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Abstract. Establishing Web services as resources on the Web opens up productive 
but challenging new possibilities for open, highly dynamic and loosely-coupled 
service economies. In addition, lifting services to the semantic level provides a 
sophisticated means for automating the main service-related management 
processes and the composition of arbitrary functionalities into new services and 
businesses. In this article we present the SOA4All approach to a global service 
delivery platform. By means of semantic technologies, SOA4All facilitates the 
creation of service infrastructures and increases the interoperability between large 
numbers of distributed and heterogeneous functionalities on the Web. 
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Introduction 

The Web service technology stack offers various means for making software 
functionality accessible as remote components, independent of particular programming 
languages and platform implementations. Significant work was done in specifying 
architectures, middleware, languages, communication protocols and process execution 
engines that can support the creation of complex distributed systems by seamlessly 
coordinating Web services. Service-Oriented Architectures (SOAs) foster the 
development of such distributed and loosely-coupled solutions whereby service 
providers advertise the services they offer, and solution providers and software 
developers access the service repositories to search for suitable services to invoke for 
the given purpose or to build and execute processes. 

Within the SOA4All project, the core ideas of SOA are re-thought with the aim of 
making services ubiquitous on the Web. The chosen approach is to combine the 
principles which underpin the Web, Web 2.0, semantics, context and SOA and to 
derive an architecture based on these principles. In particular, from the Web we take 
openness, decentralization, and the fact that communication is driven by a ‘persistent 
publish and read’ paradigm rather than by messaging. In SOA4All, Semantic Web 
languages are leveraged to increase the automation of various common tasks during the 
life-cycle of services, such as their discovery and composition. From Web2.0 we take 
the value of easy-to-use interfaces and of social networks. Finally, automated context 
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adaptation capabilities are embedded within the architecture in order to support the use 
of services in unforeseen contexts. In provisioning a Web were services exist in billions, 
we argue that the SOA4All architecture provides a Web-based example of a global 
service delivery platform. In particular, by empowering Web services as resources on 
the Web, SOA4All yields the fundamental building blocks for the creation of new 
business opportunities in form of open and loosely-coupled service economies. 

SOA4All addresses the Web of Services in which millions of users work with 
billions of services. In order to manage the resulting wealth of resources – e.g., service 
descriptions, user profiles or process models – there is a significant need for 
automation. Without automation it would neither be feasible to scale to the dimensions 
of the Web, nor to offer the service delivery platform functionality. Automation relies 
on metadata to create more abstracted views onto real objects. Semantic technologies 
are a key component for such work and were successfully applied in many recent 
projects on software and services to lift services and their descriptions to a level of 
abstraction that deals with machine-understandable conceptualizations, and that 
decreases the dependency upon human users. Thanks to semantics, it is possible to 
automate the services’ life-cycle management. 

In this chapter we first present the conceptual architecture of the SOA4All service 
delivery platform. Section 2 presents the integration middleware in form of federations 
of distributed services buses. In Section 3, the platform services are introduced; 
platform services provide the basic components of a service delivery platform, such as 
the discovery and composition services or the reasoning engines. Section 4 depicts a 
consolidated example of how the service delivery platform integrates in order to 
establish an executable process. To conclude the chapter, we provide a wrap-up and 
depict some future directions. 

1. SOA4All Conceptual Architecture 

A global service delivery platform (GSDP) is an open platform through which domain 
independent services can be used to build problem-specific service solutions. SOA4All 
establishes a service delivery platform that is targeting Web services (traditional WS-* 
stack-based and RESTful services, as well as Web APIs). Future implementations of a 
GSDP will have to consider other exposable functionalities too, such as mobile services 
or sensors networks in order to fully enable the ‘Everything as a Service’ paradigm. 

The SOA4All platform focuses on automating the management of services that are 
traditionally driven by technologies such as WSDL and SOAP, and on empowering 
RESTful services. Automation is advocated through the application of semantics and 
hence by means of Semantic Web services. In other words, services are annotated by 
means of Semantic Web languages, and the platform services operate on the semantic 
descriptions of services and processes, rather than the actual software implementation 
or the physical endpoints. In fact, the services turn into utilities, which disappear in the 
Web that becomes the platform and a public, open and distributed alternative to private 
legacy systems. The service capabilities and the offered quality of service become the 
decisive characteristics, rather than the endpoint location or provider. 

In the following, we present the SOA4All conceptual architecture that is grounded 
in four main building blocks: the Distributed Service Bus in the very centre of Figure 1; 
the SOA4All Studio, as the user front-end, the platform services at the very bottom, 
and so-called business services, as well as processes and their descriptions. 



Figure 1. SOA4All architecture. 

1.1. Distributed Service Bus 

The Distributed Service Bus enables Web-style communication and collaboration via 
semantic spaces and service bus technology, and yields the core runtime infrastructure. 
The DSB augments enterprise service bus technology with distributed service registries, 
the layering of the service bus on top of established Internet-enabled middleware, and 
the enhancement of the communication and coordination protocols by means of 
semantic spaces. Spaces are seen to significantly increase the scalability of the bus in 
terms of interaction between distributed and autonomous services [1]. A more detailed 
description of the DSB and semantic spaces is given in Section 2. 

1.2. SOA4All Studio 

The SOA4All Studio is a Web-based user front-end that consists of three components 
which offer service provisioning at design time, consumption and analysis of services 
at runtime, respectively: 

The Provisioning Platform has two main purposes: i) tools to semantically 
annotate services; and ii) a process editor that allows users to create, share, and 
annotate executable process models based on a light-weight process modeling language. 
Service annotations are based on WSMO-Lite [2], a minimal extension to SA-WSDL 
[3] that empowers the creation of lightweight semantic service descriptions in RDFS. 
In parallel, MicroWSMO [4] is used to annotate services that are not described in 
WSDL, such as RESTful services or Web APIs. MicroWSMO is a microformat-based 
language around the constructs known from WSMO-Lite, however, adapted to support 
the annotation of HTML-based descriptions, as they are usually available for this type 
of software exposures. Finally, SOA4All provides a minimal service model in RDFS 
that yields an overarching conceptual model able to capture the semantics for both Web 



services and Web APIs, thus allowing both kinds of services to be treated 
homogeneously within SOA4All.  

The Consumption Platform is the gateway for service consumers. It allows users 
to formalize goals. A goal is a formal specification of an objective and as such yields 
an implicit specification of the services that need to be executed. User objectives are 
transformed into processes that are compositions of service descriptions and so-called 
service templates together with control and data flow information and potentially 
further constraints on the services and their execution. Service templates define 
process-internal activities instead of concrete services whenever flexibility in service 
selection is desired. At runtime, service templates are resolved to specific services that 
are selected on the basis of conditions and informed by contextual knowledge which 
may include monitoring data, user location or other aspects that affect the 
appropriateness of a service endpoint. 

The Analysis Platform collects and processes monitoring events from the service 
bus, extracts and produces meaningful information out of it and displays the results to 
users. Monitoring events come from data collectors that perform basic aggregation 
from distributed sources in the service delivery platform. Data collectors are installed at 
the level of the bus and the execution engine, and are installed to cover all aspects of 
monitoring necessary in the context of SOA4All: monitoring of process executions, of 
service end-points that are invoked through the service bus, and finally of the 
infrastructure itself. While users can select particular services to be monitored in terms 
of quality of service attributes, simpler and less comprehensive data can also be 
collected for all other services that are empowered through the bus, but that are not 
explicitly monitored upon user request; e.g., the moving average for response time. 

1.3. Platform Services 

Platform services provide the minimally necessary functionality of a service delivery 
platform, such as service discovery, ranking and selection, composition and invocation. 
These components are offered as Web services via the service bus and are consumable 
in the same manner as any other published business service. Although distinct in their 
purpose, they have in common that they operate with semantic descriptions of services, 
service templates and processes rather than with the syntactical representation of those, 
as it is traditionally the case in service-oriented infrastructures. The SOA4All platform 
services, shown at the bottom of Figure 1, are detailed in Section 3.  

1.4. Business (Web) Services and Processes 

Figure 1 was discussed so far with respect to the central components of the SOA4All 
service delivery platform – the ensemble of DSB, SOA4All Studio and platform 
services. Jointly, they deliver a fully Web-based service experience: global service 
delivery at the level of the bus, Web-style service access via studio, and automated 
service processing and management via platform services. Moving to the corners of 
Figure 1, we enter the domain of semantic service descriptions and processes: (1) 
represents the semantic services descriptions, either in form of annotated RESTful 
services (3) or WSDL endpoints (4); (1) thus represents the so-called Semantic Web 
services. The semantic descriptions are used for reasoning with service capabilities 
(functionality), interfaces and non-functional properties, as well as contextual data.  



In the right top corner of Figure 1, (2) represents processes and mash-ups. 
Processes are orderings of Semantic Web services, service templates with associated 
constraints, data and control flow. A mash-up is a data-centric model of a composition 
that is almost entirely executable by coordinated access to data in a semantic space. 
Although being comparably simple, mash-ups provide a promising approach to Web-
style service computing, a pre-requisite for light-weight service economies. 

2. A Federation of Distributed Service Buses 

Earlier in this chapter we stated that the decisive factor in choosing a service is no 
longer the endpoint but the functionality and quality of service, and that alternative 
implementations might complement or replace services in a process. Consequently, 
distributed functionalities are leveraged by communities and no longer by dedicated 
individuals. In such scenarios, average users become prosumers of services, leading to 
thousands of new services and business profiles created almost on-the-fly. 

Services shared by a community are being composed in the associated marketplace 
that the actors delimit. Partnerships arise as coalitions, translating directly in the need 
to interconnect marketplaces into peered and more hierarchically structured federations, 
thus yielding a unique, however, not flat global service economy. The SOA4All service 
bus embodies the marketplace for the offering of services at Internet-scale, and a 
middleware that scales to the dimensions of millions of users and billions of services.  

Although ESBs deliver the core functionality for service computing, they are 
generally restricted to corporate settings, and do not suffice in terms of dynamics, 
openness and scalability. In order to dynamically scale, SOA4All enhances ESB 
solutions with state-of-the-art technologies in distribution and semantics and 
incorporates storage, monitoring, and communication for a virtually global Internet-
scale ecosystem. An important step in establishing federations over distributed buses is 
the provisioning of message routing that does not require point-to-point connections 
between bus nodes. SOA4All leverages a multi-level, hierarchical organization of bus 
nodes [5]. The bus relies on a one level hierarchy, as federations are created between 
distributed service buses of different corporations with the first level being the 
enterprise level, and the second one the inter-enterprise level given by the Internet.  

As stated previously, the DSB is further enhanced with semantic spaces that are 
motivated by the ‘persistent publish and read’ paradigm of the Web. This allows 
SOA4All to provide additional communication patterns – such as publish-subscribe, 
event-driven, and semantic matching – that further decouple the communicating 
entities in terms of time, processing flow and data schema. Semantic spaces have 
gained momentum in the middleware community, as a response to the challenges of 
data sharing and service coordination in Web environments. Semantic spaces fuse tuple 
space computing from parallel processing; publish-subscribe-style notification services 
and semantics to create a distributed data management platform [1]. The spaces provide 
operations for publishing RDF data, querying SPARQL end-points, and coordination 
via graph pattern-based notification services. Semantic spaces enable the creation of 
virtual containers in form of subspaces or federations. The latter are temporary views 
over multiple virtual containers, comparable to read-only views in relational databases. 
Subspaces and federations are used to create dedicated interaction channels which 
increase scalability by grouping collaborating services and related data.  



The semantic spaces exploit established P2P overlays and the same Internet-scale 
communication platform as the DSB, which fosters co-existence of space and bus 
nodes (Figure 2), to ensure scalability. Spaces are indexed in a Chord ring [6] and each 
node of the ring maintains references to peers of a CAN overlay [7] in which the triples 
of the spaces are indexed and distributed. A 3-dimensional CAN overlay yields a 
natural solution to the storing of RDF triples; the axes represent the subjects, predicates 
and objects of RDF statements and values are ordered lexographically.  

Figure 2. Federation of DSB and semantic spaces. 

3. Delivering Services: The Platform Services 

In the previous section we have presented the SOA4All runtime infrastructure, and turn 
now to the platform services. A first category – service location –provides users with 
the possibility to find and rank services according to their needs and context. 

Crawler: The crawler service is fundamental for service discovery [8]. It collects 
technical descriptions associated with services from the Web and manages this data for 
enabling efficient and intelligent retrieval of service-related artifacts. The collected data 
includes files such as Web site, documentations, pricing and licensing information, and 
can be delivered either as RDF metadata, or as consolidated non-RDF archive file. 

Service Repository: The service repository – in SOA4All termed iServe – is used 
to store and maintain semantic service descriptions, and provides processing 
capabilities for SA-WSDL and MicroWSMO annotations. The repository offers a 
RESTful API for users to browse, query and upload semantic annotations and have 
them automatically exposed as RDF [9]. Through iServe service annotations become 
part of the Linked Data cloud (www.linkeddata.org). The alignment with the Linked 
Data initiative increases public awareness and brings the annotations into context. 

Discovery: Service discovery matches user needs to service descriptions. SOA4All 
uses service templates that abstractly describe a user’s objective as a set of RDF triples. 
Service templates are easily mappable into SPARQL queries to be resolved by iServe. 
The service template schema is shown in Table 1: the hasFunctionalCategory property 
shadows the functional classification reference that types services according to 
WSMO-Lite; the input and output properties are used to specify information about the 
input and the expected output of a service; requirements and preferences are properties 
that link further constraints. These values match roughly the pre-conditions and effects 
in WSMO-Lite and are generally more complex than RDF only; e.g., WSML [10]. 

SOAP
BC

SOAP
BC

Technical 
Registry
Technical 
Registry

REST
BC
REST
BC

SOAP
BC

SOAP
BC

REST
BC
REST
BC

Semantic SpacesSemantic Spaces

SpaceSpace SpaceSpace

Technical 
Registry
Technical 
Registry



The discovery service currently offers two types of search: i) full text-based 
discovery that mostly exploits keyword matching over service descriptions and related 
documents from the crawler; ii) semantic discovery that leverages service templates. In 
the simplest case, discovery is reduced to the resolution of the derived SPARQL query. 
For more sophisticated searches, for example when using requirements and 
preferences, the discovery service makes use of reasoning. 

Table 1. RDF Schema for service templates 

ServiceTemplate rdf:type rdfs:Class . 
hasFunctionalCategory rdf:type rdf:Property . 
hasInput rdf:type rdf:Property . 
hasOutput rdf:type rdf:Property . 
hasPreference rdf:type rdf:Property . 
hasRequirement rdf:type rdf:Property . 

 
Ranking and Selection: This service provides means to rank services according to 

user preferences on non-functional properties of services [11]. It integrates different 
ranking approaches that exploit the data gathered through crawling and monitoring. A 
first method uses non-functional properties of services that are given by means of 
logical rules. Reasoning is applied to compute ranking scores for services based on 
aggregated non-functional values and their matching degree to user requirements. A 
second approach is a fuzzy logic-based mechanism that considers a model of 
preferences that includes vagueness information. 

The second category provides the functionality to compose services and to execute 
the compositions. SOA4All focuses on empowering non-technical users in constructing 
services, and bases its work on languages that foster re-usability and flexibility in 
design. The language used in SOA4All is called Lightweight Process Modeling 
Language (LPML, [12]) – the term lightweight explicitly refers to the usability of the 
language. LPML is a combination of process modeling concepts found in BPEL, and 
SOA4All-specific extensions. LPML simplifies BPEL by only considering relevant 
subsets and extends the existing languages with means to interleave service templates. 
Furthermore, LPML defines how semantic annotations can be attached to process 
elements such as activities, goals, input and output parameters, and introduces the 
concept of data connectors that specify the data flow in service compositions.  

Design-Time Composer: The design-time composer provides semi-automatic 
assistance in resolving unbound activities within a process specification. As such, the 
service is mainly supporting the activities of the studio’s process editor. In other words, 
the design-time composer supports the entire life-cycle of service composition, from 
supporting the process specification through elaboration of process and template 
expansions to the discovery and binding of service endpoints as activities within the 
processes. This includes data mediation and resolution of compatibility problems at the 
level of service inputs and outputs via service connectors and semantic link operators. 

Composition Optimizer: The input to the composition optimizer is a complete 
service composition (as provided through the design-time composer) for which an 
optimized and executable process specification is sought [13]. Although the composer 
helps in binding service endpoints, there remain aspects in a process specification that 
cannot be treated at design-time. A task of the composition optimizer is thus to bind 
remaining service templates to relevant services. The composition optimizer uses the 
reasoner when necessary, and considers an extensible quality criteria model by 
coupling non-functional properties and the semantic descriptions of the process. 



Execution Engine: The execution engine offers operations to deploy executable 
processes in an execution environment and to expose processes as invokable Web 
services. Furthermore, the execution service provides tools to transform light-weight 
process descriptions into standardized process modeling notations, such as for example 
BPEL. In SOA4All, the execution engine includes a set of basic mechanisms for 
adaptive run-time reconfiguration of execution plans in order to react to changes in the 
execution environment.  

To conclude this section we present an additional platform services that offers 
reasoning support for most of the previously named platform services. 

Reasoner: The reasoning service exposes a framework of robust and scalable 
reasoning components that are tailored for each of the WSML language variants [10]. 
A variety of interfaces allow for schema/instance reasoning, satisfiability/entailment 
checking and query answering. The reasoning service has configurable links to service 
repositories to load service descriptions, and to semantic spaces to access domain 
ontologies that are required to conclude the desired reasoning tasks. 

4. Service Delivery Example 

Service delivery in the context of SOA4All focuses on the two areas service 
location and service construction; although the latter at least partly subsumes the 
former in order to bind service endpoints to service templates. In this section we 
exemplify how the different platform services coordinate in order to jointly realize the 
global service delivery platform. 

As a starting point, for our example, we assume that there are semantic service 
descriptions provided and stored in iServe. The service descriptions were likely created 
via provisioning tools such as SWEET [14] or SOWER of the SOA4All Studio, which 
are used for annotating Web APIs or WSDL files, respectively. In order to find the 
service endpoints and the corresponding documentation, a SOA4All user can profit 
from the crawler that provides background knowledge to formalize service annotations. 
In principle, it would also be possible that the crawler detects not only service 
endpoints, but semantic descriptions, which then, without manual intervention, can be 
stored in the repository. Our assumed starting point thus covers most of the actions for 
which the provisioning platform is developed: service endpoint selection, semantic 
description creation, annotation management and storage in the service repository. 

In terms of functional processes that are empowered by SOA4All, the actions 
triggered through the consumption platform are much more informative. A core 
component of the consumption platform is the aforementioned process editor that 
provides a graphical user interface for the modeling of processes. Service compositions 
are expressed in terms of LPML, which is understood and further manipulated by all 
service construction-related platform services. An example process with two activities 
– and without data flow for clarity – is shown in Table 2; note that the example shows 
the LPML model after the invocation of the design-time composer, and hence a 
potential Web service is already bound to each of the two activities. The first goal of 
the process is to determine the latitude and longitude of a city in order to retrieve 
information on the wind speed from the nearest weather station in a second step. Both 
services are offered by ws.geonames.org. Data mediation is not necessary in this case 
since the output of the first activity maps directly onto the input of the second one. 

 



Table 2. LPML process description in XML 

<org.soa4all.lpml.impl.ProcessImpl> 
  … 
        <activity class="org.soa4all.lpml.impl.ActivityImpl"> 
              <operation>getGeoLocationByName</operation> 
              <conversation class="org.soa4all.lpml.impl.ConversationImpl"> 
                <goal class="org.soa4all.lpml.impl.GoalImpl"> 
                  <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl> 
                      <referenceURI>http://www.example.org/geolocation#location</referenceURI> 
                      <type>FUNCTIONAL_CLASSIFICATION</type> 
                  </org.soa4all.lpml.impl.SemanticAnnotationImpl> <semanticAnnotations> 
                </goal> 
                <services> 
                  <serviceReference>http://ws.geonames.org/search</serviceReference> 
                </services> 
              </conversation> 
              <inputParameters> 
                <org.soa4all.lpml.impl.ParameterImpl> 
                  <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl> 
                      <referenceURI>http://www.example.org/geo#locationString</referenceURI> 
                      <type>META_DATA</type> 
                   </org.soa4all.lpml.impl.SemanticAnnotationImpl> </semanticAnnotations> 
                </org.soa4all.lpml.impl.ParameterImpl> 
              </inputParameters> 
              <outputParameters> 
                <org.soa4all.lpml.impl.ParameterImpl> 
                  <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl> 
                      <referenceURI>http://www.w3.org/2003/01/geo/wgs84_pos#long</referenceURI> 
                      <type>META_DATA</type> 
                  </org.soa4all.lpml.impl.SemanticAnnotationImpl> </semanticAnnotations> 
                </org.soa4all.lpml.impl.ParameterImpl> 
                <org.soa4all.lpml.impl.ParameterImpl> 
                  <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl> 
                      <referenceURI>http://www.w3.org/2003/01/geo/wgs84_pos#lat</referenceURI> 
                      … 
                </org.soa4all.lpml.impl.ParameterImpl> 
              </outputParameters> 
        </activity> 
        <activity class="org.soa4all.lpml.impl.ActivityImpl"> 
                <operation>getWindSpeed</operation> 
                <conversation class="org.soa4all.lpml.impl.ConversationImpl"> 
                  <goal class="org.soa4all.lpml.impl.GoalImpl"> 
                    <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl> 
                        <referenceURI>http://www.example.org/weather#WindSpeed</referenceURI> 
                        … 
                </goal> 
                <services> 
                  <serviceReference>http://ws.geonames.org/findNearByWeatherXML</serviceReference> 
                </services> 
              </conversation> 
              <inputParameters> … </inputParameters> 
              <outputParameters> 
                <org.soa4all.lpml.impl.ParameterImpl> 
                  <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl> 
                      <referenceURI>http://www.geonames.org/ontology#windSpeed</referenceURI> 
                      … 
                </org.soa4all.lpml.impl.ParameterImpl> 
              </outputParameters> 
              </destination> 
              ... 



The first platform service involved in our example is the design-time composer. It 
is iteratively invoked during the process specification to assist in binding services, 
expanding templates, checking I/O compatibilities and creating data flow via 
connectors. Although matching user requirements and process-specific constraints, the 
outcome of this interactive editing task does not necessarily yield an optimized model. 
In fact, the design-time composer works mainly on local solutions only and does not 
deal with the global optimization of a process specification. Therefore it is necessary to 
work with the completed compositions for performance optimization, context 
adaptation or for honoring specific user preferences. The composition optimizer 
accepts complete process models for which it seeks a better global cost function in 
terms of functional (including semantic similarity of inputs and outputs) and non-
functional properties such as the Quality of Service (QoS). The optimizer uses Genetic 
Algorithms to transform compositions into their optimal versions by replacing service 
bindings and modifying the data flow without changing the control flow. The 
transformations are influenced by the context in which a service composition is to be 
used, and require reasoning support and service discovery for finding concrete and 
optimized service bindings. 

Once a complete model satisfies a user’s preferences and requirements in terms of 
functionality and performance, the process is deployed in the execution engine and 
exposed as a Web service. As described in Section 3, the execution engine transforms 
the complete LPML model into a BPEL model enhanced with some SOA4All-specific 
extensions. Additionally, a corresponding WSDL endpoint is specified, and the 
execution engine offers one more public service for any deployed process, in addition 
to the default ‘deployProcess’ service that the engine hosts. 

As the first part of our example has shown, discovery is an essential sub-task of the 
service construction process. The definition of activity, and in particular the goal 
element within the LPML process specification can be mapped onto the properties of 
the service templates (Table 1) which are at the basis of semantic discovery. The 
annotations of type functional classification that are used to annotate a goal element are 
transferred to values of the hasFunctionalCategory property. The operations, given 
through inputOperation and outputOperation in LPML are converted to hasInput and 
hasOutput respectively. Last, there are other semantic annotations that can be attached 
to activities, which are of type requirement and non-functional property. These map to 
hasRequirement and hasPreference accordingly. Table 3 shows a concrete service 
template that was directly derived from mapping the LPML goal element in Table 2 
onto the RDF schema for service templates given in Table 1. The ‘st’ prefix stands for 
the service template namespace pointing to http://cms-wg.sti2.org/ns/service-template#. 

Table 3. Concrete service template for the wind speed service 

windSpeedService rdf:type st:ServiceTemplate ; 
    st:hasFunctionalCategory <http://www.example.org/weather#WindSpeed> ; 
    st:hasInput rdf:type <http://www.w3.org/2003/01/geo/wgs84_pos#lat> ; 
    st:hasInput rdf:type <http://www.w3.org/2003/01/geo/wgs84_pos#long> . 

 
SPARQL queries can be derived from the service templates that can be executed 

against the semantic service descriptions in iServe. A possible SPARQL query for the 
template in Table 3 is depicted in Table 4. Note that the classes and predicates are no 
longer taken from the service template schema but from the minimal service model 
(prefixed with msm) which borrows some elements from SA-WSDL, identified with 
the prefix sawsdl. The query selects services which match exactly the functional 



category that is searched, and that offer operations with the given input types. Had our 
service template contained hasOutput specifications, those would have appeared in the 
query in a similar way to the input types. More sophisticated query specifications that 
are investigated in the context of service location consider, in addition to the exact 
match achieved with the example in Table 4, plug-in, subsumes, and fail match degrees 
common in the literature. One approach to do this is to use subclass relations in the 
SPARQL query; i.e., the service classification does not reference wind speed directly 
but rather any subclass of the concept. Executing the SPARQL query against the 
repository results in a collection of service endpoints that match the functional 
classification, and the input and output parameters respectively.  

Table 4. SPARQL query to be executed against the service repository 

SELECT ?service ?operation ?endpoint 
WHERE { 
    ?service rdf:type msm:Service ; 
                  rdfs:isDefinedBy ?endpoint ; 
                  msm:hasOperation ?operation ; 
                  sawsdl:modelReference <http://www.example.org/weather#WindSpeed> . 
    ?operation msm:hasInputMessage ?input ; 
                      msm:hasOutputMessage ?output . 
    ?input sawsdl:modelReference <http://www.w3.org/2003/01/geo/wgs84_pos#long> ; 
               sawsdl:modelReference <http://www.w3.org/2003/01/geo/wgs84_pos#lat> . 

 
This passage from a goal specification to a set of possible service endpoints is 

followed for all goal elements in the LPML model. At the level of the design-time 
composer any of the discovered endpoints might be selectable, as they fulfill the basic 
requirements: typing, as well as input and output parameters. In order to optimize a 
process, it is however necessary to choose the service that best fits a user’s objective 
and expectations, and ranking becomes important. The ranking and selection service is 
invoked with the set of possible service endpoints as input, and the best match will be 
selected for invocation.  

5. Conclusion 

Embracing service-oriented architectures in the context of the Web raises new 
challenges: increased size and load in terms of users and services, distribution, and 
dynamicity. The project SOA4All addresses these issues in order to bring so-far mainly 
business-minded service technologies to the masses. SOA4All paves the way for a Web 
of billions of services, overcoming many drawbacks of current Semantic Web service 
technology by leveraging existing Web and Web 2.0 principles and lightweight 
semantic annotations for services and process in a global service delivery platform.  

In this chapter we have presented the concepts and architecture of SOA4All’s 
service delivery platform that is grounded in a federated distributed service bus 
infrastructure and a set of platform services that deliver the minimal functionality 
needed to locate and construct services. The platform is central to the achievement of 
the project’s main objective: offering billions of services to millions of users in novel 
Web-scale service economies. In this context it becomes evident that automation is 
required, as otherwise, the wealth of service and process descriptions, the users and 
their context, and the monitoring data that is gathered during the life-time of services 
cannot be handled. Considering that there is no automation on the Web without 



semantics, not at last due to the heterogeneity and dynamics of resources, SOA4All 
invests in novel techniques, languages and components for annotating services, and for 
creating, finding and manipulating services and processes at the semantic level. 

Further work is dedicated to the realization of comprehensive functional processes 
for the global service delivery platform. Other work is concerned with the 
concretization of more tight bounds between SOA4All and established Web technology. 
Finally, significant work is required in bringing the SOA4All result to the market and 
in leveraging the technologies in large scale and open service economies. 
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