

Project Number: 215219

Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic Priority: Information and Communication Technologies

D7.3 End User Service Design

Activity: Activity 3 - Use Case Activities

Work Package: WP 7 - End-user Integrated Enterprise Service Delivery Platform

Due Date: M13

Submission Date: 17/04/2009

Start Date of Project: 01/03/2006

Duration of Project: 36 Months

Organisation Responsible of Deliverable: SAP

Revision: 1.12

Authors: Juergen Vogel SAP
 Florian Schnabel SAP
 Florian Stroh SAP
Lai Xu SAP
Patrick Un SAP
Nikolay Mehandjiev UNIMAN
 Usman Wajid UNIMAN
 Freddy Lecue UNIMAN
Tomás Pariente Lobo ATOS

Reviewers: Ivan Delchev SAP
Reto Krummenacher UIBK

Project co -funded by the European Commission within the Sevent h Framework Programme (2007 -2013)

Dissemination Level

PU Public X

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 2 of 82

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

1.1 30.11.2008 First Version Juergen Vogel (SAP)

1.2 13.03.2009 Update Section 2 Juergen Vogel (SAP), Usman
Wajid (UNIMAN)

1.3 17.03.2009 Update storyboard (Annex A),
Section 4

Juergen Vogel (SAP), Florian
Schnabel (SAP), Lai Xu (SAP)

1.4 20.03.2009 Update Section 4 Florian Stroh (SAP), Patrick Un
(SAP)

1.5 20.03.2009 Contribution to Section 4.4 Freddy Lecue (UNIMAN)

1.6 25.03.2009 Contribution to Sections 3 and 4 Tomás Pariente Lobo (ATOS)

1.7 26.03.2009 Update Sections 4, 5, and 6; Input
Section 7

Juergen Vogel (SAP), Florian
Stroh (SAP), Florian Schnabel
(SAP), Patrick Un (SAP), Lai Xu
(SAP), Nikolay Mehandjiev
(UNIMAN), Usman Wajid
(UNIMAN), Freddy Lecue
(UNIMAN)

1.8 27.03.2009 Move listings to Annex, Update all
Sections, add Executive Summary,
Sections 1 and 8

Juergen Vogel (SAP)

1.9 30.03.2009 Introduction, Conclusions, Update
Section 4.8

Juergen Vogel (SAP), Lai Xu
(SAP)

1.10 30.03.2009 Some minor corrections Juergen Vogel (SAP), Patrick
Un (SAP)

 06.04.2009 Internal review by Ivan Delchev
(SAP)

1.11 07.04.2009 Corrections according to review Juergen Vogel (SAP)

 09.04.2009 Internal review by Reto
Krummenacher (UIBK)

1.12 15.04.2009 Corrections according to review Juergen Vogel (SAP)

Final 20.04.2009 Overall format and quality revision Malena Donato (ATOS)

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 3 of 82

Table of Contents

TABLE OF CONTENTS _________________________________ ____________________ 3

LIST OF FIGURES ___ 4

GLOSSARY OF ACRONYMS ______________________________ __________________ 5

EXECUTIVE SUMMARY __ 7

1. INTRODUCTION __ 8

1.1 PURPOSE AND STRUCTURE OF THE DOCUMENT _____________________ 9

1.2 FUTURE WORK ___ 9

2. SUMMARY OF REQUIREMENTS __ 10

3. ARCHITECTURE ___ 13

4. FUNCTIONAL AND TECHNICAL SPECIFICATION OF COMPONENT S _________ 16

4.1 FRONT END (GUI) __ 16

4.2 USER MANAGEMENT ___ 17

4.3 SERVICE AND PROCESS SELECTION _______________________________ 18

4.4 ANNOTATIONS AND COMMUNITY SUPPORT _________________________ 19

4.5 PROCESS MODELING __ 21

4.6 PROCESS STORAGE ___ 22

4.7 PROCESS DEPLOYMENT AND EXECUTION __________________________ 22

4.8 PROCESS MONITORING __ 23

5. SELECTED SERVICES FOR THE DEMONSTRATOR________________________ 25

5.1 PUBLIC SERVICES ___ 25

5.2 SERVICES FOR HANDLING HUMAN TASKS __________________________ 26

5.3 SAP ENTERPRISE SERVICES ______________________________________ 27

5.3.1 General SAP Architecture, Data Models and Access ____________________ 27

5.3.2 ES Bundle: Records and Document Management ______________________ 30

6. SEMANTIC ADAPTATION AND INTEGRATION LAYER FOR SAP E S __________ 33

6.1 CLASSIC WEB SERVICE ARCHITECTURE ___________________________ 34

6.2 SEMANTICALLY-ANNOTATED WEB SERVICES _______________________ 35

6.3 AN ARCHITECTURE FOR SEMANTICALLY-ANNOTATED ES ____________ 37

7. EVALUATION WORKSHOP _______________________________ _____________ 39

7.1 DESIGNS FOR COMPOSING WEB SERVICES _________________________ 40

7.2 DESIGN RATIONALE ___ 40

7.3 TOP-LEVEL ISSUES __ 40

8. CONCLUSIONS __ 43

9. REFERENCES ___ 44

ANNEX A: UPDATED SCENARIO “REGISTRATION OF A BUSINE SS” _____________ 46

ANNEX B: EXAMPLES FOR SERVICE ANNOTATIONS _________ ________________ 81

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 4 of 82

List of Figures

Figure 1: SOA4All Overall Architecture ...13

Figure 2: Overview of Adaptations and Extensions to SOA4All ..15

Figure 4a: Extended Attribute List for Process Annotations ..20

Figure 4b: Extended Element List ...20

Figure 5: Process Deployment and Execution ..23

Figure 6: Invocation of the Web Service ValidateCreditCard within the process “Registration
of a Business” V2 ...25

Figure 7: Invocation of the Web Service ValidateUKAddress within the process “Registration
of a Business” V2 ...26

Figure 8: Overall SAP NetWeaver Architecture with Processes, ES, and Enterprise Systems
(in the style of [König2004]) ..29

Figure 9: WS Navigator for Enterprise Service “Create Public Sector Document”30

Figure 10: Classic Web Service Architecture ..34

Figure 11: Web Service Architecture with Semantic Layer ...36

Figure 12: Web Service Architecture with Semantic Layer & Integration Layer38

Figure 13: gIBIS Design Rationale for Composition (Issue 1) ...42

Figure 14: gIBIS Design Rationale for Composition (Issue 2) ...42

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 5 of 82

Glossary of Acronyms

Acronym Definition

API Application Programming Interface

BPEL Business Process Execution Language

BPM Business Process Modeling

BPMN Business Process Modeling Notation

CMS Content Management System

CRM Customer-Relationship Management

D Deliverable

DSB Distributed Service Bus

EC European Commission

EJB Enterprise Java Beans

EP Enterprise Portal

ERP Enterprise Resource Planning

ES Enterprise Service

ESR Enterprise Service Repository

ESB Enterprise Service Bus

EU European Union

EUD End User Development

GDT Global Data Type

GUI Graphical User Interface

HCM Human Capital Management

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ID Identifier

ISO International Organization for Standardization

IT Information Technology

M Median

NLP Natural Language Processing

OWL Web Ontology Language

QoS Quality of Service

RDF Resource Description Framework

RDFS RDF Schema

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 6 of 82

REST REpresentational State Transfer

SaaS Software as a Service

SAWSDL Semantic Annotations for WSDL

SCM Supply Chain Management

SD Standard Deviation

SEE Semantic Execution Environment

SEI Service Endpoint Interface

SME Small and Medium Enterprise

SOA Service-Oriented Architecture

SOA4All Service-Oriented Architectures for All

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SRM Supplier Relationship Management

TCO Total Costs of Ownership

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

USD United States of America Dollars

WP Work Package

WS Web Service

WSDL Web Services Description Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

XI Exchange Infrastructure

XML Extensible Markup Language

XQuery XML Query Language

XSPARQL XQuery for SPARQL

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 7 of 82

Executive Summary
WP7 is one of the three SOA4All use cases and has the public sector as its target domain. It
envisions an integrated service delivery platform that will be realized based on the
technologies and tools developed in SOA4All. This platform will allow non-technical end
users in public administrations to handle typical administrative procedures (such as a permit
approval process). More specifically, using the Web-based tools of the SOA4All Studio,
public servants of various governmental organizations can search, model, annotate, modify,
share, analyze, and execute administrative procedures in the form of lightweight business
processes. These processes may be composed of SAP Enterprise Services, public Web
services (hosted by 3rd party service providers), and human activities (to be executed by end
users). Thus, the main result of WP7 will be an integrated demonstrator that addresses the
specific needs of public administrations. For public administrations, the main benefit of such
a flexible, open, and shared service delivery platform is the possibility to quickly address new
challenges and requirements, e.g., such as the ones formulated by the EU Services
Directive. Citizens and businesses that interact with public administrations over the platform
will benefit from faster and simpler public services. This deliverable serves as a guideline and
as a technical specification for implementing the service delivery platform based on the
technical components as well as the Web-based front end developed within the SOA4All
project. The deliverable also includes the design of a semantic adaptation and integration
layer for handling SAP Enterprise Services, a detailed and updated version of the use case
story board that demonstrates the features from the user’s point of view, and a description of
the first evaluation workshop for validating the project’s ideas.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 8 of 82

1. Introduction
WP7 is one of the three SOA4All use cases and has the public sector as its target domain.
Public administrations nowadays have to deal with hundreds of different procedures (e.g., for
handling a parking permit request) that are typically implemented in one or more legacy
systems or even executed manually. At the same time, the increasing number of regulatory
changes and new regulations, including an increasing number of international, bilateral
agreements, asks public administrations to constantly adapt their procedures in a flexible and
cost-efficient way. For instance, the EU Services Directive requires administrations to
implement a one stop e-Government approach where constituents can file requests for public
services via a single point of contact. This single point of contact then coordinates all
necessary activities, which is contrary to the current setup where the constituents themselves
have the main responsibility and need to manage on their own. As a consequence, public
administrations now need to adapt their service offerings to the needs of each constituent.

SOA4All investigates different key technologies (Semantic Web services, context adaptation,
Web 2.0 principles) that can help to address such challenges on the basis of an advanced
service-oriented architecture. WP7 envisions an open and flexible service delivery platform
where administrative procedures are handled over a central Internet portal as single point of
contact. Administrative procedures are composed of Semantic Web services. These services
can be combined in different ways so that new procedures can be created or existing ones
can be adapted easily. A key element for creating the content for this service delivery
platform in an efficient and scalable way is the enablement of end (or business) users that
resemble the large majority of employees in public administrations (and other organizations).
Such business users have a detailed understanding of the procedures in their field of
expertise but lack the specific programming skills required to actively consume and compose
Web services. The SOA4All approach therefore is to provide end users with simple Web-
based tools on top of Semantic Web services so that they can search, model, annotate,
modify, share, analyze, and execute administrative procedures on the basis of Web services.
This Web 2.0 approach is also a main differentiator where SOA4All advances the current
state of the art.

The main goal of WP7 is to realize this service delivery platform as an integrated
demonstrator. This demonstrator will be built from the components developed by the
technical WPs of the project: the communication and data storage infrastructure will be
provided by WP1, formalisms and tools for the semantic handling of services by WP3,
services discovery and a service registry by WP5, lightweight process modeling and
execution by WP6, and different Web-based end user tools by WP2. Besides the technical
integration and validation, the main contribution of WP7 from a technological point of view
will be to investigate how so-called Enterprise Services can be integrated into the open,
dynamic, lightweight, and end user-driven service platform that is envisioned by SOA4All.
Such Enterprise Services, which are provided by SAP in the scope of WP7, offer complex
business functionality like the management of resources or relationships with customers. But
at the same time, they typically have large syntactic (i.e., WSDL-based) service interface
descriptions that are difficult to understand for non-expert service consumers. Thus, by
investigating how to make Enterprise Services consumable for non-experts, WP7 will
significantly increase the number of services that can be handled by SOA4All.

Previously, D7.2 motivated the public sector as a target domain for the SOA4All project and
described how the research of SOA4All can support SAP in realizing a novel service delivery
platform for the public sector by means of an exemplary use case scenario. The resulting
technical and business requirements for this service delivery platform were described in
D7.1. The contribution of this deliverable is to illustrate how the SOA4All components will be
leveraged to build the service delivery platform. In addition, WP7 will extend and customize

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 9 of 82

the graphical front end, develop dedicated services for the handling of human tasks, and
provide a semantic adaptation and integration layer for using SAP Enterprise Services within
SOA4All.

1.1 Purpose and Structure of the Document
The purpose of this deliverable is to describe the use, adaptation, and extension of the
components provided by technical WPs WP1 – WP6, which are necessary to implement the
service delivery platform for the public sector in a way to meet the requirements detailed in
D7.1 and D7.2. In Chapter 2, these requirements are shortly summarized. Chapter 3 gives
an overview of the SOA4All architecture with front end and back end components and also
highlights which components will be customized for the use case demonstrator. Chapter 4
details these modifications and extensions. Chapter 5 describes the business services that
will be used for the demonstrator with a focus on Enterprise Services that SAP offers for its
customers from the public sector. Annex A presents an updated version of the use case
storyboard (presented first in D7.2) and as such demonstrates the functionalities and benefits
of the service delivery platform from the user’s perspective. The integration of the SAP
Enterprise Services into the SOA4All architecture by means of a semantic adaptation and
integration layer is discussed in Chapter 6. Examples for semantic service annotations can
be found in Annex B. Chapter 7 elaborates on the first evaluation workshop that will be
conducted in the upcoming months. Finally, Chapter 8 concludes this deliverable.

1.2 Future Work
Following the technical design of the envisioned service delivery platform in this deliverable,
a first prototype will be implemented until August 2009 (M18). The status of that
demonstrator will be documented in D7.4. The semantic adaptation and integration layer for
handling SAP Enterprise Services including the necessary semantic descriptions of the
services to be involved in the use case scenario will be available with D7.6 in February 2010
(M24). The final version of the demonstrator will be delivered with D7.5 in (M33). The focus
in the last three months of the project is on the concluding technical validation and the user
experience evaluation of the achieved results. The corresponding report D7.7 will be
available in February 2011 (M36).

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 10 of 82

2. Summary of Requirements
In this chapter, we summarize and update the most important functional and non-functional
requirements for the envisioned service delivery platform that has previously been described
in Deliverables D0.2, D7.1, and D7.2. These requirements are the basis for the design of the
demonstrator. They were derived from the general environment and intended use of the
service delivery platform as well as the profile of end users in the public sector (e.g. city
council workers and administrators).

SOA4All aims to empower ordinary end users to combine and consume large numbers of
services. Service mashups have been identified as central elements that can address IT
challenges in public sector [Gartner2007]. However, a general overview of public sector
administrators illustrates that they are more focused on the managerial aspects of their work
rather than technical aspects [Swain1995]. This behavior can be attributed to the lack of
technical knowledge of public sector workers.

As in our case, it is clear that the SOA4All target end users in the public sector will not have
a software development background. Their main interest would be to use SOA4All to fulfill
their routine job tasks in a flexible and context specific manner. In this respect, [Swain1995]
notes that the availability of user-friendly software packages seems to increase end-user
computing and public sector administrators appears to encourage it. These results promote
graphical representation of software solutions like SOA4All for users with average IT skills so
that a majority of public sector administrators / workers can effectively handle business
processes and compose mashups from existing services.

An important aspect of understanding the end users is to carry out preliminary studies to
ensure all end user requirements are collected. A personal approach to gather such
requirements may involve interviews, brainstorming sessions, and use cases and
storyboards. These techniques can be incorporated within workshops where all project
stakeholders are gathered together to discuss the project needs and goals. In this respect, a
set of workshops has been planned to gather further requirements about end users from the
public sector (see Chapter 7).

The following table summarizes the most important requirements, some of them being
specific for WP7 while others apply to all SOA4All use cases:

Requirement Description

Shared Service
Registry and
Process Repository

The service delivery platform should provide a central and shared
registry that lists all services and processes as well as a shared
repository for processes, including those that are added by the
target users so that existing processes can be executed, re-used,
and modified by users other than the original author.

Support SAP
Enterprise Services

The service delivery platform should allow accessing SAP
Enterprise Services that provide rich business functionality for
administrative procedures such as the management of the
documents associated with a certain case. Enterprise Services are
typically hosted by the internal IT department of a public
administration, but could also be hosted by centralized shared
services centers for several administrations or independent 3rd
providers. Currently, SAP Enterprise Services have complex, WSDL-
based service interfaces that can be handled by service experts only.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 11 of 82

Requirement Description

The integration of SAP Enterprise Service into the SOA4All platform
therefore requires (1) a semantic adaptation and integration layer
that is compatible with the semantic formalisms used in SOA4All and
(2) a front end that makes the handling of such services feasible for
the target user group.

Support Public
Web Services

The service delivery platform should support the integration of Web
services that are offered by external public or private service
providers so that a public administration can outsource certain
functionality.

Support Human
Tasks

Business processes in public administrations often involve activities
that are executed by humans such as checking requests for
completeness and correctness. The envisioned service delivery
platform therefore needs to support the modeling and execution of
human tasks .

Manage and
Search Services
and Processes

In a typical public administration, the service delivery platform will
contain several hundred services and processes so that intelligent
search and organization techniques are required to minimize the
access times for users.

Execute Services
and Processes

The service delivery platform should allow the seamless execution
(i.e., consumption) of services and processes.

Capture User
Knowledge on
Services and
Processes

The main efficiency gain from social Web 2.0 applications results
from capturing and structuring knowledge from all users in an
organized way and from making this knowledge easily accessible to
all users. In addition to managing the services and processes in a
shared registry, the service delivery platform should allow to manage
different types of meta-data, which supports the handling of services
and processes for the SOA4All tools or the SOA4All users:

• Semantic annotations for services and processes to support
automatic service discovery and service composition

• Categories to organize services and processes

• Tags to organize services and processes

• Ratings as user feedback on the quality of services and
processes

• Textual Comments for user discussions, guidelines, or
qualitative feedback

Compose New
Processes

Users of the service delivery platform should be able to compose
new processes that resemble administrative procedures by
connecting activities with control flow elements (i.e., business logic).
Activities may be SAP Enterprise Services, public Web services, or
human tasks.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 12 of 82

Requirement Description

Modify Existing
Processes

The modification of existing processes is needed so that they can
be reused as parts for new ones or in order to adapt them to new
requirements.

Analyze and
Access Status
Information on
Services and
Processes

The service delivery platform should provide status information on
selected process instances so that users can identify the active
activity of a running instance or can retrieve information about the
success or failure of a completed or aborted instance. Moreover,
users can evaluate the performance of a service before placing it in
a process model, which is of particular interest for public Web
services from 3rd party providers.

Support User
Roles

Like in other professional organizations, employees in public
administrations have different positions with specific rights and
responsibilities. The service delivery platform should reflect this
internal organization of administrations by supporting a user and
role model that allows assigning specific access rights to data or
functionalities to certain users or roles.

Usability The main target user group of the service delivery platform will be
business users, i.e., civil servants in public administrations with
sufficient business knowledge to handle their assigned working
tasks, but with limited IT knowledge (usage of office, Internet, and
business applications but no programming or SOA skills). The user
experience of the tools available via the service delivery platform
should meet the specific needs of this target group by using a
minimalist screen design with direct manipulation of all elements,
by using human-computer interaction paradigms known from
other applications like an Internet browser, by hiding the underlying
technical complexity, by pre-filtering and sorting large amounts of
information , by error tolerance, by offering explicit support and
guidance for specific tasks, etc.

Low Administrative
Overhead

A key business goal of the service delivery platform is to achieve a
smaller total cost of ownership (TCO) when compared to
traditional software solutions. Besides enabling business users with
end user development (EUD) facilities and thus shifting efforts from
IT specialists to end users, this requirement can be accomplished by
low installation and maintenance costs for all software components
of the platform.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 13 of 82

3. Architecture
The architecture of WP7 is based on the SOA4All architecture as described in D1.4.1A. The
overall architecture of SOA4All can be divided into four parts: SOA4All Studio, Distributed
Service Bus, SOA4All Platform Services, and Business Services (3rd party Web services and
lightweight processes). Each of these parts is subject to dedicated work packages of the
project. This deliverable presents the project’s overall approach towards a SOA4All service
delivery platform and defines how the various parts integrate and interact. Figure 1 shows a
high-level architecture of the SOA4All platform.

The SOA4All overall architecture is composed of four main building blocks:

• Distributed Service Bus : The Distributed Service Bus (DSB) is developed in WP1
and serves as infrastructure service and core integration platform and is a direct
evolution of the open-source PEtALS Enterprise Service Bus (ESB). Furthermore, the
DSB is extended by a scalable Semantic Space infrastructure, used as a shared
memory to build repositories, as cooperative access to monitoring data, and as
communication infrastructure to enhance the traditionally message-oriented bus
towards a publication infrastructure for anonymous and asynchronous service
communication with a notion of event-driven architectures.

• SOA4All Studio : This is the front end of SOA4All. The SOA4All Studio is developed
in WP2 and delivers a fully Web-based user front end that enables the creation,

Figure 1: SOA4All Overall Architecture

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 14 of 82

provisioning, consumption, and analysis of the platform services and various 3rd party
business services that are published to SOA4All. The studio supports different types
of users (service composers, service annotators, and service consumers as defined
in Section 5.3, D7.2) at different times of interaction.

• Platform Services : These services are products of WP3, WP5, and WP6 and deliver
service discovery, ranking and selection, composition and invocation functionality,
respectively. These components are exposed to the SOA4All Distributed Service Bus
as Web services and are hence consumable as any other published service. Their
functionalities are used by the SOA4All Studio to offer clients the best possible
functionality, while their combined activities (i.e., discovery, selection, composition,
and invocation) are coordinated via the DSB. The ensemble of DSB, SOA4All Studio,
and platform services delivers the innovative, fully Web-based and Web-enabled
service experience of the SOA4All project: global service delivery at the level of the
bus, Web-style service access via the Studio, and advanced state-of-the-art service
processing, management, and maintenance via dedicated platform services.

• Business Services (Web Services) and Processes : These are 3rd party business
services that are annotated semantically and are composed by means of the SOA4All
infrastructure. These invokable services can be defined as RESTful or WSDL-based
services. The semantic descriptions are published in the Service Registry in the
formats of MicroWSMO or WSMO-Lite (as specified in WP3), respectively, and are
used for reasoning with service capabilities (functionality), interfaces, and non-
functional properties, as well as with context data. These semantic descriptions are
the main enablers of the automation processes related to Semantic Web services.
The services can be composed and executed using lightweight processes and
mashups. Both, mashups and semantic descriptions of service compositions are
published to the shared Semantic Spaces, and become a public good for automated
large-scale service computing.

The envisioned service delivery platform makes use of all of these components. However, in
some cases use case-specific adaptations or extensions are required to comply with the
requirements stated in Chapter 2. Figure 2 shows a high-level overview of the additions that
should be provided to adapt the overall architecture to the specific needs of WP7:

1. SOA4All Studio

a. Provisioning Platform: In case SAP Enterprise Services should be annotated
semantically using the SOA4All Provisioning tools these need to take into
account the peculiarities of these services such as their large and complex
service interfaces (WSDLs) and their logical dependencies (pre and post
conditions) when comparing them to “regular Web services”.

b. Consumption Platform: The specific needs of the public administration’s
processes will be developed in this module (process templates, wizards for
the SOA4All Composer, etc.).

c. User Management: The SOA4All Studio provides the basic user interface and
services to allow for user management but currently does not provide an
elaborate role model as required for the scenario.

2. For integrating state-of-the-art SAP Enterprise Services into the SOA4All platform, a
Semantic Adaptation and Integration Layer will be developed.

3. Support for human tasks: Human tasks involve the usage of a specific user interface
that shows to the end user waiting tasks (if any) and a user interface for the actual

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 15 of 82

execution of a certain task. Both need to be integrated into the SOA4All Studio. For
the management and execution of human tasks at the back end, specific Web
services will be provided that are called either by the SOA4All Studio or the SOA4All
Execution Engine.

In the following Chapters, we discuss how the SOA4All components (i.e., SOA4All Platform
Services, Distributed Service Bus, and SOA4All Studio) will be used in WP7 to develop the
envisioned service delivery platform for public administrations as well as the adaptations and
extensions to these components that are necessary to fulfill the specific requirements of the
use case as described above.

Figure 2: Overview of Adaptations and Extensions to SOA4All

Provisioning

Adaptation

Consumption

Adaptation

U
se

r M
g

m
t

A
d

a
p

ta
tio

n

S
e

m
a

n
tic

A
d

a
p

ta
tio

n
 a

n
d

In
te

g
ra

tio
n

 La
y

e
r

fo
r S

A
P

 E
S

H
u

m
a

n

Ta
sk

S
e

rv
ice

s

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 16 of 82

4. Functional and Technical Specification of Compon ents
In the following sections, we detail the use, extension, and adaptation of SOA4All
components to develop the service delivery platform of WP7 (see Figure 2). First, we
describe the graphical frontend for both civil servants and constituents of a public
administration. In Section 4.2, we discuss the management of users and their roles. Section
4.3 describes how services and processes can be searched and selected. The handling of
meta-data to facilitate search (amongst others) is designed in Section 4.4. Section 4.5 shows
how processes can be modeled by service composer. Section 4.6 describes how the
resulting process models are stored. Finally, Sections 4.7 and 4.8 discuss how processes
are deployed, executed, and monitored.

4.1 Front End (GUI)
Two user front ends are required to realize the envisioned scenario (see Annex A). The front
end for the service delivery platform is intended to be used by civil servants within a public
administration with the roles of service composer, service consumer, and service annotator
(see Sections 5.2 and 6.2, D7.2). External service consumers as constituents of the public
administration will interact with the service delivery platform via an Internet portal.

Front End for the Service Delivery Platform

The dashboard developed in WP2, will provide the entry point to the service delivery platform
(see D2.4.1 and Step 1a in Annex A). It will expose the tools of SOA4All and it will provide a
menu structure to access them. In addition to the tools planned so far (Profile, Composer,
Search, Analysis, and Annotator), additional tools or views may be offered to the target
users. For instance, a customized search view will be integrated to let civil servants quickly
access pending modification or annotation tasks, which is essentially the result of a search
for the corresponding service annotations described in Section 4.4. Relevant use cases for
such customized search views are described in Steps 5a/5b and Step 6b of Annex A.
Another tool that is required for the public sector scenario is the SOA4All Tasks tool that
allows the user to view and execute any pending human tasks which might be assigned to
her/him (see Step 14 in Annex A). The list of pending tasks can be retrieved from the
business service that will be developed for that purpose as described in Section 5.2. Any
extensions to the front end will follow the general design guidelines described in D2.4.1.

Internet Portal for the City of X

The administrative processes that can be modeled and executed by the service delivery
platform may resemble public services that the administration offers to its constituents (i.e.,
citizens or businesses). The execution of such a public service is usually triggered by the
constituent filling out an appropriate service request. To allow for a seamless electronic
handling of public services (as requested by the EU Services Directive [EC2006]),
constituents should be able to issue their service requests electronically.

For demonstration purposes, we will therefore develop a (simple) Internet portal for the City
of X that serves as the front end for the constituents of the WP7 scenario (see Step 11a in
the Annex A) and that allows to enter the data required for a specific request and to submit
the request itself (see Step 11b in Annex A). After submitting the request, the constituent
would receive a unique request ID (i.e., a URL) that he can use to check the status of his
request.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 17 of 82

The implementation of this Internet portal is straightforward and a first version will be
available with D7.4. As a basis, a Web server such as the Apache HTTP Server1 is used that
hosts the actual content of the portal. For the planned demonstrations of the project results,
we will add a Web pages and forms for scenarios like the one described in the Annex A. The
forms for submitting service requests collect the user’s input in the browser and forward it to
the Web server. The Web server can then call the SOA4All Execution Engine (see D6.5.1)
and generate a new HTML page to be displayed as feedback to the user (including the
request ID).

The automatic generation of an UI for a specific process is an open research topic and out of
the scope of the SOA4All project. For instance, the FP7 project ServFace2 aims to enrich
service definitions with dedicated semantic information about operations and parameters, as
well as process definitions with interaction control and user interface integration details at
design time in order to be able to generate automatic UIs at runtime.

4.2 User Management
WP2 provides general so-called Management Services (see D2.4.1) with means for user
identification and authentication, resource authorization, auditing/logging, and some simple
key/value based user preferences storage.

These services provide the following functionalities:

• Identification and Authentication: Identification makes it possible for distinct users
to be identified according to their profiles/accounts. Anonymous access is not
required for WP7, and a password-based authentication of the identified user
accounts is used instead. Ownership of resources (such as services, ontologies, tag
clouds, comments and ratings, etc.) is associated with a specific user or group profile.

• Profile Management : Essential information associated with each user should be
provided at registration time such as: user id, name, contact e-mail, and associated
role.

• Authorization : Authorization provides a scheme for defining the access rights to a
particular resource per user.

• Auditing : Auditing will cover functionality to examine and evaluate the history of
changes applied to a resource or the actions performed by a user. Such a change
history is also useful to make all user actions in the service delivery platform
accountable.

• Preference Management : Preference management allows a simple storage and
retrieval of user-based and/or application-based settings (key-value pairs). These
settings could either be used to personalize settings of the SOA4All Studio tools or to
define default values for service interfaces that are retrieved automatically at runtime.

• Social Graph Support : The social graph related functionality will make it possible for
users to find and add other SOA4All users to their social graph by means of either
finding users based on name / e-mail, or to import contacts from existing social
networks such as Facebook, MySpace, LinkedIn, OpenSocial, etc. For the use case

1 http://httpd.apache.org/
2 http://www.servface.eu/

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 18 of 82

scenario, this feature may be required when the service delivery platform is deployed
at an organization where users already participate in such a social network for work
purposes.

According to D2.4.1, the Management Services of the SOA4All Studio do not support a
dedicated role model with associated access rights as required for WP7 (user roles may be
process expert, legal expert, domain expert, clerk, etc., also see Section 6.2 in D7.2). Thus,
either the management services will be extended accordingly within T2.4, or WP7 will add an
additional management layer on top that uses the profile management to define user roles
and a dedicated business service that maps between users and roles and that resolves
access rights for a given resource per user or role. Following the interface definitions given in
Section 5.2 of D2.4.1, the following additional services will be implemented:

• setRole(userID:long, role:String):void

• getRole(userID:long):String

• getUsers(role:String):long[]

• hasRole(userID:String, role:String):Boolean

• setAccessRight(resourceID:long, role:String, read:Boolean,
write:Boolean):void

• getAccessRights(resourceID:long, role:String):(read:Boolean,
write:Boolean)

4.3 Service and Process Selection
Service and process selection functions can be accessed by the user either in the dedicated
SOA4All search tool of the SOA4All Studio (see Step 1a in the Annex A) or as embedded
function of the other Studio tools like the SOA4All Composer. In this section, we describe in
more detail how service and process selection is adjusted to the needs of the public sector.
As discussed in Section 4.4, processes will have domain-specific attributes such as
ProcessApproval, ProcessVersion, ChangeHistory, and Category. Hence, we
have to extend the search, filtering, and rating mechanisms of SOA4All by features that take
into account information about process approval, changes, and categories.

Searching Services and Processes

An important aspect of our use case is service discovery based on full-text. Since most of the
users in the public sector are not familiar with sophisticated search engines, a full-text based
search is required that crawls all available information about services such as service name
and parameters, semantic annotations, tags, categories, and user comments. The “Search &
Result Handling” widget that displays the result list from a specific query by the user (as
described in D2.4.1) can be extended by the methods

• setSearchCategory(category:SearchCategory):void

• setSearchTag(tag:SearchTag):void

to allow searching for services within a specific category or with a specific tag. We will further
add the functions

• setChangeTimeframe(startTime:Date, endTime:Date):void

• setChangePerformer(userID:S tring):void

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 19 of 82

allowing for the service and process search according to the last change performed and a
function

• setApprovedProcess(Approval:Boolean):void

allowing to search for approved processes. While the category search is implemented as a
full-text based search (see D5.3.1), the change time frame search requires dates as input
data. The search for approved processes can be realized by a search on the
ProcessApproval attribute and will be displayed as a customized search function for users
with the appropriate role.

Selecting Goals

The SOA4All Studio will provide designated tools for supporting the user to select a goal that
is then automatically linked to one or more concrete services (e.g., see Step 7e in Annex A).
As described in D2.2.1, the “Template Completion” component will help the user in finding an
appropriate goal and in specifying missing information, the NLP (natural language
processing) component allows the user to find goals based on descriptions typed in textually
using natural language, and the “Incremental Goal Revealing” component will allow users to
define goals in several iterations getting more detailed with each step. Concrete method
interfaces to these components will be defined by T2.2 at a later stage of the project.

Filtering Services and Processes

The Client-Side Filtering widget (as described in D2.4.1) will be extended by a category, tag,
process change, and approval filtering functionality. Similar to the search, we will extend this
widget by the methods described above allowing setting the Category, Tag, Version, and
ProcessApproval for the filter. We will integrate another filtering functionality that is based
on the approval context information. If the value of the approval attribute of a process is
noApprovalRequired, the legal expert will not see them in his default view after logging in
to the Studio (see Step 5b in Annex A). Moreover, all users will be provided with filters that
display (1) the processes and services they use most frequently, (2) the services and
processes they have used most recently, (3) and processes which have been changed
recently in the favorites list of the Studio UI (see Step 1c in Annex A).

Ratings and Rankings

The Rating widget as described in D2.4.1 needs to be extended in order to describe how
useful a service is for a certain category. We will provide an extra icon for the rating result
according to the category. Furthermore, we will use the standard SOA4All rankings based on
security, availability, reliability, provider trust etc. The recommender system developed in
T2.7 will be used to sort result lists generated in a search according to the estimated
relevance for the user.

4.4 Annotations and Community Support
The processes are stored in a shared repository (see Section 4.6). In SOA4All, this shared
repository is realized by a distributed Semantic Space (see D1.3.2A). The processes are also
semantically described. The user creates some annotations for the process as a whole using
the annotation editor developed in the service provisioning Task 2.1 (see D2.1.2), which
might be embedded into the SOA4All Composer (see D2.6.1) via the SOA4All Dashboard
(see D2.4.1). The standard annotations within SOA4All cover input and output data,
preconditions, effects, and capabilities. Additional annotations are currently under
investigation.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 20 of 82

Within WP7, we will define specific annotations for processes that are important in the public
sector. For instance, as described in Chapter 6 of D7.2, the public sector scenario requires a
compliance check by a legal expert before a new process is allowed to be executed. This
procedure can be implemented by using a designated process attribute named
ProcessApproval. The attribute ProcessApproval serves as an indicator for the
compliance check according to business and legal rules. The default value of
ProcessApproval when creating a new process is notApproved. Further values should
be rejected, accepted, or noApprovalRequired. The attribute can be changed only
by a user with the appropriate rights (see Section 4.2) and is checked before the deployment
and execution of a process (see Section 4.7).

An important aspect is to support users in organizing and finding processes. For the public
sector, services and processes are assigned different categories such as the topic (e.g.,
human resources, identification cards, car registration etc.) or the department (finance,
personnel etc.). Hence another attribute named Category is needed that can store several
pre-defined categories.

Furthermore, we will provide means to document changes on each process model. This can
be done by storing the relevant information about the change in terms of author and
timestamp in the attribute Version.

In order to support the reuse of processes via a shared process repository that is managed
within a public administration such as in the fictional City of X, we will provide annotation
mechanisms for comments and ratings that can then be used by the search and filtering
mechanisms (see Section 4.3) and the recommender system developed in Task 2.7. We will
thus create the process attributes Comment and Rating that are time-stamped and
referenced with the respective userID. The Comment attributes will provide ordinary text
fields (see Figure 4a). As depicted in Figure 4b, the Rating attribute is composed of
different aspects. As mentioned above, we will use the standard SOA4All rankings based on
security, availability, reliability, provider trust etc. The process commenting functionality will
again be linked to the user model defined in Section 4.2. In our scenario description, Claudia

Figure 4a: Extended Attribute
List for Process Annotations

Figure 4b: Extended Element List

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 21 of 82

will comment her process approval (see Steps 5b and 5c in Annex A). By linking the
commenting functionality to the user model we will make sure that only legal experts are
allowed to change the approval attribute (see attribute ProcessApproval in Figure 4a).

Further details of the service annotation and categorization approach will be given in D7.6.

4.5 Process Modeling
As described in D7.2, civil servants usually have a very detailed understanding about
processes but often do not have the skills to use formal BPM tools. Thus, to support these
users in modeling processes, SOA4All will

(1) provide a lightweight modeling language (WP6)

(2) apply semantic technologies to support the discovery (WP3 and WP5) and
composition of services and processes (WP6) and to hide details via goals (WP2 and
WP6)

(3) offer a user-friendly GUI with wizards to guide the user in modeling tasks (WP2).

In this section, we present an overview of how to customize the SOA4All Composer to meet
the requirements of the WP7 use case.

Customizing the SOA4All Composer

Civil servants will use the SOA4All Composer to model processes (see D2.6.1). Step 1f in
Annex A shows a screenshot of the SOA4All Composer UI during modeling with active
Modeling Canvas and Tools components. Experienced users may model a new process in
the so-called “free mode” by placing the graphical elements of the modeling language (start
process, stop process, activity, and connector) via drag and drop on the canvas. Details of
an activity (e.g., service parameters) can be specified in a details box displayed for the
selected activity.

Activities can either be concrete services, goals in case the user is not able to provide any
information required to specify a concrete service, or human tasks. We will extend the editor
by an activity attribute stating whether the activity represents a human task. This information
will be used by an extension of the process execution engine provided by T6.5 that handles
machine-based and human tasks.

The locking of certain process parts is quite important in the public sector in order to prevent
modifications of parts that are modeled according to legal regulations and should not be
changed or to prevent modifications by unauthorized personnel. Within WP7, the SOA4All
Composer is thus extended by a locking functionality for activities and connectors. This
functionality will be based on a user model defining access rights per activity and connection
types. We will thus extend the attribute list of activities by an attribute AccessRight. The
AccessRight attribute will provide references to appropriate attributes in the user model
defined in Section 4.2. Checks will be executed on the client-side of the SOA4All Composer
(see D2.6.1) before allowing a modification by user input. Feedback on the locking status of
certain elements will be provided visually with an appropriate “locked” icon that is displayed
on top of the each locked element.

Domain-specific Wizards for the SOA4All Composer

The extensions of the SOA4All Composer performed in the context of WP7 include smart
wizards. For instance, as described in Step 7 in Annex A, a smart, domain-specific wizard
AddCreditCardPayment is implemented that contains a control flow to describe the
stepwise guidance as well as a description of the actual modification to be performed at each

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 22 of 82

step. The concrete implementation of smart wizards is not yet defined but will be addressed
by T2.6 in the remainder of the project.

Domain-specific Process Templates

As described in D6.3.1, there is wide agreement that process patterns and templates can
accelerate the process of designing a solution and reduce modeling time. The templates can
be generally applicable or domain-specific. The SOA4All Composer will allow for the creation
of both kinds of templates. In the context of WP7, we will develop several process templates
for the public sector. The actual modeling of a template does not differ from the modeling a
regular process. We will rely on an updated version of the lightweight process modeling
language (T6.3) and of the Composer (T2.6) for a specific handling of templates.

4.6 Process Storage
All processes created with the SOA4All Composer are stored to the shared repository (see
Step 4 in Annex A and D2.6.1) that is accessible to all users within a public administration,
which have a login and the appropriate access rights (see Section 4.2). After modifying an
existing process, a new version is created and also placed in the repository (see Step 8 in
Annex A). Thus, civil servants exchange their business knowledge via the process models
and the attached annotations described in Section 4.4.

The shared repository is typically hosted either by the public administration or by a 3rd party
platform provider (see Section 5.2, D7.2) and is accessible within the administration’s
Intranet. However, several administrations could also exchange processes (and therefore
business knowledge) by either connecting their repositories or by running a single instance.
Again, access to the shared repository and to selected processes in such an inter-
organizational setting can be controlled via the general authentication of the service delivery
platform and by the individual access rights per user.

SOA4All provides two types of storage services:

• WP1 provides a Semantic Space infrastructure as a distributed storage for semantic
information encoded in RDF (see D1.3.2A)

• In order to simplify the use of the Semantic Space, WP2 provides the Storage
Services, an easy to use API that provides simple storage functionalities (see
D2.4.1). Those services consist of fundamental functionalities that enable RDF
creation, update, deletion and querying (SPARQL) functionalities. Also, the WP2
storage services allow the storage of files such as WSDLs.

The SOA4All Composer builds upon the WP2 storage services (see D2.6.1) to store the
processes as well as the semantic annotations described in Section 4.4.

4.7 Process Deployment and Execution
In this section, we describe how a particular process can be deployed and executed by a
user of the service delivery platform (see Step 10 in the Annex A). The process deployment
and execution environment provides self-adaptation at design time to make use of the
specific capabilities of component services or at runtime to adapt to contextual requirements
(such as the selection of the fitting payment service from the “Handle Payment” goal
described in Step 7e and Step 14 in Annex A) and unforeseen faults (see D6.5.1). Once a
lightweight process has been designed, it needs to be translated into an executable process
by the so-called Artifacts Generator developed in T6.5 (see Figure 5 and D6.5.1). The

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 23 of 82

artifacts to be generated include the process described in an executable language that can
then be deployed to the Execution Engine developed in T6.5. This executable language is
composed of three main parts:

- a BPEL weaved for decoupling the BPEL process from the adaptation and
reconfiguration logic,

- a set of rules for implementing the policies that enable self-adaptation and self-
reconfiguration at runtime,

- a set of mapping scripts for solving possible mismatches in service interfaces.

In SOA4All, services involved in the composition are semantically annotated using the
grounding schema described in D1.2.1. An annotation of a Web service is provided using a
common domain-specific ontology. Semantically-annotated WSDLs of a concrete Web
service also describe all the data types used as input and output parameters of the
operations and operation names (also see Chapter 6). This information is used for
automatically generating the mapping scripts. Semantic annotations for the services used
(see Chapter 5) will be provided with D7.6. The result of a process execution is returned to
the user and can be accessed via the SOA4All Analysis tool described in the following
section.

4.8 Process Monitoring
The monitoring and management tool suite of the SOA4All Studio provides information about
executed services and processes for service consumers, composers, annotators, and

Integration
Layer

WSDL
(SAWSDL)

Server

SOAP
Message

Data

Endpoint

Java Beans

Java
Interfaces

Java Methods

SAP Server Runtime Environment

WSDL

invoke

invoke

concrete services3rd party services

Registration
Business Process

in the SCENE
language

SOA4All Platform Service

Artifacts Generator

Execution Engine

req.

return

Registration
Business Process
in the lightweight
process language

Figure 5: Process Deployment and Execution

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 24 of 82

providers (see D2.3.1). Service consumers can check the status of all running process
instances. For example in the use case scenario, an authorized civil servant can check
pending requests of the “Registration of a Business” process (see Step 13 in the Annex A).
A user can also access a more detailed view of the status of a certain process instance and
its included services in the form of an overlay to the original process model (see Figure 25,
D2.3.1). Service composers can view Quality of Service (QoS) data such as the average
response time or the availability rate to decide among alternative Web services. Moreover,
alerts can be defined that trigger a notification in case QoS parameters are violated (see
D2.3.1).

For a service provider with direct access to the service delivery platform (assuming a
contractual agreement with the public administration), further monitoring information can be
accessed: the number of unique users, the origin of users, the minimum and maximum
numbers of concurrent calls, list of processes that call a particular service etc. A direct
access to the service delivery platform would also allow the service provider (e.g., SAP) to
quickly react to quality of service issues and to seamlessly deploy new or modified services.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 25 of 82

5. Selected Services for the Demonstrator
One major objective of the SOA4All use case of WP7 is to demonstrate the usage of both
public Web services and SAP’s Enterprise Services (short: SAP ES) with a special focus on
enterprise system functionalities. The following sections will discuss the Web services,
services for handling human tasks, and SAP ES to be used within WP7 in order to give a
better insight into their provided functionalities, usage, and business objects (if available).

5.1 Public Services
For the underlying process of a registration of a business (see Figure 16, D7.2), the following
two Web services, which are provided by the Web service platform Webservicex.com
[Webservicex.com2009], will be incorporated. For this purpose, they will also be annotated
semantically (see Chapter 6).

Credit Card Validity Check

During the first steps of the process, the civil servant files the case of a new registration. If
the user has declared to be charged via a credit card payment, the respective credit card has
to be checked for its validity by the servant. For this purpose, a 3rd party Web service called
“ValidateCreditCard” will be invoked, which is capable to check credit cards of Master Card,
VISA, Amex, and DINERS as illustrated in Figure 6. The service requires type and number of
the credit card to be checked. Its response is a Boolean data type for indicating the validity.
The complete WSDL of this Web service can be found at:

http://www.webservicex.net/CreditCard.asmx?wsdl

Figure 6: Invocation of the Web Service ValidateCreditCard within the process “Registration
of a Business” V2

Address Validity Check

In order to avoid any malpractice of the user interfaces provided by the public administration
of the city and to guarantee a comparatively high data quality, the address of the applicant

F
ile

 C
as

e

Attach document
to record

no

Check if
credit card is valid

Modified user
interface for

credit card input

no

yes

yes

ValidateCreditCard
(3rd Party)

Receive form

Check if credit
card payment

Create record

Create
registration
document

Enterprise Service
Document &
Records Mgt.

Enterprise Service
Document &
Records Mgt.

Enterprise Service
Document &
Records Mgt.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 26 of 82

will be automatically checked via a Web service such as “UK Location”3. Figure 7 shows the
point of invocation within the execution of the process. For the verification task, the method
ValidateUKAddress will be used within the Web service. For invoking the service, the
town, county, and postal code are required in order to fulfill the checking task. The result is a
Boolean data type. A detailed WSDL description with all provided methods, parameters, and
results is available at:

http://www.webservicex.net/uklocation.asmx?wsdl

Figure 7: Invocation of the Web Service ValidateUKAddress within the process “Registration
of a Business” V2

5.2 Services for Handling Human Tasks
In the public sector (and other domains), processes may contain activities that are human
tasks. For instance, the activity “Check legal form” as depicted in Figure 7 is a human task to
be executed by a civil servant. Instead of requiring a fully-fledged BPEL for People
[BPEL4People2005] Extension of the SOA4All Execution Engine, which is out of the scope
of the SOA4All project, we intend to develop a dedicated Task Server that provides several
services to enable the handling of human tasks via services (see Figure 2):

• registerHumanTaskCallback(userID:long, processURI:String,
activityURI:String) : void

If the SOA4All Execution Engine executes the process with the URI processURI and
reaches the activity with the URI activityURI that resembles a human task, it calls the
operation registerHumanTaskCallback asynchronously to register the user with ID
userID as the responsible user for the activity activityURI of the process

3 “UK Location” handles addresses in the UK only. However, the service is used as a proof-
of-concept and can easily be replaced by services with the same functionality, which are
suited for the City of X.

Check
lawfulness

Check
identity Send

denial

Check
legal form

Check
operation

allowance

Archive

M
ai

n
ch

ec
k

D
en

ia
l

Pre-Check
failed

Pre-Check
successful

Validate
Address
(3rd Party)

Main Check
successful

Main Check
failed

Check
lawfulness

Check
identity Send

denial

Check
legal form

Check
operation

allowance

Archive

M
ai

n
ch

ec
k

D
en

ia
l

Pre-Check
failed

Pre-Check
successful

Validate
Address
(3rd Party)

Main Check
successful

Main Check
failed

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 27 of 82

processURI at the Task Server.

• executeHumanTask(userID:long, processURI:String,
activityURI:String, result:Boolean) : void

This service is called from the front end side (i.e., the SOA4All Tasks tool of the SOA4All
Studio) when the user has executed the task. In the simplest case (e.g., for an approval or
check), the user can either decide “Rejected”/”Failed” or “Approved”/”Successful” as a
false or true result value.

• executeHumanTaskCallback(userID:long, processURI:String,
activityURI:String, result:Boolean) : void

The Task Server notifies the Execution Engine as soon as the user with userID has
actually executed the task of the activity activityURI for the process processURI
with result true if the task was executed successfully, else with false, so that the
Execution Engine can trigger any follow-up activity in the process model.

• getTasks(userID:long) : (processURI:String, activityURI:String) []

Retrieves all pending tasks for a certain user, e.g., for displaying a task list to the user.

• cancelTask(userID:long, processURI:String, activityURI:String) :
Boolean

Cancels a pending task of a user for a certain process and aborts the process. It returns
true on success, false on failure.

• cancelTasks(userID:long) : Boolean

Cancels all pending tasks of a user and aborts all corresponding processes. It returns
true on success, false on failure.

All services will be accessible as WSDL and WSMO-Lite (see D3.4.2) services. This
approach allows us to use the Execution Engine as designed by T6.5 without further
specifications. The Task Server could also take over more sophisticated business logic like
determining an appropriate user dynamically at runtime from a given role (instead of having
static users as indicated above). The necessary specifications of the service parameters are
done at design time using the SOA4All Composer. As described in Section 4.1, the SOA4All
Studio will also provide a Tasks tool for users to access and perform their designated human
tasks via the service interface listed above.

5.3 SAP Enterprise Services
First, we give a general introduction to SAP Enterprise Services and describe their technical
foundation. In Section 5.3.2, we describe a set of services that provide the business
functionalities required to realize the sample scenario of this use case.

5.3.1 General SAP Architecture, Data Models and Acc ess

In order to realize benefits of a service oriented architecture, SAP has developed a strategy
to provide services of nearly all SAP products. By means of this concept, SAP envisages for
its customers an increased reuse rate of software components [Endrei2004], a reduction of
complexity in terms of decomposing large applications into single software functionalities, a
faster time to market due to the easier development and deployment effort [Bieberstein2005],

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 28 of 82

as well as the support for business process automation and business process innovation
[SAP2008].

Web services provided by SAP are called Enterprise Services (ES) and encapsulate
functions of SAP business software, e.g., from SAP ERP 6.0. Enterprise Services can be
managed and accessed via the SAP NetWeaver SOA Platform [SAP2007]. The design of
these ES follows the concepts of generally accepted Web services standards such as
WSDL. In comparison to the majority of the services that can currently be found on the
(public) Web, ES can be differentiated by the following characteristics:

• Business semantics: ES use a harmonized enterprise data model with so-called
global data types (GDTs), e.g. Date which is specified as YYYY-MM-DD. For a
comprehensive overview and description of all business objects used by ES please
refer to the SAP Data Type Catalog listing Core Data Types and Global Data Types:
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/303fd192-1db2-
2a10-59b9-9dfd93f4b10f

• Backward compatibility and reuse: ES provided by SAP are compatible with older
versions of services and can be reused across all SAP solutions

• Standards: WSDLs are described and created by GDTs based on the document
standard UN/CEFACT CCTS (Core Component Technical Specification)
[UN/CEFACT2007]

SAP considers ES as representatives of a “common language of business” [SAP2007].
Figure 8 illustrates the overall architecture encompassing processes, ES, and enterprise
systems. Single functionalities from SAP enterprise systems (e.g., customer relationship
management CRM) are exposed and organized as ES. These services are deployed on an
SAP NetWeaver environment and are coupled with single process activities to fulfill the
needs of business processes.

For more detailed information about SAP’s concept of ES, the following introductions and
documentations can be helpful:

• Enterprise SOA in a Nutshell: gives a brief overview including a description of all
relevant components of SAP’s ES
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/c019bf26-8bb8-
2910-4f8f-e9bd55eda650

• How to Consume ES Workplace ES in Visual Composer
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/a160392c-0e01-
0010-7784-9cc564d871d2

• ES Workplace Handbook: describes how to search and access ES via the central
platform ES Workplace
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/d91e4d16-0b01-
0010-57b5-c4473111136f

• ES Documentations: very detailed information including transactions, maintenance,
consumption of ES, etc. categorized by process components of ERP, SCM, SRM,
and CRM
https://www.sdn.sap.com/irj/sdn/explore-es?rid=/webcontent/uuid/c0cd8360-3b74-
2910-0fae-dcceed7328e7

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 29 of 82

Figure 8: Overall SAP NetWeaver Architecture with Processes, ES, and Enterprise Systems
(in the style of [König2004])

For establishing an “exemplary enterprise SOA information and evaluation environment”,
SAP provides “a central place to view consolidated information of all available ES delivered
by SAP” [SAP2008] – the ES Workplace.

Customers, developers, and business partners can search via the ES workplace for ES and
can directly access them through the NetWeaver Developer Studio or (for test purposes) via
the browser. The ES Workplace allows access to “the latest versions of all ES available for
the SAP Business Suite 2005 in a hosted environment” [SAP2008]. ES, which are published
in the ES Workplace, cover functionalities of the following systems of the SAP Business
Suite: Enterprise Resource Planning (ERP), Exchange Infrastructure (XI), Supply Chain
Management (SCM), and Enterprise Portal (EP). All ES in the ES Workplace have been
modeled and developed by SAP architects and developers and are stored in the ES
Repository (ESR).

For accessing ES different views are provided, which facilitate the search and selection
process. Technical experts can browse through the ES Index, whereas users with less
technical background can search within the SAP solutions maps for different industries (e.g.,
banking, insurance, automotive etc.) that represent core functionalities, organizational units,
and processes of the industry of interest.

So-called ES Bundles package ES into “main business scenarios and processes as well as
industries” [SAP2007]. In addition to the packaged ES an ES bundle contains:

• the documentation how to use the relevant services for extending and reconfiguring
specific business processes

• an explanation of the relevant processes, business scenarios and roles involved

• descriptions of used business objects

The ES Bundles are organized and stored in the ES Bundles catalogue which can be
accessed via the ES Wiki:

https://wiki.sdn.sap.com/wiki/display/ESpackages.

Business
Process

Enterprise
Systems

… CRM FI XI

SAP
NetWeaver™

Step 1 Step 2 Step 3 Step 4 … Step nStep 1 Step 2 Step 3 Step 4 … Step n

ES 1 ES 1

ES 2 ES 2

…… ……

……

……

……

……
……

ES nES n

Enterprise
Services

ES 3ES 3

……

…

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 30 of 82

From an end-user viewpoint ES are comparatively complex to be consumed. As mentioned
above, they can be accessed either via the NetWeaver Developer Studio (addressing
technical experts) or for test purposes also via the WS Workplace, or to be more precisely
via the WS Navigator. The WS Navigator provides a browser-based user interface for
invoking services. However, due to the complexity of the data types and the ability of the
underlying functions to be customized, preconditions and mandatory parameters have to be
considered and specified by the user. As shown by the list of parameters for the Enterprise
Service “Create Public Sector Document” on the left side of Figure 9, the usage of ES would
require from end users a detailed technical knowledge about business objects dependencies
for example. Consequently, one of the main objectives of WP7 is to facilitate the integration
and application of ES for end users daily work.

Figure 9: WS Navigator for Enterprise Service “Create Public Sector Document”

5.3.2 ES Bundle: Records and Document Management

One of the aforementioned ES Bundles is the “Records and Document Management” bundle.
The ES stored in this bundle have a high relevance for the use case scenario of WP7 and
are used for the planned Demonstrator. The use case of WP7 demonstrates the process of a
registration of a business in a German municipality, which imposes the generation of several
documents that are assigned to a record file representing every registration case (see

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 31 of 82

Chapter 6, D7.2). The ES Bundle “Records and Document Management” provides
functionalities for reading, creating, and changing documents and record files as well as
managing relations between documents and record files. All ES of this bundle are based on
the enterprise system SAP Records Management that meets all relevant requirements of a
document management system such as storing documents, managing meta-data of
documents etc.

In particular public sector organizations work with large amounts of documents and therefore
rely on proper document management mechanisms for their business processes. By means
of the ES of this bundle a variety of document MIME types (e.g. emails, text documents,
spreadsheets, forms, MP3 recordings etc.) can be stored and managed.

The benefit of the service oriented approach in this context is the comparatively flexible
integration of the document management services in document processing systems or
scanning tools which allows an automatic storing and management procedure of the
respective documents and their record folders. Also, the integration in email clients enables
the organization-wide management of emails or even mail folders.

Without a service-oriented approach, integration of such functionalities into existing
information systems would have required a significant effort.

Key Business Objects

The key business objects of this ES bundle are documents and record folders (previously
also mentioned as record files). A variety of binary objects of any MIME type can be
considered as document. These documents are assigned to record folders which can be
specified with additional attributes supporting, e.g., restrictions and legal implications of
business processes.

List of Concrete Services

Within the ES bundle, the following services are available for reading, creating, and updating
operations:

• Create Public Sector Document (for creating the business object “document”)

• Create Record Folder (for creating the business object “record folder”)

• Find Public Sector Document by Elements

• Find Record Folder by Elements

• Read Public Sector Document

• Read Record Folder

• Read Record Folder Business Folder Business Object Reference

• Update Public Sector Document

• Update Record Folder

• Update Record Folder Business Folder Business Object Reference (for attaching a
document to a record folder)

The SAP ES Wiki describes several use cases for a more comprehensive overview of the ES
Bundle Records and Documents Management such as “Storing Email in SAP Records
Management via Email Client”, “Building Permit Request”, and “Create a Logistical
Assessment Report”. The second one is strongly related with the use case shown in WP7
which encompasses also a permit procedure generating several documents. A typical
sequence of services to be invoked would be as follows:

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 32 of 82

1. Create Record Folder: the required record folder will be generated and specified

2. Create Public Sector Document: the required document will be generated and
specified

3. Update Record Folder Business Folder Business Object Reference: the document
will be assigned to the respective record folder

For further information about this ES Bundle please refer to:

https://www.sdn.sap.com/irj/scn/wiki?path=/display/ESpackages/Records+and+Document+M
anagement

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 33 of 82

6. Semantic Adaptation and Integration Layer for SA P ES
In this chapter, we present a concept on how to integrate SAP ES into the SOA4All
architecture so that they can be consumed by business users via the SOA4All Studio as
described in Annex A. The existing SAP ES are SOAP [SOAP2007] Web services with
syntactic descriptions of the service interfaces in WSDL [WSDL2001]. Consequently,
additional semantic descriptions need to be provided in WSMO-Lite to allow their use within
SOA4All. As specified in D3.4.2, WSMO-Lite is a lightweight set of semantic service
descriptions for WSDL-based Web services using appropriate domain ontologies (that will be
provided with D7.6). WSMO-Lite defines the

• information model for the input, output, and fault messages of a service, the

• functional descriptions in terms of conditions that must be satisfied before a service
can be invoked, effects that hold after a service was invoked, and functionality
classifications for categorizing a service’s functions, and the

• nonfunctional descriptions for additional properties of a service (security, pricing, QoS
etc.)

These domain ontologies can be expressed in any W3C-compliant language that uses RDF
syntax such as RDFS, OWL, or WSML. With the SAWSDL [SAWSDL2007] annotation
mechanism the original WSDL service interface of an ES will be extended to link these
semantic descriptions with the respective syntactic parts of the service interface.

Because existing SAP ES will be used to implement the WP7 scenario and their WSDL
interfaces cannot be changed directly at the service endpoint, we propose using a semantic
adaptation and integration layer inspired by the Web service broker approach presented in
[Alur2003] (see Figure 2). This layer incorporates the following main functions:

1. reuse and expose existing SAP ES without modifying their WSDL interfaces,

2. reduce the complexity of invocation of ES by handling optional or default parameters
transparently,

3. bridge the gap between SAP ES and requirements of semantic service provisioning in
the SOA4All context,

4. decouple the semantic annotations from existing SAP ES, thus helping to mediate
transparently between the requirements of Semantic Web services (at the semantic
level) and the actual invocation of these classic ES (at the invocation level)4,

5. provide necessary application-specific message transformations.

As a short introduction to the topic of designing an integration layer, we will first describe the
state-of-the-art architecture for WSDL-based services and briefly discuss the SOA4All
approach to add a semantic layer on top. The actual contribution of WP7 is the design of the
semantic integration layer for the adaptation of SAP ES, which is given in Section 6.3.

4 See Figure 1, D1.2.1.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 34 of 82

Figure 10: Classic Web Service Architecture

6.1 Classic Web Service Architecture
In the classic Web service architecture as depicted in Figure 10, the WSDL service
description defines a service contract of the underlying SOAP Web service. It specifies what
operations are offered by the Web service as well as the required data types and exchanged
message format, etc. On the server-side, the server runtime environment is responsible for
provisioning the Web service. It consists of a service endpoint which listens for SOAP
request messages transmitted via the underlying transport protocol such as HTTP. The
runtime environment determines the target service indicated in the request message, i.e.,
which WSDL operation the message is intended to invoke. Consequently, it determines
which concrete corresponding method implementation must be invoked on the server-side.

The target method is defined in an interface, called a service endpoint interface (SEI), which
is a constituent part of the server-side Web service system. The concrete implementation of
the defined method, for instance, is provided in a Java class which implements this service
endpoint interface5. The de-serialization subsystem converts the invocation parameters of the
SOAP message into instances of corresponding Java classes. This conversion process,
conventionally called unmarshalling, is controlled by predefined binding information that
maps instances of XML Schema types, i.e. instances of XML documents that conform to the
XML Schema type definition, to the corresponding Java objects. It passes them to the Java
method target for invocation. Once the method invocation has finished, the return object is
converted or marshalled back to the corresponding instances of XML type by the serialization
subsystem. The runtime environment encapsulates the return type as XML in the SOAP
response message, which conforms to the WSDL response message format definition.

On the client-side, a service endpoint interface (SEI) can be generated from the WSDL
service description document. The SEI consists of the methods which represents a client-

5 For the remainder of this Chapter, we assume a Java-based implementation.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 35 of 82

side view of the server-side methods provided by the Web service. The SEI must be
implemented by a proxy in the client-side runtime environment. Based on the actual service
method to invoke, the proxy is responsible for the generation of SOAP request messages at
runtime according to the message format defined by the WSDL interface. The SOAP request
message consists of the necessary invocation parameters. The runtime environment
serializes the Java objects into instances of XML Schema types and encapsulates them into
the SOAP request message.

The proxy sends the SOAP request message over a transport protocol binding to a Web
service endpoint. When the Web service returns a SOAP response message, the proxy is
responsible for interpreting and handling the response message on behalf of the client. In
case of an exception or error indicated by a SOAP fault message, it invokes the error
handling code on the client-side. Subsequently the proxy passes the message to the de-
serialization subsystem which processes the response message reversely, i.e., taking the
return type and instantiating the corresponding Java bean object on the client side.

6.2 Semantically-Annotated Web Services
In the context of SOA4All, Web services are semantically annotated in order to support, e.g.,
automatic service discovery, selection, composition, and service invocation. We use WSMO-
Lite (see D3.4.2 and D1.2.1) for the purpose of providing a light-weight annotation and
grounding approach. WSMO-Lite utilizes SAWSDL to provide references to domain-specific
ontologies by augmenting WSDL service description using the modelReference attribute
(see [SAWSDL2007]). SAWSDL also provides a concept of lifting via the
liftingSchemaMapping attribute and lowering via the loweringSchemaMapping
attribute to transform between syntactic XML Schema data types and their semantic ontology
representations. This latter feature is called grounding (see D1.2.1). Different ontology
formalizations such as RDF [RDF2004], RDFS [McBride2004], OWL [Dean2004] and WSML
[Steinmetz2008] are suitable as formalized representations of the semantic model. Moreover,
other WSDL parts such as the messages, operations, and service elements etc., can also be
annotated and grounded in a similar manner using SAWSDL.

An example of the usage of the WSMO-Lite grounding mechanism with SAWSDL for a
typical credit card checking Web service is provided in Listing 1 of Annex B. In the listing, the
SOAP request element individualCreditCheckRequest represents a request message
wrapper element to be sent to the Web service. This element is used in the incoming SOAP
request message for invocation at runtime. The attribute modelReference is used here to
indicate three references to existing definitions of ontology vocabularies defined for this
service. These references are identified by their URI references (consisting of the
namespace part and the local part to identify definitions uniquely) to their corresponding
vocabulary definitions, i.e. DeltavistaUser, CurrentTime, and Individual. Since the
incoming request SOAP message uses instances of XML Schema types to represent these
constituent elements of a valid request message, their corresponding vocabularies at the
semantic level must be lowered to these XML type instances (see D1.2.1, Section 4). The
loweringSchemaMapping attribute is used in this regard to reference a transformation
service (indicated here by the XSPARQL [Polleres2009] service URI reference). After the
Web service has terminated, its response message is transformed back, i.e., lifted to the
corresponding ontology concept at the semantic level. The liftingSchemaMapping
references an XSPARQL lifting service to perform this operation.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 36 of 82

A semantic layer is necessary to enable semantic adaptation of the classic Web service
architecture, see Figure 11. The semantic layer consists of an infrastructure of the SOA4All
Platform Services including a Service Registry to store the semantic service annotations, a
semantic service discovery engine, a service ranking and selection engine, a reasoning
engine, and a process execution engine (see Figure 1 and D1.4.1A).

A Web service consumer may formulate his service requirements in WSMO Goals
[Roman2007]. These requirements represent the user view of application-specific capabilities
on the desired Web service(s). A goal demands fulfillment of consumer requirements on an
abstract level using WSML [Steinmetz2008] to express capabilities in post conditions via
axioms and logical expressions. Referring to the handle payment process (see Figure 17 in
D7.2), one of the operations to handle a credit card payment is to check the validity of the
credit card of an individual card holder. We can formulate a goal called
CreditCardCheckGoal in WSML in order to request suitable Web services to provide this
functionality (see Listing 2 in Annex B). The goal is expressed by its request on services
which possess the desired capability. The capability is expressed as a post condition that
contains a desired outcome of the information space of the Web service after invocation
using an axiom which is expressed formally as a conjunction of logical expressions.

In order to find appropriate Semantic Web services that match the requirements of the goal,
an infrastructure of backend components is needed to process the goal, match it with
existing service capability descriptions, and select appropriate services to compose the
required functionalities. Such a semantic infrastructure consisting of the aforementioned
SOA4All backend components makes up a runtime semantic system called the semantic
execution environment (SEE) (see D6.4.1 and D6.5.1).

Figure 11: Web Service Architecture with Semantic Layer

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 37 of 82

6.3 An Architecture for Semantically-Annotated ES
SAP ES expose business functionalities and will be used in WP7 to realize processes such
as the registration of a business described in D7.2. The integration of ES into the SOA4All
SEE poses several challenges. First, SAWSDL annotations to express WSMO-Lite
semantics cannot be applied directly to existing WSDL service descriptions because it is
often not desirable from an administrative and security perspective. Furthermore, some ES
generate their WSDL interfaces on the fly during service deployment so that it is impractical
to append semantic annotations to these dynamically generated WSDL interfaces without
modifying the service implementation or the deployment mechanism.

Instead, we introduce an additional integration layer as depicted in Figure 12 to allow the
semantic annotation of WSDL descriptions with SAWSDL references at the integration layer.
With this approach, each WSDL of an existing ES will have a corresponding semantically-
annotated WSDL in the integration layer. This maps syntactically to the non-annotated
WSDL interface of the corresponding service on the backend enterprise system with the
augmentation of the additional SAWSDL annotations so that it identifies the same service
contract of the referenced Web service on the backend. The integration layer forwards or
relays the SOAP messages dedicated for the ES transparently between the Web service
instances and the semantic layer. The semantic annotations for existing SAP ES can be
created by using, e.g., the WSMO-Lite editor developed by T2.1 (see D2.1.2).

To fulfill the promises of the functions listed at the beginning of this section, the semantic
layer follows software design principles such as the layer approach and separation of
concern to maintain a high level of coherence between the components. The integration
layer itself is actually a set of Web services that proxy Web service invocations on behalf of
the semantic layer without adding extra business logic to the existing ES on the backend.

We propose to implement the necessary integration layer services as Java EE EJB port
components, for instance, as stateless Enterprise JavaBeans [EJB2006] that will be
deployed as Java Web services. One of the advantages of this approach is to build the
indirection using the service reference annotation mechanism into the EJB components in
order to let them refer to the existing backend ES. This indirection decouples existing ES
from the semantic layer by channeling the service invocations through the integration layer.
To the semantic layer and its Web service invocation mechanism, the EJB components of
the integration layer appear as semantic Web services with SAWSDL annotations.

Another challenge for handling ES in the context of SOA4All is their large and complex
service interfaces and their complex behavior that may lead to unforeseen side-effects (see
Figure 9). The consumption of such a service requires detailed application-specific
knowledge of the invocation messages, syntax format, and an understanding of the meaning
of the message parameters. In order to reduce this complexity (partially), the integration layer
also acts as a façade to an ES by intercepting invocation requests from the semantic layer
and filling out parameters with appropriate values that can be derived, e.g., from the user
context.

From a flexibility point of view, existing ES can be replaced seamlessly. Since we do not
implement heavyweight Web services at the integration layer, replacing existing ES with new
services will require only minor adaptation at the integration layer. Actually integrating a
specific ES requires a customization and redeployment of its pendant Web service in the
integration layer that cannot be automated. Furthermore, application-relevant expertise by a
service engineer will be needed to provide the semantic annotations while being supported in
this task by the SOA4All Studio tools.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 38 of 82

Figure 12: Web Service Architecture with Semantic Layer & Integration Layer

Finally, from the perspective of message exchange, the integration layer can incorporate
built-in message handling functionalities where necessary. One typical example of message
handling is the management of access authorization for the existing ES using message-
based user authentication. Nearly all of the SAP ES are deployed on the SAP NetWeaver
platform application server that uses client authentication to restrict access to the ES. The
EJB components can be used to transform request messages by appending authentication
information to the request messages seamlessly, eliminating the need for the semantic layer
to attend to the management of additional authentication information. Traditionally, this
authentication information can either be included in a dedicated section of the HTTP or the
SOAP header.

Furthermore, in order to deal with the need of other authentication mechanisms such as
digital certificates or encrypted tokens, etc. of some other Web service platforms, the
integration layer should be able to handle message transformations with regards to
application-specific requirements on how to transmit this authentication token. One proven
approach for message transformation is to utilize the message handler mechanism on the
Web services runtime environment. A message handler is a runtime component located on
the message path between the integration layer and the corresponding ES on the backend. It
is used to perform well-defined operations on the SOAP messages that pass through it. If the
access to a set of ES requires a certain specific type of authentication mechanism, for
instance, simple password based authentication, a message handler can be implemented to
intercept request messages on the path targeted for the set of ES. The handler will be
responsible for transforming the SOAP request messages by including the authentication
token in a predefined way.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 39 of 82

7. Evaluation Workshop
According to the evaluation plan outlined in Chapter 7 of D7.2, the first stage of end user
evaluation will be conducted in the form of a focus group evaluation. The workshop will cover
various aspects of software-driven service provisioning and the possible ways in which
different services can be composed dynamically to achieve complex tasks. WP7 will organize
the workshop at the University of Manchester. The workshop offers an important opportunity
for system designers to carry out preliminary studies and to ensure that all end user
requirements are collected. At the same time, it offers an opportunity for public sector
representatives from the Manchester Town Hall to learn about the envisioned service
delivery platform and on how recent developments in service-based technologies can help in
providing flexible services.

The discussions in focus group will encourage participants to share and discuss their
opinions and experiences related to the SOA4All vision as instantiated by the WP7 scenario.
The specific design choices underpinning Web service composition as envisioned by
SOA4All will also be discussed. The result of the focus group will be used as input to the
software development of the first SOA4All prototype. In summary, the main objectives of this
workshop are to:

1. Obtain general opinions of the end users about end user development of service-
based software in the public sector domain;

2. Evaluate the current mockups of the composer editor as customized by WP7 within a
participatory design process;

3. Capture as many composition editor requirements as possible.

We aim to have at least 15 participants for the planned session, to be divided into 3 groups
of 5 participants in each group, plus one moderator. The participants’ profiles should match
the profiles of the target users envisioned by WP7. The session will last for about 3.5 hours
in a large seminar room with 3 round tables seating 6 each, including a 20-minute break in
the middle. A 30-minutes introductory talk will be followed by a 20-minutes discussion on the
perceptions about risks and benefits of the envisioned mode of user-driven service
composition, and on existing practices and proposed supporting actions (also see Chapter 3
of D7.2). A short notational study will discover how participants understand core proposed
representations of the lightweight modeling language (see D6.3.1 and D2.6.1). After the
break, the discussion will focus on alternative designs for an end user tool for Web service
composition in the public sector domain. Questionnaires and audio tapes will be used to
record the participants’ responses for later analysis.

Each group will discuss two of three alternative designs. The moderator of the workshop
should encourage and facilitate free-flowing discussion by:

1. Going through the design rationale behind each alternative and explain the related
mock-ups;

2. Asking the participants to answer questions related to the current alternative by filling
in questionnaires;

3. Iteratively repeating Steps 1 and 2 for the other alternative;

4. Discussing the collected answers by all participants.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 40 of 82

7.1 Designs for Composing Web Services
The workshop will focus on three alternative approaches for composing Web services and
their potential design problems within the SOA4All Composer:

1. data flow to create stateless service mashups

2. control flow using the SOA4All lightweight process modeling language (see D6.3.1)

3. assisted modeling with wizards that guide the user in a stepwise procedure

Each of these design approaches will be covered by one group of participants with the aim of
capturing their ideas, feelings, and thoughts. Further details of the design approaches can be
found in the generic workshop proposal in D2.5.1.

7.2 Design Rationale
For effective design exploration, we suggest the use of a combination of design rationale,
use case scenarios, and - if possible - early prototypes. Design rationale aims to support
system designers by representing the argumentation and reasoning behind the design
process. This justification of design decisions is important to understand, change, or recreate
a design. In this workshop, the Issue-Based Information System (gIBIS), an argumentative
notation, will be used to represent issues, arguments, and resolutions. The graphical
representations in Figure 13 and Figure 14 show pathways starting from the root node
(corresponding to the issue), to children nodes (corresponding to the solutions), and to leaf
nodes (corresponding to the arguments). These design rationale diagrams enable comparing
and establishing relationships between the various design solutions. For each issue, a gIBIS
design rationale is produced as given in Figure 13 and Figure 14.

7.3 Top-level Issues
The workshop will cover several topics related to general end user development in the public
sector domain (also see Chapter 3 in D7.2). In this respect, information will be collected
about the software tools used by civil servants in their daily jobs. Of particular interest are
information about software tools used for service composition in the public sector domain
and their frequency of use, if any.

Apart from software usage, an important aspect of this workshop will be to acquire
information about the background of end users, their general ideas and thoughts about
software-based service composition. This type of information will be acquired by asking
specific questions like:

• What information/ system parts do you consider is important for your job?

• What features do you like about your current tools?

• What features do you dislike about your current tools?

• What aspects do you consider problematic in your current tools?

Other questions can be focused on end user development issues in the public sector:

• What are the benefits of end user development?

• What are the risks of end user development?

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 41 of 82

• What strategies / approaches do end users follow when developing applications?

Apart from covering these general aspects, the workshop will specifically focus on the design
choices underpinning the SOA4All Composer (see D2.6.1). In this respect, screenshots or
mockups of the currently developed tools will be shown on the wall or distributed in hand-
outs. Workshop participants will be asked to provide their feedback on the initial design of the
SOA4All Studio tools. The feedback of workshop participants will help in determining whether
the currently developed tool (represented by screen shots or mockups) will be able to
address the potential problems in their daily jobs.

The detailed list of issues that will be discussed in the workshop is specified in the generic
workshop proposal (for WP2, WP7, and WP8) in D2.5.1. The later proposal also contains the
workshop agenda that describes the sequence of activities in the proposed workshop.

The feedback and recommendations of workshop participants will be recorded during the
workshop. Once the workshop has been carried out, the participants’ responses will be
collected and analyzed. Recorded material and unstructured questionnaire responses will be
analyzed using the Grounded Theory approach, quantitative questionnaire answers will be
analyzed using conventional statistical methods.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 42 of 82

Figure 14: gIBIS Design Rationale for Composition (Issue 2)

Figure 13: gIBIS Design Rationale for Composition (Issue 1)

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 43 of 82

8. Conclusions
WP7 will implement an open service delivery platform that allows civil servants to handle
typical administrative procedures (such as an application for registering a new business).
More specifically, using the Web-based tools of the SOA4All Studio, civil servants can
search, model, annotate, modify, share, analyze, and execute administrative procedures in
the form of lightweight processes. These processes may be composed of Enterprise
Services (hosted by SAP), public Web services (hosted by 3rd party service providers), and
human activities (to be executed by end users).

The service delivery platform can largely be implemented by leveraging the functional
components provided by the technical work packages of SOA4All. But in order to meet all
requirements of the use case scenario, some customizations and extensions will be
developed within WP7. Thus, in addition to investigating the public sector business case and
to providing a basis for the technical validation and end user evaluation of the project results,
the key technical contributions of WP7 to SOA4All are an adaptation and integration layer so
that SAP Enterprise Services can be consumed in SOA4All, additional tools and services for
handling human tasks, and an extended user role model.

The next step in this WP will be to implement a first prototype until August 2009 (M18) that
will be based on the SOA4All components from the technical WPs and that will be
documented in D7.4. In parallel, the first evaluation workshop will take place with results also
reported in M18.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 44 of 82

9. References

[Alur2003] Alur, D., Crupi, J., Malks, D. Core J2EE Patterns, 2nd edition.
Prentice Hall PTR, June 2003

[Bieberstein2005] Bieberstein, N., Bose, S., Walker, L. and Lynch, A., Impact of
Service-Oriented Architecture on Enterprise Systems,
Organizational Structures, and Individuals, IBM Systems Journal,
44 (4), pp. 691-708., 2005

[BPEL4People2005] WS-BPEL Extension for People – BPEL4People, A Joint White
Paper by IBM and SAP, July 2005, available at
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel4people/BPEL4People_white_paper.pdf

[Dean2004] OWL Web Ontology Language Reference. W3C Recommendation
February 2004. Available at http://www.w3.org/TR/owl-ref/.

[EC2006] Directive 2006/123/EC of the European Parliament and of the
Council of 12 December 2006 on Services in the Internal Market,
OJ L376 of 27.12.2006

[EJB2006] Enterprise JavaBeans 3.0 Specification. Sun Microsystems Inc.
2006, Java Community Process, JSR220, Available
athttp://jcp.org/aboutJava/communityprocess/final/jsr220/index.html,
last accessed on 20/03/2009

[Endrei2004] Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P.
l., Luo, M. and Newling, T., Patterns: Service-Oriented Architecture
and Web Services, IBM Redbooks, 2004

[Gartner2007] The Real Future of E-Government: From Joined-Up to Mashed-Up,
Gartner Report, Nov 2007

[König2004] König, P., Enterprise Services Architecture (ESA), HBI-Konferenz:
iBonD - intelligent Business on Demand, Munich 2004

[McBride2004] RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation. February 2004. Available at
http://www.w3.org/TR/rdf-schema/.

[Polleres2009] Polleres, A., Krennwallner, T. et al., XSPARQL Language
Specification. DERI 2009, Available at http://xsparql.deri.org/spec/,
last accessed on 20/03/2009

[RDF2004] Resource Description Framework (RDF): concept and abstract
syntax. W3C Recommendation. February 2004. Available at
http://www.w3.org/TR/rdf-concepts/, last accessed on 20/03/2009

[Roman2007] Web Service Modeling Ontology (WSMO). Working draft, February
2007. Available at http://www.wsmo.org/TR/d2/v1.4/, last accessed
on 19/03/2009

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 45 of 82

[SAP2007] SAP AG, Enterprise SOA in a Nutshell, 2007

[SAP2008] SAP AG, ES Workplace Handbook, 2008

[SAP2009] SAP AG, Records and Document Management, Enterprise
Services Wiki, SAP Community Network Wiki,
https://www.sdn.sap.com/irj/scn/wiki?path=/display/
ESpackages/Records+and+Document+Management,
last accessed on 19/03/2009

[SAWSDL2007] Semantic Annotations for WSDL and XML Schema.
Recommendation, W3C, August 2007. Available at
http://www.w3.org/TR/sawsdl, last accessed on 20/03/2009

[SOAP2007] SOAP Version 1.2, Recommendation, W3C, April 2007, Available at
http://www.w3.org/TR/soap/, last accessed on 20/03/2009

[Steinmetz2008] Web Service Modeling Language – language reference, Final draft.
August 2008. Available at http://www.wsmo.org/TR/d16/d16.1/v1.0/,
last accessed on 20/03/2009

[Swain1995] Swain J. W, White J. D. and Hubbert E. D., Issues in Public
Management Information Systems, The American Review of Public
Administration, 1995

[UN/CEFACT2007] United Nations Centre for Trade Facilitation and Electronic
Business, Core Components Technical Specification Version 3.0,
Available at http://xml.coverpages.org/CEFACT-CCTSv30-PR2.pdf,
last accessed on 19/03/2009

[Vitvar2009] Vitvar, T., Kopecky, J. and Fensel, D., WSMO-Lite: Lightweight
Semantic Descriptions for Services on the Web. Working draft.
March 2008. Available at http://www.wsmo.org/TR/d11/v0.2/, last
accessed on 19/03/2009

[Webservicex.net2009] webserviceX.NET, last accessed on 20/03/2009

[WSDL2001] Web Services Description Language (WSDL): version 1.1, W3C
Note, March 2001. Available at http://www.w3.org/TR/wsdl, last
accessed on 19/03/2009

[WSDL2007] Web Services Description Language (WSDL): version 2.0.
Recommendation, W3C, June 2007. Available at
http://www.w3.org/TR/wsdl20/, last accessed on 19/03/2009

[WSML2008] Web Service Modeling Language – language reference, Final draft.
August 2008. Available at http://www.wsmo.org/TR/d2/v1.4/, last
accessed on 20/03/2009

[WSMO2007] Web Service Modeling Ontology (WSMO). Working draft, February
2007. Available at http://www.wsmo.org/TR/d2/v1.4/, last accessed
on 19/03/2009

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 46 of 82

Annex A: Updated Scenario “Registration of a Busine ss”
In this Annex, we update the scenario description for creating, modifying, and executing the
administrative procedure to register a business at the City of X. In Chapter 6 of the
Deliverable D7.2, the scenario, the users and their roles, and the process model of the
administrative procedure itself are discussed in detail. Here, the initial user interface
mockups of the scenario are updated to match the current SOA4All Studio design as defined
in D2.4.1.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 47 of 82

Step 1a
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio and Dashboard

GUI Mockup

Description

Barbara models the first version of the “Registration of a Business” process as depicted in
Figure 16, Deliverable D7.2. She logs in to the SOA4All service platform (i.e., the SOA4All
Studio) with her browser and starts the SOA4All Composer by selecting the corresponding
icon in the SOA4All Dashboard.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 48 of 82

Step 1b
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio

 T2.6 Process Editor

GUI Mockup

Description

Barbara draws a new process model for the “Registration of a Business” Process V1: First,
she creates a new process.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 49 of 82

Step 1c
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio

 T2.6 Process Editor

 WP6 T6.3 Modeling Language

GUI Mockup

Description

From her favorites list containing the services she most frequently uses, Barbara adds the
first activity (consisting of the service “receive from”) to the new process.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 50 of 82

Step 1d
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio

 T2.6 Process Editor

 WP6 T6.3 Modeling Language

 WP7 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

The SOA4All Composer supports her with a “snap to grid” function in her drag and drop
operation to create an esthetic layout. The modeling elements she can use for her task are
defined by the lightweight process modeling language in T6.3.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 51 of 82

Step 1e
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio

 T2.6 Process Editor

 WP6 T6.3 Modeling Language

 WP7 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

Now Barbara defines the specifics of the concrete service that is called at this step.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 52 of 82

Step 1f
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio

 T2.6 Process Editor

 WP6 T6.3 Modeling Language

GUI Mockup

Description

Barbara specifies the control flow between the “Start” and the “Receive from” activity by
drawing an unconditioned connector between the two.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 53 of 82

Step 1g
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio

 T2.6 Process Editor

 WP6 T6.3 Modeling Language

 WP7 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

Repeating Steps (1d), (1e), and (1f), Barbara continues to add activities (that are based on
SAP ES in this example).

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 54 of 82

Step 2a
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio

 T2.6 Process Editor

 WP7 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

Barbara now needs to attach a service, which is not in her Favorites’ list yet. Therefore, she
opens the SOA4All search interface.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 55 of 82

Step 2b
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio, Search Interface

 WP7 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

Typing in the right keywords into the textual search interface, Barbara quickly discovers the
service she was looking for, bookmarks it in her Favorites’ list, and switches back to the
SOA4All Composer.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 56 of 82

Step 2c
Actor: Barbara

SOA4All Components

 WP2 T2.4 Studio, Search Interface

 T2.6 Process Editor

 WP6 T6.3 Modeling Language

 WP7 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

From her Favorites’ list, Barbara can now add the found service to the process as a new
activity.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 57 of 82

Step 3
Actor: Barbara

SOA4All Components

 WP2 T2.1 Service Provisioning, Service Annotations

T2.4 Studio

 T2.6 Process Editor

 WP3 T3.4 Semantic Service Description

 WP7 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

By repeating the steps described above, Barbara completes the process “Registration of a
Business” V1 as depicted in Figure 16, Deliverable D7.2. Next, she provides the required
(semantic) annotations: she selects keywords and categories to be assigned with the
process, creates a textual description to be read by her colleagues etc. By default, the
process is annotated a having not been checked for compliance yet.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 58 of 82

Step 4
Actor: Barbara

SOA4All Components

 WP1 T1.3 Storage Infrastructure

WP2 T2.4 Studio, Storage Services

 T2.6 Process Editor

 WP6 T6.3 Modeling Language

GUI Mockup

Description

Finally, Barbara saves the process under its name. A unique URI is created to reference the
process, and the process becomes available in the shared repository of the City of X so that
it can be accessed by her colleagues.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 59 of 82

Step 5a
Actor: Claudia

SOA4All Components

 WP2 T2.4 Studio and Dashboard

GUI Mockup

Description

Claudia has the task to check the legal compliance of new or updated processes before they
can be deployed. She logs in to the SOA4All service platform (i.e., the SOA4All Studio) with
her browser. First, she starts the SOA4All Composer by selecting the corresponding icon in
the SOA4All Dashboard.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 60 of 82

Step 5b
Actor: Claudia

SOA4All Components

 WP1 T1.3 Storage Infrastructure

WP2 T2.4 Studio, Storage Services, Search

 T2.6 Process Editor

 WP7 T7.4 Customized Prototype

GUI Mockup

Description

After starting the SOA4All Composer, Claudia can see that there is a new process waiting for
her approval. The list of such processes can be created automatically by searching for
processes with the appropriate annotation.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 61 of 82

Step 5c
Actor: Claudia

SOA4All Components

WP2 T2.4 Studio

 T2.6 Process Editor

GUI Mockup

Description

Claudia reviews the process details in the SOA4All Composer. Satisfied with the compliance
of the process, she leaves a textual comment for her colleagues.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 62 of 82

Step 5d
Actor: Claudia

SOA4All Components

 WP1 T1.3 Storage Infrastructure

WP2 T2.1 Service Provisioning, Service Annotations

T2.4 Studio, Storage Services

 T2.6 Process Editor

GUI Mockup

Description

Claudia writes her comment, which is attached to the process.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 63 of 82

Step 5e
Actor: Claudia

SOA4All Components

 WP1 T1.3 Storage Infrastructure

WP2 T2.1 Service Provisioning, Service Annotations

T2.4 Studio, Storage Services, Role Model

 T2.6 Process Editor

 WP7 T7.4 Customized Prototype

GUI Mockup

Description

Finally, Claudia marks the process as compliant using the service annotation tool.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 64 of 82

Step 6a
Actor: Egon

SOA4All Components

WP2 T2.4 Studio and Dashboard

GUI Mockup

Description

Egon has the task to adjust the payment part of the “Registration of a Business” process
model to include credit card payments. First, he logs into the SOA4All Studio and opens the
search tool to retrieve the process.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 65 of 82

Step 6b
Actor: Egon

SOA4All Components

 WP1 T1.3 Storage Infrastructure

WP2 T2.4 Studio, Storage Services, Search

GUI Mockup

Description

To make sure he has found the correct process, Egon switches to a details view that also
shows the process annotations.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 66 of 82

Step 6c
Actor: Egon

SOA4All Components

WP2 T2.4 Studio

GUI Mockup

Description

Egon views the details and comes to the conclusion that he has found the correct service.
Thus, he switches to the SOA4All Composer.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 67 of 82

Step 7a
Actor: Egon

SOA4All Components

WP2 T2.4 Studio

 T2.6 Process Editor, Wizard

 T2.7 Recommender

WP6 T6.3 Modeling Language

 WP7 T7.4 Customized Prototype

GUI Mockup

Description

Egon modifies the existing process model using a wizard that guides him through the
necessary steps and does the required modifications. After selecting the appropriate wizard
from the list that is automatically created based on his profile, the first step for Egon is to
select the part of the process, where the payment information is entered by the user.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 68 of 82

Step 7b
Actor: Egon

SOA4All Components

WP2 T2.4 Studio

 T2.6 Process Editor, Wizard

 WP6 T6.3 Modeling Language

WP7 T7.4 Customized Prototype

GUI Mockup

Description

The wizard automatically fills in the selected service into the appropriate text fields.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 69 of 82

Step 7c
Actor: Egon

SOA4All Components

WP2 T2.4 Studio

 T2.6 Process Editor, Wizard

WP6 T6.3 Modeling Language

 WP7 T7.4 Customized Prototype,

T7.6 Semantically Annotated Web Service

GUI Mockup

Description

Based on this information, the wizard inserts a new activity “check if credit card is valid” that
is executed by calling an appropriate Web service. Because the check can either have a
positive or negative result, the wizard asks Egon to define the follow up activities for each
possibility.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 70 of 82

Step 7d
Actor: Egon

SOA4All Components

WP2 T2.4 Studio

 T2.6 Process Editor, Wizard

WP6 T6.3 Modeling Language

 WP7 T7.4 Customized Prototype

GUI Mockup

Description

Egon does that by clicking on the desired follow-up activities. The wizard fills out the text
fields automatically.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 71 of 82

Step 7e
Actor: Egon

SOA4All Components

WP2 T2.4 Studio

 T2.6 Process Editor, Wizard

WP6 T6.3 Modeling Language

 T6.4 Design Time Composition

 WP7 T7.4 Customized Prototype

 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

After the additional credit card check has been added to the process, the next step is to
replace the old payment activity with a generalized one that automatically chooses between
invoice and credit card payment, depending on the user’s preferences: Instead of having to
model the two alternative payment methods explicitly (which would also require to model the
business logic to decide which payment method should be used when), Egon uses the goal
“Handle Payment” that will be linked at run time to the concrete payment service. Thus, the
process itself stays simple.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 72 of 82

Step 7f
Actor: Egon

SOA4All Components

WP2 T2.4 Studio

 T2.6 Process Editor, Wizard

WP6 T6.3 Modeling Language

 T6.4 Design Time Composition

WP7 T7.4 Customized Prototype

 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

The wizard fills in the required information automatically for Egon to review.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 73 of 82

Step 8
Actor: Egon

SOA4All Components

 WP1 T1.3 Storage Infrastructure

WP2 T2.4 Studio, Storage Services

 T2.6 Process Editor

GUI Mockup

Description

Egon saves the modified process model. Instead of replacing the original version of the
process model (V1), a new version is created with a unique URI. In this example, Egon’s
modifications do not require an additional compliance check because they do not touch legal
requirements.

 SOA4All –FP7 – 215219

© SOA4All consortium

Step 9
Actor: Egon

SOA4All Components

 WP2 T2.1 Service Provisioning, Service Annotations

T2.4 Studio

 T2.6 Process Editor

 WP3 T3.4 Semantic Service Description

 WP7 T7.6 Semantically Annotated SAP

GUI Mockup

Description

Finally, Egon annotates the process model to describe his

215219 D7.3 End User Service Design

T2.1 Service Provisioning, Service Annotations

T2.6 Process Editor

T3.4 Semantic Service Description

T7.6 Semantically Annotated SAP ES

Finally, Egon annotates the process model to describe his changes.

D7.3 End User Service Design

Page 74 of 82

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 75 of 82

Step 10
Actor: Egon

SOA4All Components

 WP1 T1.4 Distributed Service Bus

 WP2 T2.2 Service Consumption

 T2.4 Studio

 WP6 T6.5 Process Execution Engine

 WP7 T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

Egon executes the process so that it can handle incoming requests. Implicitly, the process is
deployed to the process execution engine which has been installed within the Intranet of the
City of X and which has been pre-configured as default execution engine for the service
delivery platform (in other scenarios there might be several engines with an automatic load
balancing mechanism in place or the user might select the engine himself).

 SOA4All –FP7 – 215219

© SOA4All consortium

Step 11a
Actor: Jose

SOA4All Components

 WP7 T7.4 Mockup of City Portal

GUI Mockup

Description

Jose accesses the Internet portal of the City of X to register his business.

215219 D7.3 End User Service Design

Mockup of City Portal

Jose accesses the Internet portal of the City of X to register his business.

D7.3 End User Service Design

Page 76 of 82

 SOA4All –FP7 – 215219

© SOA4All consortium

Step 11b
Actor: Jose

SOA4All Components

 WP1 T1.4 Distributed Service Bus

 WP6 T6.5 Process Execution Engine

 WP7 T7.4 Mockup of City Portal

 T7.6 Semantically Annotated SAP

GUI Mockup

Description

Jose opens the appropriate service request and enters the required information. When he
sends the request, a new instance of the “Registration of a Business” process is instantiated
and Jose’s data is handed over. Jose receives an electronic ticket with a uniq
he can access the status of his request any time.

215219 D7.3 End User Service Design

T1.4 Distributed Service Bus

T6.5 Process Execution Engine

T7.4 Mockup of City Portal

T7.6 Semantically Annotated SAP ES

opens the appropriate service request and enters the required information. When he
sends the request, a new instance of the “Registration of a Business” process is instantiated
and Jose’s data is handed over. Jose receives an electronic ticket with a uniq
he can access the status of his request any time.

D7.3 End User Service Design

Page 77 of 82

opens the appropriate service request and enters the required information. When he
sends the request, a new instance of the “Registration of a Business” process is instantiated
and Jose’s data is handed over. Jose receives an electronic ticket with a unique URL so that

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 78 of 82

Step 12
Actor: Egon

SOA4All Components

 WP1 T1.4 Distributed Service Bus

 T1.6 Service Monitoring

 WP2 T2.3 Service Analysis

T2.4 SOA4All Studio, Dashboard

 WP6 T6.5 Process Execution Engine

 WP7 T7.4 Customized Prototype

T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

Within the services platform, Egon handles all incoming requests by constituents that are
assigned automatically to him (considering his area of expertise and availability). In our
example, Egon handles the process for Jose and executes the human tasks in the process
(i.e., the checks defined in Figure 17, Deliverable D7.2). Logging into the service platform,
Egon selects the SOA4All Analysis tool to review all active processes assigned to him.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 79 of 82

Step 13
Actor: Egon

SOA4All Components

 WP1 T1.3 Storage Infrastructure

T1.4 Distributed Service Bus

 T1.6 Service Monitoring

 WP2 T2.3 Service Analysis

T2.4 SOA4All Studio

 WP6 T6.5 Process Execution Engine

 WP7 T7.4 Customized Prototype

T7.6 Semantically Annotated SAP ES

GUI Mockup

Description

The Analysis tool gives Egon an overview of all running processes. If desired, Egon can
select one to check its status or to execute a human task.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 80 of 82

Step 14
Actor: -

SOA4All Components

 WP1 T1.4 Distributed Service Bus

 WP6 T6.5 Process Execution Engine

 WP7 T7.4 Customized Prototype

T7.6 Semantically Annotated SAP ES

Description

Once the manual checks are successfully completed, the rest of the process is executed
automatically (see Figure 17, Deliverable D7.2). The payment method is selected depending
on the information (context) provided by Jose at Step 11b. Finally, the confirmation
(approval) is send to Jose and the process is complete.

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 81 of 82

Annex B: Examples for Service Annotations

Listing 1: SAWSDL Annotation Applied to a WSDL Definition

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:creditcheck="http://www.deltavista.at/schema/cWreditcheck"

 xmlns:sawsdl="http://www.w3.org/ns/sawsdl#" targetNamespace="http://www.deltavista.at/schema/creditcheck">

 <types>

 <schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.deltavista.at/schema/creditcheck"

 elementFormDefault="qualified">

 <element name="individualCreditCheckRequest" type="creditcheck:IndividualCreditCheckRequest"

 sawsdl:modelReference="http://example.com/hcc#DeltavistaUser

 http://example.com/onto#CurrentTime

 http://example.com/hcc#Individual"

 sawsdl:loweringSchemaMapping="http://example.com/hanival-individual-check-lowering.xsparql" />

 <element name="individualCreditCheckReply" type="creditcheck:IndividualCreditCheckReply"

 sawsdl:liftingSchemaMapping="http://example.com/hanival-xml-lifting.xsparql" />

 <element name="companyCreditCheckRequest" type="creditcheck:CompanyCreditCheckRequest"

 sawsdl:modelReference="http://example.com/hcc#DeltavistaUser

 http://example.com/onto#CurrentTime

 http://example.com/hcc#Company"

 sawsdl:loweringSchemaMapping="http://example.com/hanival-company-check-lowering.xsparql" />

 <element name="companyCreditCheckReply" type="creditcheck:CompanyCreditCheckReply"

 sawsdl:liftingSchemaMapping="http://example.com/hanival-xml-lifting.xsparql" />

 <complexType name="ServiceRequest" abstract="true">

 <sequence>

 <element name="credentials" type="creditcheck:Credentials" />

 <element name="user" type="creditcheck:User" minOccurs="0">

 <annotation>

 <documentation>This optional element can be used to identify

 and describe the requesting user. If provided, this

 information is displayed in the web ui.</documentation>

 </annotation>

 </element>

 <element name="reference" type="string" minOccurs="0">

 <annotation>

 <documentation>This optional field can be used to associate a

 reference with the reqeust. This reference is searchable

 in the archive. It need not be unique.</documentation>

 </annotation>

 </element>

 <element name="correlationId" type="string" minOccurs="0">

 <annotation>

 <documentation>This field is simply passed through to the

 reply. It can be used to correlate request and

 response.</documentation>

 </annotation>

 </element>

 </sequence>

 </complexType>

 SOA4All –FP7 – 215219 D7.3 End User Service Design

© SOA4All consortium Page 82 of 82

namespace {_"http://www.example.org/ontologies/example#",

 dc _"http://purl.org/dc/elements/1.1#",

 foaf _"http://xmlns.com/foaf/0.1/",

 wsml _"http://www.wsmo.org/wsml/wsml-syntax#",

 loc _"http://www.wsmo.org/ontologies/locationOntology#",

 general _"http://example.com/onto",

 ccheck _"http://example.com/hcc" }

goal _"http://example.org/CreditCardCheckGoal"

 importsOntology {_"http://www.wsmo.org/ontologies/locationOntology", _"http://example.com/hcc" }

 capability

 postcondition

 definedBy

 ?cardUser[

 userName hasValue ?UserName,

 userGender hasValue ?UserGender,

 userAge hasValue ?UserAge

] memberOf ccheck#DeltavistaUser

 and

 (

 ?cardInformation[

 type hasValue "PremiumCard"

] memberOf ccheck#CreditCardInformation

 or

 ?cardInformation[

 type hasValue "GoldCard"

] memberOf ccheck#CreditCardInformation

)

 and ?cardValidityStatus memberOf ccheck#validityStatus

 and ?bank memberOf ccheck#PrivateCustomerBank

 and

 ?currentTime[

 timeValue hasValue ?dateTimeCheck

] memberOf general#DateTime.

Listing 2: WSML Goal for Checking Credit Card Validity

