-rate (SLR) and mixed-line-rate (MLR) WDM, and flexgrid optical networks 
that can be used for both transparent (without regenerators) and translucent (with 
regenerators) networks.  

The OFDM IA-RSA (IA stands for Impairment Aware) algorithm, presented in [17], 
considers the planning problem of a flexgrid optical network under physical layer 
impairments and addresses the problems identified in the Sections 3.1.1.1 and in 3.1.1.2 in 
a unified manner. The algorithm takes as input a network topology, a traffic matrix and the 
feasible configurations of the used transponders. It serves the demands for their requested 
rates by choosing the route, breaking the transmission in multiple connections, placing 
regenerators if needed, and allocating spectrum to them.  

In a similar manner, the IA-RWA-MLR and IA-RWA-SLR algorithms consider respectively 
the planning problem of mixed-line-rate and single-line-rate fixed-grid WDM optical 
networks under physical layer impairments.  

Online versions of these algorithms are also available in the current version of Mantis. An 
online algorithm takes as input the output of the offline case and a new demand and serves 
the new demand in an incremental manner. The output of the online algorithm is saved and 
can be used as an offline starting point to serve more new demands.  

More algorithms that address dynamic network operation of flexgrid networks (see Section 
3.1.1.3), including dynamic spectrum expansion/contraction of established connections, 
grooming of traffic, spectrum defragmentation and others, are currently implemented and 
evaluated, and will be incorporated in future releases of Mantis. 

 

3.6.2 User Interface 
Mantis comes with a clean and simple web-based user interface though which the users 
can have access to all tool’s functionalities. The main Mantis’ entities are the 
configurations, the instances and the projections. A configuration consists of a set of 
parameters that define the execution of a specific algorithm, while an instance is an 
executed configuration. The projections are parameterized versions of a configuration that 
result in a set of instances to be generated at the execution nodes. These instances differ 
only in the value of one initial parameter (e.g., number of wavelengths). Figure 17 shows 
the relation between configurations, projections and instances. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 31 of 69 

 
Figure 17. Relation between configuration, projections and instances. 
 

3.6.2.1 Main UI areas 
The user interface is divided into three primary areas, the main toolbar in the top that 
provides immediate navigation between tool’s pages, the main work space in the middle 
and the vertical accordion menu in the left that contains seven entries. Figure 18 presents 
Mantis main page and its primary areas. 

In the user interface there is a separation of the different steps: network topology and traffic 
demands creation, algorithms selection and configuration, execution and results 
presentation. All these operations are implemented in their own pages that are presented 
in the main work space, while the main toolbar and the accordion menu are always 
available to users for switching between the various operations. 

 
 

 
Figure 18. Mantis main page and its primary areas. 
 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 32 of 69 

                
                             (a)                                                                                                                   (b) 

Figure 19. Context menu for topologies and configurations. 
 

The entries in the left menu have a tree like structure and functionality through context 
menus. The left menu provides access to the following system entities: 

• network planning and operation algorithms  
• network topologies  
• traffic demands  
• configurations  
• projections  
• instances  
• graphs  

 

These menus offer a limited set of actions that are available for each selected object. For 
example, in Figure 19a and Figure 19b we present the actions that are available for 
network topologies and configurations respectively. 

 

3.6.2.2 Defining topologies, traffic matrices and costs 
Mantis user interface enables users to easily and graphically design network topologies by 
defining network nodes and links between them along with their length, save, edit, and use 
the existing topologies at any time. Figure 20a shows the available interface for working 
with network topologies in which users can navigate either by using the main toolbar or by 
selecting a network topology from the left menu. In this page the workspace contains a 
number of control buttons and the main canvas where users can design their network 
topologies. The network topologies implementation is based on the Raphaël [12] 
JavaScript library that provides methods for working with vector graphics on the web.  

Users can easily create and customize their network topologies since every graphical 
object (nodes and links) provides a context menu with the available actions. By selecting a 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 33 of 69 

node (Figure 20b) users can edit its label, delete it, add a link starting from this node or add 
a new node in the topology. Similarly, there is available a context menu for interacting with 
links (Figure 20c), which provides to users actions for adding a link, changing its current 
length or deleting it. 

Traffic demands, which are expressed as square matrices, can be created either 
graphically by using an editable table (Figure 20d) or can be imported from files. For the 
latter case, Mantis currently supports two formats in order to import traffic demands, the 
Mantis JSON format (described in Section 3.5) and the comma-separated values (CSV) 
format. 

 

   
                                            (a)          (b) 

 
                                                (c)                                                                                                (d) 

Figure 20. (a) network topology workspace (b) actions for network nodes (c) actions 
for network links (d) traffic demands workspace. 
 

 

 
Figure 21.  Define CAPEX/OPEX parameters for various devices. 
 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 34 of 69 

Additionally, users can define the energy and monetary cost (Figure 21) for various devices 
used in optical transport networks, like transponders/muxponders, regenerators, amplifiers, 
switches.  All Mantis algorithms use these values to calculate the monetary and energy 
cost for their solutions.  This information is also available through the custom plug-in 
mechanism (Section 3.5) to every algorithm that is integrated to Mantis.  
 

3.6.2.3 Setting up a configuration  
Before users can request the execution of any algorithm it is necessary to create a 
configuration that contains the values for all parameters, which are required for the 
execution of a planning or operation algorithm. In the user interface there is a specific 
configuration page for every algorithm since they require different input parameters. 
Initially, a user should select the algorithm for which the configuration will be defined. Then, 
in the algorithm’s configuration page (Figure 22) should define a configuration name, select 
a network topology, traffic demands and specify the other configuration parameters that are 
specific to the selected algorithm. Mantis automatically checks all provided parameters and 
informs the users for possible mistakes, before permanently saving any configuration. The 
performed validation ensures that every configuration in the database contains all the 
necessary parameters with valid values. Hence, it eliminates any possible resources 
wasting when a user requests the execution of an invalid configuration. 

 

 

Figure 22. Configuration page for IA-RSA OFDM algorithm. 
 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 35 of 69 

3.6.2.4 Setting up a projection 
For every configuration, users can request either its execution or the creation of a new 
projection. When a user wants to create a new projection initially should select some 
configuration from the left accordion menu and execute the projection action from its 
context menu (Figure 19).  Next, the user through the available interface should select the 
parameter in which the projection’s instances will differ and define also a range of values 
for it. Figure 23 shows this interface where users can also view the configuration’s input 
parameters values. A projection’s value range will also determine the number of instances 
that will be created for its execution.  

 

 

Figure 23. Define projection using an IA-RSA OFDM algorithm configuration. 
 

3.6.2.5 Status and results 
Users can always check the status of their running or finished instances and have access 
to useful details including the instance name, configuration name, execution status, 
creation date and execution date through the history page (Figure 24).  In addition, users 
can terminate running instances, view the results from successfully executed instances or 
filter the displayed instances either by their execution status or their configuration name. 
 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 36 of 69 

 

Figure 24. History page where a user can view details for his instances. 

 

For every successfully executed instance users can view its analytical results and export 
the proposed solution in JSON format, including details for each connection, for further 
analysis. In Figure 25 we present part of the detailed solution, including required 
transponders and regenerators and where regenerators should be placed, after the 
execution of a configuration for the IA-RSA OFDM algorithm on the DT network topology. 

Generally, Mantis is designed to report a detailed solution, which according to the executed 
algorithm may include: 

• required bandwidth to serve the demands 
• established lightpaths 
• number and configurations for the required transponders and regenerators 
• where transponders and regenerators are placed 
• total monetary cost and total required energy 
• connections that could not be established due to physical layer impairments or 

bandwidth unavailability 
 

 
Figure 25. Part of detailed solution, including required transponders and 
regenerators and where regenerators should be placed for the DT network. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 37 of 69 

Furthermore, users can create charts to visualize the results from various executions in 
order to have a better evaluation of the different scenarios. Charts can be created by 
combining the results of various completed instances and consist of one or more data 
series. Figure 26a shows the interface for creating and editing charts in which users can 
easily add, edit or delete data series. A user selects the values that will contain each data 
series through the interface presented in Figure 26b. A user should choose a configuration 
to view its instances and then selects from them the values that he wants to include to the 
data series. The values in each data series are displayed in the same order that are 
selected from the user. Users can view the created charts (Figure 26c) either by selecting 
them from the left accordion menu or from the corresponding page in the user interface 
where it contains a drop-down list with all charts that each user can access.  

 

  
                                         (a)                                                                                                       (b) 

 

 
                                                                                                        (c) 

Figure 26. (a) Create a chart with three data series (b) select values for data series (c) 
chart presentation. 
 

3.6.2.6 Social Characteristics 
Since, one of Mantis primary purposes is to create a common benchmarking environment 
tool provides a private and a public workspace. The private workspace includes user’s 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 38 of 69 

network topologies, traffic demands, configurations, results and charts. Network topologies, 
traffic demands, configurations and charts can be shared with other users. The shared 
items are available in the public workspace while the other users have only read access to 
them. However, they can create their own copies.  

The public workspace initially contains a number of system defined network topologies and 
traffic demands along with the public items from the other users. In the current version of 
Mantis when a user defines an item as public this becomes automatically accessible from 
all users. However, in following versions we plan to introduce the concept of working 
groups that will be created from the users. Then, a user will share his items either with all 
users or with a group’s members only. The user interface provides a separate page (Figure 
27) where users can view and manage the network topologies, traffic demands, 
configurations and charts that have been defined as public.  

 
Figure 27. View and manage shared items. 
 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 39 of 69 

4 PLATON 

This section describes UPC’s PLAnning Tool for Optical Networks (PLATON) from a non-
formal to formal level. Section 4.1 summarizes in a non-formal manner which are the 
PLATON objectives and requirements, that later are extended and grouped in section 4.2 
to define the different tool modules. Each tool module is then formally specified in section 
4.3 using UML Use Case diagrams that describe the user interactions with the tool and 
later, in section 4.3.2, its behaviour is formally modelled using UML sequence diagrams 
and class diagrams. Finally, section 4.4.1 describes how to integrate PLATON into a third 
party tool, and section 4.6 gives a user manual about using PLATON. 

4.1 Objectives and requirements 

4.1.1 Objectives 
The objective of PLATON is to provide an environment where a defined set of optical 
network planning algorithms can be executed using high performance and state-of-the-art 
hardware and software technologies. 

The selected hardware to be used in PLATON are Graphic Processing Unit (GPU) devices 
because they provide notable speedups in terms of computation time and consume only a 
fraction of the energy required in comparison with an equivalent computation power high 
performance computing cluster. Additionally, GPUs require less physical space than a 
computers cluster and are cheaper than a cluster. The drawback of GPUs is the fact that 
the algorithms must be specifically adapted to be executed into the GPU, so a specialized 
developer must implement those algorithms. 

4.1.2 Requirements 
The PLATON requirements are defined below: 

• Performance: Implement the defined set of algorithms using high performance 
technology and algorithm optimizations. 

• Manager-Agent architecture: Design the application to maintain a queue of 
pending jobs scheduled by its priority. When an agent becomes idle, the manager 
will assign the first pending job from the queue to that agent. Each agent executes 
one job (i.e. an algorithm over a user dataset). Multiple jobs must run concurrently 
on different agents. System must be extensible in terms of number of agents in 
case of higher degree of concurrency is required. 

• Test-bed Connectivity: Provide PCE Protocol interface to real network test-beds 
allowing execution of high performance algorithms. 

• Automated Connectivity: Provide XML Web Services interface to network 
simulators allowing execution of high performance algorithms. 

• Web User Interface: Allow the users to login into a web application to manually 
schedule and monitor its high performance computations over specific manually 
uploaded datasets. 

• Algorithm Set Extensibility: Design the tool to allow the administrators to 
implement and integrate new algorithms. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 40 of 69 

• Extensible PCEP-based framework: Provide the base PCEP framework used by 
PLATON to allow third party users to implement their own network planning tool. 

4.2 Architecture description 
PLATON is composed of two main modules, the Cluster Manager, and the set of HPC 
Agents [19]. PLATON can be operated in two different scenarios: the off-line and the in-
operation scenario. 

In the off-line operation scenario, illustrated in Figure 28, the Cluster Manager receives 
user jobs through the web application or the web services interfaces. Jobs are introduced 
into a priority queue and the Job Scheduler is responsible for assigning those jobs to the 
HPC agents according to its prioritization. 

PLATON (HPC-based Planning Tool)

Cluster Manager

User Interface 
Web Server

Web Services 
Server

HTTP Web
Services

HTTP

Job Scheduler

Request DB

HPC Agent 1..N
C

lu
st

er
 

C
om

m
.

Optimization
Algorithm

Framework

Algorithm 1

Algorithm M

Algorithm i

Web Application

Network Simulator

 
Figure 28. PLATON Architecture – Off-line planning scenario 

In the in-operation scenario, illustrated in Figure 29, the Path Computation Element (PCE) 
sends the computation jobs directly to the HPC agent. This second scenario does not add 
the computation jobs into the priority queue because the Job Scheduler’s delay is not 
acceptable in an in-operation planning scenario. 

PLATON (HPC-based Back-end PCE)

PCEP

HPC Agent 1..N

Optimization
Algorithm

Framework

Algorithm 1

Algorithm M

Algorithm i

PC
EP

C
om

m
.

Front-end 
PCE

 
Figure 29. PLATON Architecture – In-operation planning scenario 

The Cluster Manager is divided into 4 blocks: 

• Request DataBase that stores all jobs to be executed. The Request DB provides 
information to the rest of Cluster Manager’s modules. When a job is created or 
modified into the Request DB, a trigger is thrown to the Job Scheduler to notify the 
update. 

• User Interface Web Server that provides a web application to allow users’ access 
to manage their computation jobs and administrators’ access to manage the whole 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 41 of 69 

cluster. Information retrieved by the web application is taken from the Request DB. 
Jobs created using the web application are directly stored into the Request DB. 

• Web Services Server that allows remote network simulation applications to 
automatically connect to the cluster and request computation jobs. Information 
retrieved by the web services is taken from the Request DB. Jobs created using the 
web services are directly stored into the Request DB. 

• Job Scheduler is responsible for monitoring all the HPC Agents and requested 
jobs. Each time it receives a trigger from the Request DB, its internal job’s priority 
queue should be updated. 

Each HPC Agent is divided into 4 blocks: 

• Cluster Communications manages the communication between the Cluster 
Manager and the HPC Agent when the agent is operated in the off-line planning 
scenario. 

• PCEP Communication attends for PCEP Request messages and computes the 
requested algorithms when the agent is operated in the in-operation planning 
scenario. When computation is completed, emits a PCEP Reply message with the 
results. 

• Optimization Algorithm Framework is the main agent’s meta-heuristic loop. This 
framework is common to all algorithms, and depending on the requested algorithm, 
this framework executes specific algorithms from the algorithm set. 

• Algorithms 1..M is the set of specific algorithms that can be executed by the agent. 
When a computation is executed, one of them is selected by the meta-heuristic 
depending on the requested computation to be done. All the algorithms must be 
designed using the same interface (i.e. the same functions and classes signatures) 
so that the same agent code must be able to use any of the algorithms. These 
algorithms are executed into the GPU and must be specifically designed for them. 

4.3 Software specification 
For each module previously defined we specify: a) which are the use cases (i.e. the actions 
that can be done in the module), b) the related actors (i.e. the events, users, etc. that 
trigger the execution of the use cases), and c) the lifecycle of the involved entities when 
needed to describe its complexity. Additionally we provide the communications protocol 
specification used between the Cluster Manager and the HPC Agents in the off-line 
operation scenario. We define these elements using UML use case diagrams to specify the 
actions available to each user, UML life cycle diagrams to describe an overview of complex 
entities’ behaviour, and UML activity diagrams to describe the interaction between the 
Cluster Manager and the HPC Agents. 

4.3.1 Cluster manager specification 
The PLATON Cluster Manager can be operated through two different user interfaces: the 
web application for human users and the XML web services for automated users. Both 
interfaces offer the same functionality and the same internal entities; and only differ in the 
technology used to interact with the user. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 42 of 69 

Cluster Manager has 3 privilege level-structured actors: the non-registered user (lower 
privileges), the registered user (regular privileges) and the administrator user (higher 
privileges). 

Figure 30 illustrates the use cases related to non-registered user. The non-registered user 
is able to: 

• Do login: logging in into the cluster manager. When properly logged in, it becomes 
a registered user or an administrative user depending on its user configuration. 

• Change lost password: introduce user’s email and if a user exists having those 
email address, the system sends a link to the email address. If the email address 
owner clicks the link, the new user’s access password can be provided. The old 
user’s password is discarded. 

Non-Registered
User

Change password

Do Login

1

1

1 1

  

 

Do Logout

1

1

    

      

 

  

 

  

 
 

    
 

 
 

1

  

    

  

 

    
 

     
 

  
 

    

 

  

 

Read/List
Algorithms

1

Change lost
password

1 1

 
Figure 30. PLATON Cluster Manager - Use Cases - Non-Registered User 

Figure 31 illustrates the use cases related to registered user. The registered user is able to: 

• Do logout: logging out from the cluster manager. When logged out, the user 
becomes a non-registered user, but queued jobs and executing jobs remain in the 
cluster and continue its normal execution according queue’s prioritization. 

• Change password: provide a new user’s access password. The old user’s 
password is discarded. 

• Read/List algorithms: list the available algorithms and read the algorithm’s 
description. 

• Create owned job: create new user’s owned jobs. 
• Read/List owned job: list user’s owned jobs and retrieve job attributes. 
• Edit owned job: change job’s attributes: job name, user’s relative job priority 

(priority with respect of the rest of user’s queued jobs) and computation algorithm. 
• Delete owned job: delete user’s jobs. 
• Upload owned job’s data: upload algorithm’s input data. 
• Execute owned job: queue the jobs into the main cluster execution queue to be 

executed as soon as an agent is free. 
• Check owned job status: retrieve the job’s status and job’s statistics. 
• Abort owned job: abort a queued or executing job. 
• Download owned job’s data: download the previously uploaded algorithm’s input 

data. 
• Download owned job’s results: download the algorithm’s result data. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 43 of 69 

Registered
User

o eg ste ed
Use

Change password

o og

1

1

Create Algorithms

1

Edit Algorithms
1

Delete Algorithms

Do Logout

1

1

1

1

1

1

1

Delete Owned   
Jobs

1
1

1

1

Execute Owned   
Jobs

1

1Abort Owned Jobs

1 1

Read/List
Algorithms

1

 

  

 

Check Owned Jobs
Status

1

1

Download Owned
Jobs Data

Upload Owned   
Jobs Data

Download Owned
Jobs Results

11 1

1

1

1

  

«extends»

Create Owned   
Jobs

Edit Owned Jobs

Read/List Owned
Jobs

Delete Not   
Owned Jobs

1 Abort Not    
Owned Jobs

Check Not Owned
Jobs Status

11

List Not Owned  
Jobs

 

  

 

Read/List
Algorithms

1

1

C a ge ost
pass o d

 
Figure 31. PLATON Cluster Manager - Use Cases - Registered User 

Figure 32 illustrates the use cases related to administrator user. The administrator user has 
the same privileges as the registered user plus the next maintenance privileges: 

• Create algorithms: create new algorithms to be used by the user’s jobs. 
• Read/List algorithms: list the available algorithms and retrieve the algorithm’s 

descriptions. 
• Edit algorithms: modify algorithms. 
• Delete algorithms: delete algorithms. 
• Create agents’ configuration: create new agents’ configuration. 
• Read/List agents’ configuration: list the available agents’ configuration and 

retrieve the agents’ configuration. 
• Edit agents’ configuration: modify agents’ configuration. 
• Delete agents’ configuration: delete agents’ configuration. 
• Start agents: activate stopped agents. 
• List agents’ status: list all agents detailing its status. 
• Stop agents: deactivate started agents. 
• Read/List not owned jobs: list jobs from all users and retrieve job’s attributes 

including the job’s owner. 
• Delete not owned jobs: delete not owned jobs. 
• Check not owned jobs status: retrieve not owned job’s status. 
• Abort not owned jobs: abort not owned jobs. 
• Create users: create new cluster users. 
• Read/List users: list and retrieve cluster user’s attributes. 
• Edit users: modify cluster users including its access password and administration 

permission. 
• Delete users: delete existing cluster users. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 44 of 69 

Registered
User

Administrator
User

 

 

Create Algorithms

1

1

Edit Algorithms

1

1

Delete Algorithms

 

1

1

e ete O ed   
Jobsecute O ed   

Jobs
bo t O ed Jobs

Read/List
Algorithms

1

1

Create Agents'
Configuration

Edit Agents'
Configuration

Delete Agents'
Configuration

Read/List Agents'
Configuration

1

1

1
1

1

1

1

1

C ec  O ed Jobs
Status

o oad O ed
Jobs ata

Up oad O ed   
Jobs ata

 
 

Start Agents

Stop Agents

«extends»

    

d t O ed Jobs

 

1

1

1
1

Delete Not   
Owned Jobs

1

1 Abort Not    
Owned Jobs

1

1

Check Not Owned
Jobs Status

1

1

1

1

Read/List Not
Owned Jobs

Create Users

Edit UsersDelete Users

Read/List Users

1

1

1

1

1
11

1

 

List Agents' Status

1

1

 
Figure 32. PLATON Cluster Manager - Use Cases - Administrator User 

To illustrate how the use cases interact with the entities, we use UML life cycle diagrams. 
There are life cycle diagrams for each entity used in PLATON, but they are trivially simple, 
so we describe only the jobs life cycle diagram illustrated in Figure 33. 

Job Not Queued
Create Execute 

Edit, Upload Data, Select Algorithm 

Delete Selected Completed 

Abort 

Abort 

Job Completed

Job Aborted

Delete 

Job Queued Job Executing

Delete 

Download Data 

Download Data, Download Results 

 
Figure 33. PLATON Cluster Manager - Life Cycles - Jobs 

When created and not executed, the initial job’s state is “Job Not Queued” and the 
available actions that can be done over the job are: a) change its attributes (name, priority, 
algorithm to be executed and input data) and the job remains in the same state; b) execute, 
so all attributes become fixed, the state changes to “Job Queued” and the job is inserted 
into the execution’s priority queue; or c) deleted so the job is deleted from the database. 

When the job’s state is “Job Queued”, two actions can be done: a) abort, that removes the 
job from the execution’s priority queue and changes the state to “Job Aborted”; or b) 
selected by the priority queue to be executed, so the job is removed from the priority 
queue, the state is changed to “Job Executing”, and the execution is initiated. 

When the job’s state is “Job Executing”, two actions can be done: a) abort, that aborts the 
job’s computation and changes the state to “Job Aborted”; or b) completed that implies that 
computation has been completed and changes the state to “Job Completed”. 

When the job’s state is “Job Aborted”, two actions can be done: a) download the input data 
provided to the algorithm; or b) delete the job, so the job is deleted from the database. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 45 of 69 

Finally, when the job’s state is “Job Completed”, three actions can be done: a) download 
the input data provided to the algorithm; b) download the output results generated by the 
algorithm; or c) delete the job, so the job is deleted from the database. 

4.3.2 HPC agent specification 
The PLATON HPC agents can be operated through two different scenarios: the off-line 
planning scenario, and the in-operation planning scenario. Both scenarios use the same 
algorithms and input data format, and produce the same output results format. 

When the active scenario is the off-line planning, both input data and output results are 
encoded as XML request and response messages respectively. However, the in-operation 
planning scenario take as input data one PCEP Request message, and output results 
necessarily must be a PCEP Reply message. This data format divergence requires 
translating the input/output data from/to PCEP and XML messages into/from internal 
messages representations. 

HPC Agent has two possible actors, the Cluster Manager, and a PCEP Request, 
corresponding to both possible operation scenarios. Figure 34 illustrates the use cases 
corresponding to both actors. 

Cluster Manager PCEP Request

-Fin1

*

-Fin2

*

-Fin3

* -Fin4

*

Compute Job

Abort Job

Get Agent Status

Stop Agent

Start Agent

-Fin3

*

-Fin4

*

-Fin1
*

-Fin2
*

-Fin1

*

-Fin2

*

-Fin1

*

-Fin2

*

-Fin1
*

-Fin2
*

 
Figure 34. PLATON HPC Agent - Use Cases 

When the HPC Agent is operated using a Cluster Manager, additional use cases exist 
because the Cluster Manager is able to monitor, start and stop the HPC Agents. 

The use cases correspond to: 

• Start agent: instantiate a new agent as a member of a PLATON cluster. 
• Compute job: execute a new job. This use case can be initiated by the Cluster 

Manager and by a PCEP Request. 
• Abort job: abort a job that is currently being executed. This use case can be 

initiated by the Cluster Manager and by a PCEP Request. 
• Get agent status: retrieves to the Cluster Manager the current status of an agent. 
• Stop agent: abort the current computation if any and shutdown the agent. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 46 of 69 

4.3.3 Communication protocol specification 
To specify the communication protocol used between the Cluster Manager and each HPC 
Agent, a UML activity diagram is illustrated in Figure 35. Note that the diagram 
corresponds to a Cluster Manager plus single HPC Agent communication, but multiple 
agents can be attached to the Cluster Manager. There are other interactions between the 
Cluster Manager and the HPC Agent (i.e. start and stop agent, transfer files, etc.), but they 
are trivially simple or consist on executing commands through an SSH console so they are 
avoided and only the communication protocol is described. Note that file transfers between 
the Cluster Manager and the HPC Agent are done via SSH commands so there is no need 
to extend the protocol to support file transfers. 

HPC AgentCluster Manager

Request Hello

Command

Delay Health Check

Request Hello()
Request Solve()

Confirm HelloConfirm Hello

Notification

Notify Result

Confirm Result

Reset AgentCompute

Confirm Solve

Delay Progress Notification

Notify Progress

Confirm Progress
Notify Progress()

Notify Result()

Confirm ProgressStore Progress to DataBase

Store Result to DataBase Confirm Result

Agent Idle

Request Status

Response Status

[Agent Idle] 

Agent Busy

[Agent Busy] Request Solve

[Job Queue Not Empty] 

Response Solve

Response Status

Request Status()

[Job Queue Empty] 

Remove First Priority Queue's Job

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Agent Idle] 

[Agent Busy] 

Error Solve

  

Confirm Solve() Error Solve()

Restore First Priority Queue's Job

 
Figure 35. PLATON Communication Protocol Cluster Manager vs. HPC Agent – 

Activity Diagram 
When HPC Agent is initialized, it stands for an input command and a specific action is 
executed depending on the received command. When the Cluster Manager is initialized, it 
initializes two concurrent activities. 

The first Cluster Manager activity consists on periodically sending “Hello” messages to the 
HPC Agent and stand for the HPC Agent confirmation to control the agent’s health. When 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 47 of 69 

the HPC agent receives a “Hello” command, it must respond as soon as possible to the 
Cluster Manager. When the Cluster Manager receives acknowledge for the “Hello” 
command, it delays the next “Hello” request for a specific amount of time. 

The second Cluster Manager activity begin sending a “Status” command to the HPC Agent 
and waiting for a response to decide if the HPC Agent is initially idle or busy. An HPC 
Agent is idle when the Cluster Manager is initialized only when the Cluster Manager is 
restarted without ensuring that the HPC Agent is idle. When the HPC Agent receives the 
“Status” command, it responds with its status. When the Cluster Manager receives the 
response, if the agent is idle and the job’s priority queue is not empty, the next priority 
queue job is removed from the queue and assigned to the HPC Agent by sending a “Solve” 
command and wait for a “Solve” confirmation. When the confirmation is received, the 
Cluster Manager stands for incoming notifications (i.e. progress notification and final result 
notification) from the HPC Agent. If the HPC Agent is busy, the Cluster Manager also 
stands for incoming notifications until current job is completed. Then, the Cluster Manager 
continues with the next queued job. 

When the HPC Agent receives the “Solve” command, if it is busy, an error message is sent 
to the Cluster Manager and the job that has been removed from the priority queue is 
restored to be taken as the next computation job; if the agent is idle, it confirms the job 
assignment sending a solve confirmed notification and it initializes three concurrent 
activities: a) periodically notifying the computation progress to the Cluster Manager; b) 
initializing the job’s computation and notifying the result to the Cluster Manager when the 
job is completed; and c) immediately returning activity flow control to receive command to 
attend other commands received during the job’s computation. 

When the HPC Agent notifies its job’s computation progress it attaches updated statistics 
related to the computation progress that are stored by the Cluster Manager into the 
database. When properly stored, the Cluster Manager confirms the progress message 
reception to the HPC Agent and the HPC Agent delays the next progress notification. 

When the HPC Agent notifies its job’s computation completion it attaches the final 
computation statistics that are also stored into the database by the Cluster Manager. After 
storing the final statistics into the database, the Cluster Manager confirms the reception of 
the results and self prepares to assign the next job to the idle HPC Agent. 

When the HPC Agent receives the results confirmation, it self-reset destroying the send 
progress activity and redirects flow control to receive next command. Now, both the Cluster 
Manager and the HPC Agent are ready to begin the next computation job. 

4.4 Software design 
PLATON software design has been detailed using UML conceptual diagrams to describe 
relations between entities and UML sequence diagrams to describe the application 
execution flows. As we did with the software specification section, we separately describe 
the Cluster Manager and HPC Agent modules when possible. 

With the aim of clarifying two simplifications has been done into the model: 

• Some entities have been duplicated between diagrams, and only the fields used on 
such diagram are kept. For this reason the “Algorithm” entity has the attribute 
“name” on the Cluster Manager diagram, because the user needs to know the 
name of the algorithm selected on a specific job, but there isn’t on the HPC Agent 
diagram because the HPC Agent only needs to know the “id” of the algorithm to be 
executed, not its name. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 48 of 69 

• Trivial and not important methods have been avoided and only the most important 
methods are kept into the diagrams. 

4.4.1 Cluster manager design 
The cluster manager conceptual diagram shows that the principal entity in the Cluster 
Manager is the Job. The rest of entities are linked to the job in one way or another. Next we 
describe each entity and its attributes from the Cluster Manager point of view. 

-id : int
-inputDataFilePath : string
-resultsFilePath : string
-priorityKey : long

Job
-id : int
-name : string
-email : string
-password : string
-administrator : bool

User

-id : int
-name : string
-description : string

Algorithm

-algorithm

*

-jobs

1

-owner

*

-jobs

1

  

+JobNotQueued = 0
+JobQueued = 1
+JobExecuting = 2
+JobCompleted = 3
+JobAborted = 4

«enumeration»
JobState

  

-state

* 1

+start() : bool
+hello() : bool
+getStatus() : AgentStatus
+solveJob(entrada job : Job) : bool
+abortJob(entrada job : Job) : bool
+stop() : bool

-id : int
-endpoint : Endpoint
-executablePath : string
-executableFlags : string
-sshUserName : string
-sshPassword : string
-sshEndpoint : Endpoint

Agent

-a : byte
-b : byte
-c : byte
-d : byte

«type»
IPAddress

-port : ushort

«type»
Endpoint

-job
0..1-agent

0..1

+AgentIdle = 0
+AgentBusy = 1
+AgentCompleted = 2

«enumeration»
AgentStatus

-state*1

     
  

  

  
  

  
  

  
  

  
  

  

 Cluster Manager

-day : int
-month : int
-year : int
-hour : int
-minute : int
-second : int
-millisecond : int

«type»
TimeStamp

-iterationsComputed : int
-iterationsComputedSinceBestIncumbent : int
-computationTime : long
-computationTimeSinceBestIncumbent : long
-bestIncumbentObjectiveValue : float

«type»
StatisticsEntry

1
-timestamp *

-statisticEntries

1

*

1

-ipAddress*

  
  

  
  

  
  

  

  
  

  
  

  

+LowPriority = 1
+MidPriority = 2
+HighPriority = 3

«enumeration»
JobPriority

-relativePriority
*

1

 
Figure 36. PLATON Cluster Manager - Conceptual Diagram 

The job entity has the following attributes: 

• id: is the job’s ID. 
• inputDataFilePath: is the path to the input file to be used by the algorithm. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 49 of 69 

• resultsFilePath: is the output file to be used by the algorithm to write results. 
• priorityKey: is the key used by the job’s scheduler to select the next job to be 

executed. 
• relativePriority: is the job’s relative priority used to adjust the job’s priority key. 
• owner: is the user that owns the job. 
• algorithm: is the selected algorithm to be used to compute the job. 
• state: is the current state of the job. 
• agent: is the agent that is computing the job. 
• statisticEntries: is the set of statistic entries each one corresponding to one 

progress notification or a results notification. 

The JobPriority enumeration entity is a set of possible job relative priorities. This 
enumeration can be extended if necessary and its default possible values are: 

• LowPriority coded with integer value 1. 
• MidPriority coded with integer value 2. 
• HighPriority coded with integer value 3. 

The Algorithm entity represents the system algorithms and its attributes are: 

• id: is the algorithm’s ID. 
• name: is the algorithm’s name. 
• description: is the algorithm’s description in plain text. 

The User entity represents the system users. When some jobs are linked to the user, the 
user can list all its owned jobs. In case the user is an administrator, it can also list the not 
owned jobs. The User attributes are: 

• id: is the user’s ID. 
• name: is the user’s full name. 
• email: is the user’s email address. 
• password: is the user’s password. 
• administrator: is a flag that informs to the system if the user has administrative 

rights or it is a regular user. 

The JobState enumeration entity is the set of possible job states and its possible values 
are: 

• JobNotQueued coded with integer value 0. 
• JobQueued coded with integer value 1. 
• JobExecuting coded with integer value 2. 
• JobCompleted coded with integer value 3. 
• JobAborted coded with integer value 4. 

The StatisticsEntry entity represents each of the job’s statistics notifications received from 
the agent. It represents execution progress during time and its attributes are: 

• iterationsComputed: is the number of iterations computed. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 50 of 69 

• iterationsComputedSinceBestIncumbent: is the number of iterations computed 
since the best incumbent has been updated. 

• computationTime: is the amount of computation time elapsed in milliseconds. 
• computationTimeSinceBestIncumbent: is the amount of computation time elapsed 

in milliseconds since the best incumbent has been updated. 
• bestIncumbentObjectiveValue: is the objective value of the best incumbent found. 
• timestamp: is the date and time when the statistic entry has been notified. 

The IPAddress entity represents an IP address v4. It only has the 4 bytes required to 
encode the IP address. 

The EndPoint entity represents an IP address v4 plus the connection port represented as 
an unsigned short number. 

The AgentStatus enumeration entity is the set of possible agent states from the Cluster 
Manager and its possible values are: 

• AgentIdle coded with integer value 0. No job is assigned to the agent. 
• AgentBusy coded with integer value 1. An assigned job is under computation. 
• AgentCompleted coded with integer value 2. An assigned job has been completed 

and the agent is waiting for results reception  

The Agent entity represents each HPC Agent connected to the Cluster Manager and its 
attributes are: 

• id: the agent’s ID. 
• endpoint: is the IP address and port where the agent listens for Cluster Manager 

connections. 
• executablePath: is the path to the agent’s executable on its remote file system. 
• executableFlags: is the set of flags used to execute the agent through SSH 

connection. 
• sshUserName: is the username used by SSH to access to the agent’s machine. 
• sshPassword: is the password used by SSH to access to the agent’s machine. 
• sshEndpoint: is the IP address and port where the agent’s SSH daemon is listening 

for incoming connections. 

The important agent’s methods are: 

• start(): used to establish a remote connection to the agent’s SSH terminal using the 
sshEndpoint, sshUserName and sshPassword. When connection is established, 
the executablePath and executableFlags are used to initialize the HPC Agent. 

• hello(): used to send a “Hello” message to the agent and stand for the answer. This 
function is used by the Job Scheduler. 

• getStatus(): used to send a “Status” message to the agent and stand for the 
answer. This function is used by the Job Scheduler. 

• solveJob(): used to send a “Solve” message to the agent attaching the job to be 
solved and stand for the answer. This function is used by the Job Scheduler. 

• abortJob(): used to send an “Abort” message to the agent attaching the job to be 
aborted and stand for the answer. This function is used by the Job Scheduler. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 51 of 69 

• stop(): used to establish a remote connection to the agent’s SSH terminal using the 
sshEndpoint, sshUserName and sshPassword. When connection is established, 
the agent is located and killed sending Shell commands. 

4.4.1.1 Job Scheduler’s priority queue 
The Job’s Scheduler is the responsible of deciding which job is going to be executed each 
time. To schedule the jobs, a job priority queue is used, and a priority key is assigned to 
each job. The next job to be executed each time is the job with lower priority key. 

This priority key is a scaled timestamp, and is computed using the time instant when the 
job has been set to “JobQueued” and the relative priority requested by the job’s owner. 

The relative priority is a number that represents a priority level and can be 1 for low priority, 
2 for mid priority and 3 for high priority. If needed, additional priority levels can be added. 
The default relative priority level is mid priority. 

The priority key is computed as follows: 

rp = Relative priority is one of {1=Low, 2=Mid, 3=High} 

n = Number of relative priority levels = 3 

ts = Time stamp computed as job’s queue insertion date and time in milliseconds 

pk = Priority key used by the priority queue to sort the jobs 

pk = ts* (n + 1 - rp) 

This priority key computation ensures that any job is going to remain into the queue 
indefinitely. New jobs are introduced into the queue at least with current date and time in 
milliseconds, so, if one job remains into the queue for a while, its priority key is going to be 
lower than newly introduced high priority jobs, so a low priority ancient job can become 
prior than a new high priority job. 

Note that if all jobs are set with the same priority, the priority queue acts as a FIFO queue. 

4.4.2 HPC agent design 
The HPC Agent’s conceptual diagram is composed by 3 main entities: the Job, the 
Algorithm and the StatisticsEntry. These entities and the rest of components are described 
below from the point of view of the HPC Agent. 

The StatisticsEntry is exactly equal than the Cluster Manager respective entity so it is not 
further described. The only difference is that in the HPC Agent, instead of having a set of 
statistics entries, there is a single statistics entry used to store the current statistics. 

The Job entity on the HPC Agent only uses the attributes id, inputDataFilePath, 
resultsFilePath and algorithm. The rest of attributes are not required. One extra attribute 
not used by the Cluster Manager is required in the HPC Agent: 

• currentStatistics: is the current statistics entry. On the next progress/results 
notification this StatisticsEntry is going to be sent. 

The AlgorithmInputData and AlgorithmOutputData entities wrap each one a generic object 
used to store in-memory the algorithm input and results data. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 52 of 69 

The Algorithm entity represents the algorithm to be executed in the agent and has two 
additional attributes and three methods used by the agent. The additional Algorithm’s entity 
attributes are: 

• jobInputData: is an AlgorithmInputData entity containing the input data that has 
been read from the input file. 

• jobResultsData: is an AlgorithmOutputData entity containing the results data 
generated from the algorithm that is going to be written into the results file. 

The additional Algorithm’s entity methods are: 

• initialize(): is responsible of initializing the algorithm using the input data read from 
input file. This method returns true when the initialization has been done correctly or 
false if the input data is incorrect. 

• executeIteration(): is responsible of executing one algorithm’s iteration and updating 
the currentStatistics attribute with the partial results. The function returns true when 
additional iterations must be computed, or false if the execution has been 
completed. 

• getResults(): is the function called by the agent when the computation has been 
completed to obtain the results data that must be written into the algorithm’s results 
file. 

  
  

  
  

  
  
  

  
  

  
  string

 : string

+data : object

«type»
AlgorithmInputData

 = 0
 = 1

 = 2
 = 3

 = 4

+data : object

«type»
AlgorithmOutputData

  
  

  
     
     

  

  
  

  
  

  
  
  

  byte
  byte
  byte
  byte

«type»

  

«type»
Endpoint

  
  

  

+initialize(entrada jobInputData : AlgorithmInputData) : bool
+executeIteration() : bool
+getResults() : AlgorithmOutputData

-id : int
-jobInputData : AlgorithmInputData
-jobResultsData : AlgorithmOutputData

Algorithm

-id : int
-inputDataFilePath : string
-resultsFilePath : string

Job

-algorithm
1

-jobs
1

HPC Agent 

  
  

  
  

  
  

  

  
  

  
  

  

1

-ipAddress*

-day : int
-month : int
-year : int
-hour : int
-minute : int
-second : int
-millisecond : int

«type»
TimeStamp

-iterationsComputed : int
-iterationsComputedSinceBestIncumbent : int
-computationTime : long
-computationTimeSinceBestIncumbent : long
-bestIncumbentObjectiveValue : float

«type»
StatisticsEntry

1

-timestamp *

1

-currentStatistics

1

  
  
  

 
Figure 37. PLATON HPC Agent - Conceptual Diagram 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 53 of 69 

4.4.3 Create/Execute/Retrieve Job sequence diagram 
To describe operations done by the Cluster Manager and the HPC Agent when a job is 
created, modified and executed, an UML sequence diagram is provided. The rest of 
operations also have sequence diagrams, but are so simple and does not provide 
important information; or are equal than parts of the provided diagram. 

The process, shown in Figure 38, begins when the user requests to the interface to create 
a new job. This job is created with the default job’s state that is JobNotQueued. The 
interface requests a Job insertion into the database, and when the database confirms the 
job insertion, the interface also confirms to the user such situation. 

Then, the user requests the list of algorithms to the interface and this request is forwarded 
to the database. The retrieved set of algorithms is then shown to the user who selects the 
algorithm it wants to associate to the job. When the user selects the algorithm the interface 
requests to the database to update the job associating the algorithm. 

The next step is to provide the job’s input data file through the interface. The interface 
stores the file into the network file system shared between the Cluster Manager and the 
HPC Agent, and also updates the file path into the job that is being created. 

Now the job is ready to be executed. The user requests a job execution to the interface that 
updates the job by setting the job’s state to “JobQueued”. This specific update into the 
database triggers the Job Scheduler to update its internal priority queue inserting the newly 
created job and computing its priority as described in section 4.4.1.1. 

When the HPC Agent becomes idle, the job scheduler removes the first (i.e. the most prior 
job) and assigns it to the HPC Agent by sending a “Solve” command that the agent 
confirms by sending a “Confirm Solve” response. When the Job Scheduler receives the 
“Confirm Solve” response it updates the job’s state to “JobExecuting”. 

The job’s execution begins by initializing the algorithm and reading the job’s initial data. 
Then, one or more algorithm’s heuristic iterations are executed and periodically the agent 
sends “Notify Progress” commands to the Cluster Manager that contains partial statistical 
results that are stored into the database to plot the algorithm’s evolution on the interface. 
When the notifications are stored, a “Confirm Progress” response is sent to the agent. 

When the computation is completed the agent stores the results into the file pointed by the 
results file path and it sends a “Notify Results” to the Cluster Manager that contains the 
final statistics of the algorithm’s execution. Receiving this command implies that the 
execution has been completed, so the Cluster Manager stores the final statistics received 
and changes the job’s state to “JobCompleted”. 

Finally, when the user wants to view the progress of the computation, it simply connects to 
the Cluster Manager’s interface and requests a job retrieving. The information retrieved 
contains the job’s data, the job’s state, a link to download the job’s input data file and the 
job’s statistical progress of the computation. Additionally, if the job is completed, the 
interface retrieves a link to download the results file. Because both the input data file and 
the results file are stored into the shared file system, the interface of the Cluster Manager is 
able to directly retrieve the files to the user. 

 

 

 

 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 54 of 69 

 

User Interface

Create Job

Job ID

RequestDB NetworkFileSystem Job Scheduler

Insert Job

Job ID

Get Algorithms List Get Algorithms List

Set Job's Algorithm Set Job's Algorithm

Upload Job's Data File Write Job's Data File

Job's Data File Path

Set Job's Data File Path

Execute Job Update Job's State

Job Updated

Get Jobs

Jobs

Agent

At this point the previous job has
been completed, so the next job
can be assigned to the Agent.

Solve Request

Confirm SolveUpdate Job's State

Algorithm

Initialize Algorithm

Read Job's Data File

Job's Data File

Execute Iteration

Execute Iteration

Get Results

Results

Insert Job's Partial Statistics Notify Progress

Notify ProgressInsert Job's Partial Statistics

Notify ResultInsert Job's Final Statistics

Write Job's Results File

Update Job's State

Confirm Results

Confirm Progress

Confirm Progress

Insert Job's Partial Statistics Notify Progress

Confirm Progress

Get Job Get Job

Job Data and StateJob Data and State

Download Results File Get Job's Results File Path

Job's Results File Path

Read Job's Results File

Job's Results FileJob's Results File

Because this update changes the job's state to
"JobQueued", the Job Scheduler is triggered to
insert the newly created job into its priority queue.

 
Figure 38. PLATON Create/Execute/Retrieve Job - Sequence Diagram 

 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 55 of 69 

4.5 Developer guide 
We provide an in-operation planning tool that allows the partners to use their own 
algorithms. This planning tool contains both an extendable PCE interface, i.e. usually 
partners will implement their algorithms there, and a PCC test application used to send 
requests to the PCE interface. 

The interface provided and described in this section is based on PCE Communications 
Protocol [20] and the Synchronization VECtor [21] standards. 

4.5.1 Path Computation Element API 
In this section, we review the public PCEP structures and methods specified in the pcep.h 
file. 

4.5.1.1 Session configurable parameters 
PCEP peers negotiate a set of parameters before a session is established. At the time of 
writing this document, two parameters are specified relater to timers for session refresh 
and session expiration: KeepAliveTimer and DeadTimer, both in seconds. 

The PCEPConfig structure allows specifying the range of the above timers. 

typedef struct { 
 u_int32_t defaultKeepAlive; 
 u_int32_t minKeepAlive; 
 u_int32_t maxKeepAlive; 
 u_int32_t minDeadTimer; 
 u_int32_t defaultDeadTimer; 
 u_int32_t maxDeadTimer; 
} PCEPConfig; 
PCEPConfig ADT has defined the following methods: 
PCEPConfig *PCEPConfig_new() 

Constructor. Returns a valid pointer to a new PCEPConfig structure if success or NULL if 
an error happened while allocating memory. 
void PCEPConfig_destroy(PCEPConfig *config) 

Destructor. Releases the allocated memory pointed by the config argument. 

4.5.1.2 PCEP 
PCEP structure is the front-end of the PCEP API. It contains a number of private fields and 
the following methods to work with it: 

PCEP *PCEP_new (char *str_pceIPAddr, char *str_pccIPAddr, int 
isPCE, PCEPConfig *config) 

Constructor. Returns a valid pointer to a new PCEP structure if success or NULL if an error 
happened while allocating memory. The following arguments are needed: 
• char *str_pceIPAddr: IP address of where the PCE runs. E.g. “10.10.1.1” 
• char *str_pccIPAddr: In case of this instance is a PCC, this parameter should 

contains its local IP address. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 56 of 69 

• int isPCE: specifies whether this instance will act as a PCE (=1) or not (=0). 
• PCEPConfig *config: configuration parameters for PCEP sessions. 

void PCEP_destroy (PCEP *pcep) 

Destructor. Releases the allocated memory pointed by the pcep argument. 

void PCEP_startSession (PCEP *pcep) 

Starts a new session to the PCE. Note that two sessions between two peers is not 
allowed, so this method must be invoked only once. 
void PCEP_registerCB (PCEP *pcep, int event, int 
(*Client_notifyEvent) (void *, int)) 

Registers a callback function to be invoked after the specified event arises. The set of 
registrable events, are defined in the FSM section. 

The following arguments are needed: 
• PCEP *pcep: pointer to the PCEP structure. 
• int event: One of the above. 
• (*Client_notifyEvent) (void *, int): Pointer to the callback function, 

where the first argument points to a PCEPSession. The second argument specified 
the condition that raised the event and it has not meaning in the current version of the 
API 

void PCEP_unRegisterCB (PCEP *pcep, int event) 

Unregisters from the specified event. 

The following arguments are needed: 
• PCEP *pcep: pointer to the PCEP structure. 
• int event: One of the specified in the FSM section. 

4.5.2 PCEP Finite State Machine (FSM) 
In this section, we review the events that are available for registering callback functions, 
from those specified in the pcep_fsm.h file. 

• PCEP_EV_UP: A new session has been established. 

• PCEP_EV_CLOSE: The session has been closed. 

• PCEP_EV_PCREQ: A new PCReq has been received at the PCE. 

• PCEP_EV_PCREP: A new PCRep has been received from the PCE. 

4.5.3 PCEP Session 
In this section, we review the public PCEPSession methods specified in the 
pcep_session.h file. PCEPSession contains all the data regarding a specific PCEP 
session. It contains a number of private fields and the following methods to work with it: 

int PCEPSession_newTransaction (PCEPSession *session, 
PCEP_TransactionType type) 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 57 of 69 

Creates a new transaction to the peered PCE. Only one transaction type has been defined 
in this PCEP version; the one for request and response path computations. The following 
arguments are needed: 
• PCEPSession *session: Pointer to a valid PCEP session. 
• PCEP_TransactionType type: type of transaction. Defined in 

pcep_transaction.h. 

PCEP_PathComputation *PCEPSession_getPathComputation (PCEPSession 
*session) 

Return a valid pointer to an initialized PCEP_PathComputation structure if success or 
NULL if an error happened while allocating memory. The following argument is needed: 
• PCEPSession *session: Pointer to a valid PCEP session. 

int PCEPSession_sendReq (PCEPSession *session) 

Sends a PCReq message towards the peered PCE with the data in the 
PCEP_PathComputation structure. Returns 0 if success, -1 if error. 

int PCEPSession_sendRep (PCEPSession *session) 

Sends a PCRep message towards the PCC that requested a path computation. It uses the 
data in the PCEP_PathComputation structure. Returns 0 if success, -1 if error. 

4.5.4 Transaction 
In this section, we review the public methods specified in the pcep_transaction.h file. 
It contains a number of data structures, type definitions and methods. 

Type definitions: 

typedef enum {PATHCOMPUTATION} PCEP_TransactionType 

Only one transaction type is defined in this PCEP version: 
• PATHCOMPUTATION: Specified a Req-Rep transaction type. 

 

Data structures: 

The following data structures are defined. Note that many of the fields are PCEP objects. 

PCEP_PathComputation: Contains all the data regarding a PCReq and PCRep 
messages within a transaction. 

typedef struct { 
// public read only. USE the right add function for writing 
 unsigned int requestCount; 
 unsigned int svecCount; 
 unsigned int responseCount; 
 PCEP_Request **requestArray; 
 SVEC ** svecArray; 
 PCEP_Response **responseArray; 
} PCEP_PathComputation 
 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 58 of 69 

PCEP_Request: Contains partial data regarding a PCReq message within a transaction. 

typedef struct { 
// public read/write 
 RP *rp; 
 EndPoints *endPoints; 
 LSPA*lspa; 
 Bandwidth *reqBw; 
 RRO *rro; 
 Bandwidth *currentBw; 
 IRO *iro; 
 LoadBalancing *loadBal; 
  
// public read only. USE the right add function for writing. 
 unsigned int metricCount; 
 Metric **metricArray; 
} PCEP_Request 
 

PCEP_Response: Contains all the data regarding a PCRep message within a transaction. 

typedef struct { 
// public read/write 
 RP *rp; 
 No_Path *noPath; 
 LSPA *lspa; 
 Bandwidth *bw; 
 IRO *iro; 
  
// public read only. USE the right add function for writing 
 unsigned int metricCount; 
 unsigned int pathCount; 
 Metric **metricArray; 
 PCEP_Path **pathArray; 
} PCEP_Response 
 

PCEP_Path: Contains the data regarding a path for a PCRep message within a 
transaction. 

typedef struct { 
// public read/write 
 ERO *ero; 
 LSPA *lspa; 
 Bandwidth *bw; 
 IRO *iro; 
 
// public read only. USE the right add function for writing 
 unsigned int metricCount; 
 Metric **metricArray; 
} PCEP_Path 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 59 of 69 

Methods: 

PCEP_Request *PCEP_PathComputation_addRequest 
(PCEP_PathComputation *pcomp) 

Adds a new PCEP_Request to the path computation data structure and returns a valid 
pointer to that request or NULL if an error happened. The following arguments are needed: 
• PCEP_PathComputation *pcomp: Pointer to a valid PCEP_PathComputation 

structure. 
SVEC *PCEP_PathComputation_addSVEC (PCEP_PathComputation *pcomp) 

Adds a new SVEC object to the path computation data structure and returns a valid pointer 
or NULL if an error happened. The following arguments are needed: 
• PCEP_PathComputation *pcomp: Pointer to a valid PCEP_PathComputation 

structure. 
PCEP_Response *PCEP_PathComputation_addResponse 
(PCEP_PathComputation *pcomp) 

Adds a new PCEP_Response to the path computation data structure and returns a valid 
pointer or NULL if an error happened. The following arguments are needed: 
• PCEP_PathComputation *pcomp: Pointer to a valid PCEP_PathComputation 

structure. 
PCEP_Path *PCEP_Response_addPath (PCEP_Response *response) 

Adds a new PCEP_Path to the path response data structure and returns a valid pointer or 
NULL if an error happened. The following arguments are needed: 
• PCEP_Response *response: Pointer to a valid PCEP_Response structure. 

Metric *PCEP_Response_addMetric (PCEP_Response *response) 

Adds a new Metric object to the path response data structure and returns a valid pointer 
or NULL if an error happened. The following arguments are needed: 
• PCEP_Response *response: Pointer to a valid PCEP_Response structure. 

Metric *PCEP_Path_addMetric (PCEP_Path *path) 

Adds a new Metric object to the PCEP_Path data structure and returns a valid pointer or 
NULL if an error happened. The following arguments are needed: 
• PCEP_Path *path: Pointer to a valid PCEP_Path structure. 

4.5.5 PCEP objects 
In the current version of this document, the following objects are specified: 

Object Name Description Definition 
RO (ERO, RRO, IRO) Route Object pcep_obj_ro.h 
RP Request Parameters pcep_obj_rp.h 
NO_PATH No Path Object pcep_obj_no_path.h 
LOAD_BALANCING Load Balancing pcep_obj_load_balancing.h 
METRIC Mertric Object pcep_obj_metric.h 
BANDWIDTH Bandwidth object pcep_obj_bandwidth.h 
END_POINTS End Points Object pcep_obj_end_points.h 
LSPA LSP Attributes pcep_obj_lspa.h 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 60 of 69 

SVEC Synchronization VECtor pcep_obj_svec.h 
The interface for the objects is really similar, where OBJECT needs to be replaced by the 
name of the desired object. 
OBJECT * OBJECT_new () 

OBJECT constructor. Returns a valid pointer to a new OBJECT structure if success or NULL 
if an error happened while allocating memory. 
void OBJECT_init (OBJECT *object, …) 

Initializes object. The arguments depend on the specific object. 
int OBJECT_toString (OBJECT *object, char *str) 

Prints the contents of the object in the string. The following arguments are needed: 
• OBJECT *object: Pointer to a valid OBJECT structure. 
• char *str: allocated memory where the object in to be written. 

Returns length of the string if positive or a processing error: 
• NOT_SUPPORTED_OBJ_ERROR 
• BAD_OBJ_FMT_ERROR 

int OBJECT_clone (OBJECT *source, OBJECT *dest) 

Clone the object from a source object. The following arguments are needed: 
• OBJECT * source: Pointer to a valid OBJECT structure, which is the source of the 

object contents. 
• OBJECT * dest: Pointer to a valid OBJECT structure, which are the destination of the 

object contents. 

In addition to the above public methods, some others are available, as detailed in the 
specific section describing the object. 

4.5.6 Examples 

4.5.6.1 PCC test program 
The following C code presents an example of PCC that sends requests to the in-operation 
planning tool integrated in a back-end PCE. 
#include <zebra.h> 
#include "memory.h" 
#include "log.h" 
 
#include "pcc.h" 
#include "pcep_api.h" 
#include "pcep_session.h" 
#include "pcep_transaction.h" 
 
extern PCC *pcc; 
 
// Call back functions 
int PCC_PCEPSessionDwnCB (void *arg, int condition); 
int PCC_PCEPSessionUpCB (void *arg, int condition); 
int PCC_ProcessPCRepCB (void *arg, int condition); 
 
PCC *PCC_new() { 
 
 PCC *pcc = (PCC *)XMALLOC(MTYPE_PCC, sizeof(PCC)); 
 if (!pcc) { 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 61 of 69 

  zlog_err("[PCC] couldnt allocate memory"); 
  return NULL; 
 } 
  
 // Defining configuration parameters 
 PCEPConfig *config = PCEPConfig_new(); 
 if (!config) { 
  XFREE (MTYPE_PCC, pcc); 
  zlog_err("[PCC] couldnt allocate memory"); 
  return NULL; 
 } 
  
 config->maxKeepAlive = 100; 
 config->minKeepAlive = 0; 
 config->defaultKeepAlive = 30; 
 config->maxDeadTimer = 300; 
 config->minDeadTimer = 0; 
 config->defaultDeadTimer = 120; 
 
 // Creating a PCEP acting as a PCC 
 pcc->pcep = PCEP_new(“10.10.1.1”, “10.10.1.2”, 0, config); 
 PCEPConfig_destroy(config); 
 if (!pcc->pcep) { 
  XFREE (MTYPE_PCC, pcc); 
  return NULL; 
 } 
  
 // Call back registering 
 PCEP_registerCB (pcc->pcep, PCEP_EV_CLOSE, PCC_PCEPSessionDwnCB); 
 PCEP_registerCB (pcc->pcep, PCEP_EV_UP, PCC_PCEPSessionUpCB); 
 PCEP_registerCB (pcc->pcep, PCEP_EV_PCREP, PCC_ProcessPCRepCB); 
  
 zlog_info("[PCC_new] running on %s", pcc->str_PCCIPAddr); 
  
 // PCC must initiate session establishment 
 PCEP_startSession(pcc->pcep); 
  
 return pcc; 
} 
 
void PCC_destroy(PCC *pcc) { 
 
 if (pcc) { 
  PCEP_destroy (pcc->pcep); 
  XFREE (MTYPE_PCC, pcc); 
 } 
} 
 
int PCC_PCEPSessionDwnCB (void *arg, int condition) { 
 
 if (!arg) return -1; 
 
 PCEPSession *session = (PCEPSession *) arg; 
 zlog_info ("[PCC_PCEPSessionDwnCB] Session 0x%08x is DOWN", 
    session->peerIPAddr); 
 pcc->enabled = 0; 
  
 return 0; 
} 
 
int PCC_PCEPSessionUpCB (void *arg, int condition) { 
 
 if (!arg) return -1; 
 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 62 of 69 

 PCEPSession *session = (PCEPSession *) arg; 
 
 zlog_info ("[PCC_PCEPSessionUpCB] Session 0x%08x is UP", 
    session->peerIPAddr); 
 
 // Sets a flag to indicate that the session is up 
 pcc->enabled = 1;  
  
 // Example of New Path Computation Request. This fragment should be in another 
initiating method. It is in this method just as an example. 
 
 // Create a new Transaction to send a PCReq. 
 PCEPSession_newTransaction (session, PATHCOMPUTATION); 
 
 // Get the Path Computation structure and fill in the request. 
 PCEP_PathComputation *pathComp = PCEPSession_getPathComputation (session); 
 PCEP_Request *request = PCEP_PathComputation_addRequest (pathComp); 
 
 request->rp = RP_new(); 
 RP_init(request->rp, 0, 1, 0, 12); 
  
 request->endPoints = EndPoints_new(); 
 EndPoints_init(request->endPoints, 0x0101A8C0, 0x0501A8C0); 
  
 // Send the PCReq message to the peered PCE. 
 PCEPSession_sendReq (session); 
  
 return 0; 
} 
 
int PCC_ProcessPCRepCB (void *arg, int condition) { 
 
 if (!arg) return -1; 
 
 PCEPSession *session = (PCEPSession *) arg; 
  
 zlog_info ("[PCC_ProcessPCRepCB] Received PCRep Message for session 0x%08x", 
    session->peerIPAddr); 
  
 // Get the Path Computation structure 
 PCEP_PathComputation *pathComp = PCEPSession_getPathComputation (session); 
  
 // Reads the response for each request 
 int i; 
 char str[1024]; 
 for (i=0; i<pathComp->responseCount; i++) { 
 
  RP_toString(pathComp->responseArray[i]->rp, str); 
  zlog_info ("[PCC_ProcessPCRepCB] %s", str); 
   
  int j; 
  for (j=0; j<pathComp->responseArray[i]->pathCount; j++) { 
   ERO_toString(pathComp->responseArray[i]->pathArray[j]->ero, str); 
   zlog_info ("[PCC_ rocessPCRepCB] %s", str); 
  } 
 } 
 
 return 0; 
} 

4.5.6.2 Planning Tool with integrated PCEP interface 
The following C code illustrates how algorithms can be integrated in PLATON. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 63 of 69 

#include <zebra.h> 
#include "memory.h" 
#include "log.h" 
 
#include "pce.h" 
#include "pcep_api.h" 
#include "pcep_session.h" 
 
extern PCE *pce; 
 
// Call back functions 
int PCE_PCEPSessionUpCB (void *arg, int condition); 
int PCE_PCEPSessionDwnCB (void *arg, int condition); 
int PCE_ProcessPCReqCB (void *arg, int condition); 
 
PCE *PCE_new() { 
 PCE *pce = (PCE *)XMALLOC(MTYPE_PCE, sizeof(PCE)); 
 if (!pce) { 
  zlog_err("[PCE] couldnt allocate memory"); 
  return NULL; 
 } 
  
 // Defining configuration parameters 
 PCEPConfig *config = PCEPConfig_new(); 
 if (!config) { 
  XFREE (MTYPE_PCE, pce); 
  zlog_err("[PCE] couldnt allocate memory"); 
  return NULL; 
 } 
  
 config->maxKeepAlive = 100; 
 config->minKeepAlive = 0; 
 config->defaultKeepAlive = 30; 
 config->maxDeadTimer = 300; 
 config->minDeadTimer = 0; 
 config->defaultDeadTimer = 120; 
 
 // Creating a PCEP acting as a PCE 
 pce->pcep = PCEP_new((“10.10.1.1”, NULL, 1, config); 
 PCEPConfig_destroy(config); 
 if (!pce->pcep) { 
  XFREE (MTYPE_PCE, pce); 
  return NULL; 
 } 
 
 // Call back registering 
 PCEP_registerCB (pce->pcep, PCEP_EV_CLOSE, PCE_PCEPSessionDwnCB); 
 PCEP_registerCB (pce->pcep, PCEP_EV_UP, PCE_PCEPSessionUpCB); 
 PCEP_registerCB (pce->pcep, PCEP_EV_PCREQ, PCE_ProcessPCReqCB); 
  
 zlog_info("[PCE_new] running on %s", pce->str_PCEIPAddr); 
  
 return pce; 
} 
 
void PCE_destroy(PCE *pce) { 
 
 if (pce) { 
  PCEP_destroy (pce->pcep); 
  XFREE (MTYPE_PCE, pce); 
 } 
} 
 
int PCE_PCEPSessionDwnCB (void *arg, int condition) { 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 64 of 69 

 
 if (!arg) return -1; 
 
 PCEPSession *session = (PCEPSession *) arg; 
  
 zlog_info ("[PCE_PCEPSessionDwnCB] Session 0x%08x is DOWN", 
    session->peerIPAddr); 
   
 return 0; 
} 
 
int PCE_PCEPSessionUpCB (void *arg, int condition) { 
 
 if (!arg) return -1; 
 
 PCEPSession *session = (PCEPSession *) arg; 
  
 zlog_info ("[PCE_PCEPSessionUpCB] Session 0x%08x is UP", 
    session->peerIPAddr); 
 
 // Sets a flag to indicate that the session is up 
 pce->enabled = 1; 
  
 return 0; 
} 
 
int PCE_ProcessPCReqCB (void *arg, int condition) { 
 
 if (!arg) return -1; 
 
 PCEPSession *session = (PCEPSession *) arg; 
  
 zlog_info ("[PCE_ProcessPCReqCB] Received PCReq Message for session 0x%08x", 
    session->peerIPAddr); 
 
 // Get the Path Computation structure 
 PCEP_PathComputation *pathComp = PCEPSession_getPathComputation (session); 
 
 // Creates a response for each request 
 int i; 
 for (i=0; i<pathComp->requestCount; i++) { 
 
  PCEP_Response *response = PCEP_PathComputation_addResponse (pathComp); 
 
// Each response MUST contains one RP object and a PATH with an ERO if success 
// or a NO_PATH if no path was found. 
  response->rp = RP_new(); 
  RP_clone(pathComp->requestArray[i]->rp, response->rp); 
 
  PCEP_Path *path = PCEP_Response_addPath (response); 
 
  path->ero = ERO_new(); 
  RO_addSubObj (path->ero, 
   Unnumbered_newSubObj (pathComp->requestArray[i]->endPoints->sourceIP, 
      0x01)); 
  RO_addSubObj (path->ero, 
   Unnumbered_newSubObj (0x0201A8C0, 0x01)); 
  RO_addSubObj (path->ero, 
   Unnumbered_newSubObj (pathComp->requestArray[i]->endPoints->destinationIP, 
   0x02)); 
 } 
  
 // Send the PCRep message 
 PCEPSession_sendRep (session); 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 65 of 69 

  
 return 0; 
} 

4.6 User guide 
In this section we describe the process to create and execute jobs in PLATON. Note that 
being PLATON’s architecture highly complex, the previous UML diagrams show a 
simplified vision of the tool. Some entities such as projects has been avoided and simplified 
in the UML diagrams and related explanations. 

Some remarks to better understand this guide: 

• Jobs are grouped into projects. 
• Input files are related to projects and can be shared between jobs in the same 

project. 
• Jobs are added directly to the queue after being created so they are executed as 

soon an agent is free. 

The first step is to log in PLATON typing a valid username and password. 

 
Figure 39. PLATON - Login 

After logging into PLATON, the user is redirected to its projects list. To create a new 
project, click the “Projects -> New Project” menu. See Figure 40 

 
Figure 40. PLATON - User's projects list 

When selected the “New Project” menu, the user is redirected to the input form shown in 
Figure 41 where the project’s name must be filled in and then the user must click the 
submit button. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 66 of 69 

 
Figure 41. PLATON - Create Project 

After clicking the submit button the user is redirected to the second project creation step 
where the input data file must be selected. Click submit button to continue. Additional input 
data files can be uploaded to the project latter, but one is mandatory to create the project. 

 
Figure 42. PLATON - Select Input Data File 

After clicking the submit button, the user is redirected back to its project’s list where the 
new project is now shown. Some buttons related to the project are shown in the right hand 
side of the project row. These buttons allow the user to edit the project, delete the project, 
create a new job, upload a new input data file, list the jobs, and list the input data files. In 
our case, to create a new job, the “NJ” (for New Job) button must be clicked and the user is 
redirected to the new job form. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 67 of 69 

 
Figure 43. PLATON - User's projects list having a project 

The user is redirected to the form shown in Figure 44, where the computing algorithm, the 
input data file from the project, the job name and the job priority are selected. 

 
Figure 44. PLATON - Create Job 

After clicking the submit button, the user is redirected to the project’s job list that contains 
the newly created job in “Job Queued” status. As soon an agent is free, the job is executed 
and status is changed to “Job Executing” as shown in Figure 45. Additionally in this list the 
jobs have several options that consists on edit and delete the job if it is not under 
execution, view the input file, view the results file if the job has been completed, and view 
the current execution status details shown in Figure 46. 

The list of jobs and the job’s execution detail shown respectively in Figure 45 and Figure 46 
are refreshed dynamically each 20 seconds. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 68 of 69 

 
Figure 45. PLATON - Job Executing 

 
Figure 46. PLATON – Job’s Execution Status – Job Executing 

Figure 46 show the job’s progress. This information is dynamically refreshed and the best 
solution found is plotted dynamically. When the computation is completed, the job’s status 
changes dynamically to “Job Completed” and the bottom section is updated with the results 
file download links as shown in Figure 47. 



 

IST IP IDEALIST  
(Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport 
Networks) 

 

Network Planning Tool: 
Architecture and Software 

Design 
 

 

 

Page 69 of 69 

 
Figure 47. PLATON – Job's Execution Status – Job Completed 

5 Conclusions 

This deliverable focused on two network planning tools for next generation flexgrid optical 
networks. 

The first one, named MANTIS, is intended for off-line planning and testing algorithms that 
can be designed for dynamic network operation. 

The second one, named PLATON, focuses on off-line and in-operation network planning. 
For off-line planning, PLATON can rely on state-of-the-art computation hardware, such as 
GPUs, which enable the design of highly parallel algorithms. As for the in-operation 
planning, PLATON includes a PCEP interface so as to receive PCEP requests from a PCE. 

 

 

 

 

 

 

 

 

 

 

END OF DOCUMENT 


	1 Executive summary
	1.1 Off-line planning
	1.2 In-operation planning
	1.3 Planning Tools

	2 Introduction
	2.1 Purpose and Scope
	2.2 Reference Material
	2.2.1 Reference Documents
	2.2.2 Acronyms

	2.3 Document History

	3 MANTIS
	3.1 Objectives and requirements
	3.1.1 Algorithmic Issues in Flexgrid Optical Networks
	3.1.1.1 Accounting for Physical layer impairments
	3.1.1.2 Routing and Spectrum Allocation
	3.1.1.3 Dynamic network operation


	3.2 Mantis architecture description
	3.3 Software Implementation Technologies
	3.4 Software Design
	3.5 Developer Guide
	3.5.1 The Plug-in Mechanism
	3.5.2 Mantis Python Library

	3.6 User Guide
	3.6.1 Algorithms included in the current version of Mantis
	3.6.2 User Interface
	3.6.2.1 Main UI areas
	3.6.2.2 Defining topologies, traffic matrices and costs
	3.6.2.3 Setting up a configuration
	3.6.2.4 Setting up a projection
	3.6.2.5 Status and results
	3.6.2.6 Social Characteristics



	4 PLATON
	4.1 Objectives and requirements
	4.1.1 Objectives
	4.1.2 Requirements

	4.2 Architecture description
	4.3 Software specification
	4.3.1 Cluster manager specification
	4.3.2 HPC agent specification
	4.3.3 Communication protocol specification

	4.4 Software design
	4.4.1 Cluster manager design
	4.4.1.1 Job Scheduler’s priority queue

	4.4.2 HPC agent design
	4.4.3 Create/Execute/Retrieve Job sequence diagram

	4.5 Developer guide
	4.5.1 Path Computation Element API
	4.5.1.1 Session configurable parameters
	4.5.1.2 PCEP

	4.5.2 PCEP Finite State Machine (FSM)
	4.5.3 PCEP Session
	4.5.4 Transaction
	4.5.5 PCEP objects
	4.5.6 Examples
	4.5.6.1 PCC test program
	4.5.6.2 Planning Tool with integrated PCEP interface


	4.6 User guide

	5 Conclusions

