

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D1.5.2 Setup SOA4All Testbeds

Activity N: Activity 1 – Fundamental and Integration Activities

Work Package: WP1 – SOA4All Runtime

Due Date: M18

Submission Date: 14/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: Hanival

Revision: 1.0

Author(s): Bernhard Schreder HANIVAL
 Reto Krummenacher UIBK
 Sven Abels TIE
 Tomás Pariente ATOS
 Marc Richardson BT
 Matteo Villa TXT
Giovanni Di Matteo TXT

Reviewers: Alex Simov ONTOTEXT
Maurilio Zuccalà CEFRIEL

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 2 of 35

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 15/07/09 ToC Bernhard Schreder (Hanival)

0.2 27/07/09 Section 5 added Sven Abels (TIE)

0.3 27/07/09 Added section on metrics, updates to
service templates

Bernhard Schreder (Hanival)

0.4 28/07/09 Updates to all sections Bernhard Schreder (Hanival)

0.5 30/07/09 Updates to Sections 2 and 3 Bernhard Schreder (Hanival)

0.6 05/08/09 Section 6 added Reto Krummenacher (UIBK)

0.7 08/08/09 Updates to Sections 2 and 3 Bernhard Schreder (Hanival)

0.8 13/08/09 Updates to Section 6 Reto Krummenacher (UIBK)

0.9 17/08/09 Updates to Sections 2 and 3 Bernhard Schreder (Hanival),
Reto Krummenacher (UIBK)

0.10 20/08/09 Updates to all sections All

0.10.1 26/08/09 Review Alex Simov (Ontotext)

0.10.2 26/08/09 Review Maurilio Zuccalà (CEFRIEL)

1.0 01/09/09 Integration of review comments, Final
version for submission

Bernhard Schreder (Hanival)

1.1 14/09/09 Final editing Malena Donato (ATOS)

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 3 of 35

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE __ 7

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

1.3 ALIGNMENT TO SOA4ALL EVALUATION ______________________________ 8

2. TESTING METRICS AND GOALS __ 9

2.1 FUNCTIONAL TESTING __ 9

2.1.1 Metrics & Validation Methods _______________________________________ 9

2.2 PERFORMANCE AND SCALABILITY TESTING _________________________ 11

2.2.1 Performance Model Parameters ____________________________________ 12

3. SETUP OF THE TESTBED INFRASTRUCTURE ____________________________ 14

3.1 REQUIREMENTS ANALYSIS UPDATE ________________________________ 14

3.1.1 End-user Integrated Enterprise Service Delivery Platform ________________ 14

3.1.2 W21C BT Infrastructure __ 16

3.1.3 C2C Service eCommerce ___ 18

3.2 PLUG-IN DEVELOPMENT __ 20

3.2.1 RESTful Service generation Plug-in _________________________________ 20

3.3 SERVICE TEMPLATES __ 22

3.3.1 WSDL Services ___ 22

3.3.2 REST Services ___ 22

4. SOA4ALL BUILD ENVIRONMENT _______________________________________ 24

4.1 CONTINUOUS INTEGRATION BUILD SYSTEM _________________________ 24

4.2 TESTBED BUILD TARGETS __ 26

5. SOA4ALL RUNTIME TEST ENVIRONMENT _______________________________ 27

5.1 SOA4ALL DEPLOYMENT PLAN _____________________________________ 27

5.2 DEPLOYMENT POSSIBILITIES______________________________________ 29

6. CONCLUSIONS __ 31

7. REFERENCES ___ 32

ANNEX A. __ 33

ANNEX B. __ 34

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 4 of 35

List of Figures
Figure 1 : Web21C BT Infrastructure Scenario 1 ..16

Figure 2 : Web21C BT Infrastructure Scenario 2 ..17

Figure 3: Updated C2C eCommerce scenario ..19

Figure 4 : The SOA4All build system ..24

Figure 5: Checkins and Modules ..25

Figure 6: Build history ...26

Figure 7: Test execution and test result overview ...26

Figure 8: SOA4All large-scale deployment possibilities ..28

Figure 9: Schema for a GENESIS testbed configuration ...33

List of Tables
Table 1: Technical Evaluation of the SOA4All components ..10

Table 2: Test Web Services from the WP7 storyboard ...15

Table 3: Test Web Services from the WP8 storyboard ...17

Table 4: Test Web Services from the WP9 storyboard ...19

List of Listings
Listing 1: Service template for a WSDL based WS ...22

Listing 2: Service template for a RESTful WS ...23

Listing 3: Resource definition for a RESTful WS ...23

Listing 4: Genesis Testbed Configuration for WP9 ...35

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 5 of 35

Glossary of Acronyms

Acronym Definition

API Application Programming Interface

D Deliverable

DSB Distributed Service Bus

EC European Commission

ES Enterprise Service

EU European Union

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

OSS Operations Support System

REST Representational State Transfer

SOA Service Oriented Architecture

SUT System under Test

URI Uniform Resource Identifier

WADL Web Application Description Language

WAR Web Application Archive

WP Work Package

WS Web Service

WSDL Web Service Description Language

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 6 of 35

Executive summary
Task 1.5 is concerned with the technical evaluation of the project, and its results can be used
to validate the major technical objectives of SOA4All, including scalability and performance of
the developed solutions. In this deliverable, we continue with the development and
deployment of a testbed environment for SOA4All, which was first described in deliverable
D1.5.1. This deliverable thus describes the different activities to realise a testbed
environment and is separated in four main sections.

First, the overall objectives of evaluation and testing are summarized, and guidelines as well
as metrics for the functional testing and the performance and scalability evaluation of the
project results are proposed. The remainder of the deliverable then focuses on the three
main enablers to facilitate the testing and evaluation activities.

The testbed infrastructure enables testers and component owners to define configurable
testbeds and services according to a collection of service templates, which are described in
this deliverable and are aligned to the SOA4All Use Case storyboards.

The second major part of the testing facilities describes the general build environment for
SOA4All, based on the continuous integration tool Hudson. The testbed infrastructure is
connected to this build environment via the definition of concrete build targets for the setup of
testbeds and ensuing integration tests.

Finally, the evaluation of the SOA4All runtime is based on the deployment and management
of nodes of the Distributed Service Bus. The deliverable provides a detailed discussion of
different possibilities for a deployment plan and summarises the efforts to align the testing
and evaluation tasks with other projects, in order to achieve the necessary scope to evaluate
the scalability and performance of the SOA4All runtime.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 7 of 35

1. Introduction
This deliverable describes the continuation of the work with Task 1.5, the SOA4All Testbed
infrastructure and evaluation of project results. According to the work done and described in
deliverable D1.5.1, a tool for the generation of testbeds has been selected and deployed to
the SOA4All build and test environment. This deliverable now continues to describe the
deployment of the testbed environment, the configuration of concrete testbeds, which are
aligned to the SOA4All Use Cases and finally other tasks within the scope of T1.5 – including
the deployment of the SOA4All runtime and the automated build system.

The ongoing work on extending the testbed environment is described as well, and – as a
preparation for the validation and evaluation efforts to be conducted by the individual work
packages – a guideline of applicable metrics and testing goals is provided.

1.1 Purpose and Scope
As mentioned above, this deliverable describes the different activities to realise a testbed
environment and is separated in four main sections.

The deliverable defines a set of objectives and metrics for the various forms of evaluation
within the scope of the project. It concentrates on the functional testing and the evaluation of
performance and scalability characteristics of the project results, as other kinds of testing
(e.g., concerning the user experience and interfaces) is discussed within workpackage 2.

The testbed infrastructure enables testers and component owners to define configurable
testbeds and services according to a collection of service templates, which are described in
this deliverable and are aligned to the SOA4All Use Case storyboards (as detailed in [3], [12]
and [2]).

The second major section describes the general build environment for SOA4All, based on
the continuous integration tool Hudson1. The testbed infrastructure is connected to this build
environment via the definition of concrete build targets for the setup of testbeds and ensuing
integration tests.

Finally, the evaluation of the SOA4All runtime is based on the deployment and management
of nodes of the Distributed Service Bus. The deliverable provides a detailed discussion of
different possibilities for a deployment plan and summarises the efforts to align the testing
and evaluation tasks with other projects, in order to achieve the necessary scope to evaluate
the scalability and performance of the SOA4All runtime.

1.2 Structure of the document
This document is structured as follows: Following this introductory section, Section 2 of this
document continues with an observation of testing metrics and the overall goals of evaluation
within the scope of Task 1.5, which defines a framework for the actual testing to be done by
the individual work packages of the project. We provide an overview of the different kinds of
tests and evaluation activities to be conducted within the scope of the project. Several
objectives and metrics are discussed, and the role of the tools and activities provided and
performed by task T1.5 are highlighted.

Section 3 then provides an update to the requirements for the testbed infrastructure, based

1 Available at https://hudson.dev.java.net/

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 8 of 35

on the targeted alignment with the Use Cases. The services identified for the scenarios for
each SOA4All Use Cases are used for the creation of testbed configurations later on.
Following this update, the section then discusses the actual setup of the testbed
environment, including the state of the plug-ins under development and the testbed
configurations created.

Section 4 then continues by explaining the overall build system in use for SOA4All
development and testing, including the continuous integration tooling in use and the links to
the test targets. Finally, Section 5 concentrates on another aspect of the project evaluation –
the test environment for the SOA4All runtime. The section explains where DSB nodes are
deployed and mentions links to other projects SOA4All is collaborating with to realise a
realistic amount of deployments with the project. The document concludes with an outlook on
the evaluation tasks starting after M18, which will be summarised in the final deliverable
within Task 1.5.

1.3 Alignment to SOA4All Evaluation

The testbed infrastructure specified in this deliverable will be used to evaluate the main
objectives of the project from a technical perspective. The main roadmap for evaluation will
be summarised as part of deliverable D2.5.1, and includes a set of metrics and performance
indicators for the technical evaluation. Results from the evaluation process concerning these
indicators will be reported in deliverable D1.5.3, which collects evaluation results from the
experiments conducted with the testbeds generated by the testbed infrastructure.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 9 of 35

2. Testing Metrics and Goals
Testing any kind of system or application makes no sense without the formulation of distinct
objectives and goals, as well as metrics, i.e., quantitative measures, which establish the
different scales along which to evaluate the SUT (System under Test). This section will
formulate a set of metrics and goals for the evaluation of both individual services, SOA4All
platform services and the overall SOA4All runtime.

These testing objectives focus on the technical evaluation of the project results. Further
testing and validation of project outcomes is conducted according to the overall SOA4All
evaluation plan, which was delivered as part of Deliverable D2.5.1, the Formative Evaluation
and User-Centred Design [5]. This plan contains further information on the evaluation of –
among other things – user interfaces, user experience and other aspects.

The remainder of this section is divided into two parts, with each part focusing on one
specific area of testing, first by defining the overall objective and goals of the task.
Furthermore, each part will explain which systems and components are targeted by the tests
using these goals, and finally, the formal metrics are given where applicable. The first part
discusses diverse methods of functional testing of software artefacts, while the second part
concentrates on the evaluation aspects of one of the main project objectives – enabling a
scalable platform, which is ready to deal with potentially billions of services.

2.1 Functional Testing
Functional testing is one of the core steps in any software development process and focuses
on testing software artefacts based on their functional requirements. The functional testing
should ensure that the program physically works the way it was intended and all required
features are present. Furthermore, it should also ensure that the program conforms to the
industry standards relevant to that environment.

In SOA4All functional testing is seen as an integral part of the development process by each
team working on a platform service, the SOA4All runtime and the diverse tools developed in
the project. The overall build system has been developed according to the requirements
stated above, and is explained in more detail in Section 5 of this deliverable.

Further metrics and performance indicators for other aspects of SOA4All, such as non-
functional properties, can be found in Deliverable D2.5.1. Examples for these aspects include
increased robustness concerning service availability or the completeness and consistency of
semantic annotations.

2.1.1 Metrics & Validation Methods

Concrete metrics for platform components will be formalised by the various technical work
packages. As an example, Table 1 below lists the main metrics to be used for the technical
evaluation of two different project results – the discovery component and the dynamic
composition, respectively. The metrics are taken from a comprehensive table on evaluation
metrics featured in deliverable D2.5.1. These evaluation objectives combine different
aspects, including functional metrics, non-functional metrics and performance/scalability
metrics. The owners of each technical component will need to define their own metrics along
these lines. In the final deliverable of task T1.5, the testbeds evaluation (D1.5.3), all the
different metrics, conducted tests and evaluation procedures will be presented, and the
overall evaluation of the project results will be summarised.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 10 of 35

Table 1: Technical Evaluation of the SOA4All components

Objective Metric Definition

Discovery Non functional
quality of retrieved
services

This metric considers the non functional quality of
services which have been retrieved (e.g., in terms of
their Response time, Price, Reliability)

Cover/Rest rate of
each service

The cover rate considers the number of WS
descriptions covered by the service and the query.

The rest rate considers the number of WS
descriptions required by the query but not provided
by the service.

The miss rate considers the number of WS
descriptions provided by the service but useless for
the query.

Execution/Response
Time and Scalability
of the Discovery
process

This metric signifies the time spent to discover
services.

Dynamic
composition

Non functional
quality of
Composition

This metric consider quality of services (i.e., QoS
such as Response time, Price, Reliability) of each
service involved in the composition.

Semantic fit of
composition

This metric consider the semantic quality of
connections between services, This evaluates the
data flow of any composition by considering their
semantics.

Execution Time of
the composition
process

This metric signifies the time spent to compose
services.

As previously detailed in Section 5.1 of deliverable D1.5.1 [11], the main testing methodology
for SOA4All means that test cases should be defined by each technology provider (including
unit tests for specific functionalities of components or integration tests), but are also defined
by dedicated testers, which conduct system tests and additional evaluation experiments (e.g.
concerning scalability or performance of integrated components). These testers should be
comprised of people, which are independent from the specific component owners. Thus,
functional testing itself should comprise of several, separate steps, which are explained
below in more detail.

• Unit Tests: Unit tests are used for the functional testing of specific functionalities on a
fine-grained level, i.e. individual units of source code, such as classes. Unit testing is
clearly within the responsibility of the different component owners and are included as
part of the core development process. The main build environment, which has been
set up for all the different (sub-) projects in SOA4All, has been provided to easily
integrate unit testing with the build system. Section 4 provides more details on this
environment.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 11 of 35

• Component Tests: The functionalities of whole components, i.e. the verification of
whether the components fulfil the specified requirements, should also be tested by
the component owners. Testers will conduct similar tests, but also add additional
experiments covering the aspects described above (i.e., specific evaluation objectives
such as the semantic fit of service composition mentioned above). Again, the build
environment described in Section 4 will provide the means to set-up such tests. In
addition the generation of testbeds according to service templates (as detailed in
Section 3), will be used to enable testing on this level.

• Integration Tests: Finally, the integration of the components via the SOA4All Studio
and Runtime are going to be tested by the members of workpackages 1 and 2, as
well as individual testers. Besides the objective of validating the functional
requirements of the composed system, the main goals will be to evaluate the system
under realistic conditions. In order to enable this kind of testing, T1.5 will provide a
runtime test environment, by deploying the SOA4All runtime at a large scale. Section
5 of this document provides details on this deployment plan. Also, the generation of
testbeds according to the means described in Section 3 will be useful to set-up
realistic service environments.

In addition, the performance of different components and subsystems will be evaluated under
stress-test conditions: Similar to the functional tests, stress-test conditions will be defined by
the technical workpackages and component owners as the upper boundary of the presumed
system size within which the technology is meant to function. For the SOA4All Runtime and
Studio, an additional set of stress-test conditions will be defined, based on both the results of
the individual components and the limitations imposed by the architecture, which are then
used for integration tests whose objective is to evaluate performance and scalability of the
overall runtime. The next section provides further insights on the nature and characteristics
of these kind of tests.

2.2 Performance and Scalability Testing
Scalability is an indicator for performance changes in direct comparison to resource changes
[6]; e.g., lower processing latency due to increased CPU power. It determines whether a
system, network, or piece of infrastructure (e.g., Web server, database, or the service bus)
has the ability to either increase workload in a graceful manner, to be readily enlarged to
meet additional demand, or both, without replacement of hardware, and without the need for
reengineering the system. If a system can be deployed in a wide range of configurations
while maintaining an acceptable performance level under changing memory, bandwidth,
users or data load, it is considered scalable. The challenge of scalability applies to SOA4All,
as it does to any distributed systems.

Put in a more generic context, a scalable system must be economically deployable in a wide
range of sizes and configurations [7], i.e., it should be re-applicable to various applications
scenarios at lowest additional costs. Getting back to SOA4All, scalability is a property that
indicates if the infrastructure is able to maintain an acceptable performance level by
expanding in a graceful way when memory, bandwidth, operations, users and/or data are
added.

This short introduction shows that scalability and performance testing are closely related.
The objective for SOA4All will thus be in performance evaluations at different levels of scale,
in order to evaluate the SOA4All Runtime and platform services also with respect to
scalability. In Section 5 of this document, we present an outline of a deployment plan for
large-scale installations of the SOA4All infrastructure. Although scalability discussions can
already be made based on only a few nodes, we plan, per end of the project, to have
deployment possibilities of up to one hundred nodes via the use of virtual machines or cloud

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 12 of 35

infrastructures. Again, scalability in terms of users or services can be determined by
generalizing measurements with changing loads in dimensions that are supported by a much
smaller number of nodes.

Installing SOA4All on up to hundred nodes allows for testing the distribution behaviour and
performance of the infrastructure under changing network sizes. Good performance of
individual software components is a pre-requisite for a large-scale deployment, and certainly
must be conducted on an individual bases. However, aiming for millions of users and billions
of services requires solutions for scales that reach beyond the capabilities of single nodes or
platform services. Therefore, distribution becomes very important for achieving the goals of
SOA4All and for ensuring scalability. Large systems usually guarantee scalability through the
partitioning of either the physical or the virtual world and thus by scaling out (adding more
servers and distributing the work and data in the network) in addition to scaling up
(increasing resources on an individual machine) [8]. Alternatively, by projecting this
argumentation onto the SOA4All project, the former refers to the addition of further DSB
nodes, while the latter refers to the optimization of individual software components of
SOA4All and their hosting hardware.

Distribution has a particularly positive effect on the perceived performance in terms of
responsiveness, as it is a core enabler of load balancing. Consequently, the frequency and
number of requests that can be processed concurrently can be increased. Having the
functionality of a system distributed across multiple machines allows to increase the overall
throughput, which in turn sustains the required number of simultaneous users without
augmenting the response times observed by them [9]. In the context of SOA4All, the
performance is thus expected to change proportionally as additional infrastructural or
platform services are added. In other words, an increase in utilization (i.e., a growing number
of users and published data) must gradually be matched by a proportional growth in
infrastructure without degrading the overall performance of the middleware.

In summary, besides the functional evaluation that was described in Section 2.1, we plan
performance testing of individual components and scalability evaluations in the large.
Distribution is an important factor in regards to scalability and we thus plan to deploy the
SOA4All infrastructure in a network of up to hundred (virtual) bus nodes; compare Section 5.

2.2.1 Performance Model Parameters

For evaluating the performance, as a pre-requisite for discussing the scalability, we define a
number of parameters for quantitatively describing the load, resources and performance
indicators. These parameters provide the basis for first performance and scalability
evaluations but will likely have to be adjusted in order to better meet the requirements and
expectations of the SOA4All testing infrastructure. In that sense, the set of parameters given
here provides the starting point for several iterations of testing that will conclude in month
M36 with the presentation of the final evaluation results about the different platform services,
the SOA4All Distributed Service Bus and the studio. These evaluations will be based on the
final testbed that is delivered in month M30 with deliverable D1.5.3 on the testbed validation.

Load: The load parameters include numbers of services, process or users that are
maintained and processed in the system. The listing gives indicative value ranges for the
different load parameters. These ranges were determined according to the initial values
given for similar parameters used for scalability evaluation in the TripCom project [14]. Note
that not all combinations of load values are necessarily feasible (e.g., the combination of all
maximal values reaches likely beyond the capability of the implementation, whereas setting
only a subset of the values to the maximum would be tolerable).

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 13 of 35

• Number of Web services (invokable pieces of software) known by the infrastructure
[10 … 1000]

• Number of Semantic Web services (semantic descriptions of service endpoints)
registered and stored in the infrastructure [10 … 10000]

• Number of processes (semantically annotated compositions) maintained by the
infrastructure [10 … 1000]

• Number of concurrent interactions with the infrastructure (users) [1 …1000]

• Number and frequency per second of invocations of individual platform services or
the semantic spaces (a more controllable parameter than the number of concurrent
interactions) [1 … 100], [0.01 … 10] for a resulting maximal load of 1000 accesses
per second.

Resources: The resources parameters models the computational resources available to
process or maintain the load indicated above.

• Number of bus nodes [1 … 100]

• Number of space nodes [1 … 100]

• Number of DSB nodes (hosting both the bus and the space logic) [1 … 100]

• Number of platform services of each kind [1 … 5]

• Number of concurrently used SOA4All Studio instances [1 … 10]

Performance: The performance parameters provide a means to quantify the system
performance changes under different load and varying resource availabilities. The prime
indicator for performance in the context of SOA4All is latency, or rather responsiveness.

• Response time, as the time interval between the invocation of a particular operation
and the return of (successful) feedback.

The evolution of the responsiveness under changing load and changing resource
availabilities eventually allows for assessing the scalability of the SOA4All implementation.
Whether SOA4All or individual components are considered scalable or not depends on the
expected performance progression of the investigated piece of software or protocol. The
scalability of these is typically defined by complexity classes that are indicators for
performance (e.g., O(n) for linear scalability). The target complexity class depends largely on
the problem at hand. Search algorithms for example are generally considered to be scalable
if they are in O(log(n)) -- e.g., binary search. Similar expectations, also O(log(n)), hold for
response time and communication overhead in peer-to-peer systems – both in terms of
number of nodes to visit (hops), and in terms of messages required to resolve a query. With
respect to processing capabilities and memory, large-scale distributed systems have their
target scalability mostly in the linear complexity class [10]: doubling the amount of memory
should allow doubled as much data to be stored, increasing the number of servers should
result in a proportional raise in the number of requests to be handled. Determining what
scalability complexity classes can be considered ”good'' or ”acceptable'' is difficult to
determine without having more detailed knowledge of the final system. As a rule of thumb,
we expect linear scalability in terms of growing load in what concerns the evaluation of
individual components. In regards to the overall infrastructure, sub-linear scalability is the
targeted outcome of the implementation.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 14 of 35

3. Setup of the Testbed Infrastructure
As explained in the previous sections, three different activities are ongoing within the scope
of T1.5, in order to enable the various kinds of tests and experiments as detailed in Section
2. The first activity is a continuation of the efforts previously detailed in D1.5.1, and
comprises of the setup of a testbed infrastructure. The objective of this infrastructure is to
enable testers to generate (a realistic amount of) Web Services, respectively mocks of such
services. In order to achieve such a generation, we utilize a testbed creation tool called
GENESIS2, previously described in Section 3.2 of D1.5.1 and in more details in [1]. We also
provide service templates, based on the services identified by the various SOA4All Use
Cases.

The following section first describes several changes and updates to the SOA4All Use
Cases, which reflect the current state and available services of the Use Case storyboards as
detailed in [3], [12] and [2]. The section presents the necessary updates to the alignment
between the Use Cases and the testbed infrastructure.

3.1 Requirements Analysis Update

3.1.1 End-user Integrated Enterprise Service Delivery Platform

The End-user Integrated Enterprise Service Delivery Platform case study developed in WP7
has the public sector as its target domain [3]. This case study envisions an integrated service
delivery platform based on the technologies and tools developed in SOA4All, allowing non-
technical users in public administrations to handle typical administrative procedures. More
specifically, using the Web-based tools of the SOA4All Studio, public servants of various
governmental organizations will be able to search, model, annotate, modify, share, analyze,
and execute administrative procedures in the form of lightweight business processes. These
processes may be composed of SAP Enterprise Services, public Web services (hosted by
3rd party service providers), and human activities (to be executed by end users). Thus, the
main result of WP7 will be an integrated demonstrator that addresses the specific needs of
public administrations, such as the ones formulated by the EU Services Directive.

The SAP Enterprise Services offer complex business functionality like the management of
resources or relationships with customers. Because of that, these services typically have
large syntactic WSDL-based service interface descriptions that are difficult to understand for
non-expert service consumers. Thus, by investigating how to make Enterprise Services
consumable for non-experts, WP7 will significantly increase the number of services to be
handled by SOA4All. Therefore, WP7 is in the process of developing a more simplified
service layer that abstracts the complexity of these WSDL.

There are not extra requirements for the testbed infrastructure as the stated on deliverable
D1.5.1 [11]. More details on available and planned services are described in deliverable
D7.4. Below there is a list of useful links that helps to get more information and allows the
discovery and consumption of the SAP Enterprise Services (ES):

• ES Workplace: http://esworkplace.sap.com

• Create login: Necessary to get and consume the SAP Enterprise services
(https://www.sdn.sap.com/irj/sdn/soareg).

2 Available at http://www.infosys.tuwien.ac.at/prototyp/Genesis/Genesis_index.html

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 15 of 35

• Overview ES Bundles: https://wiki.sdn.sap.com/wiki/display/ESpackages/Home/

• ES Workplace how-to: https://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/6240/

• ES Community: https://www.sdn.sap.com/irj/sdn/define-es

• Service Registry: http://sr.esworkplace.sap.com

• Manual: https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/501668ab-
976e-2a10-91b6-c1020e8c54f2/

The following table shows the services involved in the current version of the WP7 scenario:

Table 2: Test Web Services from the WP7 storyboard

Provider Service Name URL Description

SAP CustomerERPAddress

BasicDataByName

AndAddress

QueryResponse_In

http://erp.esworkplace.sap.co
m/sap/bc/srt/xip/sap/ecc_cust
omeraddressbasicdataqr?sap
-
client=800&wsdl=1.1&mode=
sap_wsdl

Find the basic data of a
customer using the
customer's name or
address (see ES
Workplace)

SAP CustomerERP

CreateRequest

Confirmation_In

http://erp.esworkplace.sap.co
m/sap/bc/srt/xip/sap/ecc_cust
omercrtrc?sap-
client=800&wsdl=1.1&mode=
sap_wsdl

Create a new Customer
in the SAP System
(see ES Workplace)

SAP CustomerBasicDataByID

QueryResponse_In

http://erp.esworkplace.sap.co
m/sap/bc/srt/xip/sap/ecc_cust
omer001qr?sap-
client=800&wsdl=1.1&mode=
sap_wsdl

Read Customer basic
data
(see ES Workplace)

SAP CustomerERPBasicData
ByID

QueryResponse_In_V1

http://erp.esworkplace.sap.co
m/sap/bc/srt/xip/sap/ecc_cust
basicdatabyidqr_v1?sap-
client=800&wsdl=1.1&mode=
sap_wsdl

Read Customer basic
data (in Change
Customer Bank Details
context) (see ES
Workplace)

SAP CustomerERPBankDetail
sByID

QueryResponse_In

http://erp.esworkplace.sap.co
m/sap/bc/srt/xip/sap/ecc_cust
omerbankdetailsidqr?sap-
client=800&wsdl=1.1&mode=
sap_wsdl

Read Customer Bank
Detail (see ES
Workplace)

SAP CustomerERPBankDetail
sUpdate

RequestConfirmation_In

http://erp.esworkplace.sap.co
m/sap/bc/srt/xip/sap/ecc_cust
bankdetailsupdrc?sap-
client=800&wsdl=1.1&mode=
sap_wsdl

Update
(create/change/delete)
the bank detail of a
customer (see ES
Workplace)

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 16 of 35

WP7 Human Task Server - Management of human
interaction with
processes

3.1.2 W21C BT Infrastructure

BT’s Web21c Use Case developed two separate scenarios for casual and business users,
which are explained in detail in the D8.3 [12]. Currently, usage of Ribbit services requires a
detailed technical knowledge of both Web service languages and programming languages, in
particular Adobe Flex, JavaScript and/or PHP. Although documentation and guides have
been provided, it is not straightforward to implement a composite service even for an
advanced user, let alone a casual user, which Scenario 1 is aimed at. The aim of the case
study is to provide semantically enhanced and expanded version of Ribbit, where the
process of discovering, integrating, using and sharing Ribbit’s services can be done much
more effectively.

In the Scenario 1 (S1), focus is on the creation of simple mash-ups of BT services with other
popular services available on the Web to create a new web application incorporating Ribbit
services. The aim is to make it easy for novice users to get access to the facilities of the
Ribbit services and combine them with other services on the Web. SOA4All will be used to
overcome some of the current problems that limit the uptake of the Ribbit services, primarily
the technical knowledge required and familiarity with programming languages such as PHP
or JavaScript. As the focus of S1 is on casual users building non-critical applications, the
scenario will involve minimal security or management infrastructure.

An example of the service composition that a S1 user would create is shown on the Figure 1
– a composition that allows user to organise a meet up with a group of friends in the last
minute.

Figure 1 : Web21C BT Infrastructure Scenario 1

Scenario 2 (S2), details an “industrial strength” scenario and aims to utilise all the technical

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 17 of 35

results of the project. In S2 businesses will use SOA4All technology to design and compose
more complex end user applications to resell or use as part of their business, incorporating
BT white label Ribbit services, their own services & Operations Support Systems (OSS) and
some BT OSS services. This will enable creation of a business incorporating BT services,
without complex face to face contract negotiations and manual work to integrate services,
supporting businesses to go from ‘idea to product’ in minimal time.

An example service composition that a user would create in S2 is outlined in the Figure 2. In
this example, a composition is created which allows a company to build a bulk text
messaging service using the BT Ribbit SMS service.

Figure 2 : Web21C BT Infrastructure Scenario 2

Since the case study is looking into integration of Ribbit web services with third party
services already available on the Web, initial list of services has been created in the table in
the Section 2.3.2 of the D1.5.1 [11]. Updated list of all planned services can be found in the
D8.3 and the services used in the S1 are described in more detail in the D8.4 [13]. The
following table shows a summary of services involved in the use case.

Table 3: Test Web Services from the WP8 storyboard

Provider Service Name URL Description

Last.fm

ListEvents

http://www.lastfm.es/api/show?s
ervice=270

Operation name:
geo.getEvents. Lists
(predominately)
music events and the
venues for a given
location (e.g.
Concerts)

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 18 of 35

Yelp http://www.yelp.com/developers/
documentation/search_api

Retrieves list of
different types of
businesses and the
reviews made of
them

Fire Eagle LocationOfContact http://fireeagle.yahoo.net/develo
per/documentation/querying

Operation name:
user. Retrieves the
location of the user

Last.fm ProvideContacts http://www.lastfm.es/api/show?s
ervice=263

Operation name:
user.getFriends.
Retrieves the list of a
user’s friends

Multimap ProvideRoute http://www.multimap.com/opena
pidocs/1.2/web_service/ws_routi
ng.htm

Operation name:
Routing. Generates
driving or walking
directions between a
set of locations

WeatherBug ProvideWeather http://weather.weatherbug.com/c
orporate/products/API/help.aspx

Operation name:
getLiveWeather.
Retrieves live
weather data based
on the location given

Ribbit SendMessage http://ngwr.labs.bt.com/Ribbit/my
app/RibbitSMSService.php

Sends a text
message (SMS) to a
specified number

3.1.3 C2C Service eCommerce

For the C2C eCommerce Use Case a new business scenario has been developed and is
explained in detail in deliverable D9.2.1 [2]. In this scenario, users may combine various
services and easily set-up eCommerce applications. The users are able to aggregate product
data from third party suppliers, mediate between the different sources of product information
and publish the products on their own web shop systems. Furthermore, the eCommerce
framework enables them to address different syndication channels with their product data,
submitting their offers to various social networking platforms, such as Facebook, Twitter,
eBay or Google Wave. Figure 3 provides an overview of this process of collecting product
data, and exposing the products to various external channels.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 19 of 35

Figure 3: Updated C2C eCommerce scenario

Besides various process templates, goal templates and a customized User Interface for the
SOA4All Studio, the WP9 eCommerce framework will offer a selection of services to realize
this scenario, including:

1. Product services from different providers. For the WP9 scenario, several services will
be realised, including several real world web services coming from existing
webshops.

2. Support services provided by the WP9 eCommerce framework, which are necessary
to complete the scenario (e.g. mediation services, or a collaborative advertising
service)

3. Multi-channel export services, which enable the shop owner to automatically send
new product data to several syndication channels, such as a dedicated Facebook
application or a Twitter account.

4. Third party services provided by external parties in order to provide additional
functionalities, like payment or credit rating checks.

Details on available and planned services are described in deliverable D9.2.1. The additional
requirements for the testbed infrastructure, as detailed in Section 2.3.3 of deliverable D1.5.1
[11], are still valid for the updated WP9 scenario and have been taken into account for the
development activities of the testbed infrastructure.

The following table shows a first collection of services involved in the updated version of the
WP9 storyboard scenario. The services shown are realised for the first version of the WP9
prototype, due M24, and are therefore suitable candidates for sample testbed configurations.
The actual configuration of a GENESIS testbed for these services is described in Section 4
of this document.

Table 4: Test Web Services from the WP9 storyboard

Provider Service Name URL Description

TIE ProductWebService http://coconut.tie.nl:8181 This simple product service
provides different operations to

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 20 of 35

/services/productWS show product lists, and query
single products by either name
or id.

TIE MamboFiveService http://coconut.tie.nl:8181
/services/mambooFive

A real world web service coming
from an existing webshop,
based on the MamboFive
product. This service delivers
real world data and is connected
to a real data source.

Hanival Chillydomains
ProductService

http://hanival-
products.at:9080/Hanival
ProductWS

A web service hosted on
Hanival’s chillydomains ISP
platform, which enables clients
to get information on various
products, their categories and
single items.

WP9 MediationService Not available yet A mediation services which
aggregates the product data
from different suppliers and
provides a product list without
duplicates to the clients.

WP9 FacebookWrapper
Service

Not available yet A wrapper service for the
Facebook application – this
service stores the product data
in a form which is reusable by
the Facebook application from
WP9.

3.2 Plug-In Development
In order to provide additional support for the requirements collected in D1.5.1 and in the
previous section, several new plug-ins for the testbed creation tool based on GENESIS are
going to be developed and provided to the tool users. The following preliminary specification
for the testbed generation tool is based on parts of the GENESIS tool API. The specification
forms the basis for further developments of the tool within the scope of the testbed Task 1.5.
As such, this section serves as a guide to the design and development of the testbed
infrastructure tool, and describes the implementation work conducted for the first extension
provided with this deliverable.

3.2.1 RESTful Service generation Plug-in

This extension to the GENESIS testbed framework defines a new plug-in, which extends the
available functionalities of the tool by allowing users to define testbeds containing a mixture
of WSDL and RESTful Web Services. The plug-in needs to create suitable web resources
that react to HTTP commands as required by the description of the RESTful Service. For
example, a GET on a resource should provide a (serialized) description of the resource,
while POST will update the resource accordingly.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 21 of 35

The main functionality for this plug-in should be the creation of RESTful service mocks,
based on the configuration parameters for such a service, in a similar way to the creation of
WSDL Services in GENESIS. In order to achieve this functionality, the configuration file for a
specific testbed needs to include a new set of elements, which define the resources,
methods and parameters of the RESTful service. Instead of defining a completely new
schema for this, the RESTful Service plug-in will reuse the WADL specification [4], in order to
define the necessary elements of a RESTful Web Service. The schema for the testbed
configuration itself only needs a single new element to link a service template to a specific
WADL definition, which can be external to the testbed configuration itself. Please note that
while SOA4All in general does not regard WADL descriptions, due to several severe
limitations of those descriptions as related to the overall objectives of the project, the creation
of mocks for RESTful APIs has different requirements and can be based on the simple
definition of such APIs via WADL.

After linking a RESTful service to the overall testbed configuration, the WADL style definition
then defines the basic key items of the service:

• Services - corresponding to Interfaces for WSDL, in a WADL this corresponds to the
root application element. A service contains an arbitrary number of hierarchically
organized resources.

• Resources - define an addressable (URI) item that can be parameterized using a
number of parameter mechanisms. Resources are accessed using standard HTTP
methods and can be made available in any number of representations, for example
XML, JSON, PDF, etc. In addition, resources can contain child resources which will
inherit parameter and path information from their parent(s).

• Methods - A resource in WADL/REST is accessed through a number of methods. A
method is defined by the HTTP method it uses, as well as applicable headers and
parameters. The response to accessing a resource through a method is usually a
representation of the invoked resource.

• Requests - The request element defines the concrete instance of a request for a
method. Resources and methods define named parameters (with default values
where applicable), while requests instantiate these parameters.

• Parameters - can be defined on both the resource and method level.
• Representations - are used to define the content of a request or response, i.e. by

defining the concrete media type and referring to a concrete type, defined in XML,
JSON, PDF etc.

As this service description is based on the current specification of the WADL language, the
users of the testbed can also utilize the WADL2Java tool3, which allows users to quickly
generate client stubs for the Web Service API defined by the WADL document.

The necessary extensions to the GENESIS testbed configuration schema have been
included in Annex A of this deliverable. The tool itself was also extended by providing parsing
capabilities for the extended schema, and the referenced WADL documents. Finally, a
mocking component for such services was developed, which behaves in a similar manner as
the mocking functionalities currently available for SOA testing tools such as SoapUI4. In
Section 3.3, several service templates are defined, which can be used by the creators of

3 Available at https://wadl.dev.java.net/wadl2java.html
4 See http://www.soapui.org/userguide/mock/index.html for further information

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 22 of 35

testbed configurations (e.g., testers, or Use Case developers), to create their own testbeds
based on both WSDL and RESTful services.

3.3 Service Templates
The following sections describe the templates used to instantiate test services for the
generation of testbeds, suitable for testing and evaluation tasks.

A complete example testbed configuration, based on these templates and the WP9 services,
as described in Section 2.3, can be found in Annex B of this document.

3.3.1 WSDL Services

Listing 1 below shows an example for a Web Service template, describing the available
operations, input and output parameters and orchestration behaviour of a WSDL based Web
Service.

<servicetemplates>
 <service name="getAndCheckServiceTemplate" type=" WSDL">
 <deploy>
 <behavior>
 <!-- empty -->
 </behavior>
 </deploy>
 <undeploy>
 <behavior>
 <!-- empty -->
 </behavior>
 </undeploy>
 <operation name="getAndCheck" >
 <!−− over ride default parameters −−>
 <parameters qos_processingtime="1000"/>
 <input>
 <name type="string"/>
 </input>
 <output type="somestructure"/>
 <behavior>
 (
 InvocationPlugin."return=dbService.getData(arg .name)"
 ->
 InvocationPlugin."checkService.checkData(retur n)"
)
 </behavior>
 </operation>
 </service>
</servicetemplates>

Listing 1: Service template for a WSDL based WS

In Annex B of this deliverable, a comprehensive service configuration for a testbed for WP9
is shown. Further testbed configurations will become available as the Use Cases continue to
provide service examples.

3.3.2 REST Services

The following listing presents a fragment from a testbed configuration file. The concrete
service template shows a link to a RESTful service description, given in the WADL
specification shown below. For the RESTful Service generation Plug-in, this is all the

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 23 of 35

information that is needed to generate a mock REST service.

<servicetemplates>
 <service name="newsSearchServiceTemplate" type= "REST">
 <definition href="NewsSearchService.wadl">
 </service>
</servicetemplates>

Listing 2: Service template for a RESTful WS

As currently the Use Cases are based on mostly WSDL based services, a concrete example
for a RESTful service template has been added, based on the planned usage of the eBay
REST API in WP9. Listing 3 below shows the actual definition of the resources for a specific
fragment of the eBay API.

<resources base="http://api.search.yahoo.com/NewsSe archService/V1/">
 <resource path="newsSearch">
 <method name="GET" id="search">
 <request>

<param name="appid" type="xsd:string" style="query" required="true"/>
<param name="query" type="xsd:string" style="query" required="true"/>
<param name="type" style="query" default="all">
 <option value="all"/>
 <option value="any"/>
 <option value="phrase"/>
</param>
<param name="results" style="query" type="xsd:int" default="10"/>
<param name="start" style="query" type="xsd:int" de fault="1"/>
<param name="sort" style="query" default="rank">
 <option value="rank"/>
 <option value="date"/>
</param>
<param name="language" style="query" type="xsd:stri ng"/>

 </request>
 <response>

<representation mediaType="application/xml" element ="yn:ResultSet"/>
<fault status="400" mediaType="application/xml" ele ment="ya:Error"/>

 </response>
 </method>
 </resource>
</resources>

Listing 3: Resource definition for a RESTful WS

The Use Case work packages can create additional testbed configurations based on these
templates and the different application scenarios planned for current and future prototypes.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 24 of 35

4. SOA4All Build Environment
This section gives an overview about the SOA4All Build environment, which is used as a
fundamental element in the SOA4All development process. The next subsection will give a
short overview about the build process used in SOA4All. Afterwards, the testing facilities of
the build system will be described showing how the build system is used to provide an
appropriate foundation in the SOA4All test environment.

4.1 Continuous Integration Build System
The task 1.5 team has introduced the continuous build process with an automatic build tool in
order to optimize the release process and to find bugs easier and faster.

Instant Notifications

In this concept, a new version of the SOA4All components is created automatically as soon
as one of the developers commits new code into the code repository. This allows the
SOA4All team to detect critical compilations problems immediately. Within the first months,
this build process has dramatically reduced the time to find problems in the code.

The HUDSON system allows users to get informed via email whenever a build is failing.
Users may also subscribe to RSS feeds allowing them to be notified as soon as problems
appear. Each developer will therefore instantly see if her/his code is failing. The 1.5 team has
realized this continuous build integration using the HUDSON system, which is an open
source solution available at https://hudson.dev.java.net/.

Figure 4 : The SOA4All build system

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 25 of 35

Always Up-to-Date

In addition to this, users get the capability of downloading the latest version of SOA4All
whenever they want without having to wait for static release cycles. They can instantly see
the changes in SOA4All and they can be sure to work with the latest achievements of the
team.

Furthermore, this automated build process has allowed the team to install the latest version
of SOA4All automatically on a public server (http://coconut.tie.nl:8080/soa4all). This server is
updated immediately after each checkin, meaning that it always contains the latest version
without any manual steps needed to update the SOA4All application.

Checkin Overview

For keeping an eye on changes, the SOA4All build system allows users to see a list of
checkins and changes. This allows developers to see what has been changed and who has
performed those changes. In addition to this, developers can even see different steps of the
compilation by zooming into the console log of the compilations. The following screenshot
shows a list of changes performed in the last checkin at the top of the image.

Figure 5: Checkins and Modules

Modular Environment

The continuous build environment supports the handling of different maven targets
(http://maven.apache.org) which has allowed the development team to split the SOA4All
application into a consistent set of different sub parts. This modular development has allowed
the SOA4All team to handle the complex project by dividing it into different concerns, which
are handled by different partners and development groups. The build environment shows
those different modules and their compilation and automatically combines them into different
applications. For example, the main Studio module is “SOA4All Dashboard - Main”, which
provides a WAR file with the SOA4All Studio, including the Dashboard and most of the

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 26 of 35

SOA4All applications used by end users.

Build History

In case that a compilation is failing or in case that a prototype does not behave as it should,
the SOA4All build environment allows developers to go back in time and to download earlier
compilations. In its current configuration the 1.5 team keeps the last 10 builds of SOA4All. A
simple colour system shows developers if a build was successful (blue), unstable (yellow) or
unsuccessful (red).

Figure 6: Build history

4.2 Testbed Build Targets
The SOA4All HUDSON build environment allows the SOA4All team to run tests
automatically. Those tests ensure that certain functionality can be executed correctly and can
therefore be seen as a first step towards ensuring the quality of the SOA4All code. The
following screenshot shows a test result overview of one sub-module of SOA4All. It shows
that 30 tests have been passed successfully while two tests have failed. As of July 2009, the
SOA4All team has defined 184 tests in total, which are executed automatically after each
build. Currently these tests are mainly comprised of unit tests (created with the jUnit testing
framework). Additional tests – including component and integration tests, using the testbeds
– will also be integrated with these automated build targets.

Figure 7: Test execution and test result overview

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 27 of 35

5. SOA4All Runtime Test Environment
In order to demonstrate the distributed nature of the SOA4All infrastructure, the project
established by month M18 a Distributed Service Bus implementation across three distinct
nodes at three different locations. There are currently bus nodes, with co-located semantic
space nodes, installed at eBM WebSourcing in Toulouse, France, at INRIA in Sophia
Antipolis, France, and at the University of Innsbruck in Austria. While this is sufficient for a
first implementation and to showcase the distributed nature of the SOA4All infrastructure, a
three-node deployment is not considered well enough for evaluation and future uses. In
particular, elements such as scalability and performance cannot adequately be measured,
analysed and evaluated.

In this section, we present different possibilities for a multi-level deployment plan for SOA4All
that allows flexible scaling out in terms of machines that share the Distributed Service Bus.
We first present the overall approach that is envisaged, and in a second subsection we
present in more detail the various projects involved.

5.1 SOA4All Deployment Plan
In order to reach Web scale with the SOA4All Distributed Service Bus, it is necessary to go
beyond the current three site deployment. This step requires two distinct tasks: i) determining
the dimension of a distributed installation that allows the assumption of a Web scale
deployment, and ii) plans and technicalities to scale out further upon need.

Specifying the dimensions that shall be reached in terms of deployment size is by no means
an obvious task. Distribution can be shown and is necessary as soon as more than one node
is considered. However, having three nodes communicating and coordinating cannot be
referred to as Web scale. After all, reaching the scale of the Web with the SOA4All service
infrastructure is one of the central goals of the project. For example, the FIRE experimental
research facilities, presented in Section 5.2, are realized on top of several hundred nodes.
Scaling up to a fraction of FIRE seems however to be adequately large for SOA4All. The
objective for the end of the project is thus to install the SOA4All runtime on approximately
one hundred machines; likely virtual machines. Reaching a system deployment of this size is
considered to be large enough to proof scalability in the large and to ensure Web scale of the
SOA4All results.

What remains is the description of how to reach this deployment size. A flexible deployment
infrastructure that shall host the SOA4All runtime and platform services is depicted in Figure
8. The Distributed Service Bus is established as the connection of distributed bus nodes and
semantic space nodes that are installed on top of a ProActive grid. As such, the Distributed
Service Bus is given as the networked sum of all ProActive nodes, and the scale is defined
by the number of such nodes.

In order to flexibly scale out, there are thus means required to install and run ProActive
instances on multiple machines or virtual machines. Cloud computing infrastructures such as
Amazon’s EC2 (http://aws.amazon.com/ec2/) or the newly installed Open CirrusTM Cloud
Computing Research Testbed (https://opencirrus.org/) are accepted solutions in this respect.
In particular EC2 established itself as the current assumed standard in most industry
settings. The primary goal of the deployment plan is thus to specify the requirements and
possibilities to bring the SOA4All Distributed Service Bus to the cloud, which offers the most
flexibility in regards to adaptation and dimension of scale.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 28 of 35

Figure 8: SOA4All large-scale deployment possibilities

Less applicable in terms of scalability, however significantly more promising in regards to
control, is the deployment on a closed cluster of machines. Open cloud infrastructures such
as EC2 provide some resource and quality guarantees, the user has however no control or
knowledge over the actual deployment and the characteristics of the virtual machines. In this
respect a more limited – limited in scale – cluster provides the better means for
measurements and evaluation.

The concrete approach that is suggested for SOA4All is shown in Figure 8. On the top,
shaded in grey, is the Distributed Service Bus. As previously stated, this is the infrastructure
established by the ProActive nodes. The deployment infrastructure presented here
investigates three possibilities to scale out the number of nodes and thus to approach a Web
scale installation and evaluation infrastructure:

• ProActive Cluster at INRIA Sophia Antipolis

• FIRE – Future Internet Research & Experimentation

• Amazon EC2

OpenNebula, as an open source virtual infrastructure engine that enables the dynamic
deployment and replacement of virtualized services (groups of interconnected virtual
machines) within and across sites, further adds to the envisaged flexible deployment
infrastructure. OpenNebula extends the benefits of virtualization platforms from a single
physical resource to a pool of resources, decoupling the server not only from the physical
infrastructure but also from the physical location. OpenNebula is currently under investigation
in the NESSI strategic project RESERVOIR (http://www.reservoir-fp7.eu/). RESERVOIR
(Resources and Services Virtualization without Barriers) works towards a massive scale
deployment and management of complex IT services across different administrative
domains, IT platforms and geographies. In RESERVOIR breakthrough system and service
technologies are developed that will serve as the infrastructure for cloud computing. It aims
to achieve this goal by creative coupling of virtualization, grid computing, and business
service management techniques.

The application of OpenNebula is not changing the deployment architecture of SOA4All,
which is represented in Figure 8 by the grey service bus, but enables the smooth and simple

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 29 of 35

delivery of elastic solutions to scaling out the infrastructure. The OpenNebula layer allows for
running arbitrary further instances of the bus and semantic space software whenever
needed. It offers further flexibility as OpenNebula can manage on its own different types of
virtual machines. This includes for example the automatic launching of virtual machines on
EC2 once no more machines are available in the controlled cluster. A further positive side-
effect of this approach is the automation in deployment. Virtual instances on EC2 do not
need to be started manually but this task is taken on by OpenNebula.

In summary, although we suggest three different possibilities for deploying SOA4All in the
large – the proposal are described in more detail in the next section – thanks to
RESERVOIR’s OpenNebula virtual infrastructure engine, we are able to provide a coherent
and comprehensive deployment plan across all platforms. OpenNebula allows for one
implementation of the bus no matter if executed locally, or remotely or in hybrid mode, which
eases the realization of Web scale.

5.2 Deployment Possibilities
In this section we discuss more deeply the three deployment approaches that are shown in
Figure 8: ProActive cluster, FIRE, and Amazon EC2. As stated above, each of them can be
used independently, however, in exploiting the synergies with the NESSI Strategic Project
RESERVOIR and OpenNebula, it would be possible to establish an integrated deployment
infrastructure.

ProActive Cluster is a 47 node cluster hosted by INRIA Sophia Antipolis for distributed
deployments of ProActive based scenarios. The cluster machines are shielded from the open
Internet, however, there is a dedicated front-end node installed that is accessible via SSH
connections. In that way external bodies have granted access to the cluster. The machines
are 2*AMD Opteron 2356 (4 cores each) with 32GB Memory and 300GB Hard Drive. They
currently run Java1.6, ProActive4.1, and any additional software can be installed on demand.

As part of their involvement in SOA4All, INRIA provides access for the project to the
ProActive machines. In this way, the Distributed Service Bus can be deployed on a larger
number of machines for evaluation purposes. The access possibilities and available
resources depend on other usage scenarios of non-SOA4All experiments and trials. The
advantage however is the controlled environment, and thus, as stated previously, a more
reliable and controllable testing infrastructure.

A further, more practical, advantage of applying this possibility is the target and the
availability of the cluster. The cluster was established for ProActive-based distributed
installations. In consequence, there are no additional needs in terms of image creation such
as for example necessary for EC2, and the cluster machines already run all the necessary
software basics for installing the SOA4All Distributed Service Bus. First experiments can thus
be run very early in the second half of SOA4All (M13/M14).

Amazon EC2

The Amazon Elastic Compute Cloud (EC2, http:// aws.amazon.com/ec2) is a Web service
which provides to the user a custom application environment on a set of distributed machines
that run within Amazon’s network infrastructure and data centres that guarantee a SLA
commitment of 99.95% availability. The EC2 is a virtual computing environment that provides
resizable (scale up or down depending on need) compute capacity. The number of
machines, the application executed, and the network access (e.g., the firewall settings) can
be configured dynamically through a Web service interface; the actual reservation and
allocation of a physical machine is however transparent to the user.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 30 of 35

Typically, a physical machine in the Amazon data center provides more than one instance,
thus, running instances share physical resources such as network and the disk subsystem.
Amazon states that “if each instance on a physical host tries to use as much of one of these
shared resources as possible, each will receive an equal share of that resource. However,
when a resource is under-utilized you will often be able to consume a higher share of that
resource while it is available". Amazon gives minimal guarantees, but there are expected
fluctuations in the availability of basic resources. Amazon EC2 is thus not the ideal
infrastructure for detailed performance evaluation.

The user's application environment within the computing cloud is represented as an Amazon
Machine Image (AMI). An AMI contains all the applications, libraries, data and configuration
settings required for execution. In order to allow for the dynamic loading of AMIs via the Web
service interface, they have to be uploaded to Amazon's Simple Storage Service (S3).
Multiple AMIs with different configurations and applications can be uploaded to the S3. The
user can start, monitor, and terminate as much instances of these interfaces as needed. The
published files are stored in a user directory and are assigned a developer key. The bucket
(storage directory) is protected with an authentication mechanism and can be made private,
public or published with specific user rights.

The ProActive middleware is already deployable on EC2 and the necessary AMI is stored on
S3. In order to bring the SOA4All runtime to the cloud, it will thus be necessary to install the
bus software in such an existing image. Once all the necessary files and code is copied to
the image, all that remains is to bundle and upload the new AMI to S3. To bundle new
images there is set of EC2 script available or third party programs in order to specify the
bucket to upload the image to, to determine the credentials, and to assign a full name to the
image. Once the bundle is uploaded onto S3, it becomes a SOA4All personalized AMI.

The ProActive has an agreement with Amazon for several hours of free time on EC2. For
initial trials, the SOA4All team will be able to profit from this special arrangement. For more
detailed and larger scale realization on EC2, the consortium will buy in additional resources
on a per need basis.

FIRE – Future Internet Research & Experimentation

FIRE is an initiative under the European Commission's Information and Communication
Technologies research program – Challenge 1 "Pervasive and Trustworthy Network and
Service Infrastructures", Objective 1.6 "Future Internet experimental facility and
experimentally-driven research". It aims at a multidisciplinary research environment for
investigating and experimentally validating research and developments on network and
service architectures and new networking and service paradigms. FIRE seeks facilities for
experimentally-driven research offering service both to academic research and industry-
driven testing and experimentation. The approach chosen by FIRE is to support research at
different stages of the R&D cycle, based on the design principle of "open coordinated
federation of testbeds" by gradually connecting various test beds for Future Internet
technologies.

In the context of the OpenNebula effort of the RESERVOIR project there are investigations
ongoing to make FIRE test beds available as virtual resources under OpenNebula. This
would largely ease the integration of the SOA4All environment with the FIRE testing
infrastructure. Exploiting FIRE through the virtualization layer of OpenNebula would be a
further added value of closer collaboration with RESERVOIR. The so-created synergies
would between the two projects would ensure an integrated deployment infrastructure.
Concrete details about the use of OpenNebular, in particular in regards to FIRE are ongoing
work. There is certainly a need for future investigations in order to realize the envisaged plan
that was presented in Section 5.1. This is work to be done in the next period of the project.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 31 of 35

6. Conclusions

In this deliverable, we have described the different components of the testbed infrastructure
environment for SOA4All. This infrastructure will be used as part of the overall efforts to
evaluate SOA4All project results during the remainder of the project. The testbed
infrastructure now can be used by component owners, use case partners and dedicated
testers to generate testbeds, create test cases and execute those test cases on the testbed.

Besides the actual configurations of the testbeds, the development of a RESTful service
plug-in has been documented, which serves to extend the available functionalities for testers.
Future plug-ins are going to reduce the testing effort while maintaining efficiency – one of the
objectives described previously in deliverable D1.5.1. These plug-ins are going to include
support for the creation of composed services and for the application of the group testing
methodology to the testbeds, respectively. The development of these plug-ins is ongoing
and, once new versions become available, the plug-ins will again be integrated with the
overall build environment.

Finally, this deliverable described several additional efforts in the scope of Task 1.5, which
were deemed necessary for a useful evaluation of project results. The overall build
environment has been described and extended with testing facilities. Also the deployment of
the SOA4All runtime nodes (the DSB nodes) has been planned, as a realistic environment is
needed for actual results regarding scalability and performance of the developed solutions.
These efforts led to the collaboration with other projects, which provide the means to test the
runtime in realistic settings. Three different possibilities for deploying SOA4All in the large
have been presented, but thanks to RESERVOIR’s OpenNebula virtual infrastructure engine,
a coherent and comprehensive deployment plan across all the mentioned platforms will be
feasible.

In the next and final deliverable of Task 1.5, we will describe the final version of the testbed
environment, which will be used for the last period of the project, and will summarise the
evaluation efforts and results from the experiments, which were already conducted on the
testbed environment. Also, the final deployment for the SOA4All runtime nodes will be
discussed, and the results of the planned scalability experiments will be reported.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 32 of 35

7. References

1. L. Juszczyk, H.-L. Truong, and S. Dustdar, “Genesis - a framework for automatic
generation and steering of testbeds of complex web services,” in Proc. 13th IEEE
International Conference on Engineering of Complex Computer Systems ICECCS
2008, March 31 2008–April 3 2008, pp. 131–140.

2. Schreder, B., Villa, M., Abels, S., Zaremba, M., Sheikhhasan, H., Puram, S.;
Deliverable D9.2.1: eCommerce Framework Infrastructure Design, SOA4All: Service
Oriented Architectures for All - 215219.

3. Vogel, J., Schnabel, F., Mehandjiev, N.; Deliverable D7.2 Scenario Definition,
SOA4All: Service Oriented Architectures for All - 215219.

4. Hadley, M.J.; Web Application Description Language (WADL), Sun Microsystems
Inc., Specification available at https://wadl.dev.java.net/wadl20061109.pdf

5. Lecue, F., Mehandjiev, N., Wajid, U., Namoune, A., Macaulay, L.; Deliverable D2.5.1:
SOA4All Evaluation, SOA4All: Service Oriented Architectures for All - 215219.

6. Burness, A.-L., Titmuss, R., Lebre, C., Brown, K., and Brookland, A. (1999).
Scalability evaluation of a distributed agent system. Distributed Systems Engineering,
6(4):129–134.

7. Jogalekar, P. and Woodside, M. (2000). Evaluating the scalability of distributed
systems. IEEE Transactions on Parallel and Distributed Systems, 11(6):589–603.

8. Jiang, X., Safaei, F., and Boustead, P. (2005). Latency and Scalability: A Survey of
Issues and Techniques for Supporting Networked Games. In 13th IEEE Int’l
Conference on Networks, pages 150–155.

9. Shea, B. (2000). Avoiding Scalability Shock: Five Steps to Managing Performance of
e-Business. Software Testing and Quality Magazine, 2(3):42–46.

10. Shalom, N. (2007). The Scalability Revolution: From Dead End to Open Road – An
SBA Concept Paper. GigaSpaces Technologie.

11. Schreder, B., Cruz, S., Abels, S., Pariente, T., Richardson, M.: D1.5.1 SOA4All
Testbeds Specification and Methodology, SOA4All: Service Oriented Architectures for
All - 215219.

12. Richardson, M., Davies, J., Stincic, S., Mehandjiev, N., Wajid, U., Lecue, F., Álvaro
Rey, G.; Deliverable D8.3 Web21c Futures Design, SOA4All: Service Oriented
Architectures for All - 215219.

13. Stinčić, S., Davies, J., Richardson, Álvaro Rey, G. , Lecue, F., M., Mehandjiev, N.,
Maleshkova, M.; Deliverable D8.4 Web 21c Prototype v1, SOA4All: Service Oriented
Architectures for All - 215219.

14. Krummenacher, R. et al.; Towards a Scalable Triple Space; TripCom Deliverable
D6.5, March 2008.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 33 of 35

Annex A.

In order to be able to quickly generate different testbed configurations, an XSD schema for
the configuration file structure was created and extended for the purposes of the RESTful
plug-in. The following diagram shows the extended schema used for the GENESIS testbed
configuration.

Figure 9: Schema for a GENESIS testbed configuration

The XSD version of the GENESIS testbed configuration is available in the T1.5 section of the
WP1 SOA4All SVN repository.

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 34 of 35

Annex B.

The following Listing presents a concrete GENESIS testbed configuration for the WP9
scenario, as explained in Section 4 of this document. The service templates include both a
WSDL based and a RESTful Web Service.

<configuration xmlns:xsi=http://www.w3.org/2001/XML Schema-instance>
 <plugins>
 at.ac.tuwien.vitalab.genesis.server.plugin.QOSP lugin
 at.ac.tuwien.vitalab.genesis.server.plugin.Invo cationPlugin
 </plugins>
 <defaultparameters qos_processingtime="2000"/>
 <behavior>
 <QOS default="true">
 QOSPlugin.simulateDelay
 </QOS>
 </behavior>

 <schema xmlns:xs="http://www.w3.org/2001/XMLSchem a"
elementFormDefault="qualified">
 <xs:complexType name="product">
 <xs:sequence>
 <xs:element name="id" type="xs:int"/>
 <xs:element name="name" type="xs:string" minOccu rs="0"/>
 <xs:element name="price" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="productArray" final="#all ">
 <xs:sequence>
 <xs:element name="item" type="tns:product" minOc curs="0"
maxOccurs="unbounded" nillable="true"/>
 </xs:sequence>
 </xs:complexType>
 </schema>

 <servicetemplates>
 <service name="productServiceTemplate" type="WS DL">
 <deploy>
 <behavior>
 <!-- empty -->
 </behavior>
 </deploy>
 <undeploy>
 <behavior>
 <!-- empty -->
 </behavior>
 </undeploy>
 <operation name="getProductList">
 <!-- getting a product list takes 5 seconds -->
 <parameter name="qos_processingtime">5000</param eter>
 <input type="void"/>
 <output type="productArray"/>
 <behavior>
 <!-- empty -->
 </behavior>
 </operation>
 <operation name="getProduct">

 SOA4All –FP7215219 Deliverable report D1.5.2 Setup SOA4All Testbeds

© SOA4All consortium Page 35 of 35

 <input type="int"/>
 <output type="product"/>
 <behavior>
 <!-- empty -->
 </behavior>
 </operation>
 <operation name="getProductNameById">
 <input type="int"/>
 <output type="string"/>
 <behavior>
 <!-- empty -->
 </behavior>
 </operation>
 </service>
 <service name="eBayServiceTemplate" type="REST" >
 <definition href="eBayService.wadl"/>
 </service>
 </servicetemplates>

 <environment>
 <host address="http://localhost:8070/WebService s/GeneratorService">
 <service name="productService1" template="productS erviceTemplate"/>
 <service name="eBayService" template="eBayServiceT emplate"/>
 </host>
 </environment>
</configuration>

Listing 4: Genesis Testbed Configuration for WP9

