

The Collective Experience of Empathic
Data Systems

ICT-258749

Deliverable 5.1

Specifications and Architecture

Authors Alberto Sanfeliu Cortés, Andreu Corominas

Murtra, Edmundo Guerra Paradas, Alex
Goldhoorn, Joan Perez Ibarz, Pedro Omedas,
Alberto Betella

Version f1.0

Date 30.09.2011

Classification Restricted

Contract Start Date 01.09.2010

Duration 48 months

Project Co-ordinator Goldsmiths, University of London

File Name CEEDs_D5.1_f1.0_UPC

Project funded by the
European Community under
the Seventh Framework Programme

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 30/09/2011

Page 2 of 38

Consisting of:

No PARTICIPANT NAME S.N. COUNTRY

1 Goldsmiths, University of London GOLD UK

2 Universitat Pompeu Fabra UPF ES

3 University of Sussex UOS UK

4 Informatics and Telematics Institute ITI GR

5 Eberhard Karls Universitaet Tuebingen EKUT DE

6 Universität Augsburg UAU DE

7 University of Teesside TEESSIDE UK

8 Università degli Studi di Padova UNIPD IT

9
Max Planck Gesellschaft zur Foerderung der
Wissenschaften E.V.

MPG DE

10 Ecole Normale Superieure ENS Paris FR

11
Budapesti Muszaki Es Gazdasagtudomanyi
Egyetem

BME HU

12 Universitat Politecnica de Catalunya UPC ES

13 Università di Pisa UDP IT

15 Electrolux Italia SpA ELECTROLUX IT

16 Leiden University UL NL

18 Helsingin Yliopisto UH FI

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the CEEDs Consortium. In addition to such written
permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the copyright
notice must be clearly referenced.

All rights reserved.

Responsible of the document: UPC

Defined Contributors to the document: Alberto Sanfeliu Cortés, Andreu Corominas
Murtra, Edmundo Guerra Paradas, Alex Goldhoorn, Joan Perez Ibarz, Pedro Omedas, Alberto
Betella

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 30/09/2011

Page 3 of 38

Document History

VERSION ISSUE DATE BY CONTENT AND CHANGES

V1.0 15.09.2011 UPC First draft of the document

V2.0 21.09.2011 UPC Second draft of the document

V3.0 23.09.2011 UPC Third draft of the document

V4.0 27.09.2011 UPC Fourth draft of the document

f1.0 30.09.2011 UPC Final document

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 30/09/2011

Page 4 of 38

Executive Summary

The CEEDs project requires the integration of devices (WP2), a synthetic reality platform
(CXIM 2.0, WP4), state of the art of science concepts (WP1) and a set of four applications
designed to show the potential of the project (WP6). All this elements are investigated and

developed by a set of a heterogeneous group of partners.

At a conceptual level, this integration is defined by the CEEDs architecture and CEEDs Core
Features, defined by WP3 and WP8 respectively. At a technological level, integration is
defined in this document. Therefore, this document will in section 1 first describe the general

integration methodology chosen by the consortium. In section 2 the specifications of the
computer system in charge of running the applications are listed. Section 3 is devoted to
explaining the integration guidelines following the case of one of the CEEDs application, the

Neuroscience application. Due to the dynamics of the project this document will be updated
over time, especially the part of the specifications.

The document also provides five annexes: Annex I and II explain the YARP installation,
Annexes III and IV show pseudo code implementations of inter process interaction modes
and Annex V a describes testbed for the integration of the CEEDS applications called
"Empathic Human Robot Interaction in the Hide & Seek Game". This testbed is used by the
partner leading the technical integration of the CEEDs project (UPC) to test and validate

integration issues.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 30/09/2011

Page 5 of 38

Table of Contents

EXECUTIVE SUMMARY ... 4

TABLE OF CONTENTS .. 5

1 INTEGRATION METHODOLOGY ... 7

1.1 GENERAL POLICY ... 7
1.2 PROCESSES AND MESSAGES .. 7
1.3 INTERACTION MODES BETWEEN PROCESSES.. 8
1.4 ANALYSIS OF EXISTING MIDDLEWARE ... 9
1.5 YARP TOOL ... 12
1.6 PORT NAMING CONVENTION .. 13

2 COMPUTER SYSTEM SPECIFICATIONS ... 15

2.1 COMPUTER NETWORK AND SOFTWARE LIBRARIES SPECIFICATIONS .. 15
2.2 CXIM 2.0 ... 16

3 INTEGRATION GUIDELINES THROUGH THE NEUROSCIENCE APPLICATION 17

3.1 APPLICATION OVERVIEW .. 17
3.2 PROCESS DIAGRAM ... 17
3.3 PROCESS SPECIFICATIONS ... 18

ANNEX I: YARP INSTALLATION GUIDE FOR WINDOWS ... 23

REQUIRED SOFTWARE ... 23
ACE INSTALLATION AND BUILDING WITH MS VISUAL STUDIO 9 .. 23
OBTAINING YARP .. 26
CMAKE INSTALLATION AND BUILDING YARP .. 26
COMPILE AND TEST YARP ... 28
SETTING ENVIRONMENT VARIABLES IN WINDOWS .. 28
CHANGE YARP SERVER ... 29

ANNEX II: YARP INSTALLATION GUIDE FOR LINUX ... 30

YARP INSTALLATION INTO UBUNTU .. 30
NON DEBIAN BASED LINUX .. 31

ANNEX III: YARP PUBLISHER / SUBSCRIBER PSEUDO-CODE .. 33

ANNEX IV: YARP CLIENT / SERVER PSEUDO-CODE .. 34

ANNEX V: EMPATHIC HUMAN ROBOT INTERACTION IN THE HIDE & SEEK GAME 35

THE TEST EXAMPLE: EMPATHIC HUMAN ROBOT INTERACTION IN THE HIDE & SEEK GAME ... 35
DESCRIPTION OF THE TEST EXAMPLE .. 35

REFERENCES ... 38

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 30/09/2011

Page 6 of 38

List of Figures

FIGURE 1: (A) AN EXAMPLE OF THE HARDWARE INFRASTRUCTURE OF THREE MACHINES RUNNING FIVE PROCESSES. MACHINES

ARE CONNECTED THROUGH A LAN ROUTER. (B) THE PROCESS GRAPH ABSTRACTION FOR AN ARBITRARY EXAMPLE

APPLICATION. SMALL BLACK SQUARES REPRESENT PORTS. ... 8
FIGURE 2: (A) THE PUBLISHER/SUBSCRIBER INTERACTION MODE BETWEEN PORT A (PUBLISHER) AND B (SUBSCRIBER) OF

PROCESSES 1 AND 2. (B) CLIENT / SERVER INTERACTION MODE BETWEEN PORTS C (CLIENT) AND S (SERVER). FIRST THE

CLIENT SENDS A REQUEST, AND ONCE THE REQUESTED COMPUTATIONS HAVE BEEN PERFORMED ON THE SERVER IT SENDS

A REPLY BACK TO THE CLIENT. .. 8
FIGURE 3: CONNECTION LAYOUT OF THE COMPUTER SYSTEMS IN THE CEEDS ENVIRONMENT. .. 15
FIGURE 4: THE CXIM 2.0 NETWORK ARCHITECTURE. ... 16
FIGURE 5: THE PROCESSES AND HARDWARE WITHIN THE NEUROSCIENCE APPLICATION. ... 18
FIGURE 6: THE ROBOT TIBI. ... 36
FIGURE 7: THE ROBOT IS CONTROLLED BY THE XIM USER WHICH SEES THE SENSORY DATA OF THE ROBOT. 37
FIGURE 8: A SCHEMATIC OVERVIEW OF THE ROBOTIC HIDE AND SEEK GAME. .. 37

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 30/09/2011

Page 7 of 38

1 Integration Methodology

This section will discuss the integration methodology of WP5 in the CEEDs project, starting
with a general introduction to the general policy. Next the main concept of defining
processes and their interaction through messages are discussed. Thereafter several
middleware systems are compared, and YARP the chosen middleware is explained shortly.
The section ends with the port naming conventions.

1.1 General Policy

The CEEDs project will implement several applications of different nature, involving in each
case a number of partners from the consortium that are providing and developing state of
the art ideas in the field. Due to this context, a technical decision has been taken to develop
software in an incremental way, taking as a base the CXIM 2.0 architecture, since all
applications have to integrate with it.

The proposed approach is to break down each application into a set of processes. This
division can be done iteratively and incrementally when new concepts and ideas become
clear and need to be implemented in terms of processes. Hence, a process is the key
software entity that can be developed and tested independently by a single partner. Once a
process is ready, integration will be made by pairs of processes, then triplets and so on.

Therefore, at technological integration level a common software library is proposed, called
YARP, to communicate between processes in real-time and finally build a given application

but keeping processes decoupled, a requirement due to the multi-partner context of the
project.

1.2 Processes and Messages

This section provides some integration guidelines in order to maximize the decoupling
between partners during the development phase, and to take benefit of modularity of
software blocks, especially those that will be used in more than one CEEDs application such

as sensor acquisition processes and the rendering engine.

The main concept is to think and implement applications as a set of connected processes that
are sending messages between them during the run time, that is a component based
software architecture, where each component is a process.

Basic Concepts

In component based software architecture, an application is defined as a set of N

processes running concurrently on a set of M machines that are connected through some
network infrastructure such as the Internet or a given local area network (LAN/WLAN),
see Figure 1a. The abstraction of the processes and how data connections are established
between them is the so called process graph (Figure 1b) where each node is a process,
and links are set when two nodes interact by exchanging data, through sending and
receiving messages. Input and output of these messages is done by each process through
virtual inputs and outputs, called ports. The process interaction, made specifically

between two different processes through two ports, can be of two types: publisher /
subscriber or client / server. Therefore, for each publisher/subscriber or client/server

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 8 of 38

pair, a message definition should be specified, indicating the data type structure and order
that all message contents will fit.

 (a) (b)

Figure 1: (a) An example of the hardware infrastructure of three machines running

five processes. Machines are connected through a LAN router. (b) The process
graph abstraction for an arbitrary example application. Small black squares
represent ports.

1.3 Interaction Modes between
processes

In the publisher / subscriber interaction mode, a process is continuously outputting data
through a port A. Then, each node of the whole application that requires that data being

published through port A, should declare an own port, let call it port B, and subscribe it to
port A. This will result in a continuous reception of the target data in the subscriber
processes. A publisher port can have more than one subscriber (see Figure 2a).

The second interaction mode is the client / server situation (see Figure 2b). In this case, a

process named as server offers some service upon requests arriving to a given port S.
Other processes requiring this service will be named as client processes and should send a
request through an own port connected to port S. When a request is received, the server
process will compute the request and after that it will reply the resulting answer to the
client. A service port can receive requests from multiple clients.

 (a) (b)

Figure 2: (a) The publisher/subscriber interaction mode between port A
(publisher) and B (subscriber) of processes 1 and 2. (b) Client / server interaction
mode between ports C (client) and S (server). First the client sends a request, and
once the requested computations have been performed on the server it sends a
reply back to the client.

In Annex III you can find example code for YARP in the publisher / subscriber case and in
Annex IV for the client / server case.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 9 of 38

1.4 Analysis of existing middleware

Nowadays, there exist a huge number of software engineering middleware systems, each of
them with its advantages and drawbacks. This section first intends to identify and analyse
the existing needs for such software at the CEEDs project. With that knowledge, the most
important existing middleware software platforms are analysed in terms of those needs,

trying to identify the most suited ones.

1.4.1 Requirements

There are four high priority features that any middleware has to fulfil to be considered as

candidate for being deployed within the context of CEES project:

 Multi-process and multi-computer communications: Use of middleware to allow

several applications (drivers, control programs, etc.) to communicate between them
through different processes and computers without having to deal with the low level
communication issues. This simplifies the creation of complex networks of computers
with several actuators and/or sensors exchanging information to complete a task.
Another important aspect of multi-process and multi-computer communications are
which kind of communications are supported (data streaming, request/reply, etc.),
which communication protocols are supported (TCP, UDP, Bluetooth, etc.), and also

how the data sending and receiving is handled (single or multi-threaded, callback
functions, etc.). Platform interoperability is also a requirement, as the partners at
CEEDs develop in different environments.

 Generic interfaces: Use of generic interfaces to allow access to a given feature of a
device. That is, the interface for a sensor and actuator included into a hardware

platform and the interface for an equivalent independent sensor should look
externally the same; however, their implementations can be completely different.
These generic interfaces may be provided by the middleware used and/or developed
by WP2 and WP5. The interfaces shall be used to standardize the information
exchange in the multi-process and multi-computer network using the middleware.
Finally, the generation of such interfaces, as well as the necessary messages to be
transmitted and received, and software to generate and parse them should be easy

to implement and well documented.

 Robustness: The middleware used must be robust in several ways:

o It must be mature enough to avoid bugs present in most new releases.

o There should be good support from developers, as within this context it is not
a rare instance requiring technical assistance from people who know the
software at programming-code level.

o The presence of a strong and participative community of users worldwide is
desirable. This usually helps to enrich the software with continuous feedback
from users, and deep testing, improving middleware quality.

Since the middleware creates a network of computers, with actuators and sensors
working together, it also must be robust to component failure. Thus, if some of the
devices connected to the network fail, the network should be able to detect it,

continue working, and if possible, without having to completely shut it down.
Instead, the device that has failed should be able to restart again and reconnect to
the whole network without problems.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 10 of 38

Along this line, it would be desirable the presence of a monitoring process which
checks the correct operation of each module and perform notification tasks in case of
malfunction. Also, there should be tools to set up and down an arbitrary complex
network of processes.

 Easy to build in: The middleware should also be easy to extend to match the needs
of CEEDS partners to develop the applications. Thus, the creation of new

middleware-compliant modules should be intuitive and easy.

1.4.2 Evaluation of existing middleware

As with any tool to choice for a big project, it is important to know the options and

alternatives available, in order to select the most suited one. A state-of-the-art study for
robot middleware systems was performed. This brief review of robotics middleware shows
some of the alternatives analysed. The study was focused on middleware for robotics
because of the similarities of the CEEDS proposed architecture and CXIM 2.0 architecture
with a robotics system; where many input/output processes must run parallel, with multiple
devices such as sensors, actuators and displays being controlled simultaneously, and heavy
presence of distributed processing of great amounts of data:

 YARP: Yet Another Robotics Platform. This middleware supports building a robot
control system as a collection of programs communicating in a peer-to-peer way,
with a family of connection types (TCP, UDP, multicast, local, MPI, ...) that can be
swapped in and out to match a given network. It also supports similarly flexible
interfacing with hardware devices. It is mainly focused on humanoid robots and its
main goal is to increase the longevity of robot software projects. YARP is not an
operating system for a robot (http://eris.liralab.it/yarp/).

 Player: provides a network interface to a variety of actuator and sensor hardware.
Player's client/server model allows robot control programs to be written in any
programming language and to run on any computer with a network connection to the
robot. Player supports multiple concurrent client connections to devices. It is mainly
focused in mobile robots and their accessories (http://playerstage.sourceforge.net/).

 ROS: Robotics Operating System. ROS is an open-source, meta-operating system for

a robot. It provides services expected from an operating system, including hardware
abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management. It
also provides tools and libraries for obtaining, building, writing, and running code
across multiple computers. The ROS runtime "graph" is a peer-to-peer network of
processes that are loosely coupled using the ROS communication infrastructure. ROS
implements several different styles of communication (http://www.ros.org/wiki/).

 ORCA: Orca is an open-source framework for developing component-based robotic
systems. It provides the means for defining and developing the building-blocks which
can be pieced together to form arbitrarily complex robotic systems, from single
vehicles to distributed sensor networks (http://orca-robotics.sourceforge.net/).

 Urbi: The goal of Urbi is to help making robots compatible, and simplify the process
of writing programs and behaviours for those robots. Urbi has been successfully used
in generic complex systems, where parallel and event-driven orchestration on

multiple agents is required (http://www.urbiforge.org/).

Accounting for both the specific features and characteristics of each middleware, and the
previous knowledge and expertise of several groups in two of these middleware, reduced the
options to ROS and YARP.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 11 of 38

1.4.3 Comparison between ROS and YARP

We are going to compare only two of these middleware, YARP and ROS, because they are
well established in the robotics community where the key issue is the interaction among
distributed systems that manage sensors, visualization devices, database and software
components. YARP is a well-known middleware, though technically it is only a set of C++
libraries, as in his long trajectory the developers have kept an emphasis on maximizing
interoperability, by not adding components and features that are not strictly necessary and
can be packaged as libraries. ROS instead offers a complete framework to work within, with

several tools to support and develop complex integration projects. Though this reduces ROS
interoperability with other systems, in fact nothing keeps from using YARP technology within
the ROS framework, as YARP is packaged as a library within the ROS package management
system. A small overview of the comparison between ROS and YARP is shown in Table 1.

Table 1: Comparison between YARP and ROS.

Feature YARP ROS

Multi-process & computer
Communications

 Yes Yes

Multi-platform:
 Linux
 Windows
 Mac

 Yes
 Yes
 Yes

 Yes
 Partial
 Partial

Communication types:
 TCP/UDP
 Multicast
 Shared Memory

 Yes
 Yes
 Yes

 Yes
 Yes
 No

Communication protocols:

 Publisher/Subscriber
 Server/Client
 Actions

 Yes
 No
 No

 Yes
 Yes
 Yes

Communication tools: Port / Buffered
Port

 Node Handle

Communication messages: Bottles Services and
Messages

Communication robustness:
 Execution Order

 Disconnection notification
 System restore

 No

 Reporter
 No

 No

 Core
 Partial

Interfaces: netWrappers SRV and Messages

Community: Relatively Small Big, growing

From a strictly technical point of view, ROS is a much more powerful development tool, with
higher specifications and capabilities, being a complete development framework. This is
because of two main factors: YARP‟s original release dates 2002, while ROS‟ public release

was done by 2008, thus being YARP more than half a decade older than ROS; and while
YARP is maintained by an assorted team of developers and collaborators, ROS has a bigger
development community, and its developer and user base is growing at a good pace.

Even as ROS poses as a newer, more powerful, and with higher specifications and features
middleware, some problems and issues were addressed to assure its usefulness within the
CEEDs context. These were mainly two issues: the not easily accessible learning curve and
the only partial support into non-Linux based computers.

The first handicap to use ROS within the context of CEEDs is because of the high level of
features and tools provided. The experience of the IRI Robotic Lab at the UPC shows that
once a learning phase is completed, in which some non-trivial competences on ROS are

acquired, most of the developers increase both the productivity and quality of development,
as ROS enforces best practice paradigms into its normal utilisation. But this learning phase

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 12 of 38

requires a period of even months, that most of the developers on CEEDs partners cannot
allow themselves to take. Thus, several scripts and tools have been developed to simplify
enormously the effort and knowledge of the ROS framework needed to start working with
publisher, subscribers, clients and servers, and the most usual features. These scripts allows
for the work done by and experienced ROS user in some hours configuring features and
performing time-consuming tasks, to be done by a relative novel user of ROS in less than an

hour.

The other great issue of ROS is the non-native support to systems based upon non-Linux
operating systems. This problem can be dealt with in several ways, most of them include
copying libraries from Linux based machines, employing specific software to link these
libraries and performing some environment configurations that normally are performed
automatically by ROS. Though it requires some advanced user knowledge, working with ROS

in a Windows based computer proved during the tests being more uncomfortable than
difficult. Even though the test proved the feasibility of working ROS on non-Linux based

system, it still kept a specially dampening feature. A ROS communication network presents a
core node which allows for all the processes and communications to be established and
reached. This core node must always run on an Ubuntu based machine, thus imposing a hard
restriction on interoperability. Thus, even integration test deploying and using ROS as
middleware in Windows & Mac based machines were performed as proof of concept with

success; the requirement to deploy an Ubuntu based machine cannot be avoided.

In the end, thought important efforts were done to allow ROS being a desirable option for
middleware into the CEEDS project, solving a great deal of its problem (such as automating
some of the more harder and time consuming task while developing and integrating code
within it), the fact that it lacks enough interoperability to work seamlessly (even after some
efforts) on environments without any Linux machine excluded it as an option.

1.5 YARP tool

YARP stands for Yet Another Robot Platform (Fitzpatrick et al. 2008,
http://eris.liralab.it/yarp), and is a communication tool between processes. Unlike several
other alternatives, it is neither a control system nor OS or a meta OS. It could be labelled as
a middleware system, but unlike many of them does not impose constrains of architectures

and technologies deployed. In general terms, it is a set of libraries, protocols, and tools to
keep modules and devices cleanly decoupled while enabling communication, independently of
OS‟s, protocols and technologies employed. This suits CEEDS, which includes modules from
different groups using several OS‟s and technologies, each one with distinct features and
needs in terms of OS and communications.

YARP organizes communication between sensors, processors, and actuators with loose
coupling, encouraging gradual system evolution. Its communication model is transport-

neutral, so that data flow is decoupled from the details of the underlying networks and
protocols in use (allowing several to be used simultaneously). YARP‟s methodology for
interfacing with devices and modules also encourages loose coupling making changes in
devices less disruptive.

Development of YARP is done by and for researchers, who find themselves with multiple
complex hardware devices to control with an equally complex stack of software. This makes
YARP entirely free of licensing costs as it is an open source project. Nowadays, running

decent visual, auditory, and tactile perception while performing elaborate response and
control in real-time requires high performance computation, being scalability a usual
requisite for integration in long-term projects.

Also in CEEDs there is a need for communication between processes, which can be either
from one or different groups. To have a good communication an Integration Deliverable
Document should incorporate a diagram of each Application Process Graph, which should be

detailed explaining the input and output.

http://eris.liralab.it/yarp

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 13 of 38

The concept of YARP is to send data, a bottle from a port of process 1 to a port of process 2.
The process which expects to receive a message will have to read the port; the process
therefore will have to wait until it receives something. The sending process will send a
message through one port to another port. You will have to specify exactly which bottle to
send through which port to which other port. The conventions of naming are detailed in the
next subsection.

For more details about the installation of YARP see Annex I in the case of installation on
Windows and Annex II in the case of installation on Linux based systems. Specific code
examples of using YARP are shown in Annexes III and IV. More detail information about
YARP can be found in http://eris.liralab.it/yarpdoc/index.html.

1.6 Port Naming Convention

In order reuse as much as possible the software between applications, especially the sensor
acquisition and the CXIM 2.0 modules the following port naming convention is
recommended:

For publishers, ports should be named as:

 /[process_name]/[data_name]/out

Example: /sensorized_tshirt/heart_beat/out

For subscribers:

 /[process_name]/[data_name]/in

Example: /xim_visualization/3d_pose/in)

For servers, request ports should follow:

 /[process_name]/request/in

Example: /electrolux_db/request/in)

The server will reply through the port:

 /[process_name]/reply/out

Example:: /electrolux_db/reply/out

A client process within the network, request a service by using the port:

 /[process_name]/[server_process_name]/request/out

Example: /compose_visualization/electrolux_db/request/out

And it will receive the reply to the port:

 /[process_name]/[server_process_name]/reply/in

Example: /compose_visualization/electrolux_db/reply/in

In case that a server implements more than one service, the YARP bottle containing request
data should indicate which service targets the request by means of a string or a service id.

For instance, the first field of a request to “electrolux_db” server could be the string

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 14 of 38

“oven_params”, indicating that the request is targeted to the service related to get some
oven parameters from that commercial data base.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 15 of 38

2 Computer System

Specifications

This section shows the specifications for the computer network and the required software

libraries. Secondly it shortly discusses the CXIM 2.0 system.

2.1 Computer Network and Software
libraries specifications

A networked computer system will be in charge of implementing the different applications

proposed by the CEEDs project. The required features for the computer system and network
are listed below:

 Set of NS sensors: placed on the CEEDs user or in the CEEDs environment

 Set of NP computers to do sensor acquisition, cue processing and data discovery

 Set of NX computers to do the visualization and actuation

 Set of actuators and displays (CXIM 2.0 installation)

 LAN/WLAN router

 OS: Linux (Debian, Ubuntu 10.10+), MAC OSX, Windows XP/7

 Common software and libraries: ACE 5.6+ and YARP 2.3+

 C++ builder to compile and build ACE (Borland, MS VC++, gcc or others)

 Cross platform build system: CMAKE 2.8+

The layout of the elements is shown in Figure 3.

Figure 3: Connection layout of the computer systems in the CEEDS environment.

Optionally for the portable CEEDs sytem, if some application requires Internet access, an
extra computer can be connected to the CEEDs LAN to play the role of a proxy, so that the

required data can be requested through this proxy from the Internet. This situation however
can introduce large delays and requires the implementation of an extra software process that
translates and sends messages over the Internet.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 16 of 38

2.2 CXIM 2.0

XIM stands for eXperience Induction Machine and contains several servers, sensors, effectors
and a network. The second version, as used in the CEEDs project is the CXIM 2.0, the CEEDs
eXperience Induction Machine 2.0, an upgraded version of the XIM. In order to control and
operate all the sensors and displays of the CXIM 2.0 environment (see Deliverable D4.1), a

network of multiple servers is deployed, connected through YARP as can be seen in Figure 4.
This network previously worked on a basis of a machine per server, but thanks to updates
performed on CXIM 2.0 within the scope of CEEDs project, most of the servers can run on a
reduced number of machines (using Virtual machines).

DMZ Internal LAN

Effectors and sensor devices
Sensors

Audiovisual system

Display02

Display01

Computing

Floor01

Trackin01

App-server2

App-server1

sensors

audiomac

Servers

File Server

Database Server

Webservices

Trackin02

Virtualization
server

Projector 01,02,03,04

Projector 05,06,07,08

Speakers

Tracking camera

lightfingers

72 floor tiles

weareable sensors, eye gaze,
physiological signalsYARP

Internet

Vlan 201 – 192.168.2.0/24Vlan 202 – 192.168.1.0/24

HDMI

HDMI

Firewire

Interbus

USB,
bluetooth

DMX

RCA Video

Firewall ASA 5510
Switch

Rendering server

Figure 4: The CXIM 2.0 network architecture.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 17 of 38

3 Integration Guidelines

through the Neuroscience
Application

This section explains the integration process of a CEEDs application and the way of preparing
it to use with processes of other CEEDs partners. In this section we use the Neuroscience
application as example.

3.1 Application Overview

The main goal of the Neuroscience application is to allow a user to visualize a neuronal
model and interact with it. It is based on "iqr" and on the CXIM 2.0 infrastructure. iqr is a
multi-level neuronal simulation environment which allows designing complex neuronal
models graphically, and to visualize and analyse their properties on-line. It has a modular

expandable multi-platform architecture, and it is publicly accessible under the GNU General
Public License (GPL). iqr provides a 2D graphical interface to design and manipulate the
neuronal model. While the simulation is running, the user can visualize internal states and
change the parameters of system elements (see deliverable D6.1 for full description of the
application).

3.2 Process Diagram

Like explained before in sections 1.2 and 1.3 it is important to define the process diagram
where you show the different processes and their interaction. In Figure 5 the process
diagram for the neuroscience application is shown.

The schema shows three groups of processes and the user interacting with them:

1 User Sensors: These are the systems which monitor the user for any implicit or
explicit cues. Each hardware element has an acquiring process which
receives the signal from the hardware and makes it available for other

processes in the network (for detailed specification see D2.1). The explicit
commands are given through the WiiMode. Furthermore there are some
processes (such as Tracking) that process data from several hardware
sensors.

2 Presentation: Unity is used to do the 3D model visualization and iqr is used to run
the simulation of the model, i.e. the interaction of the neurons. The

hardware parts are the screens (or beamers which project onto the screen),
the floor with lights in the tiles and the sound speakers.

3 CEEDs Engine: This is where the sentient agent should use the implicit and
explicit cues of the user to form a model of the user and to learn to use
these cues to improve the discovery in the data.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 18 of 38

Figure 5: the processes and hardware within the Neuroscience application.

3.3 Process Specifications

This section provides, up to the current definition, the specifications of some processes
involved in the Neuroscience Application as shown in Figure 5. These specifications help to
(1) identify what is missing in terms of process definition, (2) support application
management and debugging tasks, and (3) to notify to partners of other applications which
processes are being developed in order to maximize software reuse.

The following of the section is a list of "process cards". These cards are intended to be a
working material, so during the development of the project, partners will update them as

new specifications or ideas will be fixed in terms of process implementation. At the current
point, when a feature is not defined or specified, it will be labelled with "TBD" standing for
"To Be Defined".

Process Name: KINECT ACQUIRING

Partner in Charge: UPF

Goal: Real-time data acquiring and publication of the Kinect data.

Input: Kinect (HW)

Output: YARP Bottle: Set of 3D body skeleton points

Test Methodology: Qualitative Evaluation through Single User Movement Tests.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 19 of 38

Machine: CXIM - sensor

OS: Windows

Required Libraries: TBD

Process Name: XIM TRACKING

Partner in Charge: UPF

Goal: Real-time tracking of the 2D position of the user within the XIM
frame.

Input: XIM - IR Camera image data. XIM-Floor Pressure data.

Output: YARP Bottle, Vector of "number of users" size. For each user, (x,y)

position with respect to the XIM frame and Id integer.

Test Methodology: Qualitative Evaluation through Single User Movement Tests

Machine: CXIM - Tracking01

OS: Linux

Required Libraries: TBD

Process Name: WiiMOTE ACQUIRING

Partner in Charge: UPF

Goal: Real-time acquiring and publication of WiiMote data.

Input: WiiMote (HW).

Output: YARP Bottle: TBD.

Test Methodology: Qualitative Evaluation through Single User Movement Tests

Machine: CXIM - sensor

OS: Linux

Required Libraries: TBD

Process Name: BEHAVIORAL CUES PROCESSING

Partner in Charge: UNIPD, UAU

Goal: Real-time estimation of a set of behavioural cues (implicit cues).

Input: Sensorized T-shirt (breath and heart beat) + Other Sensory data

TBD

Output: YARP Bottle TBD: Desired would be: Arousal, cognitive payload, Eye
tracking, Gaze tracking.

Test Methodology: Qualitative Evaluation through Single User Movement Tests

Machine: CXIM - sensor

OS: Linux

Required Libraries: TBD

Process Name: CEEDs SENTIENT AGENT (CSA)

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 20 of 38

Partner in Charge: UPF

Goal: Real-time implementation of the CEEDs Agent

Input: User Model (File TBD), User Tracking, Kinect 3D body points,
behavioral cues (TBD).

Output: TBD

Test Methodology: TBD

Machine: CXIM - App-server

OS: TBD

Required Libraries: TBD

Process Name: DATA DISCOVERY

Partner in Charge: MPG

Goal: Real-time support for data discovery in the Raw Database.

Input: RDDB (XML File), CSA (TBD)

Output: Salient Data (TBD)

Test Methodology: TBD

Machine: CXIM - App-server

OS: TBD

Required Libraries: TBD

Process Name: NARRATIVE GENERATOR

Partner in Charge: TEESSIDE

Goal: Real-time generation of a narrative route/script to support data
displaying

Input: Salient Data

Output: Narrative Script, TBD

Test Methodology: TBD

Machine: CXIM - App-server

OS: TBD

Required Libraries: TBD

Process Name: COMPOSITION ENGINE

Partner in Charge: UPF

Goal: Real-time decisions about how and which data has to be displayed
(XIM-screens, XIM-speakers, XIM-floor lights)

Input: narrative script

Output: TBD

Test Methodology: TBD

Machine: CXIM - App-server

OS: TBD

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 21 of 38

Required Libraries: TBD

Process Name: VISUALIZATION

Partner in Charge: TBD

Goal: Real-time renderings and sound generation. Interface with XIM HW

Input: TBD

Output: TBD

Test Methodology: Qualitative evaluation of rendering/sonorization/illumination of
static data

Machine: XIM-display0X

OS: Windows

Required Libraries: TBD

Process Name: iqr

Partner in Charge: UPF

Goal: Real-time simulation of a neural model

Input: Neuro Model (XML File). User Configs (2D GUI)

Output: Dynamics of the Neuro Model

Test Methodology: TBD

Machine: XIM - iqr-control

OS: Linux

Required Libraries: TBD

Each of the process specifications give not only the details of the goal of the processes as
shown in Figure 5, but also the data sent between them as shown with lines in the Figure 5,
and in the input / output fields in the “process cards”.

The next step is to detail the input and output: the types, size and the rate. For an input the

required rate should be given and for the output a minimum and maximum rate of sending
data. These details are important to specify such that can be seen in advance if the
requirements of an input match the physical possible range of the output of the other
process.

We can distinguish on YARP connections and other connections. An „other‟ connection can be
for example the Acquiring processes which are connected to the hardware. If we take the

WiiMote Acquiring process, this will run on a machine which is physically connected to the
WiiMote (or in this case wireless). The communication of the process to the WiiMote is
through a specific driver. These type of connections are mostly within a (work) package and
therefore should be well documented, but are not at most importance for other work
packages.

More important for other work packages are the definitions of the input / output of processes
that respectively receive / send, from / to other processes. As an example we can take the

XIM Tracking process that receives input from the Camera Acquiring process and the Floor
Acquiring process. As output it should send a list of positions of all the tracked persons in the
CXIM. The specification of the YARP bottle (see section 1.5 for more details about YARP
bottles) is:

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 22 of 38

 Main Bottle, which contains n sub bottles, where n is the number of tracked persons.
The sub bottle contains:

 x: float [4 bytes]

 y: float [4 bytes]

 id: int [4 bytes]

The size of 1 bottle is thus n(4+4+4) bytes = 12 n bytes. The following step is to look at the
send and receive rate, which depend on the type of inter process communication: client /
server or publisher / subscriber, see for more information sections 1.2, 1.3 and annexes III
and IV. In the case of publisher / subscriber the publisher will decide the rate of sending
data, in the case of server / client the client will decide this rate. Obviously in all these cases

the rate is limited by the maximum capacity of the hardware (processor, memory, etc.),

software (OS, middleware, etc.) and network. The middleware, YARP in our case, also
handles the problem of multiple processes requesting and/or sending data.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 23 of 38

Annex I: YARP Installation Guide

for Windows

This reference guide will briefly detail installation, building and configuration of the needed

libraries to use YARP on a MS Windows based environment. Though it is recommended the
utilisation of the latest stable releases of the presented software, we list the older versions
tested.

Required software

The following software is required:

 MS Windows XP or later (Windows 7 recommended)

 Cmake 2.8 or higher version

 ACE 5.6 or higher version

 YARP 2.3 or higher version

 A suitable builder for Cmake*

 A suitable builder to build ACE*

*For this guide, MS Visual C++ 9 2008 will be considered, as it licensed for free through the
MS Visual Studio 2008 Express.

ACE installation and building with MS
Visual Studio 9

While CMake liberates your project from the particular development environment you are
using, the code itself may still have operating-system dependencies that will make cross-

platform work difficult. ACE is a free and open source library that provides a portable
interface to a vast array of operating systems. You can download it at:

http://download.dre.vanderbilt.edu/

http://download.dre.vanderbilt.edu/

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 24 of 38

For this guide we will suppose that MS Visual Studio 9 (or newer) is installed and used to
build it, thought you can obtain instruction to several other builder, through the following
links:

 Microsoft Visual Studio

 Embarcadero C++Builder

 MinGW

 Cygwin

If you do not have MS Visual Studio 7.1+ installed, you can obtain MS Visual Studio 9 freely
at:

http://www.microsoft.com/visualstudio/en-us/products/2008-editions/express:

where you can obtain a full version image to burn in to a CD (recommended option).

Once installation of Visual C++ is completed, ACE must be uncompressed into a directory,
where it will create a ACE_wrappers directory containing the distribution. The ACE_wrappers
directory will be referred to as ACE_ROOT in the following steps. We assume here that you
have installed the free Visual Studio 9, other versions we have not tried.

After uncompressing you should create a file called config.h in the ACE_ROOT\ace directory

that contains the line:

#include "ace/config-win32.h"

http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-INSTALL.html#msvc
http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-INSTALL.html#codegear
http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-INSTALL.html#mingw
http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-INSTALL.html#cygwin
http://www.microsoft.com/visualstudio/en-us/products/2008-editions/express

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 25 of 38

Then load the solution file for ACE (ACE_ROOT/ACE_vc9.sln for our case):

Once loaded, build both release and debug configurations. All the different configurations are

provided for your convenience. You can either adopt the scheme to build your applications
with different configurations, or use ace/config.h to tweak with the default settings on NT.

At any case it is advised that you build both cited configurations.

In the end, you should have some files in the directory ACE_wrappers/lib, including ACE.dll,
ACE.lib, ACEd.dll, ACEd.lib (if you compiled both release and debug versions).

You must make sure you include the path to "ACE_wrappers\lib" in your PATH environment
variable whenever you run programs that use ACE (such as YARP). It is also a good idea to

set an environment variable ACE_ROOT to hold the path to ACE_wrappers. This will make it
easier to find the libraries and header files. You will find a small how-to set environment
variables later on in this annex.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 26 of 38

Obtaining YARP

Just get the latest stable YARP release at:

http://eris.liralab.it/yarpdoc/download.html

And get Cmake to build YARP.

Cmake Installation and building YARP

CMake is a family of tools designed to build, test and package software. CMake can be used
with the compiler environment of your choice, making cross platform working easier, thanks
to the use of platform independent makefiles and workspaces.

To install Cmake download the desired version, in our case the binary Installer, at

http://www.cmake.org/HTML/Download.html

And execute installer following the instructions.

Windows‟ versions of CMake dispose of a user friendly GUI. After installing, you should have
an icon for CMake in your START menu. Click that, and then fill in the path to the code to
work with, in this case to the YARP version downloaded, and the path where CMake shall

build in YARP.

http://eris.liralab.it/yarpdoc/download.html
http://www.cmake.org/HTML/Download.html

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 27 of 38

Click "configure”. For this case we will work with the same generator used for ACE, MS Visual
Studio 9, but you can choose any option you feel more suitable for your needs. When the
"OK" button becomes clickable, then CMake has enough information to set up your project.
Click "OK" and you're done. Project files of the type you specified should exist in the build

path you gave.

After the configuration is done, you should have a list to choose which properties you want to
set up:

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 28 of 38

After checking the desired options, press Generate Button. So, YARP is ready to work on
your Windows based machine. For last point it is work noting that shall you want to start
over from the beginning, you can delete all done through the Delete Cache Button:

Now you should open the generated Visual Studio project file: ALL_BUILD.vcxproj

Which has been generated in the YARP directory, see 0.

Compile and test YARP

Now we should compile YARP with the generated project file (in case of Visual Studio). Go to
the directory where you unzipped YARP and open the project file generated with CMake:
ALL_BUILD.vcxproj.

Build the project in Release and Debug, this generates the executable files for the YARP
system in <YARP>\bin\RELEASE and the library files in <YARP>\lib\RELEASE where <YARP>
is the directory of YARP.

To be able to run YARP in all directories you can the previously mentioned it to the path. Now
we have YARP installed and compiled we can test it. Open a command prompt (run: cmd) and

type:

yarpserver

The first time Windows might show a firewall warning, just accept it. After this open a new
command window and type:

yarp check

This also might show a warning from the Windows firewall, accept it and then if everything is
ok it should show in the end:

yarp: *** YARP seems okay

Setting Environment Variables in
Windows

Find the environment variables window. You should go though Control Panel => System =>
Advanced tab and push Environment Variables.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 29 of 38

There, you can add or edit the values of variables. Remember that when you add a path to

an environment variable you must separate it from the previous with a semicolon.

Change YARP server

When you want to specify the YARP server to use, you can edit the YARP configuration file.

You can find this file with the following command:

yarp conf

The first line of this file is the IP and port of the YARP server to use, for example:

192.168.100.220 10000

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 30 of 38

Annex II: YARP Installation guide

for Linux

This guide contains two sections dealing with installation of YARP libraries and required

components on GNU/Linux based systems, though it can be extrapolated to similar
architectures. At any case, for dealing with troubles and special cases some references to
sources are introduced. The first section will introduce a really quick installation on 5 steps
guide for Ubuntu and similar distributions. The later will explain the more general installation
for other Linux distributions.

YARP installation into Ubuntu

Just introduce into your command line:

 sudo apt-get install cmake libace-dev subversion

 svn co

https://yarp0.svn.sourceforge.net/svnroot/yarp0/trunk/yarp2

yarp2

 cd yarp2; mkdir build; cd build; cmake ..

 make

 sudo make install

And then to check:

 yarp server

And in a separate window:

 yarp check

let yarp perform an automatic test. It should end telling something like:

 yarp: *** YARP seems okay

These two later steps just test that your YARP installation is able to run the server and

establish communication. If you have any problem you can read more about the YARP
installation for Ubuntu at:

http://eris.liralab.it/yarpdoc/install.html

To change the YARP server see the last section of Annex II.

http://eris.liralab.it/yarpdoc/install.html

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 31 of 38

Non Debian based Linux

Before you can install YARP you need to install CMake and ACE as is discussed below.

CMake Installation

For Debian and Debian-based distributions, the best approach is command-line:

 apt-get install Cmake

For SUSE Linux distributions you can add the GURU YAST repository and use YAST to install

Cmake or get it from the GURU website.

Additionally, you can find pre-compiled binaries for Linux and other UNIX based systems at

http://www.cmake.org/cmake/resources/software.html.

Or you can also download the source files to compile and build them, following instructions
and guidance found at http://www.cmake.org/cmake/help/install.html.

ACE installation

If your system distribution has an ACE package you shall get it through the package
manager (this option is enable for Debian-based distributions, Redhat, etc…). Look for libace-

dev or libace-devel.

In other cases you can obtain source files from http://download.dre.vanderbilt.edu/, and find
instructions and guidance at http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-
INSTALL.html#unix_traditional

Though this installation will require some more effort.

http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/help/install.html
http://download.dre.vanderbilt.edu/
http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-INSTALL.html#unix_traditional
http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-INSTALL.html#unix_traditional

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 32 of 38

Installing YARP

Once Cmake and ACE are both installed into your system, you can obtain YARP at
http://yarp0.sourceforge.net/

or installed from SVN by following the instructions at:

http://sourceforge.net/svn/?group_id=62418

with module name "yarp2" to get the code.

To check the YARP installation see the previous section.

http://yarp0.sourceforge.net/
http://sourceforge.net/svn/?group_id=62418

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 33 of 38

Annex III: YARP Publisher /

Subscriber Pseudo-code

A simple publisher is in charge of opening and naming ports. Thereafter, it enters its main

processing loop, and once its job is finished, it creates a data container, called Bottle in
YARP, it sets the container with the data of interest to be published and finally it sends the
container through the port. Out of the loop, before finishing, the process should close the
port. A pseudo code for a simple publisher is as follows:

initYARP();

BufferedPort<Bottle> myPort;

myPort.open("/publisher/output");

while (running)

{

 myData = myProcess();

 Bottle & myBottle = myPort.prepare();

 myBottle = fillTheBottle(myData);

 myPort.write();

 sleep(); //relax output rate if necessary

}

myPort.close();

At the receiver side, a simple subscriber, synchronized to data reception, follows the
pseudo code presented below:

initYARP();

BufferedPort<Bottle> myPort;

myPort.open("/subscriber/input");

Network::connect("/publisher/output", myPort.getName(), "tcp");

while (running)

{

 Bottle * myBottle = myPort.blockingRead();

 myData = getFromBottle(myBottle);

 //do something with myData

}

myPort.close();

The subscriber also creates and names a port and it connects it to another existing port that

provides the input data. Inside the main loop, it is blocked, waiting for data coming from the
input port. When data arrives, the process unblocks and it can retrieve the data from the

input container, again a YARP Bottle. Once the data is retrieved, it can do any kind of job
with the received data. Out of the loop, before finishing, the process should close the port.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 34 of 38

Annex IV: YARP Client / Server

Pseudo-code

For the client / server interaction mode, the server opens and names two ports, one to
receive requests, and the other to send replies. Inside the main loop, it is blocked waiting for
a request. Once a request arrives, it gets the request data, does the processing, and creates
a new bottle in the reply port. It finally fills the reply bottle with the reply data, and sends
that bottle through the reply port. Out of the main loop, before finishing, the server should

close all the opened ports.

initYARP();

BufferedPort<Bottle> requestPort, replyPort;

requestPort.open("/server/request");

replyPort.open("/server/reply");

while (running)

{

 Bottle * requestBottle = requestPort.blockingRead();

 requestData = getFromBottle(requestBottle);

 replyData = myProcess(requestData);

 Bottle & replyBottle = replyPort.prepare();

 replyBottle = fillTheBottle(replyData);

 replyPort.write();

}

requestPort.close();

replyPort.close();

The client side is the counter part of the server, so that the client first creates a request
bottle and sends it through a request port, and then it blocks to receive the server reply.
Please note that the client is in charge of making the connections with the server. The
pseudo code for a simple client follows the outline presented below:

initYARP();

BufferedPort<Bottle> requestPort, replyPort;

requestPort.open("/client/request");

replyPort.open("/client/reply");

Network::connect(requestPort.getName()

, "/server/request", "tcp");

Network::connect("/server/reply", replyPort.getName(), "tcp");

while (running)

{

 Bottle & requestBottle = requestPort.prepare();

 requestBottle = fillTheBottle(requestData);

 requestPort.write();

 Bottle * replyBottle = replyPort.blockingRead();

 replyData = getFromBottle(replyBottle);

 //do something with replyData

}

requestPort.close();

replyPort.close();

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 35 of 38

Annex V: Empathic Human Robot

Interaction in the Hide & Seek
Game

The purpose of this experiment is to develop a testbed for the integration of the CEEDS
applications. In particular, the experiment will handle the integration of the CXIM 2.0 system
through the inter-process communication tool YARP.

In this application not only the CXIM 2.0 hardware will be used, but also different sensory

systems of partners to be able to detect implicit and explicit cues of the user. It will serve as
a framework and a list of key rules to have the other partner‟s software and hardware
modules.

The test example: Empathic Human Robot

Interaction in the Hide & Seek Game

This application has two objectives: 1) to improve the integration of the different applications
with the XIM system, and 2) to use not only explicit commands to control and interact with
the robot, but also to learn from and use implicit cues of the user while he/she is
manipulating the robot.

The application will use the XIM and the available user sensors which are developed by the

partners. Furthermore the problem for our application will be more difficult because of a real-
time data stream which is required to the XIM as will be explained later on.

The aim of the experiment is to enable a human to learn and discover human-robot
interaction strategies through his/her embodiment into a robot using the XIM machine. The
human will perceive and react to real-time stimuli present at the robot site.

A hide-and-seek situation will be solved in which other humans hide from the robot at the
experimental site, and the user in the XIM must find them. With respect to the CEEDs

paradigm, the experiment poses relevant challenges for real-time data representation
through a limited communications channel, and for learning and categorization of human
behaviour from multi-sensory data patterns.

Description of the test example

The robot will play the hide and seek game against one or more opponents. It will act as the
seeker in the game that will take place in an urban environment. The seeker wins the game
if it recognizes and catches (or approaches sufficiently close) the hider within the allowed
time frame, the hider wins if it reaches the base within the game time, otherwise it is a
draw.

A human user will control the robot from the XIM system at a high level, thus he/she will
play the seeker through the 'eyes' of the robot, i.e. it will see through the sensors of the

robot (camera, laser, model, etc.). Eventually, on later stages of development, not only the
explicit user control, but also the implicit reactions of the user (such as heart and breath
rate, poses, etc.) will be used to 1) learn robot motion behaviours and redefine them to
adapt to human activity; 2) the human will discover rules of engagement for an optimal

completion of a task from its immersion into a multisensory experience that otherwise would
not be possible

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 36 of 38

The robot to be used (Figure 6) is the result of the URUS (Ubiquitous networking Robotics in
Urban Settings) project (Sanfeliu & Andrade-Cetto 2006; Trulls et al. 2011; Sanfeliu et al.
2010), which had as goal to navigate within an urban environments and to interact with
people and to guide them. This project will be the base, because it not only had as result the
robot, but also the lower level of control which allows it to autonomously navigate in the
urban environment.

Figure 6: The robot Tibi.

As a first step we will use the XIM system to have the user of the system control the robot
remotely in an explicit way as shown in Figure 7. The user can see 'through' the sensors of
the robot, i.e. it can see the image of the camera, the laser data, and information about the
localization and navigation algorithms. All the sensory and processed information from the

robot will have to be sent real-time to the XIM, this will be a technical challenge.

In a second step, a game will be done where the user has to find a person with a bright shirt
and a hat (for example yellow) in a urban environment with the presence of other
pedestrians. Thus, the environment will contain a great amount of objects and people. In this
data the user has to find a specific person through data features which can distinguish the
person from the rest of the people. The data containing these features can be described as
the salient data. The goal is to find a relation of the (implicit) reactions of the user to the

data which is shown to the user in which the person is found. These implicit user responses
have to be fed to the CEEDs Sentient Agent; which in its turn should act upon the implicit
cues of the user and learn from them.

Finally the game will be converted to a really interactive dynamic hide and seek game, where
not only it is important to find the person, but also to approach it sufficiently.

In contrast with other applications as suggested in WP6 (archaeology, neuroscience,
commercial appliance) we will not only use a fixed database, but several databases from

which one is actually the live-feed of the robot sensors, such as the video stream, laser
scanner ranges, people tracking states.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 37 of 38

Figure 7: The robot is controlled by the XIM user which sees the sensory data of
the robot.

Figure 8: a schematic overview of the robotic hide and seek game.

This application has several CEEDs issues, first of all the amount of data captured by the

robot is huge: unprocessed laser distances, and camera images and processed face
recognition, localization, path planning, etc. From this data the hiders have to be found, and
to play the game intelligently some sort of strategy of the opponent should be extracted and
used to predict its steps.

The volume of information that has to be processed in real time will be very high and will
have to be used for detecting and tracking a human player (who can be hidden at any time)
and for navigation purposes. Obstacles and other non-player people can be present in the
game field. Take into account that the person of the XIM perceives the environment through
the perception sensors of the robot and there will be some delays in the perceived
information and the robot motions.

Deliverable 5.1: Specifications and Architecture CEEDs: ICT-258749

--

--
© Copyright 2010-2014 CEEDS Consortium 25/08/2011

Page 38 of 38

References

 Fitzpatrick, P., Metta, G., & Natale, L. (2008). Towards long-lived robot genes.

Robotics and Autonomous Systems, 56(1), 29-45.

 Omedas, P., Bernardete, U., Betella, A., Tsaousi, E.N., Verschure, P., Leymarie,
F.F., Olbrich, E., Pizzi, D., Jacucci, G., Wijekoon, D., Zanella, D. (2011). Deliverable
6.1: Conceptualization and Design of CEEDS system architecture for Applications.
The Collective Experience of Empathic Data Systems (ICT-258749). Project

deliverable.

 Sanfeliu, A., Andrade-Cetto, J., Barbosa, M., Bowden, R., Capitán, J., Corominas,
A., Gilbert, A., et al. (2010). Decentralized Sensor Fusion for Ubiquitous Networking
Robotics in Urban Areas. Sensors, 10(3), 2274-2314.

 Sanfeliu, A., Andrade-Cetto, J. (2006). Ubiquitous networking robotics in urban
settings, 2006 IROS Workshop on Network Robot Systems, Beijing, Xina, pp. 1-12,

IEEE.

 Takacs, B., Omedas, P., Bernardete, U., Verschure, P. (2011). Deliverable 4.1: XIM
2.0 Environment. The Collective Experience of Empathic Data Systems (ICT-
258749). Project deliverable.

 Trulls, E., Corominas Murtra, A., Pérez-Ibarz, J., Ferrer, G., Vasquez, D., Mirats-Tur,
J. M., & Sanfeliu, A. (2011). Autonomous navigation for mobile service robots in
urban pedestrian environments. Journal of Field Robotics, 28(3), 329-354.

