

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D3.4.6 MicroWSMO v2 – Defining the
second version of MicroWSMO as a

systematic approach for rich tagging
Activity N: A2 Core R&D

Work Package: WP3 Service Annotation and Reasoning

Due Date: 28/02/2010

Submission Date: 26/02/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s): Florian Fischer (UIBK)
Barry Norton

Reviewers: Carlos Pedrinaci (OU)
Patrick Un

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 2 of 25

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 10.1.2010 Creation Florian Fischer

0.2 17.1.2010 Outline Florian Fischer

0.3 25.1.2010 Initial sections and diagrams Florian Fischer

0.4 5.2.2010 Service models Barry Norton, Fischer Florian

0.5 14.2.2010 Formatting, review version Florian Fischer

1 23.2.2010 Reviewer comments, clarifications,
examples

Florian Fischer

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 3 of 25

Table of Contents

EXECUTIVE SUMMARY __ 5

1. INTRODUCTION __ 6

1.1 PURPOSE AND SCOPE __ 7

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

1.3 TECHNICAL DELIVERABLE REMARKS ________________________________ 7

2. MICROWSMO V2 AS ANNOTATION MECHANISM RESTFUL WEB SE RVICES ___ 9

2.1 RESTFUL WEB SERVICES AND RESOURCE ORIENTED ARCHITECTURES 12

2.2 SERVICE MODELS ___ 14

2.2.1 Core Service Model (SM) ___ 19

2.2.2 RPC-based Service Model (RPCSM) ________________________________ 20

2.2.3 Resource Oriented Service Model (ROSM) ___________________________ 21

3. CONCLUSION ___ 24

4. REFERENCES ___ 25

List of Figures
Figure 1 Styles of service paradigms and the applicable RDF Service Models17

Figure 2 Layering of Service Models and usage within WSMO-Lite and MicroWSMO18

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 4 of 25

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

WP Work Package

API ApplicationProgrammingInterface

GRDDL GleaningResourceDescriptionsfromDialectsofLanguages

HTML HyperTextMarkupLanguage

HTTP HyperTextTransferProtocol

ID Identifier

JSON JavaScriptObjectNotation

OWL WebOntologyLanguage

RDFS RDFSchema

RDF ResourceDescriptionFramework

REST RepresentationalStateTransfer

SAWSDL SemanticAnnotationsforWSDLandXMLSchema

SWS SemanticWebServices

URI UniformResourceIdentifier

WSDL WebServicesDescriptionLanguage

WSMO WebServiceModelingOntology

XHTML ExtensibleHyperTextMarkupLanguage

XML ExtensibleMarkupLanguage

XSL ExtensibleStylesheetLanguage

XSLT XSLTransformations

MSM Minimal Service Model

ROA Resource Oriented Architecture

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 5 of 25

Executive summary
RESTful web services are one of the rising trends within the Web 2.0. Their perceived
simplicity and ease to deploy them makes them an attractive option in place of traditional
WS-* service and their associated overhead.

On the one hand, Web APIs that simply use HTTP as a transport protocol are already in
widespread use and deployed by well-known players such as Twitter1 or Flickr2. However,
those Web APIs often do not really follow REST principles but merely offer their
functionalities through an interface accessible via HTTP. More concretely, their specifications
are based on the Remote Procedure Call programming style and employ various
service bindings, among them HTTP. Those services often support multiple
operations on diverse data, all realized through a POST on a single URI.

On the other hand, REST itself is architectural style and principles that already form a
cornerstone in the design of the Web itself. RESTful services set themselves apart by
focusing on resources and their manipulation through plain HTTP methods, instead of
following an RPC-style approach in which each service defines custom operations and for
that purpose defines its own vocabulary to talk about those operations.

Those benefits (e.g. a uniform interface operating on resources) are partially lost
when the underlying REST principles are discarded and HTTP is only used as a
transport protocol. This has resulted in a growing number of applications that
leverage a truly resource-oriented architecture (ROA), as a concrete implementation of
REST’s principles, within prominent examples: Amazon’s S3 storage service3, the Apache
CouchDB project4, the Atom Publishing Protocol (AtomPub) [1], or more concretely Google’s
GData5 which is used to interface with various of Google’s services such as Google Apps
APIs, (Google Calendar Data API, Google Finance Portfolio Data API, etc.).

Both types of APIs, resource-oriented as well as RPC-oriented, are usually not described in a
machine-oriented format but rather only through textual documentation aimed at humans.

The original minimal service model underlying MicroWSMO still reflected its origins, namely
WSDL, and thus assumes that a service follows an RPC- based modelling style along with
corresponding operations supported by the service. While this service model is sufficient and
allows to support simple HTTP-based Web APIs it is hard to express truly resource-oriented
services adequately in this service model.

We therefore revise and extend the service model underlying MicroWSMO in order to make it
more applicable to truly RESTful and resource-oriented services, which are a focus of
MicroWSMO. This proposed extension does not lose current functionality or expressivity but
merely extends MicroWSMO towards a larger range of services. For this purpose, we
present a common core service model and extend it towards a resource-oriented service
model as well as towards an RPC-oriented service model, and then discuss how they relate
to SOA4All.

1 http://apiwiki.twitter.com/REST-API-Documentation
2 http://www.flickr.com/services/api/
3 http://aws.amazon.com/s3/
4 http://couchdb.apache.org/
5 http://code.google.com/apis/gdata/

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 6 of 25

1. Introduction
This deliverable serves as an extension and an update to the previous deliverable D3.4.4 -
“MicroWSMO and hRests” [2]. D3.4.4 defined a microformat called hRESTS for annotating
RESTful Web APIs and embedding machine-readable descriptions in HTML documents.

Microfromats [3] are an approach to define structured units of information by using semantic
XHTML and readily available HTML attributes. By this means, they make the key information
within human-oriented Web content accessible for machines. Typical applications are
embedding contact details, licensing information, events etc. in web pages.

An extraction of RDF[4] information from Web pages containing microformats is possible e.g.
by means of GRDDL [5], which in turn acts as a bridge between simple XHTML and
semantic formalisms.

Microformats are usually defined in a community driven, bottom-up approach in order to
solve a very specific and granular problem. The recommended approach to the definition of a
microformat6 is to first determinate the applicability of existing microformats (or a combination
of existing microformats) to solve a real-world use-case first, and to start by reusing building
blocks from existing schemas and standards if this is not possible. In practice this means that
microformats should reuse existing data-formats and -structures and not focus on defining
them. As a practical example, the hCard microformat is built on top of the IETF standard for
vCard.

hRESTS, and by extension MicroWSMO, in turn build upon an underlying service model that
backs them up. In this way, MicroWSMO serves as a principled way to make it possible to
semantically annotate service descriptions in websites so that the SOA4All architecture can
consume this information about services. Through this approach MicroWSMO makes it
possible to include WSDL [6] services, as well as the many services stemming from Web
2.0 platforms, that rather rely REST as underlying architectural style [7].

For that purpose MicroWSMO acts as a SAWSDL-like layer on top of hRESTS, which in turn
resembles WSDL, in order to allow a common service ontology, namely the WSMO-Lite
ontology [8], to be used as common ground. SAWSDL [9] is an extension of WSDL that
specifies how to annotate service descriptions with semantic information, although it does not
define the service model itself. SAWSDL merely defines the following three XML attributes:

• modelReference

• liftingSchemaMapping

• loweringSchemaMapping

For practical purposes, those annotations will be separated from the original service at some
point. Therefore, MicroWSMO is currently backed by a simple RDF based service model.
called the “minimal service model”, which it shares with traditional WSDL based Web
services. This minimal, RDF-based service model (MSM) can be used to replace the implicit
service model with an equivalent RDF representation, and in turn allows e.g. to store service
information in triple stores or use it for further processing, reasoning, etc.

The problem in this regard is that, while MicroWSMO can be used for the description of
RESTful services, the notion of a truly Resource Oriented Architecture (ROA) is lost after the
transition to the RDF based service model. In turn, it is not possible to represent that
architectural style adequately in the current service model, which is still based on RPC-style

6 http://microformats.org/wiki/process

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 7 of 25

interactions with a service.

Consequently, we restructure and extend the underlying service model of MicroWSMO in
order to increase the reach and expressivity towards RESTful services, especially Web 2.0
resources. Components within the SOA4All architecture can then use this refined service
model, e.g. for service discovery or reasoning.

1.1 Purpose and Scope
Based on the first version of MicroWSMO developed in D3.4.3, this deliverables further
examines the applicability of MicroWSMO to RESTful services. Based on our findings it
presents a re-factored underlying service model, which takes the differences between
traditional RPC-style services and resource-oriented services into account, and provides for
a more natural and expressive modelling of both types of services within MicroWSMO.

In turn it extends the syntax and modelling capabilities available in MicroWSMO accordingly,
so that resource-oriented services can be adequately modelled and that information about
them can be used within other tools, such as reasoners or discovery components. We
furthermore give examples concerning the usage of these additional modelling capabilities.

1.2 Structure of the document
The remainder of this deliverable is structured as follows: In Section 2.1 we introduce and
compare different architectural styles of services, namely RPC-based services, RESTful
services (REST as an architectural style and resource oriented services as a concrete
architecture), and hybrids between those. We then continue to discuss the implications of
those different styles of services have for MicroWSMO, in how far they can be adequately
handled, and what shortcomings currently exist.

Based on these observations, Section 2.2 details a proposed refactoring of the underlying
minimal service model in order to extend MicroWSMOs reach towards RESTful, resource-
oriented services.

Finally, Section 3 concludes the document and lays out future work towards service
modelling and other activities needing alignment.

1.3 Technical deliverable remarks
MicroWSMO is the description language used in SOA4All for semantic description of
RESTful web services.

In SOA4All those descriptions, based on the WSMO-Lite service ontology [8], are then stored
and actually further processed along with the underlying RDF service model (the minimal
service model) [10], e.g. for service discovery etc. (see iServe7 as an example).

In turn, every practical implementation relies on a suitable RDF model at some point. For this
reason, it is a high priority to formulate an adequate model for RESTful services that can also

7 http://iserve.kmi.open.ac.uk/

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 8 of 25

be queried effectively.

However, the extensions proposed in this document cannot be regarded as firmly
established yet due to the lack of existing implementations testing them in practice. As a
pathway to further standardization and common agreement, it is mandatory to put the results
documented in this document to test in practice. For this purpose it is necessary to document
those results – also since one of the main issues arising when refactoring and extending the
underlying service model is not to break existing components or functionality at this point in
the project.

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 9 of 25

2. MicroWSMO v2 as Annotation Mechanism RESTful Web
Services
In this section we review the initial motivation for MicroWSMO and its intended application
area: RESTful web services. We then distinguish between three different architectural types
of web services and analyse how applicable the current service modelling approach used in
SOA4All is in each regard.

MicroWSMO is a description language aimed at the annotation of RESTful web services.
These descriptions are then usually stored in some service registry and processed by further
tools. For this purpose MicroWSMO is combined with the minimal service model and the
WSMO-Lite service ontology, which captures the actual service semantics.

REST [7] itself is actually an architectural style and not a concrete architecture, so HTTP is
by no means the only possible implementation of it. REST focuses on the transfer of
representations of specific resources. A resource in this sense is an addressable entity, i.e.
on the Web identified by an URI, whereas a representation is usually a document in a
specific format.

A cornerstone of REST is a uniform interface between clients and servers, which in the case
of HTTP are established through the HTTP methods (GET, PUT, POST, etc.). This generality
of an interface is a fundamental design consideration within RESTful architectures and in
turn a RESTful service. The basic consideration is that once a client has access to some
concrete representation (HTML, XML, etc.) of a resource (identified by an URI) it should have
enough information to interact with the resource, i.e. modify it, delete it, etc. assuming it has
the permission to do so.

If this principle of a uniform interface is violated, e.g. because the server defines custom
methods/operations, then the client cannot interact with a resource without further details. In
particular the loss of a uniform and general interface by inventing custom vocabulary for
operations on resources limits the independent deployment of components and thus the
scalability of the overall system. More concretely, a service that does not adhere to the
(semantically correct) use of the uniform interface of HTTP is strictly speaking not RESTful
and also loses several advantages of this architectural style.

Many Web APIs that claim to be so are in fact not truly RESTful in the sense that their focus
is not to use HTTP methods in a resource-oriented architecture but rather the use of HTTP
as merely an envelop format for message exchange.

A practical example for this is the Flickr REST API8, which is in fact a well-designed RPC API
that only uses HTTP as protocol along with a custom response format based on XML, and
apart from that mirrors Flickr’s SOAP and XML-RPC APIs exactly. Interaction with the Flickr
REST API is limited to a single endpoint (http://api.flickr.com/services/rest/), i.e. there are no
actual resources involved. To request the flickr.test.echo service, the REST API
would be invoked by sending an HTTP GET request to the following URI:

http://api.flickr.com/services/rest/?method=flickr.test.echo&name=value

In general, the method-names correspond exactly to those of the SOAP and XML-RPC
based versions. In turn, a HTTP POST request using flickr.favorites.remove as
parameter would be used to remove a photo from a user's favourites list instead of a simple
HTTP DELETE. In a similar way there are a lot of “RESTful” Web APIs that do not really
leverage resource-oriented architectures to their fullest potential or only apply REST it in a

8 http://www.flickr.com/services/api/

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 10 of 25

limited way (e.g. the Twitter API9).

To clearly establish the contrast of a RPC-based service with a resource-oriented service,
consider a service that allows to manage different items in an e-commerce site. Particular
pieces of functionality offered would be i) to list all the items in a product category, and ii) to
add an item to a particular product category. A RESTful service realizing this would make
use of the HTTP GET and PUT methods to achieve the desired functionality:

• GET http://example.com/products/someCategory/

would list all the products in a particular category, and deliver the representation of this
resource in a format as specified e.g. by its MIME type. Similarly

• GET http://example.com/products/someCategory/1092

could return the representation about a particular product within a category. Adding a
new product to a certain category would operate in a similar fashion:

• PUT http://example.com/products/someCategory/
<product>
 <name>...</name>
 <short-decription>...</short-description>
 <price> ...</price>
</product>

• Deleting a product is done through the HTTP DELETE method:

DELETE http://example.com/products/someCategory/someID

Note that all the functionality is achieved by operating on resources through the uniform
interface offered by HTTP.

All the above functionality could have been implemented differently, however would still
make use of HTTP:

GET http://example.com/listProduct?cat=someCategory

GET http://example.com/listProduct?cat=someCategory&id=1092

POST http://example.com/addProduct?cat=someCateogry

POST http://example.com/deleteProduct?cat=someCategory&id=someID

The actual operation to be performed is not expressed by the HTTP method anymore. The
operations are rather listProduct, addProduct, deleteProduct.

As a result it is not visible anymore what an operation actually does without further
background knowledge. Furthermore it is not visible what data (what resource) an operation
is concerned with. This scoping information is now contained in the URI parameters, just as
arguments in a remote procedure call. While on the technical level this does not make much
of a difference, it requires additional documentation and insights regarding the purpose of
each of the parameters in order to be able to use such an API. In this way, such an API
follows a different architectural style compared to a truly resource-oriented approach –
mainly because of the lack of a uniform interface violates one of the principles of a RESTful
service.

9 http://apiwiki.twitter.com/Twitter-API-Documentation

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 11 of 25

Such services, which are very common even though they are not truly RESTful services,
essentially still define custom operations with their associated input and output parameters.
In the currently minimal service model used underneath MicroWSMO this is well reflected
and thus a large number of Web APIs can be represented faithfully within MicroWSMO.

However, the current service model underlying MicroWSMO is not adequate for truly
resource-oriented services, since they still have to be mapped back to an RDF
representation that actually models an RPC-based service in essence. Problems arise
especially because there is no notion of a resource in the RPC-based model, i.e. it is for
example very unclear to what a HTTP DELETE request would apply (operation, service,
etc.).Moreover, a resource-oriented service does not have a generic method, with arbitrary
inputs and outputs. There is a very much predefined and actually more specific structure in
place for a resource-oriented service: For example, an input message consists of

• Headerfield parameters,

• URI parameters,

• Body parameter,

which can be either optional or required.

Secondly, MicroWSMO aims at embedding machine-readable service information in ordinary
HTML pages, for example the online documentation of a Web API. This is achieved by
means of the hRESTS microformat, although an embedding through RDFa [11]is trivially
possible as well since the RDF representation of hRESTS, WSMO-Lite, and the underlying
service model can simply be used directly in that case.

In the following, we continue to discuss the different possible service architectures in order to
clarify the shortfalls of the current RDF service model backing MicroWSMO and then
proceed to propose a solution.

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 12 of 25

2.1 RESTFul Web Services and Resource Oriented Arch itectures
REST is actually an architectural style defined in [7] with HTTP being its most well known
implementation. In turn a concrete architecture for RESTful web services is e.g. the
Resource-Oriented Architecture (ROA) presented in [12]. Following we summarize the main
criteria for a RESTful architecture and their benefits. A RESTful architecture generally uses
the basic building blocks that are already in place on the Web in general:

• Addressability closely conforms to scoping information being present only in the URI
alone. Scoping information defines upon which data an operation should be
performed. An application or a service that follows this principle exposes a URI for
every resource that clients can interact with and in this information is carried only in
the URI.

• Statelessness guarantees that operation happens in isolation and that every request
includes all the information necessary for a server to fulfil it, i.e. the server does not
have to rely on information from previous operations. Combined with addressability
this means that it should also be possible to address possible states of the server as
resources and that they consequently should have their own URIs.

• Connectedness refers to the fact that representations of resources need not only be
serialized data structures. They can actually represent documents that contain not
just data but also connections to other resources. This leads to modelling of a specific
session not as an explicit resource state on the server but rather as implicit
application state on the client. This implicit application state is created by the path a
client takes along a set of hyperlinks contained in the representations of specific
resources served to the client.

• Uniform Interface means that only a defined set of operations should be used for the
interaction with resources and that a service should refrain from formulating custom
operations. For HTTP in a ROA those basic operations are GET, PUT, POST,
DELETE. Each of those methods has a well-defined meaning when applied to a
specific resource. Without this uniform interface, a Web service introduces a
multiplicity of operations that for example only differ in the type of resource they refer
to (getResults, getProducts, addUser, addProduct, etc.) but otherwise often
mimic the functionality of existing methods.

Adherence to those principles serves as a basic guideline to truly RESTful and resource-
oriented services.

By applying the software engineering principle of generality to the component interface, the
overall system architecture is simplified and the visibility of interactions is improved.
Implementations are decoupled from the services they provide, which encourages
independent evolvability. The trade-off, though, is that a uniform interface degrades
efficiency, since information is transferred in a standardized form rather than one which is
specific to an application's needs.

In the concrete case of the Web, If the operation to be performed should be conveyed by the
HTTP method and the scoping information defined through the URI, and not rather included
e.g. in the body of a request. Otherwise, a service is not truly RESTful and loses the benefits
associated with the violated principle.

RPC-style services are not designed accordingly to those architectural principles, i.e. they do
not focus on resources but rather on the operations to be performed. In those cases HTTP
might be used as underlying protocol (e.g. for a WSDL service using SOAP [13]). RPC-style

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 13 of 25

services often only use one singular URI as endpoint and thus both the scoping information
and the operation to be performed are hidden inside this envelope and do not draw upon the
semantics of the HTTP methods, violating the principles of addressability and using a
uniform interface. In this sense, every RPC service also defines its own vocabulary to denote
operations with their respective input and output parameters.

Obviously, it is possible to identify REST-RPC hybrids. Many Web APIs would actually fall
into this category. Those often contain the scoping information in the URI (in the form of
parameters) but do not rely solely on the manipulation of resources through the uniform
interface offered by HTTP.

In the next section, we continue to show how these different architectural styles map
essentially to different RDF service models, to what degree the minimal service model
currently backing up MicroWSMO covers them, and where the current shortfalls are.

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 14 of 25

2.2 Service Models
The minimal service model (MSM), see [10] for an updated version repeated in Listing 1,
provides a minimal and common conceptual model formalized in RDF Schema for capturing
the semantics of services whether they are WSDL-based or Web APIs (roughly RESTful). In
this way, it forms a common ground for treating them homogeneously by subsequent
components.

A main reason for annotating services with explicit semantics is to allow service discovery
discovery services suitable for a specific task or allow reasoning over formal service
descriptions. A very basic approach for this is to use SPARQL [11] in conjunction with a triple
store holding service information in RDF form. For this reason, it is desirable to have an
underlying service models that captures service information as precisely as necessary.

Furthermore, service information in RDF form should be as complete and self-contained as
possible, so that tools do not need to take additional resources like external HTML or WSDL
files into account, which again requires a more detailed and accurate service model.

The current MSM is based on the structure of WSDL (wsdl:service, wsdl:operation,
wsdl:message, etc.) and in turn existing WSDL-based services map into the MSM in a
straightforward way. However, this comes at the price of not being able to take the concrete
underlying model (WSDL or RESTful) into account in these components, i.e. it is not easy to
use the MSM to capture RESTful services fully since it still mirrors the RPC based model that
is implicitly present in WSDL. As mentioned, the lack of a “resource” in the service model
means that especially resource creation and deletion is not modelled very faithfully, i.e. it is
not clear what exactly an HTTP DELETE would apply to since resources are not identified in
the current MSM. Moreover, operations in a resource-oriented service do not match the
generic concept of operations in the MSM (using generic inputs and outputs, as well as
faults). Rather, they follow the structure imposed by HTTP in our case. While it is possible to
rely on lifting and lowering to handle such details, this information is still lost after the
transition to the MSM.

Listing 1 contains the minimal service model including SAWSDL’s syntactic properties,
WSMO-Lite as a minimal extension to SAWSDL, and hRESTS’s support for Web APIs. The
MSM contains SAWSDL elements for linking semantic information through the
modelReference and for providing lifting and lowering mechanisms.

Furthermore, the minimal service model defines services as having a number of operations.
Each operation in turn has input and output messages and faults.

Web APIs are supported through the addition of hRESTS. hRESTS allows to connect
operations, as defined in the minimal service model with a concrete address (defined as URI
template [14]). Furthermore, hRESTs also allows denoting the applicable HTTP methods for
an operation.

The key issue in this regard is that operations (in the sense of an RPC-based service) are
required as basic building block in order to capture information about a service. In a ROA
however, it is not necessary to model an operations in such a generic way since, in the
concrete case of SOA4All, interaction with RESTful resources is possible through the uniform
interface of HTTP. In contrast to this emphasize on operations it would be required to rather
model resources explicitly.

@prefix xsd:<http://www.w3.org/2001/XMLSchema>.

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 15 of 25

@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl:<http://www.w3.org/2002/07/owl#>.

@prefix sawsdl:<http://www.w3.org/ns/sawsdl#>.

#WSMO-Lite

@prefix wsl: <http://www.wsmo.org/ns/wsmo-lite#>.

#hRESTS

@prefix hr: <http://www.wsmo.org/ns/hrests#>.

#minimal service model

@prefix msm: <http://www.wsmo.org/ns/msm#>.

msm:Service rdf:type rdfs:Class .

msm:hasOperation rdf:type rdf:Property ;

 rdfs:domain msm:Service ;

 rdfs:range msm:Operation .

msm:Operation rdft:type rdfs:Class .

msm:hasInputMessage rdf:type rdf:Property ;

 rdfs:domain msm:Operation ;

 rdfs:range msm:Message .

msm:hasOutputMessage rdf:type rdf:Property ;

 rdfs:domain msm:Operation ;

 rdfs:range msm:Message .

msm:hasInputFault rdf:type rdf:Property ;

 rdfs:domain msm:Operation ;

 rdfs:range msm:Message .

msm:hasOutputFault rdf:type rdf:Property ;

 rdfs:domain msm:Operation ;

 rdfs:range msm:Message .

msm:Message rdf:type rdfs:Class .

msm:usesOntology rdf:type rdfs:Property ;

 rdfs:domain msm:Service ;

 rdfs:subPropertyOf rdfs:seeAlso .

msm:hasFunctionalClassification rdf:type rdfs:Property ;

 rdfs:subPropertyOf sawsdl:modelReference .

msm:hasNonfunctionalProperty rdf:type rdfs:Property ;

 rdfs:subPropertyOf sawsdl:modelReference .

msm:hasCondition rdf:type rdfs:Property ;

 rdfs:subPropertyOf sawsdl:modelReference .

msm:hasEffect rdf:type rdfs:Property ;

 rdfs:subPropertyOf sawsdl:modelReference .

#WSMO-Lite

wsl:Ontology rdfs:subClassOf owl:Ontology .

wsl:FunctionalClassificationRoot rdfs:subClassOf rdfs:Class .

wsl:NonFunctionalParameter rdf:type rdfs:Class .

wsl:Condition rdf:type rdfs:Class .

wsl:Effect rdf:type rdfs:Class .

#hRESTS

hr:hasAddress rdf:type rdf:Property;

 rdfs:domain msm:Operation;

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 16 of 25

 rdfs:range hr:URITemplate.

hr:hasMethod rdf:type rdf:Property;

 rdfs:domain msm:Operation;

 rdfs:range xsd:string.

#datatype for URI templates

hr:URITemplate rdf:type rdfs:Datatype.

#RDF properties reflecting the SAWSDL service model

sawsdl:modelReference rdf:type rdf:Property.

sawsdl:liftingSchemaMapping rdf:type rdf:Property.

sawsdl:loweringSchemaMapping rdf:type rdf:Property.

Listing 1 Original Minimal Service Model

Based on these observations it becomes apparent that it is very hard to model truly resource
oriented, RESTful services in an adequate fashion by using the current minimal service
model. Therefore, it becomes necessary to re-factor the MSM appropriately and extend it in
the direction of resource-oriented architectures in order to cover them with MicroWSMO.

Subsequently we restructure this service model with the former goals for properly modelling
RESTful services in mind. Beyond this goal, the resulting service models have to be usable
in precisely the same fashion within MicroWSMO, i.e. the only difference is that class names
within the microformat-based annotations refer to different elements according to the
underlying service model used. Furthermore, it should be possible to describe existing
services in same fashion as it is done now (apart from a change of namespaces) and so the
re-factored service models have to cover the same expressivity as the MSM does currently.

For that purpose, we can distinguish between different types of services according to the
architectural styles identified in the previous section:

• RPC-based services, which refer to operations and their expected input- and output
type, etc. This type essentially covers WSDL services.

• RESTful, resource oriented services, which employ the typical HTTP (in the context
of SOA4All) methods to operate on resources. What sets this services apart is the
usage of a uniform interface operating on a set of resources.

• At the intersection, we can identify services that employ HTTP and Web-APIs,
however they are not really resource oriented but rather still work on operations
(REST-RPC) and only use HTTP and its associated methods as protocol

Those architectural styles all require different modelling elements to represent service
information. Therefore, we abstract the required vocabulary in different, modular RDF-based
service models that can be combined appropriately, depending on the architectural style of a
service:

• A core service model (SM) captures functionality common to any kind of service.

• A RPC service model (RPCSM), applicable to for example to WSDL services.

• A resource-oriented service model (ROSM), aimed at resource oriented services and
architectures.

In this sense both the RPCSM and the ROSM extend a common basic service model, on

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 17 of 25

which they cleanly layer, in different directions.

Those service models are then naturally used within service descriptions as required by the
underlying service architecture Figure 1 depicts the relationship of different styles of services
and how they make usage of the different service models.

Figure 1 Styles of service paradigms and the applicable RDF Service Models

The clean layering of the different service models also results in typical use cases. Figure 2
depicts the relationship and layering of service models, along with the typical usage
scenarios. Naturally, WSDL based services only make use of the core service model, along
with the RPC service model. This combination of the RPCSM and the SM essentially
corresponds to the expressivity that was covered by the minimal service model.

Within MicroWSMO or RDFa[11] annotations in an HTML page we can cover RPC based
services and in addition to that also gain the possibility of annotating resource oriented
services. Although it should be noted, that MicroWSMO and RDFa do not operate at
precisely the same level. MicroWSMO adopts an ontology as underlying structure and, as
usual for a microformat, simply reflects this underlying schema in a rigid way. RDFa however
is a generic way of embedding arbitrary RDF information in HTML documents, and so by
design more extensible and generic.

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 18 of 25

Figure 2 Layering of Service Models and usage within WSMO-Lite and MicroWSMO

In the following we discuss each of the three service models in detail and show complete
definitions.

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 19 of 25

2.2.1 Core Service Model (SM)

Listing 2 shows the common core service model (SM) to be extended for both resources-
oriented services as well as services operating in an RPC fashion. This common ground
formalizes the WSMO-Lite notions of

• a service,

• conditions,

• effects,

• functional classification of a services,

• non-functional parameters.

Further functionality formalized in the common service model includes an RDF version of
SAWSDL properties.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .

@prefix sm: <http://www.wsmo.org/ns/sm#> .

sm:Service rdf:type rdfs:Class .

sm:Operation rdf:type rdfs:Class .

sm:Condition rdf:type rdfs:Class .

sm:Effection rdf:type rdfs:Class .

sm:FunctionalClassificationRoot rdfs:subClassOf rdfs:Class .

sm:Ontology rdf:type rdfs:Class;

 rdfs:subClassOf owl:Ontology .

sm:usesOntology rdf:type rdf:Property ;

 rdfs:domain sm:Service ;

 rdfs:subPropertyOf rdfs:seeAlso .

sm:NonfunctionalParameter rdf:type rdfs:Class .

SAWSDL properties

sawsdl:modelReference rdf:type rdf:Property .

sawsdl:liftingSchemaMapping rdf:type rdf:Property .

sawsdl:loweringSchemaMapping rdf:type rdf:Property .

sm:hasFunctionalClassification rdf:type rdfs:Property ;

 rdfs:subPropertyOf sawsdl:modelReference .

sm:hasNonfunctionalProperty rdf:type rdfs:Property ;

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 20 of 25

 rdfs:subPropertyOf sawsdl:modelReference .

sm:hasCondition rdf:type rdfs:Property ;

 rdfs:subPropertyOf sawsdl:modelReference .

sm:hasEffect rdf:type rdfs:Property ;

 rdfs:subPropertyOf sawsdl:modelReference .

Listing 2 Core Service Model

2.2.2 RPC-based Service Model (RPSM)

The RPC-based service model shown in Listing 3 captures much of the functionality formerly
associated with the “minimal service model”. It is directly derived from the implicit model
stemming from RPC-based services and WSDL in particular, including their associated
operations with inputs and outputs.

Therefore, an operation is associated with an address (a URI or URI template [14]) to invoke
it, the format of input and output messages, as well as fault messages. Those operations can
then be tied to services from the core service model. This is in contrast with the ROSM,
which does not define operations in this fashion; the interface of a resource is fixed.

However, operations still have HTTP methods associated with them. For this purpose we do
not just use strings to denote the suitable methods but instead draw from the HTTP
vocabulary formalized in RDF [15] , which is currently a W3C working draft. The inclusion of
HTTP methods is essential in order to be still able to cover Web APIs that are not resource-
oriented but still require the usage of particular methods.

The RPCSM layers on the SM by using common vocabulary to talk about services, used
ontologies, etc. and furthermore also relies on it to specify service semantics (conditions,
effects etc.), or nonfunctional properties (e.g., the price of using the service, QoS
guarantees).

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix http: <http://www.w3.org/2006/http#> .

@prefix sm: <http://www.wsmo.org/ns/sm#> .

@prefix rpcsm: <http://www.wsmo.org/ns/rpcsm#> .

rpcsm:Operation rdfs:subClassOf sm:Operation .

rpcsm:hasOperation rdf:type rdfs:Class ;

 rdfs:domain sm:Service ;

 rdfs:range rpcsm:Operation .

rpcsm:hasAddress rdf:type rdf:Property ;

 rdfs:domain rpcsm:Operation ;

 rdfs:range rpcsm:URITemplate .

rpcsm:hasMethod rdf:type rdf:Property ;

 rdfs:domain rpcsm:Operation ;

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 21 of 25

 rdfs:range http:Method.

rpcsm:Message rdf:type rdfs:Class .

rpcsm:hasInputMessage rdf:type rdf:Property ;

 rdfs:domain sm:Operation ;

 rdfs:range rpcsm:Message .

rpcsm:hasOutputMessage rdf:type rdf:Property ;

 rdfs:domain sm:Operation ;

 rdfs:range rpcsm:Message .

rpcsm:hasInputFault rdf:type rdf:Property ;

 rdfs:domain sm:Operation ;

 rdfs:range rpcsm:Message .

rpcsm:hasOutputFault rdf:type rdf:Property ;

 rdfs:domain sm:Operation ;

 rdfs:range rpcsm:Message .

#datatype for URI templates

rpcsm:URITemplate rdf:type rdfs:Datatype.

Listing 3 RPC Service Model

2.2.3 Resource Oriented Service Model (ROSM)

Again layered on the top of the common service model we formalize the resource oriented
service model (ROSM) as an extension.

Its focus is to organize resources belonging to a service. Those resources can be organized
in collections and have addresses (URIs) associated with them at which they can be
accessed. The organization of resource in collections, which again belong to a service,
allows capturing an arbitrary number of resources and attaching service semantics to them.

Furthermore, resources can again have certain (HTTP) methods associated with them, which
define how it is possible to interact with a resource, which are connected through an
operation. These operations are modelled in a much-more fine-grained way, since they
basically only have to support the uniform interface of HTTP.

Furthermore, we can explicitly model requests and responses with their associated aspects
(e.g. parameters, response codes, etc.). In theory, it is possible to express this same
information in the RPCSM. However, operations would be attached directly to a service,
whereas in the resource-oriented view they would be attached to ServicedResources, which
form a service.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix http: <http://www.w3.org/2006/http#> .

@prefix sm: <http://www.wsmo.org/ns/sm#> .

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 22 of 25

@prefix rosm: <http://www.wsmo.org/ns/rosm#> .

rosm:ServicedResource rdfs:subClassOf rdfs:resource .

rosm:hasAddress rdf:type rdf:Property;

 rdfs:domain rosm:ServiceedResource ;

 rdfs:range rosm:Address .

rosm:Address rdf:type rdfs:Datatype .

rosm:ServicedResourceCollection rdfs:subClassOf rosm:ServicedResource .

rosm:containsResource rdf:type rdf:Property ;

 rdfs:domain rosm:ServicedResourceCollection ;

 rdfs:range rosm:ServicedResource .

rosm:Operation rdfs:subClassOf sm:Operation .

rosm:supportsOperation rdf:type rdf:Property ;

 rdfs:domain rosm:ServicedResource ;

 rdfs:range rosm:Operation .

rosm:basedOnMethod rdf:type rdf:Property ;

 rdfs:domain rosm:Operation ;

 rdfs:range http:Method .

rosm:Parameter rdf:type rdf:Class .

rosm:parameterName rdf:type rdf:Property ;

 rdfs:domain rosm:Parameter ;

 rdfs:range rdfs:Literal .

rosm:OptionalParameter rdfs:subClassOf rosm:Parameter .

rosm:RequiredParameter rdfs:subClassOf rosm:Parameter .

rosm:requestBodyParameter rdf:type rdf:Property;

 rdfs:domain rosm:Operation ;

 rdfs:range rosm:Parameter .

rosm:requestHeaderFieldParameter rdf:type rdf:Property;

 rdfs:domain rosm:Operation ;

 rdfs:range rosm:Parameter .

rosm:requestURIParameter rdf:type rdf:Property;

 rdfs:domain rosm:Operation ;

 rdfs:range rosm:Parameter .

rosm:hasResponse rdf:type rdf:Property;

 rdfs:domain rosm:Operation ;

 rdfs:range rosm:Response .

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 23 of 25

rosm:Response rdf:type rdfs:Class .

rosm:hasResponseCode rdf:type rdf:Property ;

 rdfs:domain rosm:Response ;

 rdfs:range http:ResponseCode .

rosm:hasBody rdf:type rdf:Property ;

 rdfs:domain rosm:Response ;

 rdfs:range rosm:Parameter .

Listing 4 Resource Oriented Service Model

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 24 of 25

3. Conclusion
In this deliverable, we introduced a revised service model to be used underneath
MicroWSMO. The main purpose of this revision is to allow the faithful annotation of resource-
oriented, RESTful services while at the same time achieving the following two goals:

1. To keep the functionality of MicroWSMO itself, i.e. the basic approach to using a
microformat (or RDFa) as high-level syntax for the annotation of service descriptions
remains unchanged. MicroWSMO can still be used in exactly the same fashion, the
only source of further expressivity is the underlying service model, which is
referenced from HTML class names.

2. To preserve compatibility with the old minimal service model in order to ensure the
functionality of existing tools and components within the SOA4All architecture with
minor modifications – unless they choose to use the ROSM. This is accomplished
because no elements of the MSM are removed, they are merely encapsulated within
the RPCSM under a distinct namespace, while overlapping functionality is formalized
in a common service model on which the RPCSM cleanly layers.

Further next steps include alignment with ongoing work on service templates and an
application for RESTful APIs and in components used within SOA4All, e.g. the crawler or
service repository components.

 SOA4All –FP7 – 215219 – D3.4.6 MicroWSMO v2

© SOA4All consortium Page 25 of 25

4. References
[1] P. Hoffman and T. Bray, “Atom Publishing Format and Protocol (atompub),” Retrieved

from< http://www. ietf. org/html. charters/atompub-charter. html, 2006.

[2] J. Kopecky, T. Vitvar, and D. Fensel, “D3.4.3 “MicroWSMO and hRests”.”

[3] R. Khare and T. Çelik, “Microformats: a pragmatic path to the semantic web,”
Proceedings of the 15th international conference on World Wide Web, 2006, p. 866.

[4] G. Klyne, J.J. Carroll, and B. McBride, “Resource description framework (RDF):
Concepts and abstract syntax,” W3C recommendation, vol. 10, 2004.

[5] D. Connolly and others, “Gleaning resource descriptions from dialects of languages
(GRDDL),” W3C Candidate Recommendation, vol. 2, 2007.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web services
description language (WSDL) 1.1, 2001.

[7] R.T. Fielding, “Architectural styles and the design of network-based software
architectures,” Citeseer, 2000.

[8] T. Vitvar, J. Kopecky, and D. Fensel, “Wsmo-lite: Lightweight semantic descriptions for
services on the web,” Proceedings of the Fifth European Conference on Web Services,
2007, pp. 77–86.

[9] J. Kopeckỳ, T. Vitvar, C. Bournez, and J. Farrell, “Sawsdl: Semantic annotations for
wsdl and xml schema,” IEEE Internet Computing, 2007, pp. 60–67.

[10] C. Pedrinaci, D. Lambert, M. Maleshkova, D. Liu, J. Domingue, and R. Krummenacher,
“Adaptive Service Binding with Lightweight Semantic Web Services,” In Service
Engineering: European Research Results (S. Dustdar and F. Li eds.), To Appear. 2010.

[11] B. Adida and C. Commons, “RDFa in XHTML: Syntax and processing,”
Recommendation, W3C, 2008.

[12] L. Richardson and S. Ruby, “RESTful web services,” 2007.

[13] M. Gudgin, M. Hadley, N. Mendelsohn, J.J. Moreau, H.F. Nielsen, A. Karmarkar, and Y.
Lafon, SOAP version 1.2 part 1: Messaging framework, June, 2003.

[14] J. Gregorio, M. Hadley, M. Nottingham, and D. Orchard, “URI Template,” Network
Working Group, Internet Draft, 2006.

[15] J. Koch and C. Velasco, “HTTP Vocabulary in RDF 1.0,” W3C Working Draft, Oct. 2009.

