

Project Number: 215219

Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic Priority: Information and Communication Technologies

D6.3.1. First Specification of Lightweight Process

Modelling Language
Activity: Activity 2 - Core R&D Activities

Work Package: WP 6 - Service Construction

Due Date: M12

Submission Date: 09/03/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: SAP

Revision: 1.2

Author(s): Florian Schnabel SAP
Matthias Born SAP
 Lai Xu SAP
 Rafael González-Cabero ATOS
Freddy Lecue UNIMAN
Nikolay Mehandjiev UNIMAN
Tomas Pariente (Reviewer) ATOS

Project co-funded by the European Commission within the Seventh Framework Programme (2007-
2013)

Dissemination Level

PU Public X

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 2 of 54

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 02/12/08 ToC defined Florian Schnabel

0.2 13/01/09 Section 7 Content Freddy Lecue, Nikolay
Mehandjiev (UniMan)

0.3 16/01/09 Section 3, 4, and 5 Lai Xu (SAP)

0.4 19/01/09 Section 2, Section 6 Sven Abels (TIE), Rafael
González-Cabero (ATOS),
Adrian Mos (INRIA)

0.5 27/01/09 Section 7 Freddy Lecue (UniMan)

0.6 30/01/09 Section 3, 4, and 5 Born, Matthias (SAP), Florian
Schnabel (SAP), Lai Xu
(SAP)

0.7 05/02/2009 Revise Lai Xu (SAP)

0.8 05/02/2009 Section 4.3 Rafael González-Cabero
(ATOS)

0.9 05/02/2009 Revise Structure Lai Xu (SAP)

1.0 06/02/2009 New figures and general revision Rafael González–Cabero
(ATOS)

 19/02/2009 Internal Review Jean-Pierre LORRE (EBM)

 19/02/2009 Internal Review Tomás Pariente Lobo
(ATOS)

1.1 25/02/2009 Revise Lai Xu (SAP)

 27/02/2009 Update Section 6.1 Freddy Lecue (UniMan)

 27/02/2009 Section 3.1 and Revise Lai Xu (SAP)

1.3 04/03/2009 Update Section 5.1 Rafael González–Cabero
(ATOS)

 05/03/2009 Review Gianluca Ripa (CEFRIEL)

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 3 of 54

1.4 05/03/2009 Revise Lai Xu (SAP)

Final 09/03/2009 Overall format and quality revision Malena Donato (ATOS)

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 4 of 54

Table of Contents
EXECUTIVE SUMMARY __ 8

1. INTRODUCTION __ 9

1.1 PURPOSE AND SCOPE OF THE DELIVERABLE ________________________ 9

1.2 STRUCTURE OF THE DOCUMENT __________________________________ 10

2. SUMMARY OF THE REQUIREMENTS FOR A LIGHTWEIGHT, CONT EXT-AWARE
PROCESS MODELLING LANGUAGE ________________________ ________________ 11

2.1 METHODOLOGY FOR REQUIREMENTS ACQUISITION _________________ 11

2.2 SOA4ALL GENERAL REQUIREMENTS _______________________________ 12

2.3 REQUIREMENTS FROM THE USE CASES ____________________________ 12

2.3.1 WP7 Requirements: End-user Integrated Enterprise Service Delivery Platform 12

2.3.2 WP8 Requirements: W21C BT Infrastructure __________________________ 13

2.3.3 WP9 Requirements: C2C Service eCommerce ________________________ 14

2.4 SUMMARY OF REQUIREMENTS ____________________________________ 15

3. DESIGN PRINCIPLE OF THE LIGHTWEIGHT, CONTEXT-AWARE MODELLING
LANGUAGE __ ___________________ 17

3.1 DIFFERENT ABSTRACTION LAYERS FOR LIGHTWEIGHT PROCESS
MODELLING LANGUAGE __ 18

3.2 REFLECTION ON REQUIREMENTS __________________________________ 19

4. CONTEXT-AWARE PROCESS MODELLING ___________________ ___________ 21

4.1 METHODOLOGY ___ 22

4.2 CONTEXT-DRIVER PRINCIPLE _____________________________________ 23

4.3 META-MODEL ___ 25

4.3.1 Business Entities ___ 27

5. LANGUAGE SYMBOLS, PROCESS PATTERNS, AND WORKFLOW TE MPLATES 29

5.1 SYMBOLS USED IN LIGHTWEIGHT PROCESS MODELLING LANGUAGE ___ 29

5.2 DESCRIPTION OF PROCESS PATTERNS ____________________________ 30

5.3 WORKFLOW TEMPLATES ___ 34

5.4 GOALS AND TEMPLATE PROCESSES _______________________________ 36

5.5 META-MODEL OF THE LIGHTWEIGHT PROCESS MODELLING LANGUAGE 39

5.6 SUMMARY AND REMARKS __ 40

6. LANGUAGE EVALUATION _______________________________ ______________ 42

6.1 LAB EXPERIMENTS __ 42

6.2 FEEDBACK FROM USE CASES _____________________________________ 42

7. CONCLUSIONS __ 44

8. REFERENCES ___ 45

ANNEX A. PROCESS PATTERNS AND TEMPLATES IN YAWL ____________ ____ 47

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 5 of 54

Glossary of Acronyms

Acronym Definition

B2B Business-to-Business

BPA Business Process Analysis

BPEL Business Process Executable Language

BPM Business Process Management

BPML Business Process Modelling Language

BT British Telecom

CCTS Core Components Technical Specification

D Deliverable

ebXML Electronic Business using eXtensible Markup Language

EPC Event-driven Process Chains

IDE Integrated Development Environment

IT Information Technology

PHP PHP Hypertext Pre-processor

QoS Quality of Service

SAP Systeme Anwendungen und Produkte

SDK Software Development Kit

SOA Service-Oriented Architecture

T Task

UML Unified Modelling Language

WP Work Package

WSMO Web Service Modelling Ontology

YAWL Yet Another Workflow Language

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 6 of 54

List of Figures
Figure 1 Example of the Invoice Processing Process at Business Level 21

Figure 2 Context-aware Business Process Model .. 23

Figure 3 Simplified Meta Model of the Context Driver Principle... 24

Figure 4 Meta Model ... 26

Figure 5 Sequence in BPMN. ... 30

Figure 6 Parallel Split in BPMN... 31

Figure 7 Synchronization in BPMN. .. 31

Figure 8 Exclusive Choice in BPMN. .. 32

Figure 9 Simple Merge in BPMN. ... 32

Figure 10 Multi-choice in BPMN ... 33

Figure 11 Synchronizing Merge in BPMN. .. 33

Figure 12 Multi-Merge in BPMN. ... 33

Figure 13 Discriminator in BPMN. ... 34

Figure 14 Task pay is executed each time one of the three preceding task completes 35

Figure 15 Task pay is executed only once, i.e., after all started tasks have completed 35

Figure 16 Task pay is executed only once, i.e., after the first task has completed. 35

Figure 17 Composite Goals and Process Templates Graphical Representation. 37

Figure 18 Atomic Goal Graphical Representation. .. 37

Figure 19 Goal Main Components. ... 38

Figure 20 Adapter main components .. 38

Figure 21 Meta Model of the Lightweight Process Modelling Language................................ 40

Figure 22 Sequence in YAWL. ... 48

Figure 23 Parallel Split in YAWL. .. 49

Figure 24 Synchronization in YAWL. .. 49

Figure 25 Exclusive Choice in YAWL.. 50

Figure 26 Simple Merge in YAWL. .. 50

Figure 27 Multi-choice in YAWL.. 51

Figure 28 Synchronizing Merge in YAWL. .. 51

Figure 29 Multi-Merge in YAWL. ... 52

Figure 30 Discriminator in YAWL. ... 52

Figure 31 Task pay is executed each time one of the three preceding task completes. 53

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 7 of 54

Figure 32 Task pay is executed only once, i.e., after all started tasks have completed. 53

Figure 33 Task pay is executed only once, i.e., after the first task has completed. 54

List of Tables
Table 1 Symbols used in Lightweight Process Modelling Language. 29

Table 2 Feedback from WP8. ... 42

Table 3 Symbols used in YAWL ... 48

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 8 of 54

Executive Summary
SOA4All concentrates on bringing IT solutions to non-technical users. Existing process
modelling languages and special executable process modelling languages are not designed
for non-experienced users [29]. Lightweight process modelling seeks to lower the barrier to
entry for process modelling. Non-experienced users get advanced guidance during the
modelling activities. Lightweight process modelling supports modelling in different abstraction
levels and allows switching or drilling between those levels, e.g., coming from a high-level
process to a more detailed sub process.

In the context of lightweight process modelling, a new and easy to manage process
modelling language will be required, since existing languages are too complex for non-
technical users. Besides the requirement to manage easily the process-based service
composition models, another requirement for the modelling language is to allow for the
specification of templates. The definition of such a modelling language is the main goal of
task 6.3, a first specification draft is provided by this deliverable. If such a language is to be
usable by people who are not software professionals trained in management of complexity
and abstraction, it should hide as much of the service composition complexity as possible.
Nevertheless, we should provide sufficient notational semantics for users to understand the
unavoidable interactions between services being composed; and sufficient expressive power
for the users to construct useful compositions.

Another aspect of the lightweight modelling language is to allow for the definition of
contextualized processes by supporting the specification of context information sources and
their role they play in the process. Hence it will leverage the ontologies defined in WP3 for
modelling the context.

Finally, this language should allow for the definition of domain-specific building blocks that
can be reused by other users.

In this document, D6.3.1. Specification of Lightweight, Context-aware Process Modelling
Language, we present a first design of the lightweight process modelling language. The
document is based on the state-of-the-art report contained in deliverable D6.1.1, use case
requirements, conceptual considerations, and usability studies. The report contains the
specification of the first set of design elements. Further, this deliverable contains a first notion
on the evaluation of the modelling language.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 9 of 54

1. Introduction
1.1 Purpose and Scope of the Deliverable
Why do we need a lightweight process modelling lang uage?

At the moment, existing languages for business process modelling address different
purposes. The more formalized the models are, the less ambiguities exist in interpreting
these models. However to create highly formalized process models requires high modelling
skills.

Lightweight process modelling seeks to lower the barrier to entry for process modelling. Non-
experienced users get advanced guidance during the modelling activities. Errors,
misspellings and inconsistencies should be avoided from the beginning. Lightweight process
modelling supports modelling in different abstraction levels and allow switching or drill-down
between those levels, e.g. coming from a high-level process to a more detailed sub process.

Existing process modelling languages and special executable process modelling languages
are not designed for non-experienced users. To summarize there is a clear need to support
the non-trained user in creating formalized process models that either can be easily
transformed into an executable modelling language or be directly executed. The envisioned
lightweight process modelling language will allow for the easy creation of formalized process
documentation models as well as allow for the creation of executable process models out of
the specification on a high abstraction level.

Who will use the lightweight process modelling lang uage?

The business cases described late in this document make clear statements towards the
necessity of supporting the end user rather than the programmer. Hence, it is important to
define who actually is the end user. There is a broad variety of user groups ranging from
management to business analysts who are possible stakeholders in a process management
project. A framework for the classification of users has to be built. Some criteria for
differentiating users can be the modelling purpose, their business and IT skills and their
capability to abstract from specific application scenarios.

How will the target model or target application be used?

In addition, the specific target model or target application needs to be carved out more
clearly. Is it built for automating processes, collaboration between organisational units or is it
consultation and documentation? We assume that in most application scenarios it will be a
mix. Another challenge is potential collaboration in defining processes. We can think about a
manager approving a process model. Based on these premises a methodological framework
for the access and creation of models needs to be developed.

How SOA4All will contribute to these challenges?

SOA4All concentrates on bringing IT solutions to non-technical users. In the context of
lightweight process modelling a new, easy to manage modelling language will be required
since existing languages are too complex for non-technical users. Besides the requirement to
manage easily the process-based service composition models another requirement for the
modelling language is to allow for the specification of templates. A first draft of such a
modelling language is the main goal of this deliverable. If such a language is to be usable by
people who are not software professionals trained in management of complexity and
abstraction, it should hide as much of the service composition complexity as possible. It
should also provide sufficient notational semantics for users to understand the unavoidable

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 10 of 54

interactions between services being composed; and sufficient expressive power for the users
to construct useful compositions.

Another aspect of the lightweight modelling language is to allow for the definition of
contextualized processes by supporting the specification of context information sources and
their role they play in the process. Hence, it will leverage the ontologies defined in WP3 for
modelling the context.

Further, we will allow for the definition of domain-specific building blocks that can be reused
by other users. An example of such building blocks can be found in the EU FP6 PICTURE
project [26].

Lastly, we have to define the generation of appropriate artefacts from the modelling language
constructs. In particular, we need to generate the executable process descriptions as well as
the components and entities needed by the runtime infrastructure (such as distributed service
bus descriptions, and architectural composite descriptions). Furthermore, information from
the language elements will be used in the generation of monitoring / provenance information
(such as which process descriptions a particular service is in). The generation of the
executable process descriptions will make use of context information. Hence we will use an
existing framework for accessing the context in which a service is deployed. This will enable
service adaptation as addressed by the Tasks 6.4 and 6.5 in SOA4All.

The process editor for the lightweight process modelling language that makes the
functionalities defined above available to SOA4All users will be developed in Task 2.6 and
integrated into the SOA4All Studio.

1.2 Structure of the Document
This deliverable is based on the state-of-art report and requirements for service construction
D6.1.1 [29]. It is organised as follows Section 1 gives an introduction to the scope and
content of this deliverable. The requirements for the lightweight process modelling language
are covered by Section 2. These requirements result out of the SOA4All use cases as well as
from general user needs. In Section 3, design principles of lightweight, context-aware
modelling language are introduced. Context-aware process modelling is discussed in Section
4. Language symbols, process patterns, and process templates are presented in Section 5.
Section 6 includes the concept for the evaluation of the process modelling language and
some feedback from WP8 and WP9 on process patterns and workflow patterns. Finally, the
conclusion section summarizes the deliverable and provides an outlook on future steps in
T6.3.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 11 of 54

2. Summary of the Requirements for a Lightweight,
Context-aware Process Modelling Language
After studying use case documents from WP7, WP8 and WP9, i.e. D7.1, D7.2, D8.1, D8.2
and D9.1, we must conclude the documented case studies are written on a very high
abstraction level. It can be well understood that as SOA4All is an advanced research project,
it is not easy to acquire requirements from real life. It requires more sophisticated skills to
achieve our goals of collecting reasonable requirements.

One of the important requirements for process modelling in SOA4All is the need to be
lightweight. Lightweight, however, is a relative concept. What do we compare with?
Lightweight in which dimension? Should the produced lightweight models be concise?
Should the language have only a few symbols? Should the language be very easy to use for
beginners? Should there be few requirements on systems that can execute the models? Etc.

One of the criteria of being lightweight is end-user friendliness. This brings another problem.
Who are actually our end users? The end users are civil servants, upstream and downstream
customers, entrepreneurs, and so on. But these categorisations do not provide any
interesting information on their business or IT skills. Besides, EPC (Event-driven Process
Chain), UML and Petri Nets have been popular in industry for long time. BPMN, BPEL and
YAWL are also well accepted by certain groups of people. There is another factor. Microsoft
office assistant (or clippie) has been developed as a user-friendly tool. But it is pretty
annoying for most people. This shows that user friendliness is not easy.

For questions like who our end-users are and what kinds of business and IT/technical skills
we can expect from them, we have initiated a discussion with the authors of the use case
deliverables. Although a definite answer of who are end users and what kinds of skill they
have cannot be provided, we do believe that they may not be able to create a complex
process model. They should however be able to read a reasonably simple process model.
Therefore, the end users are not typically paid to do the job of a professional modeller or
programmer, and any programming or modelling efforts that they perform tend to be basic
and only applied to the extent that they solve the business problem at hand.

In the following sections, we present our methodology for requirements acquisition. We list
SOA4All general requirements and requirements from the user cases respectively. Finally,
we summarize the requirements for designing the lightweight, context-aware process
modelling language.

2.1 Methodology for Requirements Acquisition
A pattern is an abstraction from a concrete form that keeps recurring in specific non-arbitrary
context [15]. The use of patterns is a proven practice in the context of object-oriented design,
as evidenced by the impact made by the design patterns of Gamma et al. (1995)[14].

We thus think about providing some process modelling patterns, modelling
fragments/process modelling templates and even some completed process models of typical
cases to our end users. This assumes that the end users can read process models. Similar
to programming languages, there are different process modelling languages available, but
familiarity with one of them makes it easy to understand others. By comparing, and more
specific by pointing out the differences of similar models, the end users edit existing
templates and run their processes. This way may get the end users on their ways of
modelling processes easier.

Our colleagues in WP7, WP8 and WP9 are working hard to acquire requirements and to

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 12 of 54

refine the sequence of activities into detailed executable processes. Looking at the process
patterns we provided, it can hopefully help our colleagues to get deeper details out of the
current cases. Requirement acquisition is an incremental process. They could provide us the
feedback about what process patterns and templates are well used in different domains. We
would like to follow the agile method [29] to fast providing our process patterns and templates
to WP7, WP8, and WP9. After receiving feedback from them and detailed requirements of
the lightweight process modelling languages, we will enhance the process patterns and
templates, and justify our design of the language. Finally, we will identify our well-used
process patterns and templates getting in the end, and the lightweight process modelling
language can be well accepted by the users.

2.2 SOA4All General Requirements
One of the objectives of SOA4All is to open the world of service composition to the non-
technical user. Depending on the user’s skills and knowledge, we should allow the user to
model its services and processes on different levels of complexity. Hence, SOA4All seeks to
integrate all kinds of experts and non-experts. Graphical modelling elements will facilitate the
process composition.

The process models will be used to create representations meeting both the business and
technical needs of users and their use cases. Achieving the objectives of SOA4All requires
the delivery of a service and process composition interface, the SOA4All process editor,
considering the skills and tasks of our target users. The long-term aim of SOA4All is to open
up process modelling to everyone, yet at first instance our target users are those found in the
SOA4ll case studies (WP7-9).

The case studies are still in the stage of initial definition, yet the following characteristics of
our end users are clear:

• Most target users will have professional background

• Some target users will not be professional software developers and would not have
received significant training in programming nor system design

• Most target users will be experts in the tasks and processes they are trying to support
by using SOA4All

Therefore in the context of SOA4All, we need to develop an intuitive process modelling tool,
which is able to use by someone without too much prior instructions. A certain level of
technical competence and familiarity with process models will have to be assumed.

2.3 Requirements from the Use Cases
2.3.1 WP7 Requirements: End-user Integrated Enterpr ise Service Delivery Platform

The goal of WP7 is build an integrated demonstrator, which integrates SAP enterprise
services into the SOA4All platform. This demonstrator will allow civil servants to handle
typical administrative procedures (such as a permit approval process). More specifically,
using the web-based tools of the SOA4All Studio, public servants can search, model,
annotate, modify, share, analyze, and execute administrative procedures in the form of
lightweight business processes. These processes may be composed of enterprise services
(hosted by SAP), public web services (hosted by third party service providers), and human
activities (to be executed by end users). For public administrations, the main benefit of such
a flexible and open service delivery platform is the possibility to quickly address new

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 13 of 54

challenges and requirements, e.g., such as the ones formulated by the EU Services
Directive.

Let us now enumerate the main requirements that we have identified as relevant to the work
package

• The models and tools should support a range of different users with different roles
and skills, in the concrete context of this refers to

o Front office: high-level knowledge of all processes

o Back-office: very detailed knowledge of selected processes

• Processes should have associated meta-data properties that allow for the process
retrieval using properties such as name, author, category, data objects, user
comments, etc.

• Processes should be reusable. A process or parts of a process should thus be more
like building blocks that can be recombined into more complex ones.

• The process model should provide a graphical representation of processes. It will
make them easier to create and easier to share

• The process steps should enable the representation of:

o A selection of a concrete service acting as a service instance

o A service class containing a set of similar services

o Services templates, similar to service classes, but with some information left
intentionally unspecified.

o Goals, describing functional properties of services as well as preconditions
and effects

• Various sorts of filling parameter descriptions of process steps and processes as a
whole should be allowed

o Dynamic input parameters that could be filled out by output parameters of
preceding services or context-dependent parameters.

o Static input parameters that always have the same value

o Input parameters provided by the user (via browser-based UI) or by automatic
information sources (services output or current context).

• Processes should be described with enough abstraction and freedom to allow:

o transparent deployment on demand

o multiple and parallel running instances per process

The above requirements are based upon deliverables D7.1 and D7.2. However, as the
delivery of the latest version of D7.3 has been postponed until M13, this deliverable can not
reflect the final requirements of WP7.

2.3.2 WP8 Requirements: W21C BT Infrastructure

Web21C is the name currently given to the platform over which BT will provide next
generation services on top of its all IP-based 21st Century Network (BT 21CN). Some of

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 14 of 54

these services will be provided by BT and others will be provided by third parties. Web21C is
central to BT’s transformation from a traditional telecommunications company to a converged
software and services business. Web21C will allow third parties to use BT’s network as a
platform for delivery of their services, for which BT get revenue. These are not typically other
network competitors, but a new breed of partner - software companies, developers and
content providers.

Currently Web21C comprises of a set of Web services, and software development kits
(SDKs) that provide external access to a number of BT capabilities, such as making a voice
call and sending an SMS text message.

In the following, we will identify different requirements from each of the scenarios that have
been defined for this use case. From the Web21c Telco application design scenario
(casual-user side) we identify the following:

• The representation, tools and techniques that will be developed to compose services
should envisage that different communities might generate compositions, which can
be either internal or external to the telecommunication company.

• Services compositions should be based on different criteria, namely functionally
based, non-functional based (e.g. QoS), user goal based, and context-based.

• The lightweight process model (and the overall service construction environment)
should be easy to use, lowering thus the entry barrier in using the composition. That
includes:

o Users do not need to have any programming experience (e.g. in using an IDE
to program in Java, C# or PHP)

• The semantic descriptions both of services and the process as a whole should be
formally defined in order to automate tasks such as suggesting compatible services in
service compositions.

From the Business Reseller scenario, we identify the following requirement

• The lightweight process model should contain information about the QoS, context
criteria, etc. This information can be used later on for ranking processes, monitoring,
logging etc.

2.3.3 WP9 Requirements: C2C Service eCommerce

WP9 C2C Service eCommerce use case will be entirely focused on providing an easy way
for end users to use third party services offered through the framework. In this use case the
SOA4All platform should enable users to build eCommerce applications in order to market
and sell their own products, such as photos or furniture or by providing their own innovative
services built from a mash-up of existing service offers. End customers are able to use
various SOA4All-enhanced tools offered through this framework to build their own end
customer applications. While people may use the SOA4All results to build generic
applications, the eCommerce framework will provide eCommerce specific functionality and
will itself also use the SOA4All services for achieving this. For example, it will provide typical
eShop functionalities such as a shopping cart feature and an access to payment providers
using the SOA4All service orchestration and communication facilities. More precisely, WP9
will provide services for different eCommerce areas such as advertisement, marketing,
distribution, and payment, based on existing partner products and services. In addition, the
inclusion of additional third party services via a service broker will be enabled.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 15 of 54

The requirements for this work package of this deliverable are:

• The end users can build their eShop using modules such as product management,
categories, shopping cart, stock, payment and delivery options and services, etc.

• The typical users of the WP9 need a simple way to describe their requirements
without knowing of different versions or split and join types of a process model and
how tokens are processed in the process model.

• The users of the eCommerce application would create suitable compositions of
services, based on workflow templates, which replaces the usual order process for a
customer of the eCommerce application. Design of workflow templates need to be a
simple formalism, which has the ability to exchange some of the activities with real
services.

• A service broker combines services to provide “service bundles” to the end users.
These services bundles consist of simple processes, for example, the combination of
fraud detection and address check services with the actual payment service.

2.4 Summary of Requirements
Now that we have discussed the most important requirements of the lightweight, context-
aware process modelling language, based on the use cases from WP 7, WP8, and WP9. It
would be useful to summarize them:

• Executable process modelling language: It does not matter how user friendly it is,
at a certain level, the different logical splits and merges are still needed. In other
words, although simple for end users, the language should be expressive and well-
defined enough in order to be executable.

• Easy to use for end users: The lightweight, context-aware process modelling
language will be used by users without professional modelling skills. The complexities
of process creations need to be hidden somehow.

• Integrated with end user’s daily work life: In order to reap the full potential of
SOA4ALL platform, lightweight process modelling needs to be integrated in the way
people do their work, i.e. directly within the context of their work.

• Annotated and well-managed process templates: Process templates can be pre-
defined, or created by users and validated by experts. All templates can be classified
to share with all or within small communities, and serve as flexible basis for the
definition of processes.

• Specified constraints: It must be possible to specify some constraints such as a
constraint that certain tasks or activities in the process model must be performed by
certain pre-required Web services.

• Fault-handling: Reporting modelling errors and potential during the process creation
stage.

• Non-functional description of tasks in a process: We did not receive a concrete
requirement in regard to non-functional aspects of tasks in a process yet. It can be
specified in the process modelling stage. It can also be done in the process execution
stage, i.e. invoking Web services. We are still discussing this with our partners.

In this section, we have reviewed requirements from general aspects and the SOA4All use
cases. In the next section, we will present our design principle of the lightweight, context-

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 16 of 54

aware modelling language. It is worth noting however, that at the time of this writing, the use
cases from WP7, WP8 and WP9 are in an early stage and it is therefore not possible to
provide a complete and thorough alignment.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 17 of 54

3. Design Principle of the Lightweight, Context-awa re
Modelling Language
In the previous section, we have reviewed the requirements from a general perspective and
from the perspective of the SOA4All use cases. In this section, we look at current technology
support for lightweight process modelling. We further present our design principle of the
lightweight, context-aware modelling language.

Lightweight process modelling is a combination of techniques that seek to lower the entry
barrier for process modelling. This includes fostering a more participative style of modelling
and providing a forum for the community of experts. The following technical requirements
arise:

• Easy access: Business user enablement demands a focus on usability. This
comprises both simplicity of the approach and a low footprint of the solution (“zero
install”). Ideally, users can model processes using simplified notations in a Web 2.0
environment and draw on modelling best practices.

• Process Wiki: Combine both structured and unstructured information and publish
them as a single point of reference to the organisation. The Process Wiki invites the
community to participate in discussions, and to provide comments or ratings in
relation to process proposals. Process documents can be generated for offline
reading and dissemination.

The lightweight process modelling tool as being developed in WP2 has to provide an intuitive
user interface. Furthermore, it has to provide advanced guidance during the modelling
activities. Errors, misspelling and inconsistencies should be avoided from the beginning. The
integration of different views helps to provide only relevant information to a certain user
group. The tool should support modelling in different process abstraction levels and allow
switching or drill-down between those levels, e.g. coming from a high-level process to a more
detailed sub process. The solution has to provide process governance. A process owner
needs to be assigned to every process. The process owner is responsible for answering
questions regarding the model, monitoring activities related to it, and keeping the model up-
to-date. Another important aspect is to provide collaborative modelling functionalities.
Process models should be easily accessible and understandable for all participants.

The lightweight process modelling tool should provide a proper process content repository
which offers easy access to all artefacts of a business process in order to store, update,
retrieve, and delete information relevant to the process. The process repository should store
process artefacts with the same semantic meaning only once and in a structured manner to
avoid redundancy. In addition, the repository has to be extensible with predefined interfaces
to allow customized changes. The modelling tool should provide a pre-defined knowledge
base containing reference models, best-practise models and further examples.

In order to simplify business process modelling, models must be highly reusable, favouring
process flexibility and minimizing designs made from scratch. There is wide agreement that
patterns can accelerate the process of designing a solution and reduce modelling time.
Patterns enable participants of a community to communicate more effectively, with greater
conciseness and less ambiguity [22], [23], [24]. We thus choose to use a part of well-known
workflow patterns from [12] as our process pattern. The patterns range from very simple to
very complex and cover the behaviours that can be captured within most business process
models. Workflow patterns also have a well-defined formal foundation. It will provide special
value when we introduce context-awareness into the language. The context-awareness

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 18 of 54

principle of the process modelling will be further discussed in Section 4.

Besides, applying process patterns at the process modelling stage, end users can obtain
support in case the application of a pattern causes a modelling error and the sequence of
applied patterns can be traced during process editing time.

The workflow patterns from [12] are however too fine-grained and not sufficiently enriched
with information on the context and consequences to represent a reusable solution.
Therefore, we introduce workflow templates that are different combinations of process
patterns. The processes represented by a workflow template are sound. Certain workflow
templates can be enriched with the information that they are valid for different domains, i.e.
business context.

Where process patterns provide flexibility and guidance during the design phase, there is
another opportunity for process flexibility. Process activities are traditionally concrete and
bound to services or other means of implementation at design time. We use activity goals as
unbound activities that are bound to a particular service at runtime. Activity goals specify the
conditions for their implementation in such detail, that it is possible to automatically find fitting
services with a high degree of accuracy.

In short, our design principle of the lightweight, context-aware modelling language can be
summarized as:

• Context-awareness

The names of activities/tasks involved in a process model should be unified. The context-
driver principle allows identification, storage, and representation of a business process
artefact only once. A business process is instantiated depending on specific context
categories (e.g., business process, industry, country, business role, etc.). Providing
context information such as “country” information, a specific model can be invoked out of
the same name process models during the modelling stage. For example, in different
countries there is a different banking system that allows different types of payment. More
details can be found from Section 4.

• Usability and Reusability

We adopt seven symbols from BPMN and add two goal related notations for describing a
control flow of a process now. However, we do support different process patterns in our
language. Details can be found in Section 5.1 and 5.2. Process patterns, workflow
templates, process fragments, reference models, best-practice models, and further
example models are provided in association with the language. Details can be found from
Section 5.3.

• Flexibility

Unlike developing an activity in a traditional workflow system, implementations of
activities/tasks are fixed. We use activity goals as unbound activities. Activities/tasks can
thus invocate different Web services. Description of an activity goal can be found from
Section 5.4.

3.1 Different Abstraction Layers for Lightweight Pr ocess
Modelling Language
In order to keep a balance between simplicity of use and expressive power of the lightweight
process modelling language, we have different abstraction layers for different purposes. For

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 19 of 54

end users, the T2.6 process composer provides four symbols (see D2.6.1 Section 6.1).
Gateways have been explicitly omitted as they are believed to be hard to understand for non-
technical users [29]. They are implicitly modelled by multiple outgoing and incoming
connections. More details can be found from D.2.6.1.

This deliverable introduces an executable process language for lightweight process
modelling and advocates our context-aware process modelling method. We provide limited
graphical notations to express reasonable complex control flows. Rich process patterns and
workflow templates are provided to support “modelling-by-example”.

For making the graphical process modelling language available for execution, we have
considered XPDL [27] or WSBPEL [28] for a representation of the language that is supported
by process execution engines. A future selection of a representation of the executable
process modelling language will also based on the semantic matching of those languages
with our language. A comparison of XPDL and WSBPEL can be found in [31]. The final
choice will also depend upon the chosen execution engine within the project. We need to
further extend the selected XML-based language representation by semantic annotations
and other language properties.

3.2 Reflection on Requirements
We reflect upon our design of a lightweight process modelling language to requirements we
summarized in Section 2.4.

For the “executable process modelling language”, the balance between simplicity of use for
end users and expressive power of the language is a key aspect. We keep logic expression
of a control flow as simple as possible, but it needs to be sufficient for execution. It is
possible for a process editor (T2.6) to support a subset of the language and to allow users to
create their models in more flexible ways.

For “ease of use for end users”, annotated workflow templates can be easily discovered by
end users. For some end users, their requirements can already be satisfied by choosing a
good workflow template and running it. For other end users who want to create a new
process by editing an existing workflow template or by integrating different workflow
templates, we will provide context-aware guidance during the process modelling stage.
Learning and training effort should be minimized. Different workflow templates and models
can also be ranked based on popularity in a community-centric SOA4All environment.

For “integration with end user’s daily work life”, we provide context aware business
vocabularies which extend technical vocabulary and can be used for the process modelling in
order to keep language consistent across the different workflow templates, process
fragments and process models.

For “annotated and well managed workflow templates”, a user-friendly annotation of
semantic description of workflow templates should be provided. Semantic technologies are
further suited to describe workflow templates and their interdependencies and relationships.
It should allow end users to easily discover differences between similar workflow templates.
SOA4All establishes a dynamic platform where workflow templates, process fragments, and
process models are contributed, grouped, consumed, and managed.

For “specified constraints”, before process execution, end users are able to specify that
certain tasks or activities in the process model must be performed by certain pre-required
Web services. It means that the selection of other Web services for executing the process is

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 20 of 54

based on the pre-required Web services.

For “fault-handling” during the process modelling stage, we apply some general design rules
to guarantee soundness of a process model, i.e. checking deadlocks, lack of
synchronization, and so on.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 21 of 54

4. Context-aware Process Modelling
Current process modelling approaches and tools are still very costly and error-prone since
users are not guided in any sensible way. The analysis of Gartner shows that BPA (Business
Process Analysis) tools are too complex for the average user and that the major modelling
tool with a market share of 30% is MS Visio [1]. Although a variety of BPM tools and different
BPM methodologies is available, none of the tools seems to appropriately address the
modelling needs. Vendors still construct their own model representations and tools, which
are mostly not interchangeable, and yet most business analysts are using office tools (like
Microsoft PowerPoint or Microsoft Excel) to describe their process landscape. Instead of
reusing existing process models or parts of process models (also called process artefacts in
the following), they are usually replicated and modelled from scratch.

Process models are processes of the same nature that are classified together into a model.
Thus, a process model is a description of a process at the type level. Since the process
model is at the type level, a process is an instantiation of it. The same process model is used
repeatedly for the development of many applications and thus, has many instantiations. One
possible use of a process model is to prescribe how things must/should/could be done in
contrast to the process itself which is really what happens. A process model is roughly an
anticipation of what the process will look like. What the process shall be will be determined
during actual system development [3]. An example of a process model for invoice processing
is depicted in Figure 1.

Figure 1 Example of the Invoice Processing Process at Business Level

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 22 of 54

Let us assume that there exist two departments, namely the financial department and the
sales department within a company, which are using their own terminology in order to model
and describe the processing of an invoice (compare Figure 1). As the naming of business
process artefacts is often more art than science [2] the modellers often do not apply any
naming conventions and name business artefacts in arbitrary ways (compare Figure 1)
Furthermore, Figure 1 shows that both processes actually describe the same process, while
both departments use their own terminology.

We can distinguish two basic levels of reusability: Reusability of the semantic representation
and of the structural characteristics of process artefacts. In the following, we argue that
reusability on both levels is hardly given.

I. Reusability across process models, i.e., parts of a process model, e.g., the activity
“Create Invoice” in the Invoice processing process model in Figure 1, typically also
occur in other process models (sales, purchasing). However, creators of process
models users typically come up with different labels for the same activity (e.g., another
user might call the activity “Creation of an invoice”).

II. Reusability of structural dependencies, i.e., elements of the process model are
typically linked to one or more elements. As an example, let us come back to the
process step “Create Invoice” in our running example. This process step is linked to the
responsible role “Accounting Manager”. However, in a different process model the
process step might be linked to a responsible role “Solution Manager”.

The examples already indicate that both types of reusability are problematic. We propose to
integrate context-awareness into business process modelling and thus allow a higher
flexibility and reusability of process artefacts. A process model is defined by its process
artefact and the context in which it is used. The general idea is to create a standardized,
consistent, and understandable description of every business process artefact using
ontologies and to link each artefact to a specific business context. The primary purpose is to
achieve consistency in the naming and to facilitate the understandability of the business
process models depending on a business context. As a result, the usage of insufficient
business artefacts and terminology can be avoided. Examples of insufficient terminology are
words which have the same spelling and pronunciation but have different meanings
(homonyms), or words that have the same spelling but different pronunciation and different
meanings (heteronyms).

4.1 Methodology
In order to overcome the issues of reusability and misleading terminology we propose to
introduce context-awareness into business process modelling. The general idea is that every
business artefact is assigned to a business environment called business context. A business
context describes where this business artefact is valid. For example, certain workflow
templates can be enriched with the information that they are only valid within a certain
business domain i.e. business context.

Before a modeller is now able to create process models, first he has to define in which
business context he is modelling. Based on this setting, the modelling tool can pre-filter all
business artefacts, which maybe relevant for the modeller. Furthermore, the tool could also
propose reference processes from different business domains. The modeller can use these
reference models as an initial version and include the modification for his current business
context. In the following section, we will explain the context-driver principle in more detail and
show how we can apply it to the most import business artefacts.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 23 of 54

4.2 Context-driver Principle
Although the context-driver principle [7] has been applied to business data only, we argue
that it can be applied to business process artefacts as well. However, as the structure and
information provided in a business process model is much more complex than in business
data, our proposal differentiates between the meaning of business artefacts and their relation
to each other.

On the one hand, the context-driver principle must be sufficiently discrete in order to enable
semantically unambiguous precision. In other words, a semantic meaning of a business
process artefact is always unambiguous, when considered in a specific context. For example,
a Change Document in an Issue Management process model might contain a field for "bank"
which is not precise if this entity is defined without context. "Bank" describes different objects
in the industry area of "Finance" and "Marine". Therefore, it is not possible to define only one
"bank", which can be used everywhere. Rather, the context in which "bank" is used adds
further semantic meaning.

On the other hand, a business process specifies the sequence of activities. In this case, the
context-driver principle has to be adapted to support such structural differences. Figure 2
shows a generic example which explains this principle. A business process in context C1 is
composed of the activities A1, A2 and A3. In a different context C2, those three activities
have the same semantic meaning however there is an additional activity A4, which changes
the structure of the process.

The context-driver principle allows identifying, store, and representing a business process
artefact only once while specifying the differences depending on specific context categories
(e.g., business process, industry, country, business role, etc.).

In our generic example process, each activity A1, A2, A3 and A4 has only one unique
semantic representation in the process repository, however there may be a structural
difference (a different predecessor or successor) or even different representations (e.g.
synonyms, abbreviations, etc.) depending on the context.

Context defines the environment in which a process artefact is used. The foundation of our
work is the Core Components Technical Specification (CCTS) [8] which was proposed by the
UN/CEFACT. This specification focuses on the data and information modelling. The idea
behind this principle is that all business data follows similar semantic concepts. CCTS
provides a common and generic modelling concept for objects and data. With the
development of CCTS, the specification already introduced the idea of Context Awareness

Figure 2 Context-aware Business Process Model

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 24 of 54

among business-related data objects and data types. The concept of Business Contexts and
Business Information Entities depicts the concrete characteristic of Context Awareness in
CCTS. Business Contexts are classified into eight Context Categories (based on the current
version of the specification).

• Business Process

• Product Classification

• Industry Classification

• Geopolitical

• Official Constraints

• Business Process Role

• Supporting Role

• System Capabilities

Introduced in [9], SAP has designed and developed a context-driver principle which is
implemented prototypically in the CCTS modelling tool named “Warp 10”. This CCTS
Modeller is “an Semantic Web ontology-based data integration, modelling and mapping tool
that leverages the semantics of meta data by implementing the semantic-based approach
described in ISO 15000-5 Core Component Technical Specification (CCTS)” [9]. The tool
focuses on the collaborative, evolutionary, and autonomous data modelling of business
artefacts for the application of CCTS in the B2B environment. Figure 3 depicts the simplified
meta model of the context-driver approach.

Each process artefact is assigned to one Business Context. A Business Context can have
one to many Context Units. “A context unit is used to set up the logical conjunction between
the different context categories.” Context Units can be compared with Cartesian products of
the Context Value Sets of the Context Categories. Context Categories are adopted from
CCTS and allow the classification of contexts. Each of the eight Context Categories can refer
to one Context Value Set. A Context Value describes a “business situation in an
unambiguous and formal way”. [9]

Formally, the Context Driver Principle is based on mathematical sets. Therefore, the
mathematical theory of sets is used for the representation for Business Contexts. The
following example is meant to be a simple example to give an insight of the usage of the set
theory within the approach. The following sets represent three Context Categories. Set I
(Listing 3.1) represents the industry sector which set contains values such as “Automotive”,
“Finance”, “Energy”. Set G (Listing 3.2) represents geographical values that can be the ISO
codes for countries (ISO 3166) such as “DE” for Germany, “GB” for the United Kingdom, and

Figure 3 Simplified Meta Model of the Context Driver Principle

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 25 of 54

“US” for the United States of America. Finally, Set P (Listing 3.3) represents processes that
are numbered.

Industry I = {Automotive, Finance, Energy} (Listing 3.1)

Geography G = {DE, GB, US} (Listing 3.2)

Process P = {1, 2, 3, 4} (Listing 3.3)

Let us assume, we have defined a process artefact and we want to define a valid Business
Context, which specifies that the process artefact is valid in the automotive, and finance
sector within Germany and the United Kingdom. It should be also applicable for process 1, 3,
and 4. In order to build a valid Business Context, we need to define a Context Unit, which
builds a Cartesian product of subsets of the Context Categories. These subsets are listed as

set I’, set G’, and set P’ (I’ ⊆ I ⋀ G’ ⊆ G ⋀ P’ ⊆ P).

I’ = {Automotive, Finance} (Listing 3.4)

G’ = {DE, GB} (Listing 3.5)

P’ = {1, 3, 4} (Listing 3.6)

The valid Business Context which we name BC is a Cartesian product that is shown in
Listing 3.7. The defined syntax by [9] of a Business Context is given in Listing 3.8.

BC = (I’ × G’ × P’) = ({Automotive, Finance} × {DE,GB} × {1, 3, 4}) (Listing 3.7)

BC = (I = {Automotive, Finance};G = {DE, GB};P = {1, 3, 4}) (Listing 3.8)

A context-driven example is described in [11] which provides an insight of the applied
aspects of the Context Driver Principle in Warp 10. For more information about the Context
Driver Principle, readers are referred to [9].

4.3 Meta-model
We want to adapt the general approach of CCTS and create a framework for the
formalization of business process artefacts. The underlying meta-model for our formalization
is depicted in Figure 4, with the Semantic Model Repository as its major component.

A Model is described using one or more Modelling Languages. Every Modelling Language
has a number of Model Elements. These Model Elements are extended by Labels. All Model
Elements can now be linked to the Semantic Model Repository and thus every Model
Element can be linked to a Business Entity. A Business Entity has a unique semantic
meaning and thus is linked to a unique concept of an ontology. In order to make a Business
Entities meaningful to a person, the framework provides so called Business Terms which
actually describe a Business Entity in a natural language. Both, the Business Entity as well
as the Business Terms might be restricted to a specific Business Context. The Business
Terms are based on a certain Business Term Grammar. For example, a business activity

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 26 of 54

with the concept name “SEND_ORDER" may have the following Business Term
representations "send order", "send purchase order", "Auftrag verschicken" or "send PO". In
order to be able to support the naming of business terms, our framework relies upon existing
External Dictionaries such as Wordnet, SAPTerm, etc.

We explain our idea using the previous example (see Figure 1), where the processing of an
invoice is modelled using the modelling elements of EPC. A process activity usually
represents the processing of a certain resource. In our example, the two different
departments use different terminologies to describe the creation of an invoice, namely
‘Create Invoice’ and ‘Bill Creation’. As both activities have the same meaning, both activities
will be linked to the same Business Entity which is linked to a unique ontology concept. In our
example ontology concept might be CREATE_INVOICE. The abstract Business Entity can
have multiple representations in the form of Business Terms. The actual Business Terms
might be restricted to a certain linguistic grammar (for example, a verb followed by a space,

Figure 4 Meta Model

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 27 of 54

followed by a noun, and only be valid in a certain Business Context). In our example the term
‘bill’ is valid in the sales context, whereas ‘invoice’ is a valid term in the financial context.

4.3.1 Business Entities

A Business Entity represents a central part of our conceptual framework. In principle, it can
be compared with a Business Information Entity in CCTS. [8] However, as by nature the
structure of a business process model and its business artefacts is much more complex and
has more perspectives than data models, we were only able to reuse the basic idea of
CCTS. Business entities represent an abstract concept of business artefacts. They are
divided into Basic Business Entities and Complex Business Entities. We have identified the
major business artefacts in business process models and categorized them into one of the
two groups. This section will detail the individual types of business entities. We do not claim
completeness of these types, however, the underlying meta-model of our Semantic Model
Repository is flexible and thus additional business entities can be easily added.

Business Entity Business Entities represent objects of the business world. In our work,
these are especially business-related objects which are used in business process models.
Business Entities are divided into Basic Business Entities and Complex Business Entities.

• Basic Business Entity Basic Business Entities are atomic and represent atomic aspects
that are needed within business process modelling.

o Role Roles can either be persons or groups of persons who are involved in the
operation of business processes, particularly in Activities as they are the only
executing part of Processes.

o Resource Resources can be anything which is needed or used within an Activity
and therefore within a Process. Examples of Resources are documents, pieces of
information, messages, information systems, databases, but also materials, etc.

o Action An Action is the process of doing something. Action are described in a
basic form. They define in combination with a Resource the core component of an
Activity.

o Predicate A Predicate makes a semantic statement about a subject to which it is
related. Predicates are used in structures that connect Business Entities to each
other. For example, they define the relation that a certain Resource is an input for
a certain Activity.

o State A State defines the condition of a Complex Business Entity in which it is
embedded.

o Goal A Goal is the representation of an objective which fulfilment is achieved
through the execution of one or more services. Goals can be linked to activities,
processes or workflow templates.

o Service A Service is a software component which can be executed remotely and
which fulfils certain Goals/a Goal. Services can be linked to Activities.

• Complex Business Entity Complex Business Entities are variable structures which
connect Basic Business Entities to each other. These connections build a semantic
meaning, which represents the Complex Business Entity itself.

o Activity Activities represent the executing part of business processes. Activities
are performed by Services or Roles and require Resources. The core component
of every Activity is an Action, which processes a Resource. After an Activities is

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 28 of 54

executed by, it creates a new state. Roles, Resource, Goals and Services can
have can have several relations to Activities. These relations are marked by
Predicates which express the semantic meaning of the relations. Relations which
do not define the semantic meaning of the actual Activities are called Activity
Structures.

o Workflow Template A Workflow Template contains a predefined subset of
Activities. These Activities can be arranged in various orders and paths which
define the sequential execution flow within a Process. Processes can only contain
Activities and other Processes, which build then sub-processes of the embedding
Process.

o Process A Process contains a set of Activities. These Activities can be arranged
in various orders and paths which define the sequential execution flow within a
Process. Processes can only contain Activities and other Processes, which build
then sub-processes of the embedding Process. In addition, Process can also
contain Workflow Templates.

o Condition. An condition is an axiom or any logical expression that states some
fact about a set of basic or complex business entities.

Each Business Entity concept (e.g. “CREATE_INVOICE”) has only one instantiation in the
repository. As the instantiation is further defined using a Business Context (see Section 4.2)
which describes the valid space for it, the process model can be reflected using such context
assignments.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 29 of 54

5. Language Symbols, Process Patterns, and Workflow
Templates
Section 3 has presented our design principle of the lightweight process modelling language.
In the following sections, we provide symbols used in the language in Section 5.1. We
provide some process modelling patterns and workflow templates, which should help to
identify the required level of detail in the case studies in Section 5.2 and Section 5.3. Goals
and template processes are introduced in Section 5.4. A meta-model for lightweight process
modelling language is presented in Section 5.5. Finally, we summarize and highlight some
issues related with the current version of the language.

This version of the lightweight modelling language focuses on patterns and is restricted to the
process (i.e. control-flow) perspective. All process patterns come from workflow patterns [12].
For each selected pattern, we provide examples of real cases in small set of BPMN notation.
Some process modelling fragments in BPMN are specified as workflow templates. A YAWL
[13] version of process patterns and templates can be finding from Annex A.

5.1 Symbols Used in Lightweight Process Modelling L anguage
Here we have adopted seven notations from BPMN and added two goal related notations.
Research shows that the average subset of BPMN used in these models consists of just nine
different symbols [25]. In future, we may extend the selection of symbols. It depends on the
requirements from WP7, WP8, and WP9.

Starts a process flow

Ends a process flow

An activity is a unit of work, the
job to be performed

Sequence Flow defines the
execution order of activities

Exclusive Gateway

When splitting, it routes the
sequence flow to exactly one of
the outgoing branch on
conditions. When merging, it
awaits one incoming branch to
complete before triggering the
outgoing flow

Parallel Gateway

When used to split the
sequence flow, all outgoing
branches are activated
simultaneously. When
merging parallel branches it
waits for all incoming
branches to complete before
triggering the outgoing flow

Inclusive Gateway

When splitting, one or more braches are activated based on branching
conditions. When merging, it awaits all active incoming branches to complete.

Atomic Activity Goal

Atomic goals are those that are associated with a single concrete activity,

Table 1 Symbols used in Lightweight Process Modelling Language.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 30 of 54

involving just one step of computation.

Composite Activity Goal

Composite goals are those which fulfilment involves the completion of other
simpler subgoals. In practice, this means that there is a process associated
with the complex goal, process that describes how the described capability is
realized either by achieving other goals, or by invoking concrete services.

We will use above language symbols to describe process patterns and workflow templates.

5.2 Description of Process Patterns
This section comprises an introduction of the most important process patterns. Process
patterns are used in order to simplify business process modelling. Patterns can accelerate
the process of designing a solution and minimize designs made from scratch.

We choose to use the most frequently used workflow patterns from [12] as our process
pattern. The patterns range from very simple to very complex and cover the behaviours that
can be captured within most business process models. In order to facilitate the
understanding of the patterns in this deliverable we will use the BPMN for their description.

The average subset of BPMN used in most of the existing process models consists of just
nine different symbols [25]. In future, we may extend our set of symbols according to the
requirements out of WP7, WP8, and WP9.

Pattern 1 (Sequence)

Description An activity/task should await the completion of another activity within the same
case before it can be scheduled.

Example

The activity/task select_winner is followed by the activity notify_outcome.

select_winner notify_outcome

Pattern 2 (Parallel Split)

Description The divergence of a branch into two or more parallel branches each of which
execute concurrently.

Example
An example of Pattern 2 could be in the context of an application process where after
creating a short-list of candidates, referee reports need to be obtained and interviews need to
be held.

Figure 5 Sequence in BPMN.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 31 of 54

Pattern 3 (Synchronization)

Description Tow or more incoming branches converge into a single subsequent branch. The
thread of control is passed to the subsequent branch when all input branches have been
enabled.

Example

In the context of an application process, a decision for a particular candidate can only be
made once their referee reports have been received and they have been interviewed.

Pattern 4 (Exclusive Choice)

Description A branch diverges two or more branches. Out of two or more outgoing
branches, one branch is chosen. When the incoming branch is enabled, the thread of control
is immediately passed to precisely one of the outgoing branches based on the outcome of a
logical expression associated with the branch.

Example

An example of Pattern 4 consider the case where purchase requests exceeding $10,000 are
to be approved by head office, while purchase requests not exceeding this amount of money
can be approved by the regional offices.

Figure 6 Parallel Split in BPMN.

Figure 7 Synchronization in BPMN.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 32 of 54

Pattern 5 (Simple Merge)

Description One of preceding branches completes. Two or more branches converge into a
single subsequent branch. Each enablement of an incoming branch results in the thread of
control being passed to the subsequent branch.

Example

An example of Pattern 5 could be in the context of an application process where after
finalizing decisions of rejection or approval, a report is issued.

Pattern 6 (Multi-choice)

Description Out of several branches, a number of branches are chosen based on user input.

Example

After the execution of activity determine_teaching_evaluaion, execution of activity
organize_student_evaluation may commence as well as execution of activity
organize_peer_review. At lease one of these two activities is executed, possible both.

Figure 8 Exclusive Choice in BPMN.

Figure 9 Simple Merge in BPMN.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 33 of 54

Pattern 7 (Synchronizing Merge)

Description A form of synchronisation where execution can proceed if and only if one of the
incoming branches has completed and from the current state of the workflow it is not possible
to reach a state where any of the other branches has completed.

Example

Consider again the example presented in Pattern 6 (Multi-choice). After activities
organize_student_evaluation and organization_peer_review have finished, activity
interpret_results could be scheduled. This activity should only await completion of those
activities that were actually executed and itself be preformed once.

Pattern 8 (Multi- Merge)

Description It will execute the activity/task involved as many times as its incoming branches
signal completion. Each enablement of an incoming branch results in the thread of control
being passed to the subsequent branch.

Example

The lay_foundations, order_materials and book_labourer activities occur in parallel as
aseparate process branches. After each of them completes the quality_review activity is
executed for each time one of the three tasks completes.

Pattern 9 (Discriminator)

Description It provides a form of synchronization for an activity where out of a number of

Figure 10 Multi-choice in BPMN

Figure 11 Synchronizing Merge in BPMN.

Figure 12 Multi-Merge in BPMN.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 34 of 54

incoming branches executing in parallel, the first branch to complete initiates the activity.
When the other branches complete they do not cause another invocation of the activity.

Example

When handling a cardiac arrest, the check_breathing and check_pulse tasks run in parallel.
Once the first of these has completed, the triage task is commenced. Completion of the other
task is ignored and does not result in a second instance of the triage task.

5.3 Workflow Templates
Applying process patterns at the process modelling stage, end users can obtain support if
applying a pattern causes a modelling error. The sequence of applied patterns can be traced
during process editing time. However, the process patterns are fine-grained and not
sufficiently enriched with information on the context and consequences to represent a
reusable solution. Therefore, we introduce workflow templates that are different combinations
of process patterns. The processes of each workflow template represented are sound.
Certain workflow templates can be enriched with the information that they are valid for
different domains, i.e. business context.

Never wait, executed every time

Consider booking of a business trip as an example, it starts with an OR-split register which
enables task booking_flight, reserving_hotel and/or renting_car, activity pay is executed for
each time one of the three tasks (i.e., booking_flight, reserving_hotel and renting_car)

Figure 13 Discriminator in BPMN.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 35 of 54

Wait for all to come

Figure 16 is similar but combines the individual payments into one payment. Therefore, it
waits until each of the tasks enabled by register completes. If only a flight is booked , there is
no synchronisation. However, if the trip contains two or even three elements, task pay is
delayed until all have completed.

Wait for first to come and ignore others

Figure 17 enables all three activities booking_flight, reserving_hotel and renting_car, activity
pay is executed after the first task is completed. After the payment all running tasks are
cancelled.

Figure 14 Task pay is executed each time one of the three preceding task completes

Figure 15 Task pay is executed only once, i.e., after all started tasks have completed

Figure 16 Task pay is executed only once, i.e., after the first task has completed.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 36 of 54

5.4 Goals and Template Processes
The activities that compose the lightweight processes that we have presented so far are
concrete. As we restrict ourselves to service-oriented environments, this concrete activities
represent the execution of concrete services. These services must be selected to address
particular needs in a particular context; and hence, the process must be configured on a per
case basis. Furthermore, those independent services are composed in a certain order to
satisfy the various global process business goals. In this section, we introduce a new
component in processes, goals, that will allow us to define more abstract and user-friendly
processes.

As defined in [16], goals are the representation of an objective which fulfilment is sought
through the execution of a (possibly complex) service. We can see goals from two different
perspectives.

• From the provider perspective, they are like abstractions over similar services.

• From the client side they represent the user requirement, what the user wants to be
carried out by the service-oriented system.

The main advantages of the goal-driven approach to the definition of processes are:

• Role separation. One of the big improvements of the use of goals is that they allow
the separation of the user specific context and vocabulary from the provider, as they
probably will not be the same.

• Capability based invocation. The inclusion of goals allows us to abstract us away
from concrete services and describe process steps in terms of their desired capability.
As described in [19], building on the principle above users can focus on selecting the
goals they want to be achieved; and the system is the one in charge of selecting the
appropriate underlying services.

• Process parameterization. Finally, the inclusion of goals facilitates the needed
degree of freedom to define the parameterized process templates that we can reify
later on to be applied in different situations. Goals become placeholders that permit
some degree of flexibility, since if we wish to adapt processes to different situations,
we will need some degree of freedom in its definition. With this purpose, we define
parameterized process templates, which we portray in Figure 17. Parameterized
process templates are composed by the elements that we have enumerated up to
now (i.e. task, conditions, patterns, etc.), mixed with goals.

We define two types of goals, namely atomic goals and composite goals (represented in
Figure 17 and Figure 18).

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 37 of 54

• Atomic goals are those that are associated with a single concrete activity, involving
just one step of computation hence.

• Composite goals are those which fulfilment involves the completion of other simpler
subgoals. In practice, this means that there is a process associated with the complex
goal, process that describes how the described capability is realized either by
achieving other goals, or invoking concrete services.

Figure 17 Composite Goals and Process Templates Graphical Representation.

Figure 18 Atomic Goal Graphical Representation.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 38 of 54

In Figure 19 we depict the main knowledge components of a goal, which we have tried to
align as much as possible with the WSML-Lite specification. Firstly, a goal can be associated
with other goal, using an inclusion relationship. A goal is also associated with a set of meta-
knowledge tags about the goal, for which we choose the Annotation concept defined in the
WSMO ontology [16]. Finally, regarding the competence of the goal, our approach uses the
extension that appears in IRS III, defining goals with inputs and outputs in order to facilitate
capability-based invocation [19] as we have previously stated. Regarding the formalism used
to define the axioms that compose the competence of a goal (pre/post condition, effect and
applicability) we are initially agnostic. We restrict ourselves to a knowledge-level definition
and we will not prescribe any concrete language nor reasoning mechanisms.

Goals, processes templates and services are connected via adapters. Adapters [18] allow
the independent specification of problem definitions. This definition, somehow too general, is
further specified in [17] where adapters gained their status as first class knowledge

Figure 19 Goal Main Components.

Figure 20 Adapter main components

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 39 of 54

components. Fensel describes that the construction of knowledge-based systems from
reusable elements requires the adapters that adjust them to the application-specific
circumstances, among which context-dependent issues are of great importance for us. To
sum up, adapters will on the one hand avoid terminological mismatches between goals and
lightweight process templates; and on the other hand, they will state explicitly the domain and
context applicability assumptions that assure that the process template provides the
functionality depicted by the goal. As represented in Figure 20 the adapter contains a set of
mappings among resources, resources that ideally are related with each of the activities that
the adapter associates. As important as these mappings, are the assumptions that the
adapter makes about the domain and context of applicability of the adapter.

We include adapters and we do not use mediators since we consider adapters as a
simplification of WSMO mediator. Mediators are services, and therefore active entities, that
can accomplish several levels of mediation (see [16]); whilst adapters are just passive
expressions that relate activities with goals. They just assert small ontological-level
mediation, and make explicit assumptions about the context and domain where the
relationship between activities holds.

Finally, we believe that It is of great importance to stress that these goals and adapters
definitions are carried out by domain experts with the aid of knowledge representation
experts, not by non-expert users. Users make effective use of goals, but we cannot assume
that they will be able to define such kind of knowledge components.

5.5 Meta-model of the Lightweight Process Modelling Language
In this section, we introduce a meta-model for the lightweight process modelling language
(shown in Figure 21). The meta-model depicts the relationships between all the elements in
a process model. Elements, such as “Start”, “End”, “Activity”, “SequenceFlow”,
“ExclusiveGateway”, “ParallelGateway”, “InclusiveGateway”, “AtomicActivityGoal”, and
“CompositeActivityGoal”, have been described in Section 5.1. An abstract concept “Gateway”
is used as a super set of three gateways, i.e. “ExclusiveGateway”, “ParallelGateway”, and
“InclusiveGateway”. An “AtomicActivity” is the smallest unit of work. A “CompositeActivity”
consists of several other activities, either atomic or composite. An “Activity” is either an
“AtomicActivity” or a “CompositeActivity”. A “ProcessPattern” is introduced in Section 5.2. A
“WorkflowTemplate” is defined in Section 5.3. An “AtomicActivityGoal” and
“CompositeActivityGoal” are explained in Section 5.4. An “ActivityGoal” consists of either an
“AtomicGoal” or a “Composite Goal”. “FlowObject” in the figure represents a process model.
We separate “NonSequenceFlowObject” from “SequenceFlow”. It ensures the alternating
ordering of SequenceFlow (arrows) and other objects and thus avoids the situation two
“SequenceFlow” elements directly linking to each other.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 40 of 54

5.6 Summary and Remarks
In this chapter, we introduced the symbols used in the lightweight process modelling
language. We provide some process modelling patterns and workflow templates, which
should help users to minimize design made from scratch. We further provide activity goals as
unbound activities that are bound to a particular service at runtime. Finally, a meta-model of
the lightweight process language is presented.

In the design of a lightweight executable process modelling language, it is important to keep
a balance between simplicity of use and expressive power of the language. We keep the
logic expression of a control flow as simple as possible, but it is enough for execution. It is
possible for a process editor (T2.6) to support a subset of the language and to use alternative
means to get modelling information in more flexible ways such as through the provision of
advanced guidance during modelling activities. In the process editor, the end users can
specify a process model at a high abstraction level. A mapping from a high-level process
model into an executable model is then needed. In this deliverable, we mainly concentrate on
the lightweight process modelling language (executable one) itself. The symbols used in the
process editor for creating a process model are not part of this deliverable. The advanced
guidance during modelling activities is not a part of the deliverable either.

Data flow is not yet support by this version of the language. Data processing functionalities of
process data will be supported after refining the current concepts of the lightweight, context-
aware process modeling language and further experience with the usage of the language on
the cases presented in the use case deliverables.

Figure 21 Meta Model of the Lightweight Process Modelling Language

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 41 of 54

Making our graphical based process modelling language available for executable processes
is not yet addressed in this deliverable. We have considered various languages such as
XPDL [27] and WSBPEL [28] as targets for a representation of the language that is
supported by process execution engines, as well as the semantic matching of those
languages with our language. However, the final decision of storage language should also
based on agreements with T6.4 and T6.5. Therefore, we will work together closely with T2.6,
T6.4 and T6.5.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 42 of 54

6. Language Evaluation
In this section we provide an overview of the language evaluation process, which is based on
Lab experiments i.e., experiments that involves real end users carrying out several tasks.
Besides considering Lab experiments, we will first consider some evaluations based on:

• Heuristic evaluation [2] i.e., it is a method for discovering usability issues in the user
interface design. The following steps are usually followed in heuristic evaluation:

• Brief the experts about what to do
• Every expert independently evaluates the system for 1-2 hours as follows:

o Go through the system to get the feel of the product
o Go through the system for a second time but focus on specific features of

the product
• Debriefing session in which experts work together to categorise the problems.

• Cognitive Walkthrough (i.e., usability inspection method performed by an evaluator
who walks through a pre-planned scenario to identify usability problems within a
system [1]),

• focus groups [3] i.e., a group of people are asked about their attitude towards a
product or system. Questions are asked in an interactive style where participants are
free to talk with other participants. The idea is to capture the information about users’
need and issues related to the system.

Details of such approaches are considered in a separate document D2.5.1. In the following,
we will focus on the Lab experiments based evaluation plan.

6.1 Lab Experiments
Empirical experiments will be carried out to test the final language, which will serve as a
basis to model complex services such as composite services (i.e., composition of Web
services) in SOA4ALL. These experiments involve real end users carrying out several tasks.
From these experiments, we, as evaluators, then analyse the results of the experiment to
check whether the language proposal supports the users in accomplishing their tasks and
identify usability problems.

6.2 Feedback from Use Cases
As we have exposed the definition of the language will evolve; our approach to the
construction of the lightweight process modelling language will be heavily driven by the lab
experiments and by use cases requirements. In consonance, we have sent the first version
of process patterns and workflow templates (see to Section 4 and Annex A) to WP7, WP8,
and WP9. The feedback from WP8 in terms of expected usage of our initial set of patterns is
summarized in Table 2.

Pattern 1 Yes Pattern 2 Yes Pattern 3 Yes

Table 2 Feedback from WP8.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 43 of 54

Pattern 4 Yes Pattern 5 Yes Pattern 6 Yes

Pattern 7 Yes Pattern 8 Yes Pattern 9 Maybe

The feedback from WP9 is summarized as new requirements/comments and the actions that
we have already taken to address them.

• “The typical user of the WP9 eCommerce framework will have a hard time to
distinguish the different versions of split and join types (and how tokens are
processed in general)”.

Answer: They may choose a workflow template which can do the work from the text
description and goals specifications and run it.

• “The service broker combines services to provide "service bundles" to the end users.
These service bundles consist of simple processes, for example the combination of
fraud detection and address check services with the actual payment service”.

Answer: Templates processes thanks to the use of goals can be easily catalogued
and used as an off-the-shelf solution to the service broker users.

• “The users of the eCommerce application would create suitable compositions of
services, based on workflow templates, which simulate the usual order process for a
customer of the eCommerce application. For these workflow templates we need a
very simple formalism, and the ability to exchange some of the activities with real
services. ”

Answer: Being an executable process model, the model itself can not be very simple.
However, we can try to hide the complexity away from users. We do allow end users
to specify some constraints, such as a constraint that certain tasks or activities in the
process model must be performed by certain pre-required Web services.

• “So while we could have a more detailed way for process composition on the service
broker side, the composition for the end users in the eCommerce platform should be
even more abstract than presented in your document. Thus, while it is important to
support these different patterns, we should find a way to "hide" some notational
details from the user... ”

Answer: We certainly hide some details. Uses can specify “goal” for their needs.

• “Moving to BPMN is okay from my point of view, I even think the notation is a bit more
intuitive than in YAWL.”

Answer: We use BPMN notation.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 44 of 54

7. Conclusions
In the context of WP6 of the SOA4All project, the term service construction mainly refers to
the modelling of processes and the execution of composite services and processes in a
lightweight manner. This should enable different groups of end users to build new services
and processes according to their specific needs.

In this deliverable, we have studied the requirements of lightweight, context-aware process
modelling language from WP7, WP8, and WP9 and provided our methodology of
requirements acquisition. After the requirement analysis, we presented the design principles
of the process modelling language: context-awareness, reusability, and flexibility. The
context-awareness principle aims to alleviate semantic ambiguity by matching terms from a
common business ontology. Further, the context-driven principle allows identification,
storage, and representation of a process artefact/model only once while specifying the
differences depending on specific context categories. It also contributes to reusability. In
order to simplify process modelling, process models must be highly reusable, favouring
process flexibility and minimizing design made from scratch. We choose to use well-know
workflow patterns as our process patterns because of their coverage of behaviours in
process models and their formal foundations. These formal foundations will bring value
during process design time, process deployment time and run time. Further, we have also
provided a summary of language evaluation in terms of an evaluation plan and feedback
from related work packages in SOA4All.

Future research of T6.3 will be performed in cooperation with T2.6, T6.4, T6.5, WP7, WP8,
and WP9 to refine the language (such as supporting data-flow), to detail lightweight process
methods, and to solve other implementation related issues. As the delivery of the latest
version of D7.3 and D8.3 has been postponed until M13, this version of language
specification cannot completely reflect the final requirements of WP7 and WP8.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 45 of 54

8. References

[1] Gartner Group. (2008). Magic Quadrant for Business Process Analysis Tools, 2H07-1H08
(Gartner Core Research Note G00148777). Stamford, CT: Gartner, Inc., 2008.

[2] Jan Mendling and Jan Recker. Towards systematic usage of labels and icons in business
process models. In CAiSE 2008 Workshop Proceedings - Twelfth International Workshop
on Exploring Modeling Methods in Systems Analysis and Design (EMMSAD 2008), 2008.

[3] Rolland, C.; Pernici, C. Thanos (June 1998). A Comprehensive View of Process
Engineering. Proceedings of the 10th International Conference CAiSE'98, B. Lecture
Notes in Computer Science 1413. Pisa, Italy: Springer.

[4] C. Wharton et al. "The cognitive walkthrough method: a practitioner's guide" in J. Nielsen
& R. Mack "Usability Inspection Methods" pp. 105-140

[5] Jakob Nielsen. Ten Usability, from
http://www.useit.com/papers/heuristic/heuristic_list.html

[6] J. Nielsen "Usability Engineering" pp.214-216, Academic Press, 1993

[7] Gunther Stuhec. How to Solve the Business Standards Dilemma the Context Driven
Business Exchange. SAP Developer Network Article, 20th October 2005,
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/a6c5dce6-0701-0010-45b9-
f6ca8c0c6474

[8] UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business. Core
components technical specification - part 8 of the ebXML framework, November 2003.
Version 2.01.

[9] Gunther Stuhec and Mark Crawford. Accelerate your Business Data Modeling and
Integration Issues by CCTS Modeler Warp 10. Technical report, SAP AG, November
2007. https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/00435406-4b7e-
2a10-b28a-b7143af53e88; Date of Retrieval: 3 January 2009.

[10] Gunther Stuhec and Huiming Yu. Context Driven Approach. Technical report, SAP
AG, December 2007. Status: Draft,
http://www.unstandards.org:8080/download/attachments/3801833/Contribution+-+SAP+-
+ContextDrivenApproach_1p10.pdf; Date of Retrieval: 30 September 2008

[11] Gunther Stuhec. Using CCTS Modeler Warp 10 to Customize Business Information
Interfaces. Technical report, SAP AG, November 2007.
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/70d6c441-507e-2a10-
7994-88f6f769d6e8; Date of Retrieval: 3 January 2009.

[12] W.M.P van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns..Distributed and Parallel Databases, 14(3), pages 5-51, July 2003.

[13] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems , 30(4):245-275, 2005.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series. Addison Wesley,
Reading, MA, USA, 1995.

[15] D. Riehle and H. Z¨ullighoven. Understanding and Using Patterns in Software
Development. Theory and Practice of Object Systems, 2(1):3–13, 1996.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 46 of 54

[16] WSMO Web Service Modeling Ontology (WSMO) WSMO Final Draft 21 October
2006http://www.wsmo.org/TR/d2/v1.3/

[17] Fensel, D. (1997) The Tower-of-Adapter Method for Developing and Reusing
Problem-Solving Methods. In R. Benjamins and E. Plaza (Editors). Knowledge
Acquisition, Modeling, and Management. Proceedings of the 10th European Workshop,
EKAW ‘97. Lecture Notes in Artificial Intelligence 1319, Springer-Verlag.

[18] Fensel, D. and Groenboom, R. (1997). Specifying Knowledge-Based Systems with
Reusable Components. In Proceedings of the 9th International Conference on Software
Engineering & Knowledge Engineering (SEKE-97), Madrid, Spain, June 18-20.

[19] Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V. and
Pedrinaci, C., IRS-III: a broker for semantic web services based applications. In:
Proceedings of the 5th International Semantic Web Conference.

[20] S.A. White. Process Modelling Notations and Workflow Patters, www.bpmn.org. Jan.
2004

[21] Jog Roj, Martin Owen. BPMN and Business Process Management, www.bpmn.org.
Sept. 2003

[22] Buschmann, F. , Henney, K., Schmidt, D.C. Past, Present, and Future Trends in
Software Patterns. IEEE Software 24 (7/8), 31-37 (2007)

[23] John Medicke and Doug McDavid, Patterns for Business Process Modeling. Business
Integration Journal 1, 32-35 (2004)

[24] Hanh Nhi Tran, Bernard Coulette, Bich Thuy Dong. Broadening the Use of Process
Patterns for Modeling Processes. In: Proc. SEKE, Knowledge Systems Institute Graduate
Schools, pp. 57-62 (2007).

[25] Michael zur Muehlen. How much BPMN do you Need? BPM Research,
http://www.bpm-research.com/2008/03/03/how-much-bpmn-do-you-need/

[26] EU. The PICTURE Project. http://www.picture-eu.org/

[27] XDPL 2.1.
http://www.wfmc.org/index.php?option=com_docman&task=cat_view&gid=42&Itemid=72

[28] WSBPEL, OASIS Web Services Business Process Execution Language (WSBPEL)
TC: http://www.oasis-open.org/committees/wsbpel/

[29] SOA4All D6.1.1, State of the Art Report and Requirements for Service Construction.

[30] SOA4All D2.6.1, Specification of the SOA4All Process Editor.

[31] R Shapiro, A Comparison of XPDL, BPML and BPEL4WS. Cape Visions.
http://xml.coverpages.org/Shapiro-XPDL.pdf

[32] Frauke Paetsch, Armin Eberlein, and Frank Maurer, "Requirements Engineering and
Agile Software Development," Enabling Technologies, IEEE International Workshops on,
vol. 0, no. 0, pp. 308, Twelfth International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2003.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 47 of 54

Annex A. Process Patterns and Templates in YAWL

Symbols used in YAWL

Condition

Atomic task

Composite task

Input
condition

Multiple instances of
an atomic task

Multiple instances of
a composite task

Output
condition

Split Types

Name Symbol Description

And-split task

The AND-Split is used to start a number of
new pieces of work simultaneously. It can be
viewed as a specialisation of the OR-Split,
where work will be triggered to start on all
outgoing flows.

XOR-split task

The XOR-Split is used to trigger only one
outgoing flow. It is best used for automatically
choosing between a number of possible
exclusive alternatives once a task completes.

OR-split task

The OR-Split is used to trigger some, but not
necessarily all outgoing flows to other tasks.
It is best used when we won’t know until run-
time exactly what concurrent resultant work
can lead from the completion of a task.

Join Types

Name Symbol Description

AND-join task

A task with an AND-Join will wait to receive
completed work form all of its incoming flows
before beginning. It is typically used to
synchronise pre-requisite activities that must
be completed before some new piece of work
may begin.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 48 of 54

XOR-join task

Once any work has completed on an incoming
flow, a task with an XOR-Join will be capable of
beginning work. It is typically used to allow new
work to start so long as one of several different
pieces of earlier work have been completed.

OR-join task

The OR-Join ensures that a task waits until
all incoming flows have either finished, or will
never finish. OR-Joins are “smart”: they will
only wait for something if it is necessary to
wait. However, understanding models with
OR-joins can be tricky and therefore OR-joins
should be used sparingly.

remove tokens

Description of Process Patterns in YAWL

Pattern 1 (Sequence)

Description An activity/task should await the completion of another activity within the same
case before it can be scheduled.

Example

The activity/task select_winner is followed by the activity notify_outcome.

Pattern 2 (Parallel Split)

Description The divergence of a branch into two or more parallel branches each of which
execute concurrently.

Example
An example of Pattern 2 could be in the context of an application process where after
creating a short-list of candidates, referee reports need to be obtained and interviews need to
be held.

Table 3 Symbols used in YAWL

Figure 22 Sequence in YAWL.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 49 of 54

Pattern 3 (Synchronization)

Description Tow or more incoming branches converge into a single subsequent branch. The
thread of control is passed to the subsequent branch when all input branches have been
enabled.

Example

In the context of an application process, a decision for a particular candidate can only be
made once their referee reports have been received and they have been interviewed.

Pattern 4 (Exclusive Choice)

Description A branch diverges two or more branches. Out of two or more outgoing
branches, one branch is chosen. When the incoming branch is enabled, the thread of control
is immediately passed to precisely one of the outgoing branches based on the outcome of a
logical expression associated with the branch.

Example

An example of Pattern 4 consider the case where purchase requests exceeding $10,000 are
to be approved by head office, while purchase requests not exceeding this amount of money
can be approved by the regional offices.

Figure 23 Parallel Split in YAWL.

Figure 24 Synchronization in YAWL.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 50 of 54

Pattern 5 (Simple Merge)

Description One of preceding branches completes. Two or more branches converge into a
single subsequent branch. Each enablement of an incoming branch results in the thread of
control being passed to the subsequent branch.

Example

An example of Pattern 5 could be in the context of an application process where after
finalizing decisions of rejection or approval, a report is issued.

Pattern 6 (Multi-choice)

Description Out of several branches, a number of branches are chosen based on user input.

Example

After the execution of activity determine_teaching_evaluation, execution of activity
organize_student_evaluation may commence as well as execution of activity
organize_peer_review. At lease one of these two activities is executed, possible both.

Figure 25 Exclusive Choice in YAWL.

Figure 26 Simple Merge in YAWL.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 51 of 54

determine_teaching_eveluation

organize_peer_review

organize_student_review

Pattern 7 (Synchronizing Merge)

Description A from of synchronisation where execution can proceed if and only if one of the
incoming branches has completed and from the current state of the workflow it is not possible
to reach a state where any of the other branches has completed.

Example

Consider again the example presented in Pattern 6 (Multi-choice). After activities
organize_student_evaluation and organization_peer_review have finished, activity
interpret_results could be scheduled. This activity should only await completion of those
activities that were actually executed and itself be preformed once.

Pattern 8 (Multi- Merge)

Description It will execute the activity/task involved as many times as its incoming branches
signal completion. Each enablement of an incoming branch results in the thread of control
being passed to the subsequent branch.

Example

The lay_foundations, order_materials and book_labourer activities occur in parallel as
aseparate process branches. After each of them completes the quality_review activity is
executed for each time one of the three tasks completes.

Figure 27 Multi-choice in YAWL

Figure 28 Synchronizing Merge in YAWL.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 52 of 54

Pattern 9 (Discriminator)

Description It provides a form of synchronization for an activity where out of a number of
incoming branches executing in parallel, the first branch to complete initiates the activity.
When the other branches complete they do not cause another invocation of the activity.

Example

When handling a cardiac arrest, the check_breathing and check_pulse tasks run in parallel.
Once the first of these has completed, the triage task is commenced. Completion of the other
task is ignored and does not result in a second instance of the triage task.

Description of Process Templates in YAWL

Never wait, executed every time (Pattern 8)

Consider booking of a business trip as an example, it starts with an OR-split register which
enables task booking_flight, reserving_hotel and/or renting_car, activity pay is executed for
each time one of the three tasks (i.e., booking_flight, reserving_hotel and renting_car)

 Figure 29 Multi-Merge in YAWL.

Figure 30 Discriminator in YAWL.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 53 of 54

Wait for all to come (Pattern 7)

Figure 4.15 is similar but combines the individual payments into one payment. Therefore, it
waits until each of the tasks enabled by register completes. If only a flight is booked , there is
no synchronisation. However, if the trip contains two or even three elements, task pay is
delayed until all have completed.

Wait for first to come and ignore others (Pattern 9)

Figure 4.16 enables all three activities booking_flight, reserving_hotel and renting_car,
activity pay is executed after the first task is completed. After the payment all running tasks
are cancelled.

Figure 31 Task pay is executed each time one of the three preceding task completes.

Figure 32 Task pay is executed only once, i.e., after all started tasks have completed.

 SOA4All –FP7 – 215219 – D6.3.1. First Specification of Lightweight Process Modelling Language

© SOA4All consortium Page 54 of 54

Figure 33 Task pay is executed only once, i.e., after the first task has completed.

