

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

SOA4All Studio UI and Infrastructure Services

D2.4.2 First Demonstrator & Interface Specification
 - Prototype Documentation -

Activity N: Activity 1 – Fundamental and Integration Activities

Work Package: WP2 – SOA4All Studio

Due Date: M18

Submission Date: 31/08/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible
of Deliverable:

TIE

Revision: 1.0

Author(s): Sven Abels
Jean-Philippe Lombardi
Juergen Vogel
Tomas Pariente Lobo
Guillermo Álvaro Rey
Iván Martínez
Marin Dimitrov
Alex Simov

TIE
SAP
SAP
ATOS
ISOCO
ISOCO
ONTOTEXT
ONTOTEXT

Reviewers: Freddy Lecue UNIMAN
Philippe Merle INRIA

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 2 of 37

Project co -funded by the European Commission within the Seventh Framework Progr amme (2007-2013)

Dissemination Level

PU Public x

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 28.06.2009 Kick-Off Version TIE

0.2 19.07.2009 Additions in 3.2.4. iSOCO

0.3 31.07.2009 Small changes; integration TIE

0.4 03.08.2009 Updated content for section 3.2 iSOCO

0.5 04.08.2009 Changes in section 3.4 TIE

0.6 09.08.2009 Updates for section 3.1 and 3.2 Ontotext

0.7 09.08.2009 Layouting TIE

0.8 10.08.2009 Updated section 3.2 iSOCO

0.9 10.08.2009 Updated section 3.3.1 ATOS

1.0 11.08.2009 Integration of various comments ALL

1.1 11.08.2009 Integration of various comments SAP

1.2 27.08.2009 Large number of updates for integrating
internal review comments

ALL

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 3 of 37

Table of Contents

EXECUTIVE SUMMARY __ 7

1. INTRODUCTION __ 8

1.1 PURPOSE AND SCOPE __ 8

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 9

2. REMINDER: FUNDAMENTALS AND ROLE WITHIN THE PROJECT ___________ 10

2.1 ROLE WITHIN THE SOA4ALL STUDIO _______________________________ 10

2.2 SCOPE ___ 10

2.3 HIGH-LEVEL STRUCTURE ___ 10

2.4 INFRASTRUCTURE SERVICES _____________________________________ 11

2.5 UI LIBRARY ___ 12

3. PROTOTYPE STATUS: RESULTS ACHIEVED IN PROTOTYPE I _ _____________ 13

3.1 STORAGE SERVICES ___ 13

3.1.1 Repository Management __ 13

3.1.2 Managing RDF ___ 14

3.1.3 Querying RDF __ 15

3.1.4 Managing Files ___ 15

3.1.5 Retrieve Files __ 15

3.1.6 Summary of Achievements __ 16

3.2 MANAGEMENT SERVICES ___ 16

3.2.1 Identification + Authentication ______________________________________ 16

3.2.2 Simple Profile Management _______________________________________ 17

3.2.3 Authorisation ___ 18

3.2.4 Auditing ___ 23

3.2.5 Preference Management ___ 23

3.2.6 Social Graph Support __ 23

3.2.7 Summary of Achievements __ 23

3.3 COMMUNICATION SERVICES ______________________________________ 24

3.3.1 Long Polling ___ 24

3.3.2 Http streaming ___ 24

3.3.3 Summary or achievements __ 25

3.4 DESIGN TEMPLATES ___ 25

3.4.1 Summary of Achievements __ 25

3.5 UI COMPONENTS __ 25

3.5.1 Charting Widget __ 26

3.5.2 Form Generation Widget ___ 26

3.5.3 Advanced List View Widget _______________________________________ 27

3.5.4 Timeline Widget __ 27

3.5.5 Taxonomy Selector Widget __ 27

3.5.6 Graph Visualization Widget _______________________________________ 27

3.5.7 Fault Handler Widget __ 27

3.5.8 Help System Widget ___ 27

3.5.9 Gauges Widget ___ 27

3.5.10 Rating Widget __ 28

3.5.11 Search & Result Handling Widget ________________________________ 28

3.5.12 Client Side Filtering Widget _____________________________________ 28

3.5.13 Drawing API Widget ___ 28

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 4 of 37

3.5.14 History Widget ___ 29

3.5.15 Tag Cloud Widget ___ 29

3.5.16 Progress Bar Widget ___ 29

3.5.17 Summary of Achievements ______________________________________ 29

3.6 DASHBOARD __ 30

3.6.1 Summary of Achievements __ 31

4. INSTALLATION & USAGE ______________________________ _______________ 32

4.1 REQUIREMENTS & PREPARATIONS ________________________________ 32

4.1.1 For End-Users (“4All” of SOA4All) __________________________________ 32

4.1.2 For Administrators __ 32

4.2 INSTALLATION (DEPLOYMENT) ____________________________________ 32

4.3 EXECUTION ___ 33

5. CONCLUSIONS AND NEXT STEPS ______________________________________ 34

6. ANNEX A ___ 35

7. REFERENCES ___ 36

8. WEBLINKS __ _______________ 37

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 5 of 37

List of Figures
Figure 1: Task 2.4 Structure ...11

Figure 2 User Profile Management Module ..17

Figure 3 Resource Authorisation Model ..18

Figure 4: Charting Widget - Current Implementation ...26

Figure 5: Form Generator Widget ...26

Figure 6: Rating Widget Implementation ...28

Figure 7: Current Implementation of the Tag Cloud Widget ..29

Figure 8: Current Dashboard implementation ...31

Figure 9: Downloading the 2.4 prototype ..33

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 6 of 37

Glossary of Acronyms

Acronym Definition

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

COMET Reverse Ajax

D Deliverable

DSB Distributed Service Bus

EC European Commission

Ext GWT Extended Google Web Toolkit (Framework)

GWT Google Web Toolkit

HCI Human Computer Interaction

REST REpresentational State Transfer

RDF Resource Description Framework

RIA Rich Internet Application

SPARQL SPARQL Protocol and RDF Query Language

UI User Interface

URI Uniform Resource Identifier

UX User Experience

WAR Java Web Archive

WSDL Web Service Description Language

WP Work Package

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 7 of 37

Executive Summary
This document complements D2.4.2 SOA4All Studio First Prototype of Task 2.4 SOA4All
Studio UI and Infrastructure Services and describes the software implementation of the first
official T2.4 prototype including the current status of the implementation. This document is
included as part of the zip file that contains the first prototype software including all
necessary files and instructions to install and run the prototype on Windows, Linux, MacOS
or any other operating system that supports Java based software.

Please note: While D2.4.2 is the first official prototype, the T2.4 partners have already
submitted a first “alpha” version in conjunction with D2.4.1. This new prototype D2.4.2 is
based on the M12 2.4.1 prototype and has been strongly extended. The current prototype
reflects a very good progress that is even more advanced than the original time planning
given in D2.4.1. This prototype covers all features mentioned in the time planning of D2.4.1
and also realized two additional graphical widgets and one unplanned update to a new
version of the underlying framework (GWT).

Please note that the API specifications in this deliverable only give a brief overview in order
to keep the document short. For a technical specification please have a look at at deliverable
2.4.1 and at the code via https://trac.sti2.at/trac-soa4all/browser/trunk/soa4all-studio/soa4all-
dashboard. Moreover, the 2.4 team has created the Widget Explorer which lists all
implemented widgets and provides an “Example” button that allows developers to view the
code that is used to create the widget and to use the 2.4 components. The Widget Explorer
can be found in the SOA4All Dashboard start menu at http://coconut.tie.nl:8080/soa4all

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 8 of 37

1. Introduction

1.1 Purpose and Scope
In order to increase the usability of SOA4All, it is of significant importance to ensure a low
entrance barrier for potential users. One way of achieving this is the provision of one holistic
user interface instead of providing separate user interfaces for each work package. The
SOA4All consortium therefore decided to provide a common core user interface (UI)
framework which forms the base for UI implementations and which will be implemented by
development activities in all work packages. This ensures a common look and feel among all
development activities and will allow easy navigation between SOA4All components.

This common framework is covered by Task 2.4 “SOA4All Studio UI and Infrastructure
Services” and is documented in Deliverable 2.4.1. Task 2.4 has been started in Month 9 of
the project after restructuring the work packages and subtasks. It covers those parts of the
SOA4All Studio that have formerly been described in an extra deliverable, called “DX-UI:
Holistic User Interface”.

The idea of Task 2.4 is to provide core elements that will help other work packages to
provide their results in a holistic look & feel. This means that Task 2.4 provides a set of
services that can be used by other work packages or tasks. Those services cover two
essential parts:

• The first one is related to infrastructure services (e.g. common management
mechanisms for objects such as storing preferences/settings)

• The second one addresses graphical elements such as defining a holistic design or
providing graphical widgets (e.g. charting components).

This document is accompanied by the first prototype of the SOA4All Studio that has been
complied into a single deployment file (i.e., a WAR file) that can be found in the /bin directory
and that can be deployed on an Apache Tomcat web application service. The WAR file
therefore combining the T2.4 results and integrates results of various modules coming from
other WP2 tasks. As such, prototype D2.4.2 is called the "SOA4All Studio First Prototype".

A temporary version is available at:

http://coconut.tie.nl:8080/soa4all

This document complements the D2.4.2 SOA4All Studio First Prototype of the Task 2.4
SOA4All Studio UI and Infrastructure Services and describes the software implementation of
the first official D2.4 prototype. This document is included as part of the zip file that contains
the first prototype software including all necessary files and instructions to install and run the
prototype on Windows, Linux, MacOS or any other operating system that supports Java-
based software.

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 9 of 37

1.2 Structure of the Document
The remainder of the document is structured as follows:

• Section 2 gives a short recapitulation of Task 2.4 including a description of its role in the
project.

• Section 3 gives a brief description about what has been implemented in the last 6 months
by the 2.4 team. It presents a status table for each sub-task showing the current status
and showing which parts have been implemented in a first version already.

• Section 4 describes the usage of the prototype including the installation and startup
instructions.

Please note that this document is kept as short as possible on purpose. It’s only purpose is
to guide readers though the installation of the prototype and to give him an update of the
status and the different components. For any functional descriptions and technical
descriptions, please refer to the D2.4.1 deliverable

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 10 of 37

2. Reminder: Fundamentals and Role within the proje ct

2.1 Role within the SOA4All Studio
The SOA4All Studio acts as an important building block when bringing SOA4All results to
users. As such it provides a bridge from the technological parts to the world of the user
interface. For example, in the SOA4All Process Composer (Task 2.6), the SOA4All Studio
builds the base for creating a user interface with the help of the high-level and infrastructure
services.

The SOA4All Studio consists of several subtasks covering different aspects of SOA4All such
as provisioning, consumption, process modelling, and analysis functionalities. These
components are developed within the Tasks 2.1, 2.2, 2.3 and 2.6. They altogether form the
so-called SOA4All Studio that is the main entry point for SOA4All users.

The components that are provided by the SOA4All Studio are brought together by a holistic
graphical user interface and Task 2.4 provides the base for this graphical user interface. It
provides a set of services that are offered to the other WP 2 tasks but that might also be
used by other SOA4All work packages or even by third party components that are integrated
into SOA4All.

2.2 Scope
Task 2.4 does not implement core activities of the concrete Tasks 2.x and does not force
tasks to use specific services. Instead, it provides services to ease the development and the
integration of tasks that have a need for user-interactions.

To make this more concrete, let us focus on the SOA4All Process Composer Task 2.6. The
Process Composer allows process modeling for non-technical users and provides a set of
functionalities for this. The 2.4 components do not replace this work but they make the
development process easier. The Process Composer task will still need to create a graphical
Process Composer but Task 2.4 will provide a UI and an infrastructure framework that makes
it easier to e.g. create web 2.0 user interfaces, to store and manage data or to use
communication functionalities.

For example, 2.4 will provide the basic functionalities to realize drag & drop, while 2.6 will
use those functionalities to actually implement a Process Composer UI allowing people drag
& drop process elements. In addition to this, a Dashboard view seamlessly integrates the
Process Composer UI into the overall SOA4All Studio environment.

Similar to this, task 2.4 also provides services for other implementations such as the WSMO
Lite and MicroWSMO editor and the consumption platform.

2.3 High-Level Structure
The SOA4All Studio provides two different levels of services:

• Infrastructure Services
On the one hand Infrastructure Services will provide support for Tasks 2.x and potentially
for all other web applications that could be based on SOA4All such as the WP9
Facebook application which will access processes that have been defined in SOA4All.

• UI Library
On the other hand UI Library provides services that are located on top of the platforms.
They provide UI-related elements, a Dashboard view, etc. While the use of those

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 11 of 37

Services will not be strictly necessary in order to interact with SOA4All (as nothing will
prevent third parties to develop their interfaces on top of the different platforms APIs) it
will be the easiest way to implement the connection between users and the SOA4All
runtime.

As shown in Figure 1, Task 2.4 consists of a set of components, which are classified to
belong to either the UI Services Part or the Infrastructure Services Part.

Consumption Analysis

Management
(Users, etc.)

Storage

UI Templates UI Widgets Dashboard

UI Part

Communication

Infrastructure Part

Provisioning Processes

Figure 1: Task 2.4 Structure

2.4 Infrastructure Services
The SOA4All Studio provides basic functionalities that may be used to rapidly create
applications. Those services may be seen as a “basic SOA4All API”. For example, the
storage services may be compared to Amazons S3 services1 or to Google2 Base allowing
applications to store and retrieve data in a data store. Each of the services may be accessed
independently with a Web service interface.

The following infrastructure services are provided by 2.4:

• Storage Services
Storing and retrieving information similar to Google Base / Amazon S3 but focused on the
SOA domain and service requirements (e.g. for storing preferences or user profiles). The
results of WP1 will be used for realizing this while 2.4 will provide API access to it.

• Management Services

Managing Users, Roles and Access Rights; Providing Logging and Auditing
functionalities

1 http://aws.amazon.com/s3/
2 http://www.google.com

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 12 of 37

• Communication Services
Basic messaging services for allowing components to exchange information based on the
COMET pattern3. COMET describes an approach in which a long-held HTTP request
allows a web server to push data to a browser instead of having the web browser to ask
the server. This allows SOA4All components to implement event-driven communication
patterns.

2.5 UI Library
While the infrastructure services can be seen to be located “below” the specific T2.x outputs,
the UI Library provides functionalities that will be based on top of them. They can be split into
different parts:

• UI Design Templates
A UI template and designs as well as examples are provided to be used as
recommendations for WPs. WPs are highly encouraged to follow them in order to achieve
a common look & feel in the project.

• UI Components
This subtask provides various basic services related to allowing the creation of a holistic
user interface. Because of their nature, these services are referred to as “UI Widgets”.
They consist of a set of useful API methods build on top of the GWT4 or EXT-GWT5
framework for allowing a rapid development of Web 2.0-like UIs.

• Dashboard View
The Dashboard provides an entry point to SOA4All components.

• The project will also integrate the Recommendation component developed in T2.7 in the

SOA4All Studio so that users will receive recommendations while interacting with the
GUI.

3 see [COMET1]
4 http://code.google.com/intl/de-DE/webtoolkit/
5 http://extjs.com/products/gxt/

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 13 of 37

3. Prototype Status: Results Achieved in Prototype I
This section describes the prototype status as of month 18 of the project. It gives a short
overview about what has been implemented in the first official prototype. This summary is
broken down based on the different components.

3.1 Storage Services
The storage services provide an easy to use API that provides simple data storage facilities
consisting of fundamental Create, Update, Delete and Query functionalities. The
implementation of the storage service is realized as a RESTful6 service, which facilitates
functionality realization and reduces integration efforts significantly. The following sections
describe in more details the APIs for managing repositories, files and RDF7 data.

Usage examples of all functionalities of the storage services API are available as simple
Java applications in the project’s SVN8 repository.

3.1.1 Repository Management

One crucial aspect of storing large amounts of heterogeneous data is the organization of the
artefacts in such a way that any subsequent operations like searching, browsing, and
management is done with minimal effort. To meet such requirements, the Storage services
introduce the notion of repository, which stands for a placeholder for storing files and RDF
data, identified by unique repository identifier. The (RESTful) API for managing repositories
is described below:

Resource/Operation Method Description

/repositories GET Lists all available repositories

params : none

result : XML (list of repository IDs –
see Annex A)

/repositories/<repository-id> PUT Creates a new repository

params : none

result : none

/repositories/<repository-id> DELETE Deletes an existing repository

params : none

result : none

6 http://en.wikipedia.org/wiki/Representational_State_Transfer
7 http://www.w3.org/RDF/
8 https://trac.sti2.at/trac-soa4all/browser/trunk/soa4all-studio/soa4all-infrastructure/soa4all-
studio-
storage/src/main/java/eu/soa4all/studio/infrastructure/storage/example/StorageServiceExam
ple.java

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 14 of 37

3.1.2 Managing RDF

The storage services allow managing (adding, updating, deleting) RDF information to a
selected repository. These services are in line with the typical functionality that RDF
repositories usually allow. The table below reveals the basic management operations, which
allow working with RDF data in a simple and unified way.

Resource/Operation Method Description

/repositories/<repository-
id>/statements

GET Lists (all) statements from a repository

params:

 'subj' (optional) - subject restriction

 'pred' (optional) - predicate restriction

 'obj' (optional) - object restriction

 'context' (optional) - named graph URI

result: RDF

/repositories/<repository-
id>/statements

PUT Updates statements in a repository
(removing previous content and adding new
statements)

param:

 'context' (optional) - named graph URI

header param:

 'rdf-data' - RDF triples data

result: none

/repositories/<repository-
id>/statements

POST Adds statements to a repository

param:

 'context' (optional) - named graph URI

header param:

 'rdf-data' - RDF triples data

result: none

/repositories/<repository-
id>/statements

DELETE Delete statements from a repository

params:

 'subj' (optional) - subject restriction

 'pred' (optional) - predicate restriction

 'obj' (optional) - object restriction

 'context' (optional) - named graph URI

result: none

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 15 of 37

3.1.3 Querying RDF

One very important feature for each system offering RDF storage is the ability to perform
querying on the data. Such operations must be uniform and efficient, regardless of the
underlying implementation. Therefore, the Storage services support the SPARQL9 query
interface, which allows query evaluation on the data from certain repository.

Resource/Operation Method Description

/repositories/<repository-id> GET SPARQL query evaluation over a repository

params:

 'q' (or alternatively header param 'sparql-q')
- SPARQL query expression

result: RDF

3.1.4 Managing Files

Apart from managing and querying RDF data, the storage services support storing, updating
or deleting files. This functionality is needed in order to manage data either that cannot be
serialised as RDF or where the serialisation may be inefficient (e.g. managing WSDL10 files).

Resource/Operation Method Description

/repositories/<repository-
id>/files

GET Lists all files in a repository

params: none

result: XML (list of file names – see Annex
A)

/repositories/<repository-
id>/files/<file-name>

PUT Creates/Updates file in a repository

param: none

result: none

/repositories/<repository-id>/
files/<file-name>

DELETE

Deletes file from a repository

params: none

result: none

3.1.5 Retrieve Files

The storage services also allow retrieving files from a certain repository. This operation is
done in a simple and implementation transparent manner.

9 www.w3.org/TR/rdf-sparql -query
10 http://www.w3.org/TR/wsdl

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 16 of 37

Resource/Operation Method Description

/repositories/<repository-
id>/files/<file-name>

GET Retrieves a file from a repository

params : none

result: file content

3.1.6 Summary of Achievements

The following table summarizes the tasks that have been identified in D2.4.1 and their status
as of month 18:

ID Name Priority
(1=high, 10=low)

Status

ST-1 Managing RDF 1 Version 1
implemented

ST-2 Querying RDF 1 Version 1
implemented

ST-3 Managing Files 2 Version 1
implemented

ST-4 Receiving Files 2 Version 1
implemented

3.2 Management Services
Management Services provide means for user identification and authentication, resource
authorisation, auditing/logging and some simple key/value based user preference storage.

3.2.1 Identification + Authentication

Identification makes it possible for different users to be identified according to their own
profiles/accounts. Anonymous access is also possible in such collaborative systems
(although not mandatory). Password based authentication of the identified user accounts is
required. Ownership of resources (such as services, ontologies, tag clouds, comments and
ratings, etc.) is associated with a specific user or group profile. Thus, it is required that user
profile management is properly implemented in the system.

On the other hand, it has been included in the SOA4All Studio OpenID11 as authentication
mechanism. OpenID is an open, decentralized standard for user authentication and access
control, allowing users to log on to different services with the same digital identity. OpenID
replaces the common login process that uses a login-name and a password, by allowing a
user to log in once and gain access to the resources of multiple software systems.

11 http://openid.net/

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 17 of 37

An OpenID is in the form of a unique URL, and is authenticated by the user's “OpenID
provider” (that is, the entity hosting their OpenID URL). The OpenID protocol does not rely on
a central authority to authenticate a user's identity. Since neither the OpenID protocol nor
Web sites requiring identification may mandate a specific type of authentication, non-
standard forms of authentication can be used, such as smart cards, biometrics, or ordinary
passwords.

The logon flow basically works like this: A user lands on the OpenID-enabled logon SOA4All
Studio entry point. The user enters a Uniform Resource Identifier (URI) that points to a Web
page that contains information about the OpenID provider that handles the user's credentials.
The SOA4All Studio then requests authentication from that provider. In our case, the
authentication process works by redirecting the user to the provider's logon page to do the
logon. Upon authentication, the Studio can proceed as necessary based on the result. For
example, if authentication was successful, it can grant access to the user. If authentication
failed, it can prevent access and proceed accordingly.

3.2.2 Simple Profile Management

The User Profile Management (see Figure 2) module is part of the SOA4All Studio12. It is
responsible for managing essential information associated with each user, such as user id,
name, contact e-mail, OpenID account, etc. Each user can provide such information after
registering successfully into the system. Subsequently the user can modify/erase the profile
information after log-in in the system using his/her OpenID account.

The profile component stores the user data in RDF format using the Storage Services
described above, thus making it accessible for other interested components of the studio.

Figure 2 User Profile Management Module

12 Snapshot version available and regularly updated at: http://coconut.tie.nl:8080/soa4all

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 18 of 37

3.2.3 Authorisation

Authorisation provides a scheme for defining the permission/operations applicable to a
particular resource per an identified user. Since the number of resources and users in the
system is potentially unlimited, Access Control List13 (ACL) based schemes may be inefficient
and a Role-Based Access Control14 (RBAC) one may be more suitable. That is the reason
we adopt a hybrid approach combining user roles with access lists.

Figure 3 Resource Authorisation Model

The key is to bring together Groups, Roles and Users in a single concept that is Credential,
permissions over resources are based on credentials, every user has a set of credentials, by
default its user himself is a Credential, a user can be associated to Groups and Roles, a
Group may have a set of Roles.

On the other hand, we have the resources, which can be protected by permissions, which
can be expressed as associations between resources, credentials and operations. Since a
credential can be a group, role and user, we can set permissions for a resource at three
levels.

The implementation of the model is realized (and accessible) by the following three RESTful
services, supporting different aspects of the authorisation functionalities.

13 An ACL specifies which users are allowed to access a particular resource and which
operations are allowed to be performed.
14 Contrary to the ACL approach, an RBAC specifies permissions not for resources but for
specific operations within the system

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 19 of 37

Please note that the following list gives a brief overview in order to keep the document short.
For a technical specification please have a look at the widget examples and at the code at
https://trac.sti2.at/trac-soa4all/browser/trunk/soa4all-studio/soa4all-dashboard

3.2.3.1 Resource Authorisation Service

Resource/Operation Method Description

/authorize GET Check resource authorization for user

params :

 'user' - user ID

 'resource' - resource URI

 'op' - operation URI

result : "true"/"false"

3.2.3.2 Resource Permissions Management Service

Resource/Operation Method Description

/resources GET Lists all resources

params: none

result: list of resource URIs

/resources PUT Creates a resource

param:

 'user' - owner ID

 'res' - resource URI

result: none

/resources

DELETE

Deletes a resource

param:

 'user' - owner ID

 'res' - resource URI

result: none

/resources/owner PUT Changes resource owner

params :

 'owner' - owner ID

 'newOwner' - new owner ID

 'res' - resource URI

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 20 of 37

/resources/perm GET Lists resource access permissions

params :

 'res' - resource URI

 'cred' - credential URI (user, group or role)

result: list of operation URIs permissible for the
given credential with respect to the resource

/resources/perm PUT Adds a new resource access permission

params :

 'user' - user ID, adding the new permission (must
be the owner of the resource)

 'res' - resource URI

 'cred' - credential URI (user, group or role) given
the permission

'op' - operation URI

result : none

/resources/perm DELETE Deletes a resource access permission

params :

 'user' - user ID, deleting the permission (must be
the owner of the resource)

 'res' - resource URI

 'cred' - credential URI (user, group or role) given
the permission

'op' - operation URI

result : none

/repositories/creds GET Lists all credentials which at least one permission is
granted

param : 'res' - resource URI

result : list of credential URIs which are granted at
least one permission

3.2.3.3 User Management Service

Resource/Operation Method Description

/users/groups GET Lists all user groups

params: none

result: list of URIs of all user groups defined

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 21 of 37

/users/groups PUT Creates a new user group

param: 'id' - group URI

result: none

/users/groups DELETE Deletes a user group

param: 'id' - group URI

result: none

/users/roles GET Lists all roles

params: none

result: list of URIs of all roles defined

/users/roles PUT Creates a new role

param: 'id' - role URI

result: none

/users/roles DELETE Deletes a role

param: 'id' - role URI

result: none

/users/assignGroup PUT Assigns a user to a group

params :

 'user' - user ID

 'group' - group URI

result : none

/users/assignGroup DELETE Excludes a user from a group

params :

 'user' - user ID

 'group' - group URI

result : none

/users/assignGroup GET Lists all group assignments for a user

param: 'user' – user ID

result: list of user group URIs

/users/assignUserRole PUT Assigns a role to a user

params:

 'user' - user ID

 'role' - role URI

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 22 of 37

result : none

/users/assignUserRole DELETE Divests a user of a role

params :

 'user' - user ID

 'role' – role URI

result : none

/users/assignUserRole GET Lists all roles of a user

param: 'user' – user ID

result: list of role URIs

/users/assignGroupRole PUT Assigns a role to a user group

params:

 'group' - user URI

 'role' - role URI

result : none

/users/assignGroupRole DELETE Divests a user group of a role

params:

 'group' - user group URI

 'role' - role URI

result: none

/users/assignGroupRole GET Lists all roles of a user group

param : 'group' – user group ID

result : list of role URIs

/operations GET Lists all operations over resources

params: none

result: list of operation URIs

/operations PUT Creates an operation

param: 'id' - operation URI

result: none

/operations DELETE Deletes an operation

param: 'id' - operation URI

result: none

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 23 of 37

3.2.4 Auditing

The Auditing Service has already been created as a server-side module (soa4all-
dashboard-auditing-service) inside the SOA4All Studio Dashboard. It permits client-
side modules within the SOA4All Studio to log some interesting actions that the users
perform when interacting with the tool. The logged actions are exploited by the Analysis
platform and the Recommendation System, which are able to infer conclusions about users’
interactions within the platform thanks to the stored logs.

The Auditing Service stores the actions performed by the users, following the RDF schema
defined in the Recommendation System deliverable (see D2.7.1), into the Semantic Spaces
using the Storage Services described above.

There is only one relevant action for this service, which is logAction. It receives the action
identifier, a persistent session Id that is used to correlate actions performed by a user, even if
a user is not logged into the platform, and extra parameters, depending on the type of action.
For example, if the action being stored is “Log in”, the user identifier has to be passed in the
invocation:

public String logAction(String actionId, String persistentSessionID,
Map<String,String> params);

Client-side modules within the platform are able to log users’ actions by invoking this method,
as the Consumption Platform is already doing.

3.2.5 Preference Management

Preferences management allows a simple storage and retrieval of user and/or application
based settings (key-value pairs). It is desirable that the system provides sufficient means for
customisation according to the specific end user preferences, so that the end user
experience is maximised.

3.2.6 Social Graph Support

The Social Graph related functionality will make it possible for users to find and add other
SOA4All users to their social graph by means of either finding users based on name / e-mail,
or import contacts from existing social networks such as Facebook, MySpace, LinkedIn,
OpenSocial, etc.

Harnessing the power of the social graph provides great advantages to Web 2.0 applications
when it comes to recommendations, ratings and collaborative authoring. SOA4All will not aim
at creating and maintaining yet another social network but will instead leverage the social
graphs related to its users in various existing social networks.

3.2.7 Summary of Achievements

The following table summarizes the tasks that have been identified in D2.4.1 and their status
as of month 18:

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 24 of 37

ID Name Priority
(1=high, 10=low)

Status

MS-1 OpenID authentication 1 Version 1
implemented

MS-2 Multiple OpenID accounts
per user

4 Not started yet

MS-3 Resource authorisation 1 Version 1
implemented

MS-4 Social graph import 6 Not started yet

MS-5 Auditing/logging 3 Version 1
implemented

MS-6 User preferences 2

MS-7 Anonymous access 5 Not started yet

MS-8 Simple profile
management

1 Version 1
implemented

MS-9 Social graph support 2 Not started yet

3.3 Communication Services
Communication services are basic messaging services aiming to give extra functionality for
the communication the server and the client side.

3.3.1 Long Polling

Long polling would enable WP2 GUI components to maintain a connection open with the
server and receive data when the server pushes it, taking into account that these updates
should not happen very often.

A high-level API providing the long polling (or server push) technique is a task that was
initially planned to be implemented by WP2 T.4 because no other library could offer the same
functionality by that time. However, as of M18, the only component that makes use of the
long polling approach is the monitoring service. That service uses the library
GWTEventService, which leverages the GWT RPC mechanisms to deliver the COMET
functionality. Unless other components need a further abstraction from the functionality
provided by the GWTEventService library, there is no real need to reinvent the wheel.

3.3.2 Http streaming

HTTP Streaming is similar to the long polling technique except the connection is never
closed, even after the server push data. With this technique, the AJAX client will only send a
single request and receive partial responses as they come, re-using the same connection
forever.

Web applications with relatively infrequent updates can use long polling without significant
overhead (opening a new connection with the server would be not as costly as maintaining it
all the time). On the other hand, high polling frequencies can waste server resources and
bandwidth. Use then Http streaming when your AJAX application requires frequent updates.

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 25 of 37

This technique significantly reduces the network latency as the browsers and server do not
need to open/close the connection (i.e. Google Mail15 is using that technique to update the
mail interface in a real time fashion).

In any case, the implementation of this technique is not mandatory, because long polling may
be enough for WP2.

3.3.3 Summary or achievements

The following table summarizes the tasks that have been identified in D2.4.1 and their status
as of month 18: .

ID Name Priority
(1=high, 10=low)

Status

CS-1 Long polling 4 No need to
implement

CS-2 Http streaming 8 Not implemented yet

3.4 Design Templates
Following the design principles and design studies presented in D2.4.1, the overall design of
the SOA4All Studio and its embedded Tools has been implemented using the possibilities of
GWT and Ext GWT. For this purpose, the general layout, colours, widgets, and icons have
been designed to create a close match to the mock-ups presented before. The resulting look
and feel of the Studio is platform-independent.

3.4.1 Summary of Achievements

The following table summarizes the tasks that have been identified in D2.4.1 and their status
as of month 18:

ID Name Priority

 (1=high,
10=low)

Status

DTC-1 Rich Internet Application Metaphor 1 Implemented

DTC-2 Rich User Experience (UX) 1 Implemented

DTC-3 Universal Design and High Usability 1 Implemented

3.5 UI Components
Reusable UI components simplify the development of consistent and ergonomic user
interfaces. In D2.4.1, a number of UI components had been identified and specified, which
can all be leveraged by several Studio tools and therefore are provided by Task 2.4 in order
to avoid duplicate work and to achieve a common look and feel of the entire Studio.

15 http://mail.google.com

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 26 of 37

3.5.1 Charting Widget

The UI Framework provides a charting widget that allows other work packages to easily
create and display charts. Types that are supported include bar charts, Pie charts and line
charts. This functionality is required for Task 2.3 to display results of Web services that have
been monitored and analyzed.

Figure 4: Charting Widget - Current Implementation

3.5.2 Form Generation Widget

This widget can be used to either edit an object or to create a new object for a specific class.
It is based on a data structure that allows the developer to easily define the content of the
form. The form may be used to e.g. request user information.

The widget is based on a generic data structure. As an example, it provides a way to use it
to create a form for a given WSDL specification. Results are passed as a return value from
the widget after the user has clicked on a submit button. The widget is required for tasks 1.2 /
1.3 / 1.4.

Figure 5: Form Generator Widget

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 27 of 37

3.5.3 Advanced List View Widget

This widget displays a set of data elements. It is connectable with the Form Generation
Widget in order to allow a detailed view of an element. In contrast to the standard list views
of Ext GWT, this widget is based on introspection and annotation to automatically create a
layout. - The widget is required for tasks 1.2 / 1.3 / 1.4.

3.5.4 Timeline Widget

This widget visualizes events in a timeline view. This will allow SOA4All to assign events to a
specific point of time and allow the user to see the events in a graphic view. Events are
clickable in order to receive more information about them. The widget is required for tasks
2.3 and 2.6 in order to be connected with the SOA4All process editor.

3.5.5 Taxonomy Selector Widget

The aim of this widget is to provide a flexible way of presenting taxonomies to the user in a
tree-like structure. Taxonomies can be large and will therefore be loaded 'on demand' when
opening a sub-tree using the Ajax approach. Each taxonomy entry can be annotated with
some HTML formatted explanation (e.g. description), which is displayed to the users. Users
are able to select a specific entry of the taxonomy. The result can be used for creating a
concept selector for RDF information. It is required by tasks 2.1 / 2.2 / 2.3 and could also be
used as a base for a WSMO selector.

3.5.6 Graph Visualization Widget

For discovery of services a graph can be shown to the user (nodes = classes/categories and
edges = relations, in the first version may be only subsumption). In order to do this, a widget
was required that allows the display of graphs, namely nodes and edges. With this widget,
the user is able to select specific nodes. It is therefore required to send an event after the
user has selected an element. - The widget is required for 5.3 to display search graphs as
described above.

3.5.7 Fault Handler Widget

This widget displays an error window and will allow the users to report this error to the
SOA4All team. Users may specify their mail address in order to receive feedback by the
SOA4All developers.

This is a general functionality that will help to improve the usability of SOA4All by providing
error reporting as described in DX-UI. This comfortable way of reporting errors will also allow
developers to catch errors in a very convenient and fast way and will therefore lead to a
better stability of the SOA4All studio components, too.

3.5.8 Help System Widget

This widget displays help topics. It renders a help button next to another widget and allows
users to click on this button. When being clicked, a window opens that will display help
information to the user.

3.5.9 Gauges Widget

This widget creates gauges and displays them to the user. In addition to a tacho-like view, a
traffic light view will be implemented as well in a future version, allowing to show a red,

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 28 of 37

yellow or green status. This function will be of use for displaying the health status in the
Service Monitoring task and for the 2.4 Dashboard view.

3.5.10 Rating Widget

This widget allows people to rate an element and to view a specific rating.

Please note that this widget does not need to care about the logic (e.g. user management,
duplicate rankings, etc.) as it only cares about rendering the ranking UI (e.g. displaying a 4/5
star rating). - This is a key function for enabling the Web 2.0 functionalities and will be used
in several tasks such as e.g. 5.4.

Figure 6: Rating Widget Implementation

3.5.11 Search & Result Handling Widget

This widget provides a dynamic search component. This might be used to search in a list of
elements based on specific criteria. For example, it might be used to gather search input
from users when they are searching for Web services. The widget also allows the display of
the result list. It reuses the outcomes of the Advanced List View Widget for this. This is a
required function for WP9 in order to display C2C eCommerce Services to the user.

3.5.12 Client Side Filtering Widget

This widget shows a client-side filter that can be applied by the user after the server-side
search component has given back its results (since there might be a lot of results). Basically
this is a combination of local sorting and filtering but the semantics for the actual search
remain with the search server. This widget will help to improve the usability of the WP7
outcomes.

3.5.13 Drawing API Widget

The drawing API builds functionality into GWT/GXT that allows to create vector graphics --
lines, curves, shapes, fills, and gradients -- and to display them on the screen using Java
(GXT/GWT)

Common drawing API tasks are
• Defining line styles and fill styles for drawing shapes
• Drawing straight lines and curves
• Using methods for drawing shapes such as circles, ellipses, and rectangles

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 29 of 37

• Using trigonometry with the drawing API
• This needs to be interactive (user draws predefined shapes)

This functionality is strongly required for realizing the Process Composer and it will also be
the base for the Graph Visualization Widget.

3.5.14 History Widget

In some cases, SOA4All WPs will provide users to do multiple undo's. In this case a History
Widget can be used. It allows users to control those steps. The History Widget is also able to
control the Back-Button functionality of the web browser. However, the logical undo-
functionality will still remain in control of the component that uses this widget. - The history
widget is relevant for the SOA4All Process Composer during editing.

3.5.15 Tag Cloud Widget

This widget provides a tag cloud view to allow people to quickly jump to specific links. This
functionality will form the base for many Web 2.0 elements and is therefore an essential part
of the UI components.

Figure 7: Current Implementation of the Tag Cloud Widget

3.5.16 Progress Bar Widget

This widget creates a simple progress bar view showing a percentage between 0% and
100%. This function will be of use for displaying the health status in the Service Monitoring
task.

3.5.17 Summary of Achievements

The following table summarizes the tasks that have been identified in D2.4.1 and their status
as of month 18:

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 30 of 37

ID Name Priority
(1=high, 10=low)

Status

UIC-1 Charting 1 Implemented

UIC-2 Form Generation Widget 1 Implemented in
version 1

UIC-3 AdvListView 2 Not started

UIC-4 TimeLine 3 Implemented in
version 1

UIC-5 Taxonomy Selector
Widget

1 Implemented in
version 1

UIC-6 GraphVisualization 2 Implemented in
version 1

UIC-7 FaultHandler 1 Not started

UIC-8 HelpSystem 5 Not started

UIC-9 Gauges 6 Not started

UIC-10 Rating 3 Implemented in
version 1

UIC-11 Search & Result 3 Not started

UIC-12 Client Side Filtering 6 Not started

UIC-13 Drawing API 1 Implemented in
verison 1

UIC-14 History Widget 5 Not started

UIC-15 TagClouds 1 Implemented in
verison 1

UIC-16 Progress Bar 1 Implemented in
verison 1

3.6 Dashboard
The Dashboard provides a starting point for SOA4All users. It shows all components and
elements of SOA4All and it provides a menu structure to access them.

For each component, the Dashboard displays a component specific text and a graphic to
guide the user. For example, the partners participating in task 2.3 (Analysis) are able to
display an overview chart with statistics on the Studio Dashboard entry page. Users may
click on this chart to directly jump to the 2.3 results.

An entry page is the main access and starting point for SOA4All users. It avoids that users
get lost in information overload and it will allow SOA4All to present itself as a coherent set of
solutions. Users will see the entry page as some kind of portal that will allow them to quickly
jump to the different areas of SOA4All.

The following screenshot shows the current version of the Dashboard implementation:

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 31 of 37

Figure 8: Current Dashboard implementation

3.6.1 Summary of Achievements

The following table summarizes the tasks that have been identified in D2.4.1 and their status
as of month 18:

ID Name Priority
(1=high, 10=low)

Status

DB-1 Entry Point 1 Implemented in
verison 1

DB -2 Dynamic Coupling 1 Implemented in
verison 1

DB -3 QuickStart 8 Implemented in
verison 1

DB -4 Personalization 6 Not started

DB -5 Core Elements
Integration

1 Implemented in
verison 1

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 32 of 37

4. Installation & Usage
Within this section, a short overview is given on how to install and use the current 2.4
prototype.

4.1 Requirements & Preparations
4.1.1 For End-Users (“4All” of SOA4All)

Users do not need to install anything to use SOA4All. The only thing that they need is a
modern Web Browser. Currently, the prototype implementation supports the current versions
of Firefox, Chrome and the Internet Explorer. Based on this, they may simply invoke the
SOA4All application by calling the web address. It is not necessary to install any plugins.

The D2.4.2 results are temporary available for testing purposes at:

http://coconut.tie.nl:8080/soa4all

However, they will be moved to the official SOA4All website in the process of the
development.

4.1.2 For Administrators

4.1.2.1 Java

All SOA4All developments are based on the Java programming language. As such, a Java
Runtime Environment is required. Java can be downloaded for any operating systems
including Windows, Linux and MacOS in their current version.

The 2.4.2 prototype requires Java 1.6 or newer. The latest version may be downloaded at
http://java.sun.com

4.1.2.2 Tomcat

As SOA4All is a web based solution, the D2.4.2 prototype is available as a web application.
As such, the Tomcat server (6.0 or newer) installation is required in order to setup the
prototype. Tomcat is available at the following website:

http://tomcat.apache.org

4.2 Installation (Deployment)
Installation of the 2.4.2 prototype is very easy. Please ensure that Java 1.6 and Tomcat 6.0
have been downloaded and installed on your system.

Afterwards, copy the soa4all-dashboard.war file into the folder webapps of your
Tomcat installation. You can download the latest file directly from the SOA4All build system
which is described in deliverable D1.5.1. Once you have done this, please start Tomcat. This
will automatically install all SOA4All files for you.

You can download the prototype WAR file from the SOA4All build server via

http://coconut.tie.nl:8080/hudson/

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 33 of 37

Figure 9: Downloading the 2.4 prototype

4.3 Execution
After installing the SOA4All 2.4.2 prototype, open a web browser and navigate to the
following URL:

 http://localhost:8080/soa4all-dashboard

This will show you the welcome screen of the SOA4All Dashboard application, which allows
you to access the SOA4All studio.

Please note that this WAR file only contains the D2.4.2 results which means that some
services that are coming from other work packages will not be working as they rely on other
servers to be installed on your system.

For any questions, please refer to sven.abels@tieGlobal.com

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 34 of 37

5. Conclusions and Next Steps
This document has described the outcome and the developments of task 2.4. It represents
the first version of the prototype installation. From the current viewpoint, the former
deliverable D2.4.1 has helped the task 2.4 team a lot during the implementation of the
current prototype:

• The requirements have helped the 2.4 team as a base for defining the functional
specification.

• The functional specification has been used by the 2.4 team as a guideline in the
implementation phase. Its technology selection section is the base for all
development efforts in the next period as well.

• The architecture specifications and the interface specifications have been used by the
2.4 team in order to allow a parallel development of the components and in order to
connect them with each other in a consistent way

The following table shows the scheduled activities of the different subtasks in 2009 and
2010. The red arrow indicates the current position in the time plan:

 Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
9 10 11 12

(M2)
13 14 15 16 17 18

(M3)
19 20 21 22

T2.4.1.1 Storage Services
T2.4.1.2 Management Services
T2.4.1.3 Communication Services

T2.4.2.1 Design Templates
T2.4.2.2 UI Components + Examples
T2.4.2.3 Dashboard

 D2.4.1: First Demonstrator + Interf.Spec.

 -Final Specs of everything D2.4.2: First Prototype

 -First version of 2.4.2.1 -2.4.1.x, 2.4.2.2, 2.4.2.3:

 -First alpha version of 2.4.1.1 -Version 1implementation

Specs = Selection, Functional, Technic. -First Demo

 -How-To for developers

2008 2009

 Jan Feb Mar Apr May Jun Jul Aug
23 24 25 26 27 28 29 30

(M4)

T2.4.1.1 Storage Services
T2.4.1.2 Management Services
T2.4.1.3 Communication Services

T2.4.2.1 Design Templates
T2.4.2.2 UI Components + Examples
T2.4.2.3 Dashboard

D2.4.3: Second Prototype

 -2.4.x: Final Prototype

 -2.4.x: Stunning Demo

 -2.4.x: Detailed Documentation

 -2.4.x: Completely Bug-Free

2010

It needs to be emphasized that task 2.4 is currently in a very good shape in terms of the
development and the progress. All deadlines have been kept and the task is even about 4-6
weeks in advance compared to the original time planning. As such, no problems are
foreseen for the next iteration.

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 35 of 37

6. Annex A
Storage Services - repository IDs list structure definition (DTD):

<!DOCTYPE repositories [

<!ELEMENT repositories (repository*)>

<!ELEMENT repository (#PCDATA)>

<!ATTLIST repository

 urlEncoded CDATA #IMPLIED>

]>

Storage Services - file IDs list structure definition (DTD):

<!DOCTYPE files [

<!ELEMENT files (file*)>

<!ELEMENT file (#PCDATA)>

<!ATTLIST file

 urlEncoded CDATA #IMPLIED>

]>

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 36 of 37

7. References
[APP08] Apple: Apple Human Interface Guidelines, Addison-Wesley, 2008

[CEN09] Center for Universal Design, School of Design, North Carolina State University,
Raleigh, USA: The 7 Principles of Universal Design, 2009

[DX-UI] SOA4All Project Team: DX UI – Holistic User Interface, Extra Deliverable, 2008

[JOH08] Johnson, J.: GUI bloopers 2.0: common user interface design don'ts and dos.
Amsterdam; Boston, Elsevier/Morgan Kaufmann Publishers, 2008

[KBa06] Koyani, S. J., R. W. Bailey, et al.: Research-Based Web Design & Usability
Guidelines, U.S. Dept. of Health and Human Services., 2006

[MIC95] Microsoft: The Windows interface guidelines for software design. Redmond, Wash,
Microsoft Press., 1995

[ROG07] Rogowski, R: The Business Case For Rich Internet Applications, 2007

[SUN01] Java look and feel design guidelines. Boston, Addison-Wesley, 2001

[TRI08] TRIPCOM: Specification of the Store Architecture and Interfaces, 2008

[USA06] UsabilityNet: Design Guidelines for The Web., 2006. Retrieved 03/03, 2008, from
http://www.usabilitynet.org/tools/webdesign.htm.

[Vanduyne03] Duyne, D. K., Landay, J., and Hong, J. I. 2002 The Design of Sites: Patterns,
Principles, and Processes for Crafting a Customer-Centered Web Experience.
Addison-Wesley Longman Publishing Co., Inc.

 FP7 – 215219 D2.4.2 SOA4All Studio First Prototype

© SOA4All consortium Page 37 of 37

8. Weblinks
[AJAX] http://en.wikipedia.org/wiki/Ajax_%28programming%29

[COMET1] http://gtoonstra.googlepages.com/cometwithgwtandtomcat

[EXT_GWT] http://extjs.com/products/gxt/

[GWT] http://code.google.com/webtoolkit/

[JOID] http://code.google.com/p/joid/

[OPEN_ID] http://www.openid.net

[OPJAVA] http://code.sxip.com/openid4java/

[ROCKET] http://code.google.com/p/rocket-gwt/wiki/Comet

[WSDL] http://www.w3.org/TR/2005/WD-sprot11-20051024/

[REST] http://en.wikipedia.org/wiki/Representational_State_Transfer

