

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D2.1.2 Service Modelling Tools Design

Activity: Activity 1 - Fundamental & Integration Activities

Work Package: WP2 – SOA4All Studio

Due Date: M6

Submission Date: 29/08/2008
Resubmission: 12/03/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: iSOCO

Revision: 2.6

Authors: Guillermo Álvaro Rey iSOCO
Luchesar Cekov SIRMA
Nikolay Mehandjiev UNIMAN
Lai Xu SAP
Sven Abels TIE
Juergen Vogel SAP
Alex Simov SIRMA
Maria Maleshkova OU

Reviewers: Jean-Pierre Lorre EBM WS
Bernhard Schreder HANIVAL

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public X

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 2 of 37

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 27/05/2008 First proposal of ToC Guillermo Álvaro Rey

0.2 24/06/2008 Initial draft version with contributions for
2nd Plenary Meeting (Nice)

Luchesar Cekov, Guillermo
Álvaro Rey

0.3 08/07/2008 Merged additional changes in new
template

Guillermo Álvaro Rey,
Luchesar Cekov, Nikolay
Mehandjiev

0.4 24/07/2008 New contributions Guillermo Álvaro Rey, Lai Xu

0.5 04/08/2008 First complete version Guillermo Álvaro Rey,
Luchesar Cekov, Nikolay
Mehandjiev, Lai Xu, Sven
Abels

0.6 06/08/2008 General corrections Guillermo Álvaro Rey,
Luchesar Cekov, Nikolay
Mehandjiev, Lai Xu, Sven
Abels

1.0 08/08/2008 Version for internal reviewers Guillermo Álvaro Rey,
Luchesar Cekov, Nikolay
Mehandjiev, Lai Xu, Sven
Abels

1.1 26/08/2008 Addressed first issues alter revisions by
Matteo Villa and Carlos Pedrinaci.

Guillermo Álvaro Rey, Matteo
Villa, Carlos Pedrinaci

1.2 29/08/2008 More issues corrected. Preliminary
draft.

Guillermo Álvaro Rey,
Luchesar Cekov, Nikolay
Mehandjiev, Lai Xu, Sven
Abels, Juergen Vogel

1.3 12/09/2008 Further corrections Guillermo Álvaro Rey,
Luchesar Cekov, Nikolay
Mehandjiev, Lai Xu, Sven
Abels, Juergen Vogel

2.1 12/01/2009 Proposed skeleton for resubmission Guillermo Álvaro Rey

2.5 11/02/2009 Contributions Alex Simov, Maria
Maleshkova, Guillermo
Álvaro Rey

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 3 of 37

- 23/02/2009 Internal Review Reviewer: Jean-Pierre Lorre
(EBM WS)

- 23/02/2009 Internal Review Reviewer: Bernhard Schreder
(HANIVAL)

2.6 27/02/2009 Addressed comments by reviewers Guillermo Álvaro Rey, Alex
Simov, Maria Maleshkova

Final 11/03/2009 Overall format and quality revision Malena Donato (ATOS)

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 4 of 37

Table of Contents

EXECUTIVE SUMMARY __ 8

1. INTRODUCTION __ 9

1.1 PURPOSE AND SCOPE __ 9

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 9

1.3 DELIVERABLE RELATION WITH THE ARCHITECTURE OF THE PROJECT ___ 9

1.4 DELIVERABLE RELATION WITH THE USE CASES _____________________ 11

2. STATE OF THE ART __ 13

2.1 WSMO FLAVOURS ___ 13

2.1.1 WSMO ___ 13

2.1.2 WSMO-Lite __ 14

2.1.3 MicroWSMO ___ 14

2.2 SERVICE SEMANTIC ANNOTATION _________________________________ 15

2.2.1 Protégé ___ 15

2.2.2 WSMO Studio __ 16

2.2.3 WSMT __ 17

3. SERVICE MODELLING TOOLS: OVERALL VISION ___________ ______________ 19

4. MODELLING TOOLS DESIGN ____________________________ ______________ 21

4.1 SIMPLE SWS EDITING FRAMEWORK ________________________________ 21

4.2 WSMO-LITE EDITOR __ 22

4.2.1 WSMO-Lite Editor Requirements ___________________________________ 22

4.2.2 WSMO-Lite Editor Use Cases _____________________________________ 23

4.2.3 Functional Specification and Graphical User Interface of the WSMO-Lite Editor
 24

4.3 MICROWSMO EDITOR __ 26

4.3.1 MicroWSMO Editor Requirements __________________________________ 27

4.3.2 MicroWSMO Editor Use Cases ____________________________________ 27

4.3.3 Functional Specification and Graphical User Interface of the MicroWSMO Editor
 31

5. CONCLUSIONS __ 35

6. REFERENCES ___ 36

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 5 of 37

List of Figures and Tables

List of Figures

Figure 1: SOA4All architecture overview ..10

Figure 2: Service Provisioning Platform architecture overview ..11

Figure 3: Top-level elements of WSMO ..14

Figure 4: Protégé-OWL editor ...16

Figure 5: WSMO Studio SWS Choreography Editor ...17

Figure 6: The Web Service Modeling Toolkit: WSML Visualizer ...18

Figure 7: Communication Types in SOA4All ...22

Figure 8: WSMO-Lite Editor usecases ..24

Figure 9: WSMO-Lite Editor ...25

Figure 10: Components of the MicroWSMO Editor ...26

Figure 11: MicroWSMO Use Cases ..28

Figure 12: Activity Diagram "Create New Service Annotation" ..29

Figure 13: Activity Diagram "Delete Service Annotation" ..31

Figure 14: MicroWSMO Editor ..32

Figure 15: Verifying the Service’s Domain And Classification ...33

Figure 16: Choosing a Domain Ontology ..33

Figure 17: Annotating Service Properties ...34

List of Tables

Table 1: Likelihood of the Editors being used by the Use Case WPs12

Table 2: Service modelling and web tendency characteristics ..20

Table 3: Summary of WSMO-Lite Editor Requirements ..23

Table 4: Summary of MicroWSMO Editor Requirements ..27

Table 5: Artefacts in the “Create New Service Annotation” Use Case30

Table 6: Artefacts in the “Delete Service Annotation” Use Case ...31

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 6 of 37

Glossary of Acronyms

Acronym Definition

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Modeling Notation

D Deliverable

DRM Digital Rights Management

DSB Distributed Service Bus

EC European Commission

GWT Google Web Toolkit

GUI Graphical User Interface

IPR Intellectual Property Rights

JMX Java Management eXtensions

HTTP HyperText Transfer Protocol

OKBC Open Knowledge Base Connectivity

QoS Quality of Service

RIA Rich Internet Application

RDF Resource Definition Framework

REST Representational State Transfer

SaaS Software as a service

SAWSDL Semantic Annotations for WSDL and XML Schema

SCA Service Component Architecture

SEE Semantic Execution Environment

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

STP SOA Tools Platform

SWS Semantic Web Service

T Task

UI User Interface

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WP Work Package

WS Web Services

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 7 of 37

Acronym Definition

WSDL Web Services Description Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WSMX Web Service Execution Environment

WWW World Wide Web

XML eXtended Markup Language

XPDL XML Process Definition Language

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 8 of 37

Executive summary
The present deliverable complements and is heavily interrelated with deliverable D2.1.1,
where the Service Provisioning Platform is described. We focus here on the tools that we will
use in order to semantically annotate services, grouped in the so-called “Simple Semantic
Web Services Editing Framework”.

The main outcomes of this framework are two editors that will allow users to enrich traditional
WSDL-based and RESTful services with semantic annotations: The WSMO-Lite Editor and
the MicroWSMO Editor, respectively.

We have identified several characteristics that these tools will need to have in order to
achieve the ambitious objective of the project of having an extremely large number of
services available for consumption. Concretely, our tools will be lightweight and web-based,
useable by both expert and non-expert users, and enabling a community approach towards
modelling. We consider these characteristics are key for reaching a scenario of many
services being deployed.

The detailed design of these tools is then provided, highlighting the functionalities they will
cover and the interactions with other architectural components of SOA4All.

It is worth noting that the current deliverable does not address the Composite Semantic Web
Services Editing Framework, which is treated separately by another task (T2.6, SOA4All
Process Editor).

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 9 of 37

1. Introduction
This deliverable covers the design of the Service Modelling Tools that will be used in
SOA4All in order to enrich service descriptions with semantic annotations. These tools are
necessary in order to enable a world where billions of services are available, which is one of
the main objectives of the project. Hence, the characteristics of these tools will be focused on
the idea that they have to promote the creation of an extremely large number of services.

It is worth noting the close relationship of the tools described herein with the Service
Provisioning Platform to which they belong, described in D2.1.1 [23]. In this deliverable we
explicitly address the two main outcomes of the Platform, i.e., the WSMO-Lite Editor and the
MicroWSMO Editor, which are the tools that will be used to semantically annotate traditional
WSDL-based [2] services and RESTful [10] services, respectively.

1.1 Purpose and Scope
Creating semantic descriptions of services, as envisaged by SOA4All, should be a
lightweight process available for all different kinds of users, in contrast to the previously more
convoluted process that implied applications that were only accessible by experts. Besides,
this process should also permit the gathering of information from communities of users,
resulting in a collaborative modelling and annotating of services.

The scope of the Service Modelling Tools addressed in this deliverable is to enable the kind
of lightweight modelling envisioned by the project. These tools will cover two new levels of
semantics that come from WSMO [4], namely WSMO Lite [8] and MicroWSMO [9], as each
level of semantics is foreseen to require different ways to capture and represent knowledge.

The purpose of this deliverable is to present the major design characteristics of the WSMO-
Lite Editor and the MicroWSMO Editor, in order to allow their development in next steps of
the project.

1.2 Structure of the document
This document is structured as follows:

• This section addresses the purpose and scope, and structure of the document.
Additionally we put the deliverable in context with the rest of the architectural
components of the project and in relation to the Use Cases.

• Section 2 provides a short review on the State of the Art in different flavours of
WSMO, and Service Annotation tools.

• Section 3 gives an overview of our vision on the tools to be developed.

• Section 4 describes the design of the tools, addressing the functionalities of the
Simple SWS Editing Framework and its two major outcomes: The WSMO-Lite Editor
and the MicroWSMO Editor.

• Finally, Section 5 collects the main conclusions of this document.

1.3 Deliverable relation with the architecture of t he project
The Service Modelling Tools addressed in this deliverable are a very important outcome of
the Service Provisioning Platform, which, in turn, is part of the SOA4All Studio. In a nutshell,
the SOA4All Studio is the gateway for the user to SOA4All, as depicted in Figure 1. The tools
described in this deliverable are thus the entry point for SOA4All users when enriching
service descriptions with semantic annotations.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 10 of 37

Figure 1: SOA4All architecture overview

Being the Service Provisioning Platform part of the SOA4All Studio, it will make use of the
Infrastructure Services and UI Components that the SOA4All Studio will provide [31]. These
characteristics are treated with more detail in the Service Provisioning Platform deliverable
[23].

Regarding the tools to be covered by this deliverable, we will focus on the Simple SWS
Editing Framework. It is worth noting that the Composite SWS Editing Framework is
addressed in a different task (T2.6 SOA4All Process Editor, [32]), while we cover here the
enrichment of service descriptions with semantic annotations. The two major outcomes in
this sense are (i) the WSMO-Lite Editor, which enables the semantic annotations over WSDL
Services, and (ii) the MicroWSMO Editor, which permits annotating RESTful services.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 11 of 37

Figure 2: Service Provisioning Platform architecture overview

Figure 2 shows the Simple SWS Editing Framework with its two Editors (note that the
Services Browser component is addressed in D2.1.1 [23], Section 4.3.1), in the context of the
Service Provisioning Platform. It is important to point out the presence of the Framework on
top of the Annotations Recommender, which will be used in order to support the process of
adding annotations.

1.4 Deliverable relation with the use cases
Due to the strong interrelation between this deliverable and the one that addresses the
design of the whole platform, we refer here to deliverable D2.1.1 [23], Section 2.3,
“Alignment with the use cases”, where the relation of the three use case work packages with
the Service Provisioning Platform, and tools such as the ones described herein, is explained.

However, we would like to highlight here the importance of the particular tools addressed in
the present deliverable for the whole project. In order to further align the design of these, we

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 12 of 37

have asked the respective leaders of the case study work packages to identify the likelihood
of these editors -as described in this deliverable- being used. Both editors were assigned at
least a “mid” likelihood by each of the use case work packages, being particularly relevant
the importance of the editor for WS-based services. We summarize in Table 1 these
envisaged connections.

Use Case
WP

WSMO-Lite Editor MicroWSMO Editor

WP7 High Mid

WP8 High High

WP9 Sure Mid

Table 1: Likelihood of the Editors being used by the Use Case WPs

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 13 of 37

2. State of the art
In this section, we provide a brief overview on the state of the art in two particular fields
which are relevant for the deliverable. Particularly, we begin by covering the WSMO variants
that will be covered by the tools, namely WSMO-Lite and MicroWSMO. We also address the
state of the art in tools for the semantic annotation of services, as the purpose of the tools is
to annotate existing services with semantic information to enable better and quicker
discovery, orchestration and mediation.

2.1 WSMO Flavours
Although some efforts have been taken in the direction of enriching traditional Web Services
(based in SOAP [1], WSDL [2] and UDDI [3]) with semantic annotations, like SAWSDL
(Semantic Annotations for Web Services Description Language, [6]), and RESTful services
with microformats, they are far from being a complete approach to fulfil our needs in
SOA4All. Hence, for our purposes in the project, in order to make the desired lightweight
modelling of services possible, the WSMO family of ontologies has expanded to cover two
additional levels of semantics, addressed respectively by WSMO Lite (which is based in
SAWSDL) and MicroWSMO (microformat to annotate RESTful [10] services), which will
enable different methodologies and representations of services

Work package 3 (Service Annotation and Reasoning) will work on these two new WSMO
variants, in order to satisfy the needs of the project. Outside SOA4All –but in close relation to
this project– , the Conceptual Models for Services Working Group1 (CMS WG) is leading the
efforts of building the new WSMO variants on top of WSMO.

We will review now the main characteristics of the three different flavours of WSMO, putting
them in relation to the particular requirements of our project. WSMO Lite and MicroWSMO
will be thoroughly defined and developed in WP3, so it is not our intention to extensively
cover them, but just to give an overview on what do we have to take into account related to
these languages and concerning our tools that deal with them.

2.1.1 WSMO

WSMO (Web Services Modelling Ontology, [4]) is an ontology for describing various aspects
related to Semantic Web services. It is based on the Web Service Modelling Framework
(WSMF, [7]) and refines it through a formal ontology and language (WSML, Web Service
Modelling Language [22]).

WSMO deals with four different main elements for describing semantic Web services,
represented in Figure 3:

1. Ontologies , to provide the terminology used by other elements,

2. Goals , to state the intentions that should be solved by Web services,

3. Web services , to define functionalities and behaviour, and

4. Mediators , to resolve interoperability problems.

1 http://cms-wg.sti2.org/home/

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 14 of 37

Figure 3: Top-level elements of WSMO

WSMO has already been successfully used during several EU funded projects such as DIP2
(Data, Information, and Process Integration with Semantic Web Services) or SUPER3
(Semantics Utilised for Process Management within and between Enterprises), and serves
its purpose of enabling the modelling, execution and monitoring of Semantic Web services.

Regarding SOA4All, the main concerns related to WSMO in conjunction with enabling the
creation of a web of billions of services are in terms of its weight and ease of use, which
would not enable a scenario featuring a widespread creation of services. Consequently, the
need for other lighter versions that could support a service revolution is explained.

2.1.2 WSMO-Lite

Service specifications that exist today formalised in WSDL describe their functionality and the
way in which users can interact with those services. As the number of services exposing their
interfaces in WSDL rises up, a proper automation will be essential to facilitate a reasonable
service discovery. Thus, existing service specifications need to be augmented with semantic
descriptions.

From the need of enriching service specifications, SAWSDL [6] came up, being a W3C
Recommendation since 2007. It provides a bottom-up approach for service modelling, by
supporting the idea of adding small increments on top of WSDL. Hence, SAWSDL is
independent of any particular semantic technology, as it does not define any types, forms or
languages for semantic descriptions.

WSMO-Lite is envisioned as the next evolutionary step after SAWSDL, filling the SAWSDL
annotations with concrete semantic descriptions, and thus embodying the semantic layer of
the Semantic Service Stack [8].

From the point of view of SOA4All, this version of WSMO will help us embrace in a
lightweight fashion a great quantity of services. The modelling tools that we describe in this
document will have to deal with this language, allowing users to easily enrich service
specifications with semantic descriptions.

2.1.3 MicroWSMO

As we have already pointed out, WSMO Lite addresses the issues concerning the
enrichment of traditional Web Services that expose their interfaces using WSDL, in the often

2 http://dip.semanticweb.org/
3 http://www.ip-super.org/

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 15 of 37

called WS-* set of specifications, which use the messaging paradigm and are mostly
deployed within enterprises.

In contrast to this approach, and following a direction that relies on the architectural style of
the World Wide Web, we can find REST (Representational State Transfer [10]) technologies,
which consider Web services as sets of resources accessible through HTTP uniform
interfaces.

MicroWSMO consists of a service ontology for RESTful Web services, and a method for
annotating descriptions of them. In the context of SOA4All, MicroWSMO will be very
important in order to embrace the large quantity of services that, within the Web 2.0, do not
expose their interfaces in WSDL, e.g., mash-ups, gadgets, pipes, etc. MicroWSMO is a
microformat that will enable a lightweight annotation of those resources, hence favouring the
discovery of these kind of services.

Regarding our project, the fact that we will be semantically annotating RESTful services will
be quite beneficial, as it will increase the chances of reaching a world of billions of services
enormously, due to the fact that there is a very important growth in the number of RESTful
services taking place [35].

2.2 Service semantic annotation
We cover here existing state of the art (desktop-based) tools that enable the semantic
annotation of services. In SOA4All we need similar tools exposed like Web 2.0 user
interface, able to deal with the new WSMO variants previously addressed.

2.2.1 Protégé

Protégé4 (Figure 4) is a free, open-source platform that provides a growing user community
with a suite of tools to construct domain models and knowledge-based applications with
ontologies. At its core, Protégé implements a rich set of knowledge-modeling structures and
actions that support the creation, visualization, and manipulation of ontologies in various
representation formats. Protégé can be customized to provide domain-friendly support for
creating knowledge models and entering data. Further, Protégé can be extended by way of a
plugin architecture and a Java-based Application Programming Interface (API) for building
knowledge-based tools and applications.

4 http://protege.stanford.edu/

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 16 of 37

Figure 4: Protégé-OWL editor

The Protégé platform supports two main ways of modeling ontologies:

• The Protégé-Frames editor enables users to build and populate ontologies that are
frame-based, in accordance with the Open Knowledge Base Connectivity protocol
(OKBC) [20]. In this model, an ontology consists of a set of classes organized in a
subsumption hierarchy to represent a domain's salient concepts, a set of slots
associated to classes to describe their properties and relationships, and a set of
instances of those classes - individual exemplars of the concepts that hold specific
values for their properties.

• The Protégé-OWL editor enables users to build ontologies for the Semantic Web, in
particular in the W3C's Web Ontology Language (OWL) [5].

2.2.2 WSMO Studio

WSMO Studio [19] (Figure 5) is an open source Semantic Web Service and Semantic
Business Process modelling environment for the Web Service Modelling Ontology. WSMO
Studio aims to providing a GUI tool that assists the users working in the WSMO domain with
tasks related to semantic web service annotation. It is also an extensible tool and
architecture that will allow third parties to integrate and extend WSMO Studio functionality.

WSMO Studio is an Eclipse-based application (and hence a desktop application as well), and
supplies the following functionality:

• Creating WSMO descriptions of ontologies, goals, web services and mediators

• Export and import of the WSMO descriptions (supported languages and formats are
WSML, WSML-XML and OWL-DL)

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 17 of 37

• Front-end to service, goal, mediator and ontology repositories (such as IRS-III [36] or
WSMX [37])

• SAWSDL editor for adding semantic annotations to WSDL documents

• Front-end to service discovery components providing goal based semantic service
discovery

Figure 5: WSMO Studio SWS Choreography Editor

2.2.3 WSMT

The Web Service Modeling Toolkit5 (WSMT) (Figure 6) is a collection of tools for Semantic
Web Services intended for use with the Web Service Modeling Ontology (WSMO), the Web
Service Modeling Language (WSML) and the Web Service Execution Environment (WSMX).

5 http://sourceforge.net/projects/wsmt

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 18 of 37

Figure 6: The Web Service Modeling Toolkit: WSML Visualizer

It is also Eclipse-based and therefore a desktop application. WSMT functionalities include:

• Collaboration with Semantic Execution Environment (SEE) [21]

• WSML visualizer

• WSML reasoner

• Semantic Highlighting

• WSMX Data Mediation Mapping Tool

• Management of WSMX via JMX

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 19 of 37

3. Service Modelling Tools: Overall Vision
Enriching Web Services with semantic annotations is a convoluted process that only experts
in the field can perform. In order to fulfil the objective of SOA4All, “enabling the SOA
revolution on a world-wide scale”, thus enabling to realize a web of services interconnecting
billions of them, we need to enormously lighten the process of semantically annotating
services. By developing efficient service modelling tools that many users will be able to deal
with, we will be favouring the creation of a truly large number of semantic web services.

What SOA4All is promoting is a new service-modelling paradigm, based in the new versions
of WSMO, where different kinds of users will be able to model the semantics of different
types of services in a lightweight fashion. The scope of this deliverable is to design these
tools so that they can really fulfil the requirements of a web-scale service revolution.

Furthermore, the actual paradigm involves expert users modelling services in desktop-based
applications, but there is a need to enable different types of users, namely experts and non-
experts, in the process of modelling services. In the service-modelling paradigm that we are
promoting, the importance of the users will be highlighted by lowering the entry barrier in
order to permit a straightforward semantic annotation of services, quite beneficial for our
objectives in the project of enabling billions of them.

We will approach the definition of the characteristics of the tools by identifying trends in other
fields that are relevant for our work. In particular, in the software sector, we have identified a
trend towards offering software solutions more as a service, accessible via Internet, rather
than as a product. This approach is the Software as a service (SaaS, [26]) model, where
services are provided to customers across the Internet, and which is being widely adopted. In
this line, Cusamano [27] points out the tendency among software vendors that are shifting
from product revenues to embracing services. This actually means that software that allows
users to perform different activities does not necessarily need to be installed in the user’s
computer, but accessible by the web via a browser instead. Hence, SaaS alleviates the
customer's burden of software maintenance, ongoing operation, and support.

This will be the case for our service modelling tools, which will not be a product that a user
has to install, but a service itself to which the user will connect through the Internet. This is
especially consistent with the way the information flows in the Internet nowadays, as we have
noticed how distinction between providers and consumers has blurred so much that the term
prosumer (coined by Alvin Toffler, [28]) is being increasingly used. In the Web2.0, users have
no longer a passive role, but they are generating content in many different ways. Following
the same approach as the one with content, within WP2 we want to promote a new role
within the service world: the “service prosumer”, which is a central role that the users will play
during the overall life-cycle of services (that covers provisioning [23], consumption [25] and
analysis [24]). To make that possible, we will need to stress Web2.0 characteristics, such as
different kinds of users being able to contribute new services in a community-driven fashion.

Bearing these aspects in mind, we can highlight the characteristics that the tools will have, in
order to fulfil our requirements of the project:

- We will need lightweight tools ubiquitously available.

- Not only expert, but also non-expert users will be able to use these tools in a simple
fashion.

- The new tools will enable a community-oriented approach to modelling.

The following Table 2 roughly depicts the actual situation of these characteristics in relation
to service modelling, and the general tendencies that can be found in Internet today. In
SOA4All, we will combine the power of service modelling with the advantages from the web
tendency approach.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 20 of 37

Characteristic In Service Modelling Web Tendency

Weight of tools
(regarding the user)

Desktop-based
heavyweight tools.

Web-based lightweight
tools.

Type of users Expert. Expert and non-expert.

Individual vs.
community

Individual. Individual and
community-based.

Table 2: Service modelling and web tendency characteristics

It is important to note that when we refer to the weight of the tools, we are doing it from the
perspective of the user. In fact, while web-based applications appear to be lightweight for the
user, they actually are heavier than their desktop counterparts, just considering the backend
infrastructure required for dealing with a huge number of users, etc. However, what we are
concerned about in this particular work package is with the experience of the user, so despite
being complex applications with a strong backend, we consider them lightweight regarding
the interactions of SOA4All users.

Additionally, when we talk about expert and non-expert users, we are of course referring to
their experience within the particular field being discussed. For example, a user might be an
expert in biomedicine, but have no experience in service-modelling, and hence he would fall
into the non-experts group when catalogued based on that particular field. Therefore, when
we say that non-expert users will be able to model services, it means that users that have not
modelled services before will be able to do it with our new tools.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 21 of 37

4. Modelling Tools Design
The Service Modelling Tools described in this deliverable will allow SOA4All users to
annotate services, both WSDL-based and REST-based, in the Service Provisioning Platform.
Please note that the composition of services is out of scope of this task, and it is currently
addressed within T2.6 (SOA4All Process Editor, [32]).

In this Section, we will explain first the main characteristics of the Simple (as opposed to
Composed) Semantic Web Services Editing Framework (Section 4.1). Then we will cover the
characteristics of the two main outcomes of this Framework: The WSMO-Lite Editor (Section
4.2), and the MicroWSMO Editor (Section 4.3), which provide environments for providing
semantic annotations over traditional Web Services based in WSDL and over RESTful
services, respectively.

4.1 Simple SWS Editing Framework
Apart from the Services Browser component addressed in D2.1.1 ([23], Section 4.3.1), the
Simple SWS Editing Framework consists of two main components, that we will review in the
next two subsections: the WSMO-Lite Editor and the MicroWSMO Editor. However, it is
worth noting that from the technical point of view and regarding their inclusion within the
SOA4All Studio, and the Service Provisioning Platform in particular, these two editors share
some characteristics that we address here.

First, the tools described in this deliverable will be able to make use of the underlying
SOA4All Studio Infrastructure Services and UI Components developed in T2.4 [31],
leveraging their services for storage, communication, user management, etc., as well as
some useful UI widgets.

Additionally, the inclusion of these tools as part of the SOA4All Studio will place some
technical requirements on them. Deliverable DX-UI [18] analyses different Rich Internet
Applications (RIAs) and justifies the election of Google Web Toolkit (GWT) as the framework
to be used in order to support the various functionalities that SOA4All will give (with
additional functionalities from the Ext-GWT framework [31]). In the words of their own
developers [30], GWT’s mission is “to radically improve the web experience for users by
enabling developers to use existing Java tools to build no-compromise AJAX for any modern
browser”. This means that we will use the Java programming language to build web
applications (in our case, the Service Modelling Tools), as GWT cross-compiles the code into
optimized JavaScript that automatically works across all major browsers.

The following picture (Figure 7) depicts the types of communications within SOA4All and
shows how the editors of the Simple SWS Editing Framework will communicate with other
architectural components of the project. Components in the SOA4All Studio such as the
aforementioned ones of T2.4 will be accessed via direct Java calls, while the
communications with external components will be done through DSB normalised messages.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 22 of 37

Figure 7: Communication Types in SOA4All

4.2 WSMO-Lite Editor
This section describes in detail the WSMO-Lite Editor, part of the SOA4All Studio. The main
function of the component is to provide flexible and user-friendly visual environment for
creating semantic web service descriptions starting from classical WSDL services. Being
targeted to non-technical expert users, the tool relies on traditional UI components (forms,
trees, context menus, etc.) to build comprehensive model representation. The
implementation will make use of the rich UI widget library provided by D2.4.1 [31] for building
the representation layer as well as the infrastructural services to support the data exchange
process.

4.2.1 WSMO-Lite Editor Requirements

Here we identify several important functional requirements for this component. First of all, it
should provide instruments for creating semantic annotations on plain services and at the
same time it must be capable to detect pre-existing semantic annotations of services and to
support any further editing operations. Thus, the WSMO-Lite Editor must support two types
of input artefacts – WSDL service descriptions and SAWSDL annotations over WSDL. These
two types of descriptions are retrieved from the DSB with the assistance of the Annotations
Recommender (D2.1.1 [23], Section 4.3.2). The outcome of the editor represents fully or
partially semantically annotated web service descriptions (in SAWSDL). The result is stored
in the SWS Library accessible through the DSB.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 23 of 37

Another important aspect in the requirements for the editor component is building
comprehensive representation model of the editing objects. Going beyond the toy examples,
the service descriptions contain a lot of information with many technical details, which makes
them hard to read/explore. On the other hand, not all of it is relevant for the annotation task
and might be ignored. To cover this requirement the editor must be capable to filter out the
content restricting the representation to the minimal set of relevant elements. Then on user
demand, more detailed information can be visualized.

The management of domain ontology resources (use for annotation) is also an important
issue. The UI must provide clear and intuitive taxonomy representation to facilitate the user
in locating the desired information. Additionally, there should be an easy way to gain access
to ontological information depending on the user access rights.

The following table summarizes all requirements that have been described along with their
priority.

ID Name Priority
(1=high, 10=low)

WLE-1 Annotation of plain services 1

WLE-2 Editing existing annotations 1

WLE-3 Adequate visual service representation 2

WLE-4 Comprehensive domain model visual
representation

4

Table 3: Summary of WSMO-Lite Editor Requirements

The focus of the following sections is visual design and functional specification of the
WSMO-Lite Editor.

4.2.2 WSMO-Lite Editor Use Cases

The following diagram (Figure 8) summarizes the major aspects of the WSMO-Lite Editor’s
functionality described in next sections.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 24 of 37

Figure 8: WSMO-Lite Editor usecases

4.2.3 Functional Specification and Graphical User I nterface of the WSMO-Lite Editor

The WSMO-Lite editor is implemented in a light-weight Web 2.0 style, on top of the visual
component provided by D2.4. For service descriptions and ontology representation, the
Taxonomy Selector widget (D2.4, section 3.5.5) will be deployed. Other widgets like Search
& Result Handler, Fault Handler, Help System will further support the annotation process.

Figure 9 outlines the visual appearance of the editor component with its supporting views.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 25 of 37

Figure 9: WSMO-Lite Editor

The editor area represents the service description content in a tree style filtering the
irrelevant details (for the annotation process). The nodes of the tree correspond to various
parts of the description like data-model types and elements, interfaces, operations and
corresponding input and output specifications. Apart from the pure WSDL elements, the view
reveals any semantic annotations already created for the service. This includes links from
schema types and elements to ontology elements (including lifting and lowering
specifications), service and/or operation classification, assignment of semantic capabilities
and others.

There are several fundamental editing operations which are supported here:

• Adding references from schema types and elements to ontology elements

• Adding lifting and lowering transformation references for schema types and elements

• Adding categorization annotation for interfaces and operations (pointing to ontology
elements)

• Adding semantic capability annotation for interfaces and operations (referring to
reusable precondition and effect definitions in a semantic model)

• Removing any kind of semantic annotations and transformation specifications

These operations are realized in the GUI by context menu actions on certain selection
sensitive elements. The environment offers all applicable operations depending on the usage
context. Alternatively, Drag and Drop techniques might be utilized for adding annotations.

An important sub-component for the annotation process is the Semantic Models view. It
provides a front-end view for the ontologies used for annotation. The representation reveals
the ontologies content in tree-like structures, facilitating the user to locate and use certain
semantic model elements. The elements of this view can be dragged directly to the editor

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 26 of 37

area and dropped on certain elements establishing model references. The basic
management operations over ontologies in this view are retrieval and deletion. The content
of the view is preserved between the working sessions of each user.

During the process of annotation, the WSMO-Lite Editor provides basic completeness and
consistency validation support. A reflection of this functionality is a Validation Reports view
containing a (possibly empty) list of problematic issues report. This view and the editor
component are interconnected assisting the user in locating/identifying problematic spots in
the document.

The rest of the UI components more or less contribute to the annotation process, like simple
editing operations (copy / paste / undo / search), annotation result preview in the Preview
Panel, additional resources management (open / close).

4.3 MicroWSMO Editor
The MicroWSMO Editor is a user interface component and is a part of the Provisioning
Platform. Its main functionality is to enable the user to create, edit, and delete MicroWSMO
service annotations by retrieving and visualizing data from the Annotations Recommender
(D2.1.1 [23] Section 4.3.2) and the Distributed Service Bus (DSB). The following sections
describe the editor’s architecture, use cases and suggested user interface.

The MicroWSMO Editor consists of three main components, as seen in Figure 10. The
Visualization component implements functionalities, necessary for the proper graphical
representation of the annotations, including colour-schemes, visualization patterns,
representation of the toolbar and service-property representation rules. This component is
not shared with the WSMO-Lite Editor because the visualization requirements for a RESTful
service differ greatly from those for a WSDL service. RESTful services require that the HTML
descriptions of the APIs are pre-processed, in order to identify and highlight service
operations and properties. WSDL descriptions, on the other hand, require that a tree view of
the XML elements is build.

The Interaction component controls data type and information flow between the editor and
other components, such as the Annotations Recommender and the SWS Repository,
accessible through the DSB. It processes user requests, retrieves the necessary data and
pre-processes it for the visualization component. The Navigation component, on the other
hand, controls the sequence of activities, which the user can perform by specifying
requirements and effects of a given user action. For example, the user cannot save an
annotation, without assigning a domain to the service, and the result has to be a saved
service annotation.

Figure 10: Components of the MicroWSMO Editor

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 27 of 37

4.3.1 MicroWSMO Editor Requirements

The here described design of the MicroWSMO Editor is based on a number of requirements
and restrictions, which determine its main components and functionalities. First, the editor
has to enable the user to manipulate all MicroWSMO service properties. These include the
REST service URI, all its operations, with corresponding addresses, HTTP methods,
parameters and input/output data formats and labels. Also, the user has to be able to create
new MicroWSMO annotations, to edit them and, if necessary, to delete them.

Considering the data flow and its processing, each semantic service description should have
a reference to the user, who created it, and to the service, WSDL or REST, on which it is
based, and vice versa. This enables the usage of three separate distributed repositories for
storing the SWS, the Crawled Data and the User Profiles, as opposed to having only one,
heavy-weight repository

In addition, the chosen technology also imposes restrictions on the design of the editor. The
MicroWSMO Editor will reuse some of the technology of Magpie [33][34], which is a
Semantic Web browser that enhances the browsed text with semantic information. In
particular, Magpie’s communication model and infrastructure will be reused, which impose
some additional restrictions on the implementation of the editor. All of these requirements are
reflected in the architecture, the functionality and the user interface of the component.

The following table summarizes all requirements that have been described along with their
priority.

ID Name Priority
(1=high, 10=low)

MWE-1 Indentify MicroWSMO Properties 1

MWE-2 Create a new MicroWSMO Annotation
(equivalent to edit existing MicroWSMO

annotation)

1

MWE-3 Delete existing MicroWSMO Annotation 4

MWE-4 Cross-reference between the semantic
annotation, the service description and the user

1

MWE-5 Adaptation of Magpie technical requirements 2

MWE-6 Visual service representation of HTML and
hREST

2

MWE-7 Visual representation of the RESTful service
properties

2

MWE-8 Validation of annotation’s completeness 4

Table 4: Summary of MicroWSMO Editor Requirements

4.3.2 MicroWSMO Editor Use Cases

The component architecture of the MicroWSMO Editor implements three main use cases,
necessary for the manipulation of MicroWSMO service annotations. These use cases are
described in the UML diagram in Figure 11.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 28 of 37

Figure 11: MicroWSMO Use Cases

First, the user can Create a New Service Annotation. While browsing through the services,
the user may find a service without any metadata and may choose to annotate it. Second,
the user may find errors or inaccuracies in existing annotations, which can be corrected
during the Edit an Existing Service Annotation use case. Finally, some service annotations
become obsolete with time because the functionality of the service undergoes major changes
or it does not exist anymore. In these cases, it is necessary to be able to Delete a Service
Annotation. These three main use cases require access to the Annotations Recommender
Component (detailed description in D2.1.1 [23] Section 4.3.2), which assists the user by
suggesting possible annotations, to the SWS Library and to the Crawled Data, which are
facilitated by the DSB.

4.3.2.1 Create New Service Annotation

Create New Service Annotation is performed when a user wants to add semantic information
to a service without any previous metadata. This requires that the MicroWSMO Editor
retrieves the REST service description and related documents, such as service API text
description, implementation recommendations and blog entries, from the Crawled Data
(D5.1.2) repository and visualizes them. The visualization is done in a RESTful-specific
manner, as opposed to a WSDL-specific one, by presenting the data based on the API
description. In addition, the pre-processed data from the Annotations Recommender also has
to be retrieved and represented using colour- and font-schemes, which assist the user in
recognising service properties. For example, parameter names and method names should
be highlighted, so that they can be easily visually identified. After this, data retrieval and
visualization step is completed, the user has to validate the domain and classification
automatically assigned to the service during the Annotations Recommender Preprocessing
phase. If one of the descriptions is inaccurate, the user can change it by choosing from a
precompiled rated list (Annotations Recommender Preprocessing phase) of the top five
possible suggestions. Once this is completed, the user can choose one of the domain
ontologies suggested by the Annotations Recommender (For details on the domain ontology
recommendation process, refer to D2.1.1 Section 4.3.2). The list of domain ontologies is
rated and includes a short description, as well as a summary of its main concepts. This is
necessary in order to ensure that the user has enough information to pick the suitable
domain ontology. Figure 12 visualizes the main activities involved in the Create New Service
Annotation use case.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 29 of 37

Figure 12: Activity Diagram "Create New Service Annotation"

After the user chooses a domain ontology, each of the service properties can be annotated
based on this ontology’s concepts. The service properties, including the name of the service,
its address, operation names, parameter names, input and output types are identified by the
Annotations Recommender during a service data pre-processing step. However, some of the
properties could have been missed or falsely identified. Therefore, during this activity, the
user has the option to change them, by making a text selection and choosing from the
context (right-mouse click) menu whether the text is a service property or not, and what type.
This then results in automatically updating the hREST [35] mark-up of the text, which is the
basis for the resulting MicroWSMO annotation.

If all service properties can be annotated by using the chosen domain ontology, then the user
may do so and save the resulting annotated service. However, in some cases a service
property cannot be described by any of the concepts of the domain ontology. If this occurs,
the user can ‘locally’ extend the ontology by, for example, introducing a new concept, which
is stored together with the service annotation and does not really modify the chosen domain

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 30 of 37

ontology. Naturally, if the user has the access right, he can modify the ontology to better be
able to describe the service and then use it for the actual annotation.

A summary of input and output artefacts in the Create New Service Annotation is given in
Table 5. The only required input information is the Service ID and the User ID. The use case
results is a Saved Annotated Service, which is confirmed to the user by displaying the
SWSId, after the “save” button is pushed. It is important to point out, that similarly to the
domain ontology not being able to describe all service properties, in some cases the
classification taxonomies and the ontology of service domains need to be modified and
extended. The user can edit the taxonomies and the ontology used for assigning a domain to
a given service, by downloading them, editing them on his computer and uploading them to
the Provisioning Platform.

Use Case Input
Information

Output
Information

Preconditions and
Effects

Comments

Create New
Service
Annotation

-Service ID

-User ID (from
the active
user)

-Saved Annotated
Service, which is
represented by a
SWSId

Access to the Semantic
Web Services Registry
and to the Crawled Data
is required. Access to
the Annotations
Recommender is
required.

The Annotate Service
Properties, as well as the
validations of the service
domain and classification,
include options for
providing annotations not
included in the
recommendation list and
options for extending the
suggested
ontologies/taxonomies.

Table 5: Artefacts in the “Create New Service Annotation” Use Case

4.3.2.2 Edit Existing Service Annotation

The Edit Existing Service Annotation is performed in a very similar way to the Create New
Service Annotation. Based on the lifecycle of semantic web services, specified in D2.1.1
Section 4.2, one service (WSDL or REST) has a multitude of corresponding semantic
descriptions, created by different users. In addition, the editing of a MicroWSMO description
is equivalent to creating a new semantic description with the user as owner6. This is done in
order to prevent the case, in which a SWS is already used in processes, after which the SWS
description is modified, causing the processes no longer to be executable.

4.3.2.3 Delete Service Annotation

In some cases, semantic service descriptions become obsolete. In order to facilitate the
discovery of up-to-date services, based on accurate annotations, the user has to be able to
delete semantic descriptions of services, which no longer exist or whose functionality has
drastically changed. The deletion of a service semantic description requires the SWS ID and
the user ID as input, since users are allowed to delete only annotations, of which they are the
owner and which are not used in any service compositions. Table 6 includes a short
overview of the use case’s artefacts, preconditions and effects.

Use Case Input
Information

Output
Information

Preconditions and
Effects

Comments

Delete
Service
Annotation

-Service
Annotation ID

- Confirmation
for Deleted
Annotation

There needs to be a
method for verifying which
user is allowed to delete
which annotations. Initial

The deletion of an
annotation involves not
only the removal from the
Semantic Web Services

6 A user is the owner of a semantic annotation if he/she created it.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 31 of 37

- User ID approach: a user is
allowed to delete only his
own annotations.

Registry but also the
deletion from the
document holding the
service to annotations
relations, since one
service can have multiple
annotations.

Table 6: Artefacts in the “Delete Service Annotation” Use Case

A new functionality, which has to be implemented in this use case, is the verification whether
a user is allowed to delete a semantic service description or not. This includes a user
verification functionality, since a user is allowed to delete only services, of which he is the
owner. In addition, a function that checks if a service description is used in any composite
process also needs to be provided. As shown in Figure 13, if the user has no permission to
delete the annotation, an error message is displayed. On the other hand, if deletion is
possible, the user first has to confirm that he is certain that the annotation should be
permanently removed, after which the deletion is performed.

Figure 13: Activity Diagram "Delete Service Annotation"

The following section identifies the main MicroWSMO Editor visualization elements and
shows some graphical mockups of the editor.

4.3.3 Functional Specification and Graphical User I nterface of the MicroWSMO Editor

The MicroWSMO Editor will be implemented in an extra free-flowing widget, which will be
dockable in the main browser window of the SOA4All Studio. In this way, the user can
position and resize it accordingly. The MicroWSMO Editor components are somewhat
different from the WSMO-Lite ones because of the specific nature of the services, which are
to be annotated. First, RESTful services are usually represented by a HTML description of

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 32 of 37

the API. This requires that HTML is visualized and that service properties and operations are
highlighted for the user. In contrast, WSDL service visualization is done by building an XML
tree of the service’s properties. Therefore, the visualization of a RESTful service could be
compared to a web browser, while the visualization of a WSDL service to an XML editor.
Second, while in WSDL service properties are clearly identified, the annotation of RESTful
services requires an additional initial step for identifying service properties and operations.

The Semantic Models window will consist of four expandable/collapsible sections for
displaying the service domain, classification, domain ontology and annotated properties. In
addition, the editor implements a context menu for marking service properties or removing
falsely identified ones. Each service property will be graphically highlighted (colour and font)
and will include a drop-down menu for direct annotation. The service properties’ annotations
can also be viewed and edited in the main MicroWSMO Editor window, in the Properties
section. Similarly to the WSMO-Lite Editor, the MicroWSMO Editor includes a Preview Panel,
which shows the actual HTML and the inserted hREST tags, and a Validation Reports panel.
It is important to point out that the validation for completeness of the service annotations can
be done only on the basis of the identified properties. If the service description contains
some additional properties and these are not marked as such, then they will also not be
considered in the completeness validation process. Figure 14 provides an overall mockup
visualization of the MicroWSMO editor.

Figure 14: MicroWSMO Editor

The following figures (Figure 15, Figure 16, Figure 17) visualize the process of creating a
new semantic service description. First, the user has to verify the automatically assigned
domain and classification to the service (Telecommunication and Localization Taxonomy). If
these are not accurate, they can be changed by choosing from the list of suggestions (-
Marketing, Entertainment, City Guide, -Favorites Taxonomy).

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 33 of 37

Figure 15: Verifying the Service’s Domain And Classification

Figure 16 shows how the user can choose a domain ontology and use it to annotate the
highlighted service properties. For example, an Event Ontology can be used to annotate the
username parameter as a participant.

Figure 16: Choosing a Domain Ontology

The user can view and edit already annotated properties, in the Properties section of the
MicroWSMO Editor (Figure 17).

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 34 of 37

Figure 17: Annotating Service Properties

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 35 of 37

5. Conclusions
In this deliverable, we have addressed the general design characteristics for the Service
Modelling Tools used in SOA4All within the context of the Simple Semantic Web Services
Editing Framework of the Service Provisioning Platform.

In order to reach an efficient design of the tools, we have begun by sketching our vision on
what characteristics should the tools have in order to satisfy the envisaged use cases,
namely that they should be lightweight and web-based tools, useable by different kinds of
users, both experts and non-experts, and enabling a community-oriented approach towards
modelling.

Finally, we have specified our first general design characteristics for these tools, addressing
the general Framework and the two main outcomes, the WSMO-Lite Editor and the
MicroWSMO Editor.

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 36 of 37

6. References
[1] World Wide Web Consortium, W3C: Simple Object Access Protocol, SOAP, Version

1.2 Part 0: Primer, (2003). Web site: http://www.w3.org/TR/soap12-part0/).

[2] World Wide Web Consortium, W3C: WSDL: Web services Description Language
(WSDL) 1.1, (2001). Web site: http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[3] World Wide Web Consortium, W3C: Universal Description, Discovery and Integration:
UDDI Spec Technical Committee Specification v. 3.0, (2003). Web site:
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm.

[4] WSMO Working Group, D2v1.0: Web Service Modeling Ontology (WSMO). WSMO
Working Draft, 2004. Web site: http://www.wsmo.org/2004/d2/v1.0/

[5] OWL-S Coalition: OWL-S 1.1 release. (2004). http://www.daml.org/services/owl-s/1.1/

[6] World Wide Web Consortium, W3C: Semantic Annotations for WSDL and XML
Schema. W3C Recommendation (August 2007). Web site:
http://www.w3.org/TR/sawsdl/

[7] D. Fensel and C. Bussler: The Web Service Modeling Framework WSMF, Electronic
Commerce Research and Applications, 1(2), 2002.

[8] T. Vitvar, J. Kopecký, M. Zaremba, and D. Fensel. WSMO-Lite: Lightweight
Descriptions of Services on the Web. In Proceedings of the IEEE European Conference
on Web Services, Halle (Saale), Germany, 11 2007. IEEE Computer Society.

[9] J. Kopecký, T. Vitvar, and D. Fensel. MicroWSMO: Semantic Description of RESTful
Services. WSMO Working Draft (February 2008).

[10] R. T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000. Chair-Richard N.
Taylor.

[11] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, (2003). Web services: Concepts,
architectures and applications. Springer Verlag.

[12] J. Vogel, L. Xu, F. Schnabel, R. Krummenacher, S. Abels, R. Gonzalez, A. Mos, N.
Mehandjiev, L. Cekov, G. Ripa, and M. Villa: State of the Art Report and Requirements
for Service Construction, Project Deliverable D6.1.1, EU FP7 SOA4ALL project, August
2008.

[13] Object Management Group: Business Process Modeling Notation Specification (2006)

[14] Workflow Management Coalition: XML Process Definition Language

[15] D. Jordan et. al., Web Services Business Process Execution Language Version 2.0,
OASIS Standard (2007)

[16] A. Arkin et. al., Web Service Choreography Interface (WSCI) 1.0, W3C Note (2002)

[17] D. Beckett, B. McBride, RDF/XML Syntax Specification, W3C Recommendation (2004)

[18] S. Abels, L. Chekov, N. Mehandjiev, G. Álvaro, and C. Ruiz, Holistic User Interface
Design, Project Deliverable DX-UI, Holistic User Interface, EU FP7 SOA4ALL project,
August 2008.

[19] M. Dimitrov, A. Simov, M. Konstantinov, L. Cekov, V, Momtchev, WSMO Studio Users
Guide, July 2007. http://www.wsmostudio.org/

[20] V. K. Chaudhri, A. Farquhar, R. Fikes, P. Karp, J. Rice, Open Knowledge Base
Connectivity, April 1998, http://www.ai.sri.com/~okbc/spec.html

 SOA4All –FP7 – 215219 D2.1.2 Service Modelling Tools Design

© SOA4All consortium Page 37 of 37

[21] A. Mocan, E. Cimpian, M. Moran, E. Della Valle, Semantic Execution Environment,
April 2006.

[22] N. Steinmetz, I. Toma. Web Service Modelling Language (WSML) Reference. Final
Draft (August 2008).

[23] S. Dietze, C. Pedrinaci, A. Gugliotta, P. Merle, I. Martínez, G. Álvaro, C. Ruiz, M. Villa,
S. Abels: Service Provisioning Platform Design, Project Deliverable D2.1.1, EU FP7
SOA4ALL project, August 2008.

[24] R. González-Cabero, C. Pedrinaci, J.M. Gómez, C. Ruiz, C. Hamerling, A. Mos, S.
Abel: Service Monitoring and Management Tool Suite Design, Project Deliverable
D2.3.1, EU FP7 SOA4ALL project, August 2008.

[25] G. Álvaro, S. Abels, N. Mehandjiev and M. Villa: Service Consumption Platform Design,
Project Deliverable D2.2.1, EU FP7 SOA4ALL project, August 2008.

[26] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay, M. Munro: Service-Based
Software: The Future for Flexible Software. (1999)

[27] M. A. Cusamano: The Changing Software Business: Moving from Products to Services,
Computer, vol. 41, no. 1, pp. 20-27. (January 2008)

[28] A. Toffler: The Third Wave. Bantam Books ISBN 0-553-24698-4. (1980)
[29] http://www.eclipse.org/stp/
[30] http://code.google.com/webtoolkit
[31] S. Abels et al. SOA4All Studio First demonstrator + Interface Specification, D2.4.1, EU

FP7 SOA4ALL project, February 2009
[32] J. Vogel et al., Specification of the SOA4All Process Editor, D2.6.1, EU FP7 SOA4ALL

project, February 2009
[33] M. Dzbor, E. Motta, J. Domingue.: Magpie: Experiences in supporting Semantic Web

browsing. Web Semantics: Science, Services and Agents on the World Wide Web 5
(2007) 204—222

[34] M. d'Aquin, E. Motta, M. Dzbor, L. Gridinoc, T. Heath, M. Sabou.: Collaborative
Semantic Authoring. IEEE Intelligent Systems 23 (2008) 80—83

[35] J. Kopecky, K. Gomadam, and T. Vitvar, hRESTS: An HTML Microformat for
Describing RESTful Web Services, Kno.e.sis tech. report, Wright State Univ., 2008.

[36] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Norton, and C.
Pedrinaci. 2008. IRS-III: A broker-based approach to semantic Web services. Web
Semant. 6, 2 (Apr. 2008), 109-132.

[37] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. 2005. WSMX - A Semantic
Service-Oriented Architecture. In Proceedings of the IEEE international Conference on
Web Services (July 11 - 15, 2005). ICWS. IEEE Computer Society, Washington, DC,
321-328.

