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ABSTRACT
Embracing service-oriented architectures in the context of
large systems, such as the Web, rises a set of new and chal-
lenging issues: increased size and load in terms of users and
services, distribution, and dynamicity. A top-down feder-
ation of service infrastructure support that we name “ser-
vice cloud” and that is capable of growing to the scale of
the Internet, is seen as a promising response to such new
challenges. In this paper, we define the service cloud con-
cept, its promises and the requirements in terms of architec-
ture and the corresponding middleware. We present some
preliminary proofs of concept through the integration of a
JBI-compliant enterprise service bus, extended to our needs,
and a scalable semantic space infrastructure, both relying on
an established grid middleware environment. The new ap-
proach offers service consumers and providers a fully trans-
parent, distributed and federated means to access, compose
and deploy services on the Internet. Technically, our con-
tribution advances core service bus technology towards the
service cloud by scaling the registries and message routers to
the level of federations via a hierarchical approach, and by
incorporating the communication and coordination facilities
offered by a global semantic space.1.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.2.11 [Software Engineering]: Software Architectures
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1. INTRODUCTION
Scale-out, outsourcing, Software as a Service are now pop-

ular terms reflecting a shift in the way enterprises reorganize
their IT services while re-focusing on their primary business.
This for instance, translates in enterprises offering a handful
of high-value added services running in-house, but relying on
a large and open bunch of out-sourced and shared utility ser-
vices, coupled along service-oriented architectures. Besides,
Web 2.0, mash-ups, social networking are rising paradigms
that also let users reuse, remix and enrich existing resources
and components to new and potentially higher-level appli-
cations, further exposed as new services populating the In-
ternet of Services arena. Both cases need very similar tech-
nological solutions in 1) outsourced, large-scale and flexible
computing or storage support grounding in grid and cloud
computing, and 2) integrated multi-facets solutions to dis-
cover, compose, deploy, run, monitor, publish, and annotate
services that ground in Enterprise Service Bus, SOA and
Semantic Web technologies.

The EU-funded project SOA4All was launched in 2008
and aims at contributing to a complete, large-scale solution
that addresses these novel needs. One expected result of
the project is an even more ambitious paradigm often ac-
knowledged as the Service Web that we establish through
the service cloud. A service cloud must be able to span
the whole Internet, to allow end-users to invoke and coordi-
nate external services, potentially executed anywhere on the
globe. In the remainder of the paper, we thus use the service
cloud as motivator for the design of a space where end-user
can compose, use and execute services at Internet-scale.

The contributions focus on the infrastructure underlying
the service cloud, and are thus strongly middleware oriented.
The paper presents the concept of a federation of ESBs as
a means to realize the service cloud. From a technical point
of view, this translates into the identification of what are
the requirements for such a middleware, concretized by a
prototype. The federation integrates a global information
space containing semantically annotated RDF information



about single or compound services. It also requires a solu-
tion to have the ESBs part of the federation be effectively
inter-connected. To fulfill those two requirements, we rely
on grid and cloud technology. Indeed, the information space
and the routing layer have to be deployable anywhere on the
Internet, i.e., this requires to harness machines from comput-
ing grids and/or computing clouds. The prototype we de-
scribe has been obtained by relying on an Enterprise Service
Bus (ESB), namely the open source ObjectWeb 2 PEtALS
ESB,2 that in itself offers already a distributed ESB (DSB
for short). Being distributed, PEtALS facilitated the task of
promoting it as a federated ESB. However, the technical ex-
tensions that we present here after are applicable whenever
other ESBs than PEtALS have to be inter-connected by the
federation. Both the overlay network supporting the infor-
mation space, and the routing layer for inter-ESB messaging
are based upon the open source OW2 ProActive Grid tech-
nology for achieving full portability, distribution and scala-
bility of the federation.3 The combination of PEtALS plus
ProActive yields our federated ESB, which acts as the core
infrastructure of the service cloud.
This paper is organized as follows: in Section 2 we define

the challenging concept of service cloud, present existing
solutions that could support this paradigm, and briefly de-
scribe some of the very few related works. In Section 3 we
explain the requirements of bringing an Enterprise Service
Bus to the service cloud, and present our architecture design
and prototype for the service cloud in Section 4. Finally, we
conclude and point to some further work.

2. MOTIVATION AND RELATED WORK

2.1 The Challenge to Take Up: The Service
Cloud

The trends in service computing point far beyond the re-
cent changes around the concept of “Software as a Service”.
In fact, we are entering the era of “Everything as a Service”
(XaaS) by binding humans, objects, and resources such as
storage or computing devices as services to a global service
delivery infrastructure. Information and computation of any
kind will be exposed and made available through services
and disappear behind the services interfaces. The services
themselves disappear in the Web that becomes the platform,
as public, open and distributed alternative to private legacy
systems.
As a consequence, services turn into utilities. Their func-

tionality and the offered quality of service become the de-
cisive characteristics, rather than the endpoint location or
provider. Through the cloud, distributed functionalities are
then provided by the community, and no longer by individ-
ual nor dedicated providers [14]. In such scenarios, average
users become prosumers (both providers and consumers [15])
of services in the cloud, leading to thousands of new ser-
vices and business profiles created almost on-the-fly. Conse-
quently, the number of services providing, respectively con-
suming entities reaches dimensions that will soon be compa-
rable to the number of users and contributors to the World
Wide Web. This number is only exceeded by the amount
of data and computing resources that are exposed through
service interfaces.

2http://petals.ow2.org
3http://proactive.inria.fr

Another force into action translates the notion of a ser-
vice ecosystem: major actors in today IT, like Internet ser-
vice providers (ISPs) for instance, continuously enlarge their
service offerings, aiming to build communities of users that
identify themselves as being member of the community. All
services shared by a community are living and are being
composed in the associated marketplace that the actor de-
limits. However, partnerships between such actors may arise
as coalitions, translating directly in the need to interconnect
their existing service marketplaces into peered or, more hi-
erarchically structured federations, thus yielding to an even-
tually unique, however not flat global service cloud.

In order to manage this wealth of resources, there is a sig-
nificant need for automation. Without automation, it would
no longer be possible to offer the required functionalities of a
service delivery platform, such as discovery, adaptation, ne-
gotiation and execution. Automation in turn relies heavily
on metadata in order to create more abstracted views onto
real-life objects. Semantic technologies are a key component
for such work and were successfully applied in many recent
projects on software and services to lift services and their de-
scriptions to a level of abstraction that deals with machine-
understandable conceptualizations, and that decreases the
dependency upon human users4. Thanks to semantics, it
is now possible to facilitate and automate the management
of services’ entire life-cycles in terms of creation, discovery,
composition, configuration and invocation.

The service cloud embodies both, a market place for the
offering of services at Internet-scale, and an infrastructure
and middleware – also referred to a global service delivery
platform – that supports the provisioning, consumption and
monitoring of the available services. Such a middleware is
needed as a scalable layer for the communication and service
coordination in the cloud, and the storage and manipulation
of service annotations. While the notion of service cloud is
still a rather abstract concept, we present our on-going work
on bringing traditional service bus technology to Internet-
scale. Service buses deliver the core functionality for service
computing in corporate settings, but do not suffice in terms
of dynamics, openness and scalability, required for Service-
Oriented Architecture on the Web. Finally, one may also
argue why not relying simply on the Web, as the underlying
infrastructure? The Web can enable the interconnection of
services and creation of Service-Oriented Architectures but
relying on ESB-based technology ensures service prosumers
to get more control over the service usage (e.g., enforce poli-
cies for using the service, controlling its access, monitor its
performances). The architecture that we present in Section
4 still grounds in ESB technology that is enhanced with
state-of-the-art technologies in distribution and semantics
to provide the core infrastructure services such as storage,
monitoring, deployment and communication for a virtually
global Internet-scale service ecosystem.

2.2 Related Work
In this section we discuss, although only a few exist, some

related works that pertain to provide end-users the notion
of a service cloud, thanks to a supporting underlying mid-

4E.g., ASG, http://asg-platform.org; DIP, http:
//dip.semanticweb.org; INFRAWEBS, http://www.
infrawebs-eu.org; SHAPE, http://www.shape-project.
eu; STASIS, http://www.stasis-project.net or TripCom.
http://www.tripcom.org.



Figure 1: SOA4All overall architecture.

dleware that integrates services at large-scale.
The federated ESB from the EXDI (ESCB XML Data

Integration Solution) [17] project supports simple, flexible,
secure and scalable data exchanges within ESCB (European
System of Central Banks), a world-wide federation of na-
tional banks such as the Banque de France or the European
Central Bank. This federated bus serves as a basis for a
transparent way to perform data exchanges (that are mod-
elled as re-usable business process and stored within the so-
called EXDI registry) between banks. This business-based
architecture can be compared to a service cloud, specialized
in the bank domain, and meet the challenges we have to
address in SOA4All, i.e., scalability, availability, or trust to
rename a few. However, this is a very particular business
domain and the architecture seems to be very tied to bank
activities and is not general enough to be opened to the gen-
eral, non-technical Internet users as targeted by SOA4All;
meeting the “for All” of SOA4All.
As stated in [16], where authors attempt to give a clear

definition of cloud computing, the concept of cloud can be
divided into several categories: Infrastructure as a Service
(IaaS), Platform as a Service(PaaS) and Software as a Ser-
vice (SaaS). In this paper, we talk about an architecture that
is able to deliver services to the user without having the user
to care about how services are delivered. Thus, we position
our service delivery cloud in the SaaS concept. There are
numerous SaaS platforms such as Google Apps, force.com or
the Microsoft Azure platform [5]5. One of the more suited
for general purpose computing and composition is Microsoft
Azure [1]. This brand new platform provides means to run
Windows applications and storing their data in the cloud.
However, the cloud infrastructure (including cloud technolo-
gies such as service execution or data storage) is localised

5http://www.microsoft.com/azure/windowsazure.mspx

on Microsoft servers (all located in Microsoft data centers)
even if it can be accessed via the Internet. In particular, the
architecture relies on the so-called Microsoft .NET Services
component that offers an ESB-like distributed infrastructure
to cloud-based and local applications. The distribution of
services is based on a service bus, allowing .NET applica-
tions to be exposed as Web services in order to have them
inter-operate. In the upcoming release of Azure, Microsoft
foresees to add a federation feature between private clouds to
share data between organizations [7]. Those private clouds
are comparable to the ESBs that take part in our proposed
federation, however, the SOA4All federation is designed in
a way that makes it totally open and agnostic with respect
to the effective locations it is deployed on, and with respect
to the technology to let services interact to get a large-scale
SOA thanks to an ESB-based approach.

All the quoted platforms are enterprise-centric even if they
propose a facility for outsourcing to companies or to inter-
connect companies’ service systems; consequently we argue
that they follow a bottom-up approach. On the contrary,
the goal we pursue for the service cloud is to install an open
third-party solution for federating different ESBs in a to-
tally transparent manner to the end-users (prosumers). We
seek to interconnect many services, existing SOAs and corre-
sponding infrastructures into something that would approx-
imate a truly enterprise-spanning SOA, but in a global and
top-down way. From the end-user point of view, such a ser-
vice cloud would ensure maximised flexibility in the action
of composing services out of existing ones. Corresponding
tools, such as the SOA4All Studio, key part of the SOA4All
overall architecture as shown in Figure 1, are needed in or-
der to make the infrastructure accessible to users. However,
this is not the matter of this paper, as the focus is on the
associated middleware aspects.



3. REQUIREMENTS FOR AN ESB FEDER-
ATION

In this section, we introduce ESB architectures and tech-
nical elements and show why ESB and DSB technologies are
a good basis for enabling a large-scale service infrastructure.

3.1 ESBs and DSBs
An Enterprise Service Bus (ESB) is a sophisticated in-

frastructure to host SOA applications, which provides an in-
terconnection between heterogeneous service providers and
service consumers [13].
Both the inner architecture of the ESB and the applica-

tions it supports can be mapped onto the traditional publish-
find-bind SOA pattern by offering a service registry to pub-
lish and to find the services. It must be clear, however, that
two kinds of registries are usually part of the picture. Ser-
vices can be published in open Internet-scale registries like
UDDI-compliant servers to play a role of external services.
It might also be possible that some applications wrapped as
services (as those requested by the bus to perform correctly)
must be only publicized internally, i.e., only accessible from
within the ESB and consequently stored in some internal or
private registry within the bus. To hide heterogeneity of pro-
tocols for accessing services (external or not), the ESB acts
as a broker between clients and server applications/services,
meaning that its duty is to bring client requests to the appro-
priate service provider. To this aim, each service involved in
an SOA application deployed on the ESB is accessed through
a software artifact (known as a Binding Component (BC) in
case of JBI-compliant buses) that is capable of translating
the request’s form into one understandable by the targeted
service. As a consequence, deploying a SOA application onto
an ESB triggers the creation of such a component for each
involved type of service. Its corresponding internal address
(aka service end-point) is registered in the internal registry
of the bus, making the service endpoint reachable by all the
bus service consumers.

Figure 2: Distributed PEtALS ESB architecture.

In a distributed ESB architecture, some software artifacts
can be hosted on different nodes (named containers) and
service engines may be either replicated or distributed over
containers. Since such a DSB gives a unified vision of the
bus, it must be able to look for any binding component or
service engine address, hosted or not on the same container.
This requires the use of a technical registry that can be either
distributed or replicated. Figure 2 presents the unified and
transparent view of a DSB, illustrated on the PEtALS case
(right side) from a client point of view.

3.2 Federations: Beyond ESB and DSB
According to the SOA4All vision, the service cloud infras-

tructure has to cope with billions of external services and
orchestration enactments of thousands of compound services
involving subsets of those billions above. Moreover, millions
of users are concurrently accessing and deploying services

through the SOA4All Studio with a few thousands of them
acting as service composers. However the selection of ser-
vices to be composed confines itself more or less, to ser-
vice marketplaces, delimited e.g. along geographical prove-
nance, topics, mercantile business, etc. Additionnally, al-
liances and partnerships may be set up to enlarge, increase
the respective marketplaces influences without necessarily
merging them. Consequently, federating ESBs must enable
to build recursively hierchical federations, in order to be able
to reflect the corresponding service marketplaces alliances.
In short, the primary goal of the SOA4All service cloud is to
ensure that SOA4All scales to the dimensions of the Inter-
net by enabling appropriate distribution techniques without
altering the communication and interaction patterns of the
ESB core.

The baseline for the design of the federated bus infrastruc-
ture is given by the DSB, as it already addresses service loca-
tion agnosticism. So far, the DSB mainly lacks Internet-wide
inter-connection mechanisms for its containers, and a global
and shared store of metadata about federated services. Ad-
ditionally, the resulting federation should be deployable on
third-party computing resources, featuring also elasticity to
cope with increasing or decreasing needs for nodes in the
federation or the global information space. ESB scalabil-
ity may be achieved in different ways: Many available tools
are based on Hub and spoke architecture: this means that
ESB is centralised (like classical EAI solution) and provide
connectors (SOAP, RMI, etc.) for distributed services. The
main drawback of this architecture is that it doesn’t en-
sure end-to-end QoS. PEtALs extends the specification in
order to provide a multi-nodes architecture that addresses
scalability, providing many JBI compliant nodes connected
together. This leads to a moderate scalable architecture.
The SOA4All DSB federation extends this concept to the
federated architecture that allows to scale at a very high
level.

While state-of-the-art ESB technology mostly relies on
client-server communication, in SOA4All we aim at pro-
viding services with more powerful communication patterns
(e.g., publish-subscribe, event-driven, and semantic-oriented)
that allow further decoupling of the communicating entities
in terms of time, processing flow and data schema. This is an
important principle relying on the fact that the SOA4All ser-
vice cloud must allow any type of communication efficiently
and transparently over the Internet by means of sharing or
exchanging any type of data in between any type and num-
ber of distributed actors. Such needs have to be addressed
at the level of the federated bus, and quite naturally leads to
the integration of a global information space in form of se-
mantic spaces to deliver the desired data sharing and event
propagation middleware [10].

4. DESIGN AND IMPLEMENTATION

4.1 Service Cloud Overview
The SOA4All service cloud infrastructure consists of the

merger of service buses which can be abstracted as a single
Internet-wide ESB, and a P2P-based global semantic space
(Figure 3). As the focal point, the service cloud enables
and realizes the overall operational semantics of the SOA
support, and serves as a broker that connects the SOA4All
Studio, platform services and business services alike. Plat-
form services yield the minimal necessary functionality of a



service delivery platform, such as service discovery, ranking
and selection, composition and invocation.
To meet the scalability requirements of SOA4All, the dis-

tributed cloud infrastructure is grounded in well-established
Grid technology, ProActive, (briefly described below) that
implements the inter-buses messaging layer and that deliv-
ers the networking support for the semantic spaces. To il-
lustrate the new elements that constitute the federation, we
prototyped the required extensions in the open source ESB
PEtALS. We continue this section with a presentation of the
technical baseline of ProActive and PEtALS before elabo-
rating on the federated DSB approach of SOA4All.

4.2 GCM/ProActive Grid Middleware
ProActive hosted by the OW2 consortium is a 100% pure

Java solution. More precisely, it is an asynchronous active-
object based middleware offering the notion of asynchronous
calls with futures (a future is a promise to get back a re-
sponse) among distributed objects, extended with the possi-
bility to transparently handle groups of objects and security
(e.g., authentication, encryption) for inter-object commu-
nications [2]. The transport layer communication protocol
used by ProActive remote method invocation can be chosen
at will (e.g., RMI, RMI over SSH, or HTTP, amongst oth-
ers). ProActive also implements a component-oriented pro-
gramming model, a grid extension of the Fractal model [4]
called Grid Component Model(GCM) [3] that is used within
PEtALS too. Active objects and component interfaces can
be exposed as Web services if needed. ProActive runtimes,
which act as containers for active objects, are grid-aware in
the sense that they can be started remotely from any ma-
chine, using any remote access protocol, taking charge, if
needed, of all the required file transfers (e.g., Java version,
ProActive bundles) at the remote places using any file trans-
port protocol. It is thus possible to gather machines from
grids (e.g., Grid’50006 in France), private clusters, clouds
(e.g., Amazon EC2) or desktop networked machines to form
an overlay network of ProActive runtimes. This overlay net-
work can also be constituted along peer-to-peer principles.
When new runtimes are started, they can automatically join
an unstructured peer-to-peer overlay of ProActive runtimes.
This overlay network provides the fundament for any dis-
tributed application, and thus in particular of our service
cloud infrastructure too, as detailed here after.

4.3 PEtALS Service Bus Architecture
PEtALS is built on top of agile technologies such as JBI

and the Fractal Software Component Framework7. Frac-
tal is a modular and extensible component model that can
be used with various programming languages to design, im-
plement, deploy and reconfigure various systems and ap-
plications, from operating systems to middleware platforms
and to graphical user interfaces. From the PEtALS’s point
of view, all the container services, such as service registry,
message router, message transporter or discovery, are im-
plemented as Fractal components. This is a major feature
which allows core developers to specialize a PEtALS dis-
tribution by choosing the software components to be used
for specific needs. The distributed behavior of PEtALS is
mainly provided by two software components which are the
technical registry and the message transporter.

6http://www.grid5000.org/
7available at http://fractal.ow2.org

The technical registry stores all non-functional artifacts
(JBI services, endpoints, interfaces, container location) which
provide all necessary metadata to route messages to the de-
sired endpoint. The registry entries are replicated among
all the bus nodes using a distributed hash table over a mul-
ticast channel. This is equivalent to data flooding between
registries; when an entry is added to the registry, data is
sent to all the network registries. In this way, all the reg-
istries have a complete view of the services hosted by all
the containers. This approach is the base of the unified ser-
vice bus, but as it currently relies on multicast techniques,
it is not scalable. In the Internet-wide scenario of SOA4All,
thousands of services references would need to be replicated
to all the registries at the level of a single DSB. The cur-
rent release of PEtALS is thus as-is not exploitable for the
service cloud.

The message transporter constitutes the core mechanism
to exchange messages between containers in a transparent
way at the service consumer and provider levels. In a stan-
dard JBI implementation the normalized message router gets
the local endpoint reference from the local registry and sends
the message to local JBI endpoint. In the PEtALS approach,
once the endpoint is retrieved from the registry, the mes-
sage and the endpoint reference are sent to the transport
layer which is in charge of delivering the message to the JBI
endpoint, independently of the container’s location (local or
remote).

The available PEtALS DSB architecture constitutes a solid
starting point for materializing the federation approach of
SOA4All. As stated above, PEtALS natively assumes that
service artefacts are not all co-located, and naturally inte-
grates mechanisms in response to distribution concerns.

4.4 Complete Federation Architecture
In the remainder of this section, we present the SOA4All

Distributed Service Bus, as core infrastructural enabler of
our service cloud. First we present how the merger of PEtALS
and ProActive provides scalable message routings and tech-
nical registries, and finally introduce the fully P2P-based
semantic space implementation on top of ProActive that
yields SOA4All’s shared semantic memory and coordination
platform.

4.4.1 Federation Topology and Message Routing
The most crucial element to federate PEtALS-based DSBs

is to provide a solution for message routing without posing
a constraint on having point-to-point connections among all
the different containers, and without using the original JMS
broker which would be difficult to deploy at Internet-scale.
The chosen solution is a multi-level, hierarchical organisa-
tion of bus nodes. This flat-to-hierarchical interconnection
of PEtALS containers requires that end-point references of
deployed artifacts are generalized to comply to a multi-level
numbering identification schema. For our prototype it is
sufficient to add one level only, as we build federations of
enterprise service buses; the first level is the enterprise level,
and the second one the inter-enterprise level given by the In-
ternet. Recursively building hierarchical federations of such
federations would of course be possible and allows for adding
as many new levels as desired in the identification schema.

To inter-connect PEtALS containers, the message trans-
porters must be extended so that they can subcontract the
message transport to a grid-aware routing layer. Through



Figure 3: The technical architecture of the federated DSB.

ProActive such a hierarchical grid aware routing layer exists,
and we rely on the available GCM/ProActive components
[9]. This routing support was initially designed for message
exchanges in a MPI-based application that was deployed on
a hierarchically organized multi-cluster, inter-grids, inter-
clouds computing infrastructure.8 Its architecture lever-
ages the hierarchical GCM composition model: activities
deployed on a same cluster of machines (i.e., intra-domain)
can use native communication protocols such as an MPI
implementation, or any built-in PEtALS message transport
protocol, as for example JMS, to exchange messages. In
case the target destination hierarchical identifier shows that
the recipient is hosted outside the domain, the messages
are tunneled to their enclosing GCM component, which in
turn is in charge of routing them according to the hierar-
chy. Each composite component is bound, thanks to the
GCM collective interface bindings, to all its peers represent-
ing the other domains also involved in the same level of the
federation. Interface bindings among the composite compo-
nents concretize partnership agreements that materialize as
direct communication paths. Such a path is in turn imple-
mented as a ProActive communication channel to take ad-
vantage of all its grid-aware capabilities (Section 4.2); more
details about the routing process can be found in [9]. Such a
generic routing substrate is perfectly adequate to material-
ize a federation of ESBs along peering or more hierarchical
alliances among partner ESBs. Additionally, the dynamic
(re)configuration of the GCM bindings’ capability allows to
reflect on possible modifications of partnerships, according
to some global SOA governance rules.

4.4.2 Distributed Registry
The second key issue, in getting a federation of DSBs, is

8Message Passing Interface (see http://www.mpi-forum.
org/docs/docs.html).

to scale the PEtALS technical registry at the level of the
federation by agreeing on the partnerships and alliance re-
lations. An alliance translates into mutual agreements to
share end-point references for further use of containers or
business external and internal services that are attached to
the involved DSBs.

The principle elements of the technical registry still apply
also in the federated scenario. However, there is a need for
a inter-domain lookup protocol that we realize via a multi-
level lookup (and associated registration) strategy. If the
standard registry lookup of PEtALS does not return any re-
sults, the lookup query is recursively propagated one level
up according to the GCM-based routing organisation made
of GCM composite components, and then translated into
the forwarding of lookup queries down to each federated
DSB. The lookup response makes its way back along the
same route, and cancels any still ongoing search if any. In
addition, the lookup strategy is capable of dynamically es-
tablishing shortcuts as optimizations for further use of the
route [9]. We expect a performance benefit from using GCM
collective interfaces and bindings within the architecture of
the routing layer, as they naturally introduce parallelism in
the lookup process. Indeed, [9] includes competitive perfor-
mance evaluation results (compared with gridified versions
of MPI implementations) of patterns that are very close to
our lookup protocol.

For the sake of performance when managing replicated
copies, we do not consider to implement a systematic repli-
cation of all the information stored in the respective techni-
cal registries of all federated buses, but rely on the lookup
multi-level strategy explained above. It does however not
ban the technical registries of individual DSBs from stor-
ing lookup responses for a specific predefined delay, acting
as a cache. Besides, the technical registry copies of each
DSB may still be managed using replication, applying the



already built-in protocol. In fact, it is not expected that a
single DSB may be constructed of more than a few tens of
containers, also in the Internet-scale scenario.

4.4.3 Semantic Spaces
As stated in the requirements section, there is an eminent

need for complementary communication and coordination
means – as alternatives to the established client-server model
– that allow traditional service bus technology to scale up
to Internet-scale. Semantic spaces are a novel type of com-
munication platform that has recently gained momentum
in the middleware community, as a response to the raising
challenges of data sharing and service coordination in large-
scale, distributed, open and highly dynamic Web environ-
ments [10]. Semantic spaces fuse tuple space computing [8]
known from parallel processing, blackboard-style problem
solving [6] known from artificial intelligence and semantic
technologies to a distributed (semantic) data management
platform. Such a platform offers a simple interface for per-
sistently publishing and reading semantic data, and seman-
tic pattern-matching as enabler for type-based retrieval and
publish/subscribe mechanisms rather than direct address-
ing and message passing. A semantic patterns is any triple
pattern or graph pattern, as they are supported by most
RDF query languages (cf. for example SPARQL as defacto
standard [11]). Consequently, semantic spaces bring more
Web-style communication patterns to service computing, as
alternative to the traditional message-driven approaches of
XML-based Web services.
This is particularly interesting and promising in the con-

text of many of our SOA4All large-scale data sharing sce-
narios for which the amount of semantic data that has to
be processed is likely to exceed the numbers that we are
currently aware of. Moreover, SOA4All (refer back to Fig-
ure 1) will exploit the semantic space add-on as distributed
semantic repository for service and process descriptions, as
collaboration infrastructure for sharing monitoring data and
user profiles, and as asynchronous and event-driven commu-
nication platform for the realization of service mash-ups.
Service mash-ups are data-centric specifications over collec-
tions of services whose executions is coordinated by shared
access to data in the space. It is important to note that by
offering the complementary communication facilities of se-
mantic spaces to all platform services and business services
that are bound and interacting over the service cloud, we
realize the core infrastructure services of SOA4All in an in-
tegrated manner and do not require anyone to take care of
additional access points.
The implementation of the semantic space infrastructure

itself is based on well-established P2P overlays and deployed
on ProActive nodes. In that way the space nodes and inter-
bus routing nodes are co-existent and coordinated resources
relying upon the same grid technology, and consequently,
same grid management tools as the federated DSB. Each
peer of the overlay is implemented using an Active object
and thus benefits from its asynchronous communications.
Although it is possible to store any kind of data in the
exploited P2P overlay, the infrastructure is optimized for
handling semantic data in form of RDF triples. Triples are
indexed and distributed according to a CAN overlay [12].
CAN offers a structured peer-to-peer architecture which al-
lows efficient storing/retrieving of data. Their design centers
around a virtual d-dimensional Cartesian space. The entire

Figure 4: Three Dimensional CAN space. CAN
axis represent subjects, predicates, objects of RDF
triples. Space is partitioning into zones. Each zone
is owned by a peer (ProActive Active Object).

coordinate space is dynamically partitioned among all peers
in the system. The coordinates are used to store tuple val-
ues by mapping them to points in the virtual space. A three
dimensional CAN overlay offers a natural solution to the
storing of RDF triples. Axis of the overlay represent respec-
tively subjects, predicates and objects of RDF statements
and values are ordered lexographically (see Figure 4). The
number of dimensions can be increased to handle additional
data like meta-information for each RDF triple.

In order to integrate the semantic space infrastructure
with the federation of service buses, its interface must be
exposed as a service that is offered via a JBI binding com-
ponent. This component is the link between any service bus
and the semantic space infrastructure. With this approach,
manipulating data, expressing queries or being notified of
new data is equivalent to performing: 1) a direct service
invocation: writing, reading or querying data means send-
ing the right message to the space service. Since the space
service will be described using WSDL (according to the JBI
specification), this becomes a standard operation at the level
of the bus, and 2) listening to events: when new data is avail-
able in the space, the binding component is able to notify a
set of services which have registered listeners. This provides
a working solution for relying upon Event-Driven Architec-
ture patterns for building SOAs inside a single distributed
bus as much as at the level of federations.

4.4.4 Bringing All Together
The resulting service cloud architecture is shown on Fig-

ure 3. DSBs are interconnected and linked to the seman-
tic space: red-doted rectangles represent ProActive/GCM
runtimes that host semantic space nodes and service bus
nodes respectively. The large bi-directional arrows denote
the GCM transporter extensions that are needed for the
technical registry and message routing mechanisms between
bus nodes. The smaller dark bi-directional arrows represent
the links between the DSBs and the semantic space via stan-
dard JBI mechanisms, but implemented by ProActive based
communication channels.

5. CONCLUSION
In this paper, we have presented the concept, architec-

ture and prototype implementation of an Internet-wide ser-
vice cloud based on the federation of distributed services
buses and semantic spaces. Our proposal is based upon the
PEtALS and ProActive/GCM technologies and delivers a



large-scale, open and distributed SOA environment.
The needed extensions to existing service bus realizations

that were identified required the improvement of the tech-
nical registry and the capability to route messages within
federations. Although, realized in the context of PEtALS,
we believe that such extensions would be needed for any
ESB/DSB willing to take part within such a federation. Val-
idation this assumption by means of alternative open source
ESBs on the market are planned, but have not yet started.
Additional effort to effectively finalize a working proto-

type of a federation, relying upon the use of PEtALS buses
is currently undertaken. It pertains both at the algorithmic
and experimental levels, and is required to definitively decide
for one or another federated technical registries management
strategy. Being able to rely on GCM-based structures to rep-
resent the topology of the federation is seen to be a key ad-
vantage in defining the most adequate strategies for lookup
and update of the involved technical registries. An alterna-
tive to not rule out is to rely on the global semantic space to
serve as the technical registry of the prototyped federation,
taking advantage of its foreseen scalable, and performant
peer-to-peer discovery and storage protocols. However, the
aim of the semantic space is much more focused on sharing
semantic artefacts than on being a registry of JBI end-point
references. Consequently, a specific technical registry man-
agement protocol within the federated PEtALS DSBs may
eventually suit better. This remains to be further investi-
gated, also in terms of what and how registry information is
formalized and published; a semantic space-based solution
would require an RDFication of JBI end-point references.
In summary, the ESB federation exposes the traditional

enterprise service bus functionality extended with scalable
Web-style publishing and reading. The integrated support
for semantics and event-based communication mechanisms
serves as basis for shared data management and collabo-
rative activities. In particular, the integrated support for
semantics empowers direct links to reasoning or mediation
techniques. By adding semantic spaces, SOA4All moreover
realizes an integrated infrastructure that grants access to
distributed semantic repositories for service descriptions, a
storage infrastructure for sharing monitoring data and other
collaborative tasks, and event-driven communication with-
out requiring platform services and business services to take
care of additional access points; i.e., the presented work is
conceputalized to provide a multi-functional service cloud
for SOA4All in a all-in-one solution.
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