

Project Number: 215219

Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D1.4.2A Final SOA4All Reference

Architecture Specification
Activity N: Activity 1: Fundamentals and Integration Activity

Work Package: WP1: SOA4All Runtime

Due Date: 28/02/2010

Submission Date: 28/02/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s):

Reto Krummenacher (UIBK), Jean-Pierre Lorre (EBM), Christophe
Hamerling (EBM), Alistair Duke (BT), Matteo Villa (TXT), Francoise
Baude (INRIA), Elton Mathias (INRIA), Virginie Legrand (INRIA),
Cristian Ruz, Dong Liu (OU), Carlos Pedrinaci (OU), Tomas Pariente
Lobo (ATOS), Marin Dimitrov (ONTO), Philippe Merle (INRIA)

Reviewer(s): Gianluca Ripa (CEFRIEL), Sven Abels (TIE)

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 2010-01-28 Initial TOC Reto Krummenacher (UIBK)

0.2 2010-02-08 Update TOC, Section 3.2 Reto Krummenacher,
Christophe Hamerling (EBM)

0.3 2010-02-12 Section 3.1

Section 3.3

Interface specification in Section 4.1

Section 5.1

Section 5.2

Francoise Baude (INRIA),
Elton Mathias (INRIA)

Dong Liu (OU)

Florian Fischer (UIBK)

Alistair Duke (BT), Matteo
Villa (TXT)

Christophe Hamerling (EBM),
Francoise Baude (INRIA)

0.4 2010-02-15 Update Section 3.2

Update Section 3.3

Fixing References

Christophe Hamerling

Dong Liu

Reto Krummenacher

0.5 2010-02-16 First Draft Section 4.3 Tomas Pariente Lobo (ATOS)

0.6 2010-02-19 Update Section 4.3

Update Section 5.2 with configurations

Tomas Pariente Lobo

Christophe Hamerling

0.7 2010-02-19 Final Draft (Internal Review) Reto Krummenacher

0.8 2010-02-25 Incorporation of review comments Reto Krummenacher, Matteo
Villa, Alistair Duke, Tomas
Pariente Lobo, Christophe
Hamerling

1.0 2010-02-26 Final release for submission Reto Krummenacher

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 3 of 57

Table of Contents

EXECUTIVE SUMMARY __ 7

1. INTRODUCTION __ 8

1.1 PURPOSE AND SCOPE ___ 8

1.2 STRUCTURE OF THE DOCUMENT ______________________________________ 9

2. RECAPITULATION OF THE CONCEPTUAL ARCHITECTURE __________________ 10

3. FEDERATION OF DISTRIBUTED SERVICE BUSES ___________________________ 13

3.1 RECAPITULATION OF DISTRIBUTED SERVICE BUS V1.0 AND UPDATES _____ 13

3.1.1 DSB Federation Architecture ______________________________________ 13

3.1.2 Integrating PEtALS DSBs and the DSB Federation _____________________ 14

3.1.3 Associated Tools ___ 15

3.2 SUPPORT FOR EXTERNAL SERVICES __________________________________ 16

3.2.1 Platform Services ___ 16

3.2.2 Third-Party Services ___ 19

3.3 ACTIVE QOS MONITORING INFRASTRUCTURE __________________________ 21

3.3.1 Metrics ___ 22

3.3.2 Measurement __ 23

3.3.3 Architecture __ 24

3.3.4 Integration with SOA4All Studio ____________________________________ 24

4. PLATFORM SERVICES AND INTEGRATION ________________________________ 25

4.1 COMPONENTS ___ 25

4.2 INTEGRATED EXAMPLE __ 35

4.3 SOA4ALL FUNCTIONAL PROCESSES ___________________________________ 38

4.3.1 Service provisioning ___ 39

4.3.2 Service consumption __ 41

5. SOA4ALL RUNTIME CONFIGURATIONS AND USE __________________________ 44

5.1 SCENARIOS AND BUSINESS MODELS __________________________________ 44

5.1.1 Grid/Cloud Infrastructures ___ 44

5.1.2 COIN Integrated Project __ 46

5.1.3 Google ___ 47

5.1.4 Telco 2.0 Platform Provider _______________________________________ 47

5.2 SCENARIO-SPECIFIC CONFIGURATIONS _______________________________ 49

5.2.1 Summary of SOA4All DSB Features ________________________________ 49

5.2.2 SOA4All Infrastructure Providers ___________________________________ 50

5.2.3 Use cases ___ 53

5.2.4 Scenario-specific configurations ____________________________________ 54

6. CONCLUSION ___ 55

REFERENCES ___ 56

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 4 of 57

List of Figures
Figure 1: SOA4All architecture. ..10

Figure 2: Multi-DSB federated architecture. ..14

Figure 3: Platform Services Bindings ..16

Figure 4: Services Proxy ..19

Figure 5. Active QoS Monitoring ...24

Figure 6: Example process with two services. ...35

Figure 7: Service provisioning functional processes ...39

Figure 8: Design-time composition overview ...40

Figure 9: Service composition process sequence diagram ...43

Figure 10: Generic Value Chain according to IT-Tude.com ..45

Figure 11: Two-sided business model framework ...48

Figure 12: Different Provider roles in building the SOA4All services community52

List of Tables
Table 1: RDF Schema for service templates ...27

Table 2: LPML process description in XML ..36

Table 3: Concrete service template for the wind speed service ...38

Table 4: SPARQL query to be executed against the service repository38

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 5 of 57

Glossary of Acronyms

Acronym Definition

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

BC Binding Component

BPEL Business Process Execution Language

BT British Telecom

CDK Component Development Kit

COP Constraint Optimization Problem

CSP Constraint Satisfaction Problem

D Deliverable

DSB Distributed Service Bus

EJB Enterprise Java Beans

ESB Enterprise Service Bus

FP7 The 7th Framework Program

GCM Grid Component Model

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IEEE Institute of Electrical and Electronics Engineerings

IST Information Society Technology

IT Information Technology

JBI Java Business Integration

JDBC Java Data Base Connectivity

JEE Java Enterprise Edition

JMS Java Messaging Service

JMX Java Management eXtensions

JRE Java Runtime Environment

M Median, Milestone

NAT Network Address Translation, Network Address Translator

NESSI Networked European Software and Services Initiative

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 6 of 57

NEXOF NESSI Open Service Framework

NEXOF-RA NEXOF Reference Architecture

OASIS Organization for the Advancement of Structured Information Standards

OMG Object Management Group

OWL Web Ontology Language

QoS Quality of Service

RDF Resource Description Framework

REST Representational State Transfer

RMI Remote Method Invocation

SAP Systeme Anwendungen und Produkte

SAWSDL Semantic Annotations for WSDL

SCA Service Component Architecture

SD Standard Deviation; Service Discovery

SE Service Engine

SEE Service Execution Environment

SFTP Secure File Transfer Protocol

SOA Service-Oriented Architecture

SOA4All Service-Oriented Architectures for All

SOAP Simple Object Access Protocol

STP SOA Tools Platform

SWS Semantic Web Service

UML Unified Modeling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WP Work Package

WS Web Service

WSDL Web Service Description Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

XML eXtended Markup Language

XSLT eXtensible Stylesheet Language Transformations

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 7 of 57

Executive Summary
The goal of deliverable D1.4.2A is to provide an extended and more precise definition of the
SOA4All architecture and in particular its components. Firstly, it provides an updated
specification of the core infrastructural service of SOA4All, the Distributed Service Bus, and
how the bus provides the backbone for federations, also termed Service Parks.
Moreover, the deliverable yields an updated bus specification in terms of support for both
WS-* stack services and RESTful services. In particular the support for RESTful services is
new and emphasized as they gained momentum in the SOA4All roadmap; services that are
resources on the Web strengthen the ideas of SOA4All. Secondly, the deliverable provides
an updated list of the platform services and their interfaces, and presents a first fully
integrated example of the SOA4All Global Service Delivery Platform that showcases the core
functional processes for service location and service construction.

While the value of the various platform services is discussed in detail in the respective
deliverables and working groups, the core infrastructural services such as the bus, the
semantic spaces and the monitoring, as well as deployment functionalities are subject to this
deliverable. Exploitation possibilities and business cases are for platform services are hence
not contained in this document. However, this deliverable covers some fundamental
business-oriented issues to give a first impression of the utility and usability of the bus
infrastructure. Different application scenarios require different service bus configurations, and
might lead to different business motivations and models. Matching infrastructure
requirements to bus configurations is important for keeping the infrastructural backbone
simple but effective. This work, also not mainly technical, argues for the chosen technical
approach and is elaborated in the scope of the exploitation work package of the SOA4All
project.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 8 of 57

1. Introduction
The Web service technology stack offers a series of languages, protocols and techniques for
making software functionality accessible as remote components, independent of particular
programming languages and platform implementations. Significant work was done in
specifying architectures, middleware, languages, communication protocols and process
execution engines that can support the creation of complex distributed systems by
seamlessly coordinating Web services. Service-Oriented Architectures (SOAs) foster the
development of such distributed and loosely-coupled solutions whereby service providers
advertise the services they offer, and solution providers and software developers access the
service repositories to search for suitable services to invoke for the given purpose or to build
and execute processes.

Within the SOA4All project, the core ideas of SOA are re-thought with the aim of making
services ubiquitous on the Web. The chosen approach is to combine the principles which
underpin the Web, Web 2.0, semantics, context and SOA and to derive an architecture
based on these principles. In particular, from the Web we take openness, decentralization,
and the fact that communication is driven by a ‘persistent publish and read’ paradigm rather
than by messaging. In SOA4All, Semantic Web languages are leveraged to increase the
automation of various common tasks during the life-cycle of services, such as their discovery
and composition. From Web2.0 we take the value of easy-to-use interfaces and of social
networks. Finally, automated context adaptation capabilities are embedded within the
architecture in order to support the use of services in unforeseen contexts. In provisioning a
Web were services exist in billions, we argue that the SOA4All architecture provides a Web-
based example of a global service delivery platform. In particular, by empowering Web
services as resources on the Web, SOA4All yields the fundamental building blocks for the
creation of new business opportunities in form of open and loosely-coupled service
economies.

A central element of such SOA-based service economies on the Web is the communication
and coordination backbone that we term SOA4All Distributed Service Bus. As middleware for
a Web of Service, the bus must ensure openness, as anybody should be enabled to
contribute and use it. This means that the bus cannot be centrally controlled.
Decentralization is also essential in regards to scalability. Consequently, the bus must cope
with dynamicity, as openness and decentralization causes an element of chaos and
messiness, and ensure interoperability to overcome data, service and platform
heterogeneities. Last but not least, in particular in the context of loosely-coupled service
economies and service parks, as we discuss in this deliverable, there is a need for enabling
n:m interactions, as providers of services become consumers, and vice versa – this new role
is generally referred to as prosumers [1].

The bus thus provides the core infrastructure services that are necessary to integrate various
distributed platform services and business services. In deliverable D1.4.1A in month M12 [2],
a first version of the SOA4All architecture was specified. It established and defined an
integrated technical plan for the SOA4All Runtime and outlined the dependencies between
platform services and the data/objects being exchanged and shared. This work set the
ground for the development and integration activities of the SOA4All project. A first round of
implementation cumulated in the software deliverable D1.4.1B [3], and further refinements
lead to the content of this document.

1.1 Purpose and Scope
The goal of this deliverable is to provide an extended and more precise definition of the
SOA4All architecture and its components. As for D1.4.1A the deliverable’s scope is twofold.
First it provides an updated specification of the SOA4All Distributed Service Bus and how the

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 9 of 57

bus serves as backbone for the creation of federations, also termed Service Parks.
Furthermore, the updated bus implementation will include support for both WS-* stack
services based on WSDL and SOAP, and RESTful services as well as Web APIs. In
particular RESTful services gain more importance in SOA4All, as the idea of services as
resources on the Web matches the core ideas of the SOA4All project even more. Parts of
this deliverable are thus dedicated to the specification of interfaces for integrating the
different types of external services; non-bus services. These services are on the one hand
the project-internal platform services that constitute the service delivery platform, and on the
other the third-party business services.

Additionally, the deliverable provides an updated list of the platform services and their
interfaces, and presents a first fully integrated example of the SOA4All (Web) service
delivery platform that showcases the core functional processes for service location and
service construction by a practical approach.

At last, the deliverable covers more business-oriented issues of the SOA4All Runtime.
Different application scenarios require different service bus configurations, and might lead to
different business motivations and models. There is thus work dedicated to the presentation
of different usage scenarios from an infrastructure point of view, and how different runtime
configurations allow for optimized infrastructure deployments that do not require heavy-
weight service bus installations for all scenarios. Matching infrastructure requirements to bus
configurations is important in keeping the infrastructural backbone as simple as possible.

1.2 Structure of the document
In order to fulfil its purpose and to cover all aspects of the scope, the deliverable is structured
in five sections. After this first introductory section, Section 2 will recapitulate the overall
architecture of the SOA4All Runtime and will provide a short update to the conceptual
architecture given in deliverable D1.4.1A. In Section 3, we discuss the updates to the
Distributed Service Bus and the federation aspects of the middleware. Moreover, technical
details are given about the support for external services, both WS-* stack services and
RESTful services. After the section on federations of distributed service buses, Section 4
focuses on the various platform services. They are categorized into service location, service
construction and support services such as reasoning or grounding. In the same section,
there is a consolidated practical example that shows how the resulting service delivery
platform translates a user goal into a service composition, including the discovery of atomic
services and the deployment of the resulting process as Web service. Furthermore, there are
more detailed specification of functional processes given. Section 5 finally covers the more
business-oriented aspects of this deliverable, before concluding the document with Section
6. Section 5 discusses different usage scenarios, business models and corresponding
configurations of the service bus infrastructure.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 10 of 57

2. Recapitulation of the Conceptual Architecture
 A Global Service Delivery Platform (GSDP) is an open platform through which domain
independent services can be used to build problem-specific service solutions. SOA4All
establishes a service delivery platform that is targeting Web services (traditional WS-* stack-
based and RESTful services, as well as Web APIs). Future implementations of a GSDP will
have to consider other exposable functionalities too, such as mobile services or sensors
networks in order to fully enable the ‘Everything as a Service’ paradigm.

In this section we shortly recapitulate the SOA4All conceptual architecture.

Figure 1: SOA4All architecture.

Distributed Service Bus

The Distributed Service Bus enables Web-style communication and collaboration via
semantic spaces and service bus technology, and yields the core runtime infrastructure. The
DSB augments enterprise service bus technology with distributed service registries, the
layering of the service bus on top of established Internet-enabled middleware, and the
enhancement of the communication and coordination protocols by means of semantic
spaces. Spaces are seen to significantly increase the scalability of the bus in terms of
interaction between distributed and autonomous services [4]. Detailed description of the DSB
and semantic spaces are given in various deliverables [2][3][5][6]. Several extension to this
previously released specifications and prototypes are subject to this deliverable, at least in
what concerns the SOA4All Runtime and hence the service bus. Most recent results about
the semantic spaces are given in [7].

SOA4All Studio

The SOA4All Studio is a Web-based user front-end that consists of three components which
offer service provisioning at design time, consumption and analysis of services at runtime,
respectively:

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 11 of 57

The Provisioning Platform has two main purposes: i) tools to semantically annotate services;
and ii) a process editor that allows users to create, share, and annotate executable process
models based on a light-weight process modeling language. Service annotations are based
on WSMO-Lite [8], a minimal extension to SA-WSDL [9] that empowers the creation of
lightweight semantic service descriptions in RDFS. In parallel, MicroWSMO [10] is used to
annotate services that are not described in WSDL, such as RESTful services or Web APIs.
MicroWSMO is a microformat-based language around the constructs known from WSMO-
Lite, however, adapted to support the annotation of HTML-based descriptions, as they are
usually available for this type of software exposures. Finally, SOA4All provides a minimal
service model in RDFS that yields an overarching conceptual model able to capture the
semantics for both Web services and Web APIs, thus allowing both kinds of services to be
treated homogeneously within SOA4All.

The Consumption Platform is the gateway for service consumers. It allows users to formalize
goals. A goal is a formal specification of an objective and as such yields an implicit
specification of the services that need to be executed. User objectives are transformed into
processes that are compositions of service descriptions and so-called service templates
together with control and data flow information and potentially further constraints on the
services and their execution. Service templates define process-internal activities instead of
concrete services whenever flexibility in service selection is desired. At runtime, service
templates are resolved to specific services that are selected on the basis of conditions and
informed by contextual knowledge which may include monitoring data, user location or other
aspects that affect the appropriateness of a service endpoint.

The Analysis Platform collects and processes monitoring events from the service bus,
extracts and produces meaningful information out of it and displays the results to users.
Monitoring events come from data collectors that perform basic aggregation from distributed
sources in the service delivery platform. Data collectors are installed at the level of the bus
and the execution engine, and are installed to cover all aspects of monitoring necessary in
the context of SOA4All: monitoring of process executions, of service end-points that are
invoked through the service bus, and finally of the infrastructure itself. While users can select
particular services to be monitored in terms of quality of service attributes, simpler and less
comprehensive data can also be collected for all other services that are empowered through
the bus, but that are not explicitly monitored upon user request; e.g., the moving average for
response time.

Platform Services

Platform services provide the minimally necessary functionality of a service delivery platform,
such as service discovery, ranking and selection, composition and invocation. These
components are offered as Web services via the service bus and are consumable in the
same manner as any other published business service. Although distinct in their purpose,
they have in common that they operate with semantic descriptions of services, service
templates and processes rather than with the syntactical representation of those, as it is
traditionally the case in service-oriented infrastructures. The SOA4All platform services,
shown at the bottom of Figure 1, are detailed in Section 3.

Business (Web) Services and Processes

Figure 1 was discussed so far with respect to the central components of the SOA4All service
delivery platform – the ensemble of DSB, SOA4All Studio and platform services. Jointly, they
deliver a fully Web-based service experience: global service delivery at the level of the bus,
Web-style service access via studio, and automated service processing and management via
platform services. Moving to the corners of Figure 1, we enter the domain of semantic
service descriptions and processes: (1) represents the semantic services descriptions, either
in form of annotated RESTful services (3) or WSDL endpoints (4); (1) thus represents the so-
called Semantic Web services. The semantic descriptions are used for reasoning with

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 12 of 57

service capabilities (functionality), interfaces and non-functional properties, as well as
contextual data.

In the right top corner of Figure 1, (2) represents processes and mash-ups. Processes are
orderings of Semantic Web services, service templates with associated constraints, data and
control flow. A mash-up is a data-centric model of a composition that is almost entirely
executable by coordinated access to data in a semantic space. Although being comparably
simple, mash-ups provide a promising approach to Web-style service computing, a pre-
requisite for light-weight service economies.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 13 of 57

3. Federation of Distributed Service Buses
3.1 Recapitulation of Distributed Service Bus v1.0 and Updates
The primary goal of the SOA4All DSB is to ensure that the SOA4All framework scales to the
dimensions of the Web, by enabling appropriate distribution techniques that evolve the
traditional ESB towards a fully Distributed Service Bus, without altering the communication
and interaction patterns of the ESB core. An ESB by itself, even if distributed (a DSB), is not
a suitable solution for a service delivery platform resulting of the federation of the involved
partners service infrastructures, e.g., their service buses. It mainly lacks inter-connection
mechanisms and a global and shared store of meta-data about federated services.

In order to come up with a feasible and practical solution to the interconnection issue, we
proposed an external Grid Component Model (GCM)/ProActive component-based platform to
interconnect PEtALS DSBs [3][11], despite of their location and interconnectivity restrictions,
only supposing an entry point on the administrative domain each DSB is deployed on.
Current work consists in refining the initial solution to make the federation more loosely
coupled yet introducing the needed important features: ability to route inter-DSB messages,
corresponding to service invocation, service replies, or technical registry operations; ability to
map at the federation level any particular relationships that may have been agreed between
the partners’ service delivery infrastructures.

Next sections present the new DSB Federation Architecture and the associated tools that
enable the deployment of the federation, easy integration of PEtALS DSBs and management
of the federation architecture to express partnerships among service providers.

3.1.1 DSB Federation Architecture

The DSB Federation Architecture is a standalone middleware whose main aim is to route
messages (so we name it a routing middleware below). This middleware itself is an
application programmed using software components. This enables to (re-)compose the
routing middleware even at run-time. As a consequence, the composition will always reflect
the effective federation organization. Each DSB will be represented in the federation by an
entity we name “Federation Router”, which is implemented by a GCM/ProActive software
component. So, concretely, the routing middleware corresponds to an adequate composition
of Federation Routers. Relationships between DSBs, to express alliance relations between
them, are concretized by GCM bindings between the corresponding Federation Router
components. Only partnered DSBs will be allowed to communicate directly. If no binding
exists between two DSBs, even if they are part of the federation, this prevents them to
directly interact. However, if those two DSBs are part of the same federation, this is because,
they are indirect partners, e.g. the first one has agreed to partnership with a third one, this
third one having itself partnered with the second one. Even if not every DSB pair of the
federation has directly partnered, this does not prevent all the DSBs to be part of the
federation, thus forming a service ecosystem that is also known as a service park [12].

Figure 2 shows the correspondence between multiple PEtALS DSBs, and resulting multi-
domain and multi-DSBs federated architecture. In the context of a given DSB, multiple DSB
containers are still capable of communicating using the standard PEtALS transporter
mechanism (e.g. as in Domain C which includes two containers in this simple example).
When communication happens between different DSBs, the messages are sent to a new sort
of PEtALS transporter we defined (FederationTransporter, whose updated version is detailed
in next subsection), which is responsible for delegating the message sending to the routing
middleware. The routing middleware as we explained is basically composed of a router
component (GCMRouter) per domain, installed on the gateway machine of the administrative
domain the DSB is deployed onto.

Figure 2 also illustrates the idea that the middleware is completely hidden to the end-user.
End-users interact with a virtually flat and unique infrastructure embodied by their preferred

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 14 of 57

DSB, without having to worry about effective locations of services involved in their service
oriented applications or service orchestrations.

Figure 2: Multi-DSB federated architecture.

3.1.2 Integrating PEtALS DSBs and the DSB Federation

As previously described, the federation is achieved by a completely separated application
that runs independently of the PEtALS DSBs. In order to integrate a PEtALS DSB to a
federation, we included in PEtALS a new message transporter, called FederationTransporter
that is responsible for the interface between PEtALS containers and the federation.

The FederationTransporter behaves at the same time as a server that receives messages
from the federation, and as a client that sends message to DSBs running in different domains
composing the federation:

• Client side: the client side of the FederationTransporter consists in keeping a remote
reference of a federation router component and sending messages which must be
routed to other domains;

• Server side: the server side of the FederationTransporter implements an interface
named FederationListener that we defined for federation purposes. The aim of the
FederationListener is to receive the callbacks automatically triggered by the
Federation Router, when a message targeting this DSB arrives into this Federation
Router.

Besides the definition of the FederationTransporter by itself, the JBI-Messaging component
of PEtALS was extended so to use the FederationTransporter. The JBI-Messaging
component seemingly decides the destinations i.e. if the message must go to a local JBI
component or to a JBI component located in another container or to the DSB Federation in
case the destination is a container running on a different domain. At any moment, a PEtALS
DSB (i.e. a service provider) can decide to leave the federation. The federation, nonetheless
stills exist and can be contacted again later.

At the configuration level, the integration of the FederationTransporter, and consequently the
federation access, only requires the definition of the federation public address in the PEtALS
topology.xml file. If this attribute is not defined we consider that the DSB will not be federated
and therefore the FederationTransporter is disabled.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 15 of 57

3.1.3 Associated Tools

The deployment over heterogeneous resources of the routing middleware supporting the
federation, imposes a few activities that are hard to be handled by services providers willing
to be prosumers of services deployed on the federation, mainly because they require the
technical knowledge to configure the environment including knowing the technologies used
to develop the routing middleware and the underlying environment (communication
protocols, network organization and restrictions like firewalls and NAT).

In order to simplify the usage of the federation, we are working on two tools to help in: (i) the
deployment of the federation routing middleware and (ii) the management of it.

The deployment of one partner of the federation is based upon the ProActive deployment
framework. This framework requires the definition of XML-based descriptors indicating the
network protocols and port numbers to use, how to acquire and access nodes – at least one
node is needed1, i.e. the one on which the Federation Router will be hosted - and application-
related properties (e.g. library dependencies, classpath, etc.).

For the deployment, a set of scripts allow the automatic generation and usage of these XML
descriptors, only depending on the definition of gateway nodes and protocols to be used.
So, in order to launch locally a federation router and let PEtALS containers connect to it,
service prosumers only need to use the following script with its options:

Usage:./FederationTransporter.sh -t <topology.xml> -n <server_node> [options]
 Mandatory parameters are:
 -n <server> FederationRouter
 Options are:
 -t <topology.xml> // useful to get containers address
 -c Run console mode
 -d FederationRouter home folder on server
 -p ProActive home folder on server
 -v Verbose mode

For the management, we provide a console which allows a DSB manager to decide the DSB
must join or quit a federation (e.g. join means establish a binding to at least an entry point of
the federation, each binding reflects a partnership between this DSB and a partner DSB),
retrieve information about federation current topology (i.e., current partners and
relationships). The current console interface accepts the following commands:

'h' or 'help' : print help message
'c' or 'connect
 <host> <protocol> <port> :connect the console to the representative Federation Router
 <URL>: same as host, but passing an URL
'j' or 'join'
 <host> <protocol> <port> : bind to the given federation entry point
 <URL>: same as host, but passing an URL
'i' or 'info' : print information about the federation topology
'x' or 'exit' : leave the federation, breaking all established bindings from this DSB to its former

partners, but able to join again later
'q' or 'quit' : definitively leave the federation

1 Indeed, it might be possible to have more than one federation router per DSB, so to have
many access points within the federation.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 16 of 57

3.2 Support for External Services
There are two main categories of services which are addressed within SOA4All:

1. Platform services: These services are the ones which are developed by the SOA4All
partners and will be potentially composed together to offer the core functionalities of
the project. These services are mostly Web services ones (SOAP/HTTP) and REST
ones. The platform services will be bound to the DSB with the help of the SOAP and
REST connectors provided by Petals ESB.

2. Third party services: These services are the ones which are developed and hosted by
third party Web actors. These services will be composed and/or invoked by SOA4All
consumers in order to create client applications. These services are mainly
SOAP/HTTP and REST ones.

The Distributed Service Bus provides access points on each main node to invoke platform
services and third party ones. The following sections will give details on how the services are
bound to the bus and how they can be accessed.

3.2.1 Platform Services

The illustration below (Figure 3) gives details on how platform services are bound to the
DSB. The figure serves as example support in the continuation to illustrate how
WSDL/SOAP-based, as well as RESTful platform services bindings are realized.

Figure 3: Platform Services Bindings

3.2.1.1 SOAP Platform Services

SOAP-based services are bound to the DSB using the Petals SOAP Binding Component
(BC). This component is in charge of exposing DSB services are SOAP based Web services
and to expose external SOAP Web services as DSB service.

At the SOA4All manager level, all that is needed to bind a SOAP service to the service bus is
to call the bind operation of the Management API on a DSB node. The best practice is to
choose the DSB node which closest to the platform service to bind. The deployment process
follows the following steps:

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 17 of 57

a) Invoke bind(URI wsdl) on the management API

b) The DSB deploys local configurations to the SOAP binding component to bind the
SOAP service given in step a).

c) After configuration deployment, a DSB endpoint is activated and is ready to forward
calls to the SOAP service given in step a).

d) The other DSB nodes will detect that a new DSB endpoint is active and will deploy
the configuration to expose this new endpoint as SOAP Web service.

As a result, a platform service will be available in two ways (Figure 3):

1. As an internal DSB endpoint. It means that internal DSB service consumer can
invoke the service directly.

2. As Web services. External service consumer can send SOAP requests to the Web
service access point of their choice. The SOAP request will be translated by the
DSB and will be routed to the right DSB endpoint.

In Figure 3, the platform service A is bound to the DSB by the node C. It means that the
SOA4All manager has called the bind operation of the management API on node C. The
‘DSB platform service endpoint’ is active and visible to all the three DSB nodes. The
management engine of the DSB is, in this case, configured to expose the ‘DSB Platform
Service Endpoint’ as Web service (‘Platform Service A’) on each DSB node. It means that a
call to any ‘Platform Service A’ is forwarded to the ‘DSB Platform Service A’. This is totally
transparent on the ‘SOA4All service consumer’ side. The DSB message will be transmitted
from a DSB node to the final one by the DSB routing and transport mechanisms.

Accessing a SOAP platform service

A ‘Real Platform Web Service’ which is hosted on
http://<HOST>:<PORT>/services/SemanticSpaceWS and which has a WSDL description
where the ‘Port name’ is ‘SemanticSpaceWSImplPort’, the ‘Service name’ is
‘SemanticSpaceWSImplService’ and the ‘PortType name’ is ‘SemanticSpaceWS’ will
generate (after binding) a DSB endpoint where the endpoint name is
‘SemanticSpaceWSImplPort’, the service name is ‘SemanticSpaceWSImplService’ and the
interface name is ‘SemanticSpaceWS’:

- WSDL port name is the DSB endpoint name

- WSDL service name is the DSB endpoint service name

- WSDL prototype name is the DSB endpoint interface name

Once the DSB endpoint is active, the endpoint introduced before will be exposed as Web
service on each DSB node and accessible at
http://<DSBHOST>:<SOAPPORT>/petals/services/SemanticSpaceWSImplPortService:

- DSBHOST is the host name of the DSB node

- SOAPPORT is the port which accepts incoming SOAP calls. The default value is set
to 8084.

The final service name (SemanticSpaceWSImplPortService) is the DSB endpoint name
suffixed with ‘Service’ or the initial Platform service port name suffixed with ‘Service’.

3.2.1.2 REST Platform Services

REST-based services are bound to the DSB using the Petals REST Binding Component
(BC). This JBI binding component is in charge of exposing DSB services as REST based
services and to expose external REST services as DSB service.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 18 of 57

Binding a platform REST service to the DSB is possible by invoking a binding operation on
the management API of the bus. The binding process is described as :

a) Call bind(URL rest) on the management API

b) The DSB deploys local configuration to the REST component which is in charge of
REST service support.

c) A new endpoint is activated on the REST component and on the DSB node. All the
DSB messages which will be send to the newly REST activated endpoint will be
forwarded to the service defined in step a).

d) The other DSB nodes will detect that a new endpoint as just been activated and willl
deploy the entire mandatory configuration which is useful to expose the new REST
endpoint as REST service.

As a result, the REST service will be available as:

1. A DSB endpoint on node where the bind operation has been called. All the calls to
this endpoint will be forwarded to the real REST service.

2. A REST service on all the nodes of the DSB network. All the calls to one of this
service will be forwarded to the right DSB endpoint, and so to the REST service itself.

In Figure 3, the REST platform service A is bound to the DSB by the node C. It means that
the SOA4All manager has called the bind operation of the management API on node C. The
‘DSB platform service endpoint’ is active and visible to all the three DSB nodes. The
management engine of the DSB is, in this case, configured to expose the ‘DSB Platform
Service Endpoint’ as REST service (‘Platform Service A’) on each DSB node. It means that a
call to any ‘Platform Service A’ is forwarded to the ‘DSB Platform Service A’. This is totally
transparent on the ‘SOA4All service consumer’ side. The DSB message will be transmitted
from a DSB node to the final one by the DSB routing and transport mechanisms. When the
‘DSB platform service A’ receives the message, it translates it to the right format and send it
to the real REST service.

Accessing a REST platform service

As an example, a REST service which is hosted on
http://<HOST>:<PORT>/services/rest/RESTService will be exposed as a DSB endpoint
where RESTService will be the endpoint name. All the messages which are received by the
REST endpoint will be analyzed and used to build the REST call like:

- The DSB message operation will be used as REST operation. A message that has
an operation which is not REST compliant (GET/POST/PUT/DELETE/HEAD) will be
rejected.

- The DSB message content will be used as REST message content (all messages
content types are accepted)

- The DSB message property called ‘rest.resource.path’ will be used to build the
REST resource URL to call. For example, a DSB message where
‘rest.resource.path’ = ‘resource/foo/bar’ will be sent to
http://<HOST>:<PORT>/services/rest/RESTService/resource/foo/bar.

Once the DSB endpoint is active, it will be exposed as a REST service on
http://<DSBHOST>:<RESTPORT>/rest/services/RESTService where:

- DSBHOST is the DSB host name

- RESTPORT is the port number on which REST services are exposed. This port is
defined at the REST binding component configuration level and is unique on each
DSB node

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 19 of 57

All the calls to this REST service will then be sent to the RESTService DSB endpoint and
processed as previously described.

3.2.2 Third-Party Services

Third party services can be invoked by SOA4All client (SOA4All studio) directly or using the
DSB facilities. Using the DSB to invoke these services means that the DSB acts as a proxy
i.e., calling a service through the DSB must be transparent at the service consumer point of
view. By transparent, we want to say that the message payload is the same but the endpoint
is adapted to reach the DSB. The DSB role is (not only) to route the message to the right
DSB endpoint which is able to call the real third party service (Figure 4).

Figure 4: Services Proxy

In this section we will only focus on how the DSB provides access points to invoke these
services.

3.2.2.1 SOAP Third-Party Services

The SOAP support for third party Web services is provided by the Petals ESB component
named ‘petals-bc-soapproxy’. This component does not have the same behaviour than the
‘petals-bc-soap’ which is used to provide platform service support.

The SOAP proxy component exposes a Web service which is ‘WS-Addressing aware’ (more
about Ws-Addressing is available at http://www.w3.org/Submission/ws-addressing/). It
means that the WS-Addressing information which is available in the SOAP message header
will be used by the DSB to invoke the final third party service. On the consumer side, using
the DSB to invoke a third party service using the DSB means (Figure 4):

1. Adapt the client code to use WS-Addressing (if not already used). Standard WS
stacks such as Apache Axis2 or Apache CXF provide a simple and clear API for that.

2. Inject the final third party service endpoint URL into the WSA-To value

3. Send the SOAP message to the DSB proxy endpoint

The DSB will get all the required information and will invoke the right DSB endpoint. This
DSB endpoint is ‘SOAP and WS-Addressing aware’ and will call the final third party Web
service. The response will be sent back to the primary consumer by the DSB.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 20 of 57

Accessing a third-party SOAP service

If a Web service consumer wants to invoke a third-party service available at
http://<HOST>:<PORT>/services/MyService, it must call the Web service
http://<DSBHOST>:<SOAPPROXYPORT>/petals/services/ProxyService where:

- DSBHOST is the hostname of the DSB node

- SOAPPROXYPORT is the port which listens to SOAP calls. The default value is set
to 8084

The SOAP message must have a SOAP message header with WS-Addressing section
where the WSA-To value is equals to http://localhost:8080/services/MyService like in the
following XML snippet:

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <S:Header>
 ...
 <wsa:To S:mustUnderstand="0">
 http://<HOST>:<PORT>/services/MyService
 </wsa:To>
 ...
 </S:Header>
 <S:Body>
 ...
 </S:Body>
</S:Envelope>

Note that the mustUnderstand attribute must be set to 0/false in order to use the SOAP
proxy. If not, the SOAP proxy will return a SOAP fault on each message call.

3.2.2.2 REST Third-Party Services

The REST support for third party services is provided by a Petals ESB component named
‘the rest-proxy component’. This component is deployed on each DSB node and starts an
embedded HTTP server which will process and forward incoming REST requests to the right
DSB endpoint. The DSB endpoint will get the message, invoke the REST service and send
back the response to the DSB client ie the REST service consumer.

In the scenario described in Figure 4, the DSB chooses the best endpoint to send the DSB
message to randomly. The default implementation of the DSB chooses the final DSB REST
endpoint randomly from the list of DSB REST endpoints. A good evolution will be to add
routing module to the DSB to select a better endpoint based on the final REST service to
address. The criteria choices can be for example DSB node location (closest to the final third
party service location), DSB load, DSB response time, amongst others.

Accessing a third-party REST service

If a REST service consumer wants to invoke a REST service at
http://<HOST>:<PORT>/rest/services/RestService, it must call
http://<DSBNODE>:<RESTPROXYPORT>/petals/rest/proxy/http://<HOST>:<PORT>/rest/ser
vices/RestService where:

- DSBNODE is hostname of the DSB node.

- RESTPROXYPORT is the port on which REST requests are accepted. The default
value is set to 8989.

Note that this is the only thing to change from the standard way to call the third party service
directly, i.e., the original HTTP operation (GET/POST/PUT/DELETE/…) and the HTTP

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 21 of 57

message payload remain the same i.e. the client has just to update the service URL to call to
the proxy one.

3.2.2.3Authentication

A majority of third-party business services will require a user authentication. This implies that
the REST proxy service must also provide this authentication feature. The proxy service will
handle authentication like:

- On REST message reception, get the http authentication related headers and assign
authentication values to the DSB message

- Send the DSB message to the DSB REST proxy endpoint

- When the DSB REST proxy endpoint receives a message with authentication
information, use this information to build the REST message.

The REST proxy component uses standard and well known and widely used libraries. To
build a flexible REST proxy component, the Apache http-Component client library is used.
This Library provides all the authentication schemes which are defined in HTTP RFCs. The
DSB REST proxy endpoint will analyze the authentication headers of the incoming REST call
and will use the right authentication classes to authenticate the user.

Important Note on HTTP Headers

HTTP response sent back from the service can contain headers that the service client can
use (HTTP redirect for example). When the proxy component detects a header with an URL,
it must rewrite the header value in order to use the proxy feature on next calls:

- Client send a REST request to the proxy

- The proxy send the REST request to the REST service

- The REST service sends back a response with HTTP redirect to http://host/foo/bar

- The REST proxy must return the HTTP redirect address in the HTTP header to the
client after updating it like
http://<DSBHOST>:<RESTPROXYPORT>/petals/rest/proxy/http://host/foo/bar

- The REST service client will handle the response and will call (probably)
http://<DSBHOST>:<RESTPROXYPORT>/petals/rest/proxy/http://host/foo/bar
instead of calling directly http://host/foo/bar

Such a mechanism on HTTP headers ensures that all the REST services calls are passing
through the REST proxy.

3.3 Active QoS Monitoring Infrastructure
The monitoring infrastructure is designed to support both passive and active monitoring on
SOAP and REST services. Passive monitoring, also known as real-user monitoring, refers to
the approach that tracks the quality of services (QoS) as well as the end-user behaviours by
capturing all the messages that go across the DSB as users invoke external services.
Passive monitoring on Web services is described in previous deliverables [2][3]. On the other
hand, active monitoring, also known as synthetic monitoring, is to test the performance of
services by regularly sending faked requests that, to a certain extent, simulate the actions of
actual users. Compared with passive monitoring, active monitoring can evaluate less QoS
metrics and may cause measurement errors, because a faked request might be only able to
trigger the exception handling rather than the normal business process of external services.
However, active monitoring not only enables continuously observing on external services, but

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 22 of 57

also provides up-to-date information about its QoS metrics such as availability, accessibility,
latency, etc. These metrics can be used as criteria for service ranking, selection and
recommendation. This section lists the definition of computable metrics by active monitoring
and details measurement methods of metrics as well as the architecture of the active QoS
monitor.

3.3.1 Metrics

A number of metrics have been defined to assess the quality of Web services [13][14][15],
which also have been divided into two main categories: subjective and objective metrics [16].
Subjective metrics, e.g. reputation, satisfaction, are mainly dependent upon user experience
and feedbacks, whereas objective metrics are those can be impersonally and quantitatively
evaluated. It is manifested that an active QoS monitor can only measure some of the
objective metrics, which are further divided into two categories: performance index and non-
performance attribute. Performance indexes including availability, accessibility, response
time and the lower bound of throughput indicate the run-time characteristics of Web services
from the consumer's perspective. On the contrary, annotation qualities including
interoperability and comprehensibility are the metrics can be computed based on service
description and its semantic annotation.

1. Availability

In the context of service-oriented computing, availability means that a Web service is present
on-line and is, similar to [13][14], defined as the ratio of the time period when a service is
available and the total observation period.

Availability = Tavailable Tobservation

2. Accessibility

Like availability, accessibility also reflects the processing capability of a Web service, but it
takes into account the delay in responding to requests. In other words, a Web service is
accessible only if it can deliver the execution results within a certain time frame. Therefore,
accessibility is the ratio of the time period when a service is accessible and the total
observation period.

Accessibility = Taccessible Tobservation

3. Response time

Response time refers to the time between the QoS monitor sending the request and
receiving the response from the service provider.

Tresponse = ts − tr

4. Lower Bound of Throughput

As stated in [13][15][17], throughput is the maximum of requests that a Web service handled
during a certain period of time. Because the influence on QoS caused by active monitoring
itself must be kept at an acceptable level, it is infeasible to test the actual throughput of a
Web service using synthetic requests. However, the lower bound of throughput still can be
estimated by counting the number of received responses.

LowerBound Throughput()= Nresponse Tobservation

5. Interoperability

The interoperability of a Web service is perceived from both respects of syntax and
semantics. Syntactic interoperability indicates whether a Web service is in the compliance

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 23 of 57

with a standard [13][15]. Semantic interoperability is a new metrics introduced to reveal if a
service is easy to be consumed by a client of semantic Web services. Semantic
interoperability refers to the completeness and consistence of service annotations, i.e. the
degree of obedience to five rules defined in [18].

6. Comprehensibility

Comprehensibility means the possibility of a semantic Web service understand by machines.
In more detail, it contains two factors: the number of different annotations and the coverage
rate of messages and operations in each annotation. Service annotations may change over
time, thus monitoring on comprehensibility is helpful, especially for the discovery, selection
and recommendation of services.

Coverage =
NAnnotatedMessage

NMessage

+
NAnnotatedOperation

NOperation

3.3.2 Measurement

This sub-section details the measurement of performance indexes and the annotation
qualities respectively. Different methods are employed for evaluating the quality of SOAP
and REST services.

Performance Index

Evaluation of performance of Web services in an active manner involves automatic
generation of synthetic requests and analysis of responses. As for SOAP services, these two
functionalities are implemented based on the semantic annotation of input and output
messages as well as the lowering and lifting schemas. Whereas, the generation of requests
for REST services is driven by hRESTS and URI templates [19], and the analysis of
responses is based on the HTTP status and content of output messages. In addition, the
exchanging messages captured by passive monitoring can also be used for active
monitoring.

If an input message of a SOAP service is annotated with concepts of an ontology, and it has
lowering schema, first, some instances of the concepts are created by setting the properties
with random values. And then, using the lowering schema, the instances are transformed
into messages that comprise the request to be sent to the service. If an input message
unfortunately does not have semantic annotation or lowering schema, the generation of
request will be carried out according to declaration of the message in the WSDL file.
Similarly, if an output message is annotated and has lifting schema, it will be tried to
transform the response into instances of the concepts used to annotate the output message.

In the case of a REST service, a request is generated by instantiating the URI template
according to the semantic annotation or by using random values. Before the content of
output message, HTTP status is first processed to analyze the response, because it provides
an important basis for determining whether the service is available and accessible. For
example, if HTTP status with code 404 implies that the service is currently unavailable.

Annotation Quality

As aforementioned, the evaluation of annotation quality is only based on analysis of the
service description and its semantic annotation rather than the run-time characteristics.
Counting the number of different annotation and calculating the coverage rate are all done by
executing queries with the service repository. In order to get the up-to-date information, all
the annotation qualities are recomputed every time a new annotation is stored into the
service repository.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 24 of 57

Figure 5. Active QoS Monitoring

3.3.3 Architecture

As shown in Figure 5, active QoS monitoring is composed of four key components: a request
generator, a service invoker, a response analyzer and a timer. First, the QoS monitor
retrieves service descriptions from iServe at a regular interval, and then the request
generator carries out the method mentioned above to create synthetic requests. Note that
the request generator will ignore the operations that have specific pre-conditions or effects
on the real world. As a result, the overall performance of a Web service is measured not by
active monitoring but by the aggregation of data from both the passive and active monitoring.
The service invoker is in charge of sending requests and receiving the responses, which is
implemented based on Axis 2 Client API [20]. The response analyzer sends the analysis
results to the mediator of monitoring platform in the format of events, so that the data comes
from active QoS monitor can be aggregated with those from the passive monitor. The
Monitoring Mediator shown in Figure 7 serves as the interface to the monitoring platform.
When Monitoring Mediator receives the events sent by the active monitor, it will filter, if
nessary, and send them to Business Event Processor for further processing and analysis
[21]. Finally, a timer triggers the invocation of services and computation of QoS metrics, and
it is also configurable in order to keep under control the negative influences of active QoS
monitoring on the performance of services.

3.3.4 Integration with SOA4All Studio

The active QoS monitor will also be exposed as RESTful services that are oriented towards
the users as well as other components of SOA4All studio or third-party systems. As the
Monitoring Mediator is the interface of the monitoring module of SOA4All Studio, it connects
to active QoS monitor and transforms the data received into API calls to the Basic Event
Processor (BEP). BEP is responsible for parsing the monitoring data received from the MM
and to perform data processing in order to extracts derived information (such as computing
averages and basic aggregated events). In addition, BEP also communicates raw and
derived data to upper-level processing entities, the K-Analytics and SENTINEL engines [21],
and updates of the graphical data structures used by the UI widgets of SOA4All.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 25 of 57

4. Platform Services and Integration
4.1 Components
In this section we present eight platform services and three additional components which
jointly provide the minimal functionality that is necessary for the realization of a delivery
platform for Web services; recall the platform services at the bottom of Figure 1. Focus is set
on updated component descriptions and a tabular specification of the access interfaces –
some platform services offer a RESTful interface, while others are exposed via WSDL
descriptions. The application of the platform services is explained in Section 4.2 by means of
a consolidated discovering and constructing example. The platform services are grouped
according to their area of application: service localization and service composition. The listing
concludes with the presentation of the three support components for data grounding,
reasoning and service description validation.

The category service location covers services that provide users with the possibility to find
and rank services according to their needs and context. The category includes the crawler,
the service repository, the discovery services, and the ranking and selection services.

Crawler : The crawler service offers a fundamental functionality for service discovery [22]. It
deals with the collection of information related to services from the Web and the
management of this data for enabling efficient and intelligent retrieval of service related
artifacts. The crawler service takes thus care of searching for technical descriptions
associated with services, also including related documents such as Web site,
documentations, pricing and licensing information. The collected data is delivered either as
RDF metadata, or as consolidated non-RDF archive files, and can be queried by means of a
REST service endpoint. Furthermore, the crawler service’s interface exposes interfaces to
configure parameters and to define requirements in order to guide the crawler service in
searching for desired service characteristics.

REST service https://lanz.seekda.com/tomcat/crawldata/

Resource GET

/sets Description: list IDs of all crawl sets (i.e. a distinct crawl batch)

Parameters:
• start (optional): ordinal position of first result (in

chronological order). Default value is 0
• count (optional): number of results to return. Default

value is 100.

Return: list of crawlset IDs (XML/RDF)

/sets/<set-id>/webservices/ Description: list IDs of all services in a specific crawlset

Parameters:
• start (optional): ordinal position of first result (in

chronological order). Default value is 0
• count (optional): number of results to return. Default

value is 100.

Return: list of service IDs (XML/RDF)

/sets/<set-
id>/webservices/<service-id>

Description: returns the service description documents (WSDL
or HTML)

Parameters: none

Return: ZIP archive containing all the files (service descriptions)

/sets/<set-
id>/webservices/<service-

Description: returns all documents related to a service (not
service descriptions!)

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 26 of 57

id>/related
Parameters: none

Return: ZIP archive containing all the files (related documents)

/sets/<set-
id>/webservices/<service-
id>/metadata

Description: returns all the metadata for the service (RDF triples
according to the ServiceFinder ontology)

Parameters: none

Return: XML/RDF

/sets/<set-id>/query Description: SPARQL query over the metadata for the services
(in a specific crawlset)

Parameters: q (mandatory): a valid SPARQL expression

Return: XML/RDF

Service Repository : The service repository – in SOA4All released under the name iServe –
is realized as public service and yields a central component of the service location category.
iServe is used to store and maintain the collected service descriptions in RDF, and provides
processing capabilities for SA-WSDL and MicroWSMO annotations that allow users and
machines to upload their service annotations and have them automatically exposed as RDF
[23]. The repository offers a Web interface allowing users to browse, query and upload
annotations. Additionally, a RESTful API supports direct communications with machines for
the very same purposes. Through iServe all service annotations provided through SOA4All
become part of the global Linked Data cloud (www.linkeddata.org); more concretely they are
stored in and queried through a repository-bound semantic space. The alignment with the
Linked Data initiative increases public awareness and brings the service annotations into
context. Moreover, potential service users have a more direct access to the descriptions to
leverage them in locating service endpoints and in invoking and utilizing services within
compositions.

REST service http://iserve-dev.kmi.open.ac.uk:8080/iserve/data/

Resource GET

/services Description: returns the list of URI of services stored in the
repository

Return: SPARQL result set

/services/<serviceId>

Description: returns the description of the required service

Return: service information as RDF/XML

/data/documents Description: returns the list of URI of documents stored in the
repository

Return: SPARQL result set

/data/documents/<documentId> Description: returns the contents of the required document

Return: document (HTML, WSDL…)

/data/executequery Description: returns the results of query execution

Parameters:
• query: the SPARQL SELECT or DESCRIBE query

string

Return: SPARQL result

Resource POST

/services Description: store a service in the repository

Parameters:

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 27 of 57

• format: Required, enumeration ("HTML", "WSDL",
"OWLS"). The format of service description.

• description: Required. The service description.
• user: Required. The user name.

/data/documents Description: store a HTML, WSDL or OWL-S file to the
repository

Parameters:
• name: Required. The name of the file.
• content: Required. The content of the file.
• user: Required. The user name.

Discovery : Service discovery is all about the finding of services that match the need of a
user. Traditionally, in Semantic Web services, the user perspective is specified by means of
goals. SOA4All takes a more light-weight approach and offers the possibility to specify
service templates that abstractly describe a user’s objectives as a set of RDF triples. The
service templates are designed in such ways that they are straightforwardly mappable into
SPARQL queries to be resolved by repositories such as iServe. The service template RDF
schema is shown in Table 1: the hasFunctionalCategory property shadows the functional
classification reference that types services according to WSMO-Lite; the input and output
properties are used to specify information about the input and the expected output of a
service – in particular the latter is of interest to users; finally, requirements and preferences
are properties that allow for further constraints in a language of choice, including SPARQL or
WSML [25]. These values match roughly the specification of pre-conditions and effects as
known from WSMO-Lite and are generally of more complex nature than RDF only; e.g., as
stated SPARQL or WSML are prominent examples.

Table 1: RDF Schema for service templates

ServiceTemplate rdf:type rdfs:Class .
hasFunctionalCategory rdf:type rdf:Property .
hasInput rdf:type rdf:Property .
hasOutput rdf:type rdf:Property .
hasPreference rdf:type rdf:Property .
hasRequirement rdf:type rdf:Property .

The discovery service of SOA4All currently offers two types of search. The first one is
referred to as full text-based discovery and mostly exploits keyword matching over the
service descriptions and related documents as provided by the crawler. The second
approach is referred to semantic discovery and leverages the aforementioned service
templates. In the simplest case, discovery is reduced to the resolution of the derived
SPARQL query. For more sophisticated searches, for example when using requirements and
preferences, the discovery service makes use of the reasoning framework that is developed
within SOA4All; see at the end of this section.

WSDL Service: SemanticDiscovery

 Operation executePostQuery

 Input executePostQueryRequest

Output executePostQueryResponse

Operation executePreQuery

 Input executePreQueryRequest

Output executePreQueryResponse

Operation functionalityDiscovery

 Input functionalityDiscovery

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 28 of 57

Output functionalityDiscoveryResponse

Operation getClassificationRoot

 Input getClassificationRootRequest

Output getClassificationRootResponse

Operation getInputMessage

 Input getInputMessageRequest

Output getInputMessageResponse

Operation getLiftingSchemaMapping

 Input getLiftingSchemaMappingRequest

Output getLiftingSchemaMappingResponse

Operation getLoweringSchemaMapping

 Input getLoweringSchemaMappingRequest

Output getLoweringSchemaMappingResponse

Operation getMessageModelRefs

 Input getMessageModelRefsRequest

Output getMessageModelRefsResponse

Operation getOperationModelRefs

 Input getOperationModelRefsRequest

Output getOperationModelRefsResponse

Operation getOperations

 Input getOperationsRequest

Output getOperationsResponse

Operation getOutputMessage

 Input getOutputMessageRequest

Output getOutputMessageResponse

Operation getServiceClassification

 Input getServiceClassificationRequest

Output getServiceClassificationResponse

Operation getServicePostconditionString

 Input getServicePostconditionStringRequest

Output getServicePostconditionStringResponse

Operation getServicePreconditionString

 Input getServicePreconditionStringRequest

Output getServicePreconditionStringResponse

Operation getSubConcepts

 Input getSubConceptsRequest

 Output getSubConceptsResponse

Operation getWsdlUri

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 29 of 57

 Input getWsdlUriRequest

Output getWsdlUriResponse

Ranking and Selection : The ranking and selection services offer the possibility to rank
services according to given user preferences on the non-functional properties of the services
[26][27]. Ranking and selection services integrate several ranking approaches that exploit the
data gathered through crawling and monitoring. The first method computes global rank for
services based on monitoring data or quality of documentation. A second ranking approach
is using non-functional properties of services – e.g., liability or financing – that are given by
means of logical rules. This ranking and selection service then uses logical reasoning to
compute ranking scores for services based on aggregated non-functional values and their
matching degree in terms of user requirements. A third approach is a fuzzy logic-based
ranking mechanism that considers an extended model of preferences including vagueness
information.

WSDL Service: RankingService

 Operation Rank

 Input RankRequest

Output RankResponse

The second category of platform services yields the functionality to compose services, i.e.
construct processes, and to execute the compositions. SOA4All particularly focuses on
empowering non-technical users in constructing service compositions, and hence bases its
work on process languages and process templates for lightweight modeling that foster re-
usability and flexibility in design. The term lightweight explicitly refers to the usability of the
language from a user perspective. Moreover, processes should be adaptable to specific
contexts both at design-time and run-time, and optimized to the particular usage scenarios.
The language that is common to all service construction components is referred to as
Lightweight Process Modeling Language (LPML, [28]). LPML is a combination of established
process modeling concepts mostly derived from BPMN or BPEL and SOA4All-specific
extensions. On the one hand LPML simplifies BPEL by only considering relevant subsets of
the business process modeling languages – in order to reduce the complexity of process
models; and on the other, it extends these existing approaches with means to interleave goal
specifications and process templates. The process specification is thus governed by reuse
and requirements rather than specification of service-bindings. Furthermore, LPML defines
how semantic annotations can be attached to various elements of processes such as
activities, goals, input and output parameters, and introduces the concept of data connectors
that specify the data flow in mash-up-style service compositions. A simple example of an
LPML process specification with one goal is given in Table 2 of Section 4. In the following we
present the service construction-related platform services that all operate over LPML process
models.

Design-Time Composer : The design-time composer service provides semi-automatic
assistance in resolving unbound activities within a process specification, given by service
templates. As such, within SOA4All, the service is mainly supporting the activities of the
process editor component that is part of the consumption platform of the studio. In other
words, the design-time composer supports the entire life-cycle of service composition, from
supporting the process specification through elaboration of process and template expansions
to the discovery and binding of service endpoints as activities within the processes. Side-
issues that are tackled by the composer service are data mediation and resolution of
compatibility problems at the level of service inputs and outputs via so-called service
connectors and semantic link operators.

WSDL Service: DTComposer

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 30 of 57

 Operation checkIOSemanticCompatibility

 Input checkIOSemanticCompatibilityRequest

Output checkIOSemanticCompatibilityResponse

Fault DTComposerException

 Operation registerDesignAnalysisAgent

 Input registerDesignAnalysisAgentRequest

Output registerDesignAnalysisAgentResponse

Fault DTComposerException

 Operation registerDesignModificationRuleAgent

 Input registerDesignModificationRuleAgentRequest

Output registerDesignModificationRuleAgentResponse

Fault DTComposerException

 Operation registerDesignModificationSemanticAgent

 Input registerDesignModificationSemanticAgentRequest

Output registerDesignModificationSemanticAgentResponse

Fault DTComposerException

 Operation registerSemanticLinkOperatorAgent

 Input registerSemanticLinkOperatorAgentRequest

Fault DTComposerException

 Operation resolveGoal

 Input resolveGoalRequest

Output resolveGoalResponse

Fault DTComposerException

 Operation resolveGoalMS

 Input resolveGoalMSRequest

Output resolveGoalMSResponse

Fault DTComposerException

 Operation resolveGoalWithTemplate

 Input resolveGoalWithTemplateRequest

Output resolveGoalWithTemplateResponse

Fault DTComposerException

 Operation resolveGoalWithTemplateMS

 Input resolveGoalWithTemplateMSRequest

Output resolveGoalWithTemplateMSResponse

Fault DTComposerException

 Operation resolveGoalWithWS

 Input resolveGoalWithWSRequest

Output resolveGoalWithWSResponse

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 31 of 57

Fault DTComposerException

 Operation resolveGoalWithWSMS

 Input resolveGoalWithWSMSRequest

Output resolveGoalWithWSMSResponse

Fault DTComposerException

 Operation resolveProcess

 Input resolveProcessRequest

Output resolveProcessResponse

Fault DTComposerException

 Operation resolveProcessMS

 Input resolveProcessMSRequest

Output resolveProcessMSResponse

Fault DTComposerException

 Operation resolveProcessWithTemplate

 Input resolveProcessWithTemplateRequest

Output resolveProcessWithTemplateResponse

Fault DTComposerException

 Operation resolveProcessWithTemplateMS

 Input resolveProcessWithTemplateMSRequest

Output resolveProcessWithTemplateMSResponse

Fault DTComposerException

 Operation resolveGoalWithTemplateMS

 Input resolveGoalWithTemplateMSRequest

Output resolveGoalWithTemplateMSResponse

Fault DTComposerException

 Operation resolveProcessWithWS

 Input resolveProcessWithWSRequest

Output resolveProcessWithWSResponse

Fault DTComposerException

 Operation resolveProcessWithWSMS

 Input resolveProcessWithWSMSRequest

Output resolveProcessWithWSMSResponse

Fault DTComposerException

 Operation unregisterDesignAnalysisAgent

 Input unregisterDesignAnalysisAgentRequest

Output unregisterDesignAnalysisAgentResponse

Fault DTComposerException

 Operation unregisterDesignModificationRuleAgent

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 32 of 57

 Input unregisterDesignModificationRuleAgentRequest

Output unregisterDesignModificationRuleAgentResponse

Fault DTComposerException

 Operation unregisterDesignModificationSemanticAgent

 Input unregisterDesignModificationSemanticAgentRequest

Output unregisterDesignModificationSemanticAgentResponse

Fault DTComposerException

Composition Optimizer : The input to the composition optimizer service is the definition of a
service composition (as provided through the design-time composer) for which an optimized
and executable process specification is sought [29]. Although the composer helps in binding
service endpoints, there remain aspects in the process specification that cannot be treated at
design-time. A core task of the composition optimizer is thus to assign open service
templates to relevant and executable services in order to derive an executable process. To
this end, the composition optimizer exploits reasoning support when necessary, and
considers an extensible quality criteria model by coupling quality of service attributes (aka
non-functional properties) and the semantic descriptions of the process. The non-functional
properties of services are valued by means of Quality of Services measures (e.g., response
time, reliability, availability) while the semantic elements are valued according to the data
flow within the given executable process.

WSDL Service: Optimizer

 Operation Optimize

 Input optimizeRequest

Output optimizeResponse

Execution Engine : The execution engine is the last service to be called in the service
construction process. It offers operations to deploy executable processes in a dedicated
execution environment and as such to expose entire processes as invokable Web services.
Furthermore, the execution service provides tooling to transform light-weight process
descriptions into standardized process modeling notations, such as for example BPEL.
Lastly, this service is responsible for the execution of given processes and thus the
invocation of atomic services that constitute a process. In SOA4All, the execution engine
service includes a set of basic mechanisms for adaptive run-time reconfiguration of execution
plans in order to react to changes in the execution environment.

WSDL Service: LPMDeployer

 Operation deployServiceLPM

 Input deployServiceLPMRequest

Output deployServiceLPMResponse

Fault DeploymentException

Template Generator : The template generator service is to some degree a meta-component
of the service construction suite. In principle, its functionality is not required for the realization
of service compositions; however, it provides an important contribution in terms of facilitating
the realization of executable processes. After all, enabling non-technical users in creating
business value through services is one of the main drivers of the SOA4All project. A main
task of the template generator is to analyze service execution logs and to generate
hierarchies of process templates and a corresponding taxonomy; this process is motivated
by work in [30]. Additionally, it allows users to refine and manually create templates. Process

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 33 of 57

templates are abstract representations of processes that reflect typical workflows that are
often too complex or too costly to be formalized as processes from scratch. To this end, the
template generator service offers pre-formalized skeletons of service compositions that serve
as input to both the process editor and the design-time composer. Note that consequently,
the Template Generator is not deployed as a Web service, but it is deployed as a GWT
server-side component as it is invoked only by the SOA4All Studio. For this reason there are
no interface information given.

To conclude the presentation of the components that constitute the SOA4All service delivery
platform, we present three additional software packages. Data grounding supports the
invocation of service endpoints. The reasoning services support components that have to
interpret and reason about semantic descriptions of services and process. Finally, the
WSMO-Lite service validator is used to ensure that service annotations are valid formal
descriptions, at least syntactically.

Data Grounding : As the Web services that are addressed by SOA4All are either WSDL-
based and thus XML-aware services, or RESTful services that expose operations as URLs
and often return XML-based data, there remains an extensive need for switching back and
forth between the semantic layer data of SOA4All and the concrete service protocols. The
relationships between these two types of data are defined at design-time in the form of
bidirectional transformations, and bound to the semantic descriptions as lifting and lowering
schemas. In SA-WSDL, the transformation schemas are linked to the service description via
the schema mapping attributes liftingSchemaMapping and loweringSchemaMapping,
respectively. The data grounding services uses the pre-defined transformation schemas to
map from one model to the other whenever a lifting to the semantic level or lowering to the
syntactical level is required during the invocation of a service endpoint [31].

REST service

Resource GET

/genOntology Description: Generates an ontology from XML Schema (XSD)

Parameters:
• xsd: the URL of the source XML Schema

Header Parameters:
• xsd-url: URL of the XML Schema file alternative to 'xsd'

param)
• format (optional): result ontology format, one of: owl, rdf/xml,

rdf/xml-abbrev, n-triple, n3. Default is rdf/xml.
• xsd-data:- XSD file content (alternative to 'xsd' and 'xsd-url')

Return: Ontology definition in the selected representation format

/genLoweringSchema Description: Generates a lowering schema between ontology and
XML Schema instances. The mapping is provided as an input
parameter in XML format.

Parameters:
• mapping: the URL of the XML mapping descriptor file

Header Parameters:
• mapping: the URL of the XML mapping descriptor file

(alternative to ' mapping ' query parameter)
• format: input ontology format: owl or rdf. Default is rdf.
• xsd-url (optional): the URL of XML Schema file which should

be used, instead of the one specified in the mapping file
• onto-url (optional): the URL of ontology file which should be

used, instead of the one specified in the mapping file
• mapping-data: XML mapping file content (alternative to

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 34 of 57

'mapping' parameters')

Return: Lowering XSL Transformation file

/genLiftingSchema Description: Generates a lifting schema between XML Schema and
ontology instances. The mapping is provided as an input parameter in
XML format.

Parameters:
• mapping: the URL of the XML mapping descriptor file

Header Parameters:
• mapping: the URL of the XML mapping descriptor file

(alternative to ' mapping ' query param)
• xsd-url (optional): the URL of XML Schema file which should

be used, instead of the one specified in the mapping file
• onto-url (optional): the URL of ontology file which should be

used, instead of the one specified in the mapping file
• mapping-data: XML mapping file content (alternative to

'mapping' parameters')

Return: Lifting XSL Transformation file

/genLiftingMap Description: Generates an ontology from XML Schema (XSD) and an
XSL Transformation from XML data to OWL instances from the
generated ontology

Parameters:
• xsd: the URL of the XML Schema file

Header Parameters:
• xsd-url: the URL of the XML Schema file (alternative to 'xsd'

param)
• format: (optional) result ontology format, one of: owl, rdf/xml,

rdf/xml-abbrev, n-triple, n3. Default is: rdf/xmlxsd-data - XSD
file content (alternative to 'xsd' and 'xsd-url')

Return: ZIP archive containing the ontology, XML mapping descriptor
and the XSL Transformation

Reasoner : Various platform services require reasoning support in matching services and
service templates based on their semantic descriptions. The reasoning service exposes a
corresponding framework of robust and scalable reasoning components that are tailored for
each of the WSML language variants [32]. A variety of interfaces allow for schema/instance
reasoning, satisfiability/entailment checking and query answering. The reasoning service has
configurable links to service repositories to load service descriptions, and to public semantic
spaces to get access to domain ontologies that are required to conclude the desired
reasoning tasks.

WSDL Service: ReasonerService

 Operation Query

 Input queryRequest

Output queryResponse

WSMO-Lite Service Validator : The WSMO-Lite Service Validator is an online support tool
that can be used to confirm WSMO-Lite service annotations syntactically. The service is a
typical meta-component of the SOA4All service delivery platform in that it supports any
platform service that has to deal with service descriptions without providing a core
functionality itself. In addition, the service can also be used to validate manually developed
service annotations, and thus offers a stand-alone component that is intended to facilitate the

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 35 of 57

adoption of the WSMO-Lite approach to Semantic Web services and to increase the quality
of service annotations.

REST service http://km.aifb.uni-karlsruhe.de/services/ServiceValidator/services/

Resource POST

/ Description: accepts a WSMO-Lite based service description and validates it.
Supported Content-Types are application/rdf+xml and text/n3 (restricted to
Turtle syntax).

Parameters:
• model (optional): can be set to “MSM” to force validation against the

currently used minimal service model

Return: Standard HTTP response codes

4.2 Integrated Example
As the categorization in Section 3.1 has shown, service delivery in the context of SOA4All
focuses on two separable areas: service location and service construction; although the latter
at least partly subsumes the former in order to bind actual service endpoints to service
templates within a process. In this section we exemplify how the different platform services
coordinate in order to jointly realize SOA4All’s global service delivery platform.

As a starting point, for our example, we assume that there are a relevant number of semantic
service descriptions provided and stored in the service repository. The service descriptions
were likely created by use of the provisioning tools such as SWEET or SOWER of the
SOA4All Studio [33], which are used for annotating Web APIs or WSDL files with either
MicroWSMO or SA-WSDL, respectively. In order to find the service endpoints and the
corresponding documentation, a SOA4All user can profit from the crawler service that
provides the background knowledge to formalize service annotations. In principle, it would
also be possible that the crawler service detects not only service endpoints, but service
descriptions directly, which then, without manual intervention, can be stored in the repository.
Such SOA4All compatible service descriptions are however not yet publicly available, as the
tools and languages are still in the process of being established and first have to penetrate
the market. Our assumed starting point thus covers most of the actions for which the
provisioning platform is developed: service endpoint selection, semantic description creation,
annotation management and storage in the service repository.

Figure 6: Example process with two services.

In terms of functional processes that are empowered by the service delivery platform, the
actions triggered through the consumption platform are much more informative. A core
component of the consumption platform is the mentioned process editor that yields a GUI for
the modelling of processes. The graphical artefacts of a composition are specified by means
of LPML, which is understood and further manipulated by all service construction-related
platform services. An example process with two activities – and without flow information for
clarity – is shown in Table 2 and Figure 3; note that the example shows the LPML model
after the invocation of the design-time composer, and hence a potential Web service is
already bound to each of the two activities. The first goal of the process is to determine the
latitude and longitude of a city in order to retrieve information on the wind speed from the
nearest weather station in a second step. Both services are offered by ws.geonames.org. As

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 36 of 57

the output of the first activity maps directly onto the input of the second one (exact match),
data mediation and I/O connector descriptions are skipped.

Table 2: LPML process description in XML

<org.soa4all.lpml.impl.ProcessImpl>
 …
 <activity class="org.soa4all.lpml.impl.ActivityImpl">
 <operation>getGeoLocationByName</operation>
 <conversation class="org.soa4all.lpml.impl.ConversationImpl">
 <goal class="org.soa4all.lpml.impl.GoalImpl">
 <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl>
 <referenceURI>http://www.example.org/geolocation#location</referenceURI>
 <type>FUNCTIONAL_CLASSIFICATION</type>
 </org.soa4all.lpml.impl.SemanticAnnotationImpl> <semanticAnnotations>
 </goal>
 <services>
 <serviceReference>http://ws.geonames.org/search</serviceReference>
 </services>
 </conversation>
 <inputParameters>
 <org.soa4all.lpml.impl.ParameterImpl>
 <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl>
 <referenceURI>http://www.example.org/geo#locationString</referenceURI>
 <type>META_DATA</type>
 </org.soa4all.lpml.impl.SemanticAnnotationImpl> </semanticAnnotations>
 </org.soa4all.lpml.impl.ParameterImpl>
 </inputParameters>
 <outputParameters>
 <org.soa4all.lpml.impl.ParameterImpl>
 <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl>
 <referenceURI>http://www.w3.org/2003/01/geo/wgs84_pos#long</referenceURI>
 <type>META_DATA</type>
 </org.soa4all.lpml.impl.SemanticAnnotationImpl> </semanticAnnotations>
 </org.soa4all.lpml.impl.ParameterImpl>
 <org.soa4all.lpml.impl.ParameterImpl>
 <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl>
 <referenceURI>http://www.w3.org/2003/01/geo/wgs84_pos#lat</referenceURI>
 …
 </org.soa4all.lpml.impl.ParameterImpl>
 </outputParameters>
 </activity>
 <activity class="org.soa4all.lpml.impl.ActivityImpl">
 <operation>getWindSpeed</operation>
 <conversation class="org.soa4all.lpml.impl.ConversationImpl">
 <goal class="org.soa4all.lpml.impl.GoalImpl">
 <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl>
 <referenceURI>http://www.example.org/weather#WindSpeed</referenceURI>
 …
 </goal>
 <services>
 <serviceReference>http://ws.geonames.org/findNearByWeatherXML</serviceReference>
 </services>
 </conversation>
 <inputParameters> … </inputParameters>
 <outputParameters>
 <org.soa4all.lpml.impl.ParameterImpl>
 <semanticAnnotations> <org.soa4all.lpml.impl.SemanticAnnotationImpl>
 <referenceURI>http://www.geonames.org/ontology#windSpeed</referenceURI>
 …
 </org.soa4all.lpml.impl.ParameterImpl>
 </outputParameters>
 </destination>
 ...

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 37 of 57

For applications that are based on prevalent workflows, a user can load a process template
that was pre-designed by the template generator service in order to jump start the
construction process. In our example, with a simple goal, this step is left out. A first contact
point for our example is the design-time composer that allows for flexible and ad-hoc creation
and adaptation of processes at design time. It is iteratively invoked during the process
specification to assist in resolving goals, binding services, expanding templates, checking I/O
compatibilities and creating data flow via connectors. In short, the design-time composer
offers support in regards to all aspects of the LPML-based process specification and helps
users in completing an eventually executable process model. These activities require service
discovery support in finding adequate service bindings. Although matching user requirements
and process-specific constraints, the outcome of this iterative collaboration between user,
process editor and composer does not necessarily yield an optimized model. In fact, the
design-time composer works mainly on local solutions only and does not care about the
global optimization of a process specification – although some global process requirements
and constraints are taken into account.

Mostly due to performance optimization, context adaptation or specific user preferences and
constraints, it is necessary to optimize the completed compositions. While the input to the
composer is generally a rather goal-heavy process specification, the optimizer only accepts
complete process models for which it seeks a better global cost function in terms of
functional (including semantic similarity of inputs and outputs) and non-functional qualities of
services. The optimizer thus not only uses non-functional parameters such as well-known
Quality of Service metrics (QoS) but also semantic similarity as a core indicator of functional
quality. In summary, the optimizer – by exploiting Genetic Algorithms – transparently
transforms compositions into their optimal versions by replacing service bindings and
modifying the dataflow but without changing the workflow. Such transformations are heavily
influenced by the context in which a service composition is to be used, and require reasoning
support and service discovery for finding concrete and optimized service bindings. Again, as
for the design-time composer, the optimizer service is optionally invoked to achieve better
overall compositions.

Once a complete model is established that satisfies a user’s preferences and requirements in
terms of functionality and performance, the execution engine service is called in order to
deploy the process in the execution engine and to expose it as a Web service. As described
in Section 3, the execution engine transforms the complete LPML model into a BPEL model
enhanced with some SOA4All-specific extensions. These extensions enable the use of
semantic annotation for instructing the self-adaptation capabilities of the execution engine
service. Additionally, a corresponding WSDL endpoint is specified to allow for public access.
Consequently, the execution engine offers one more public service for any deployed
process, in addition to the basic ‘deployProcess’ service that the engine hosts per default.

As the first part of our example has shown, discovery is an essential sub-task of the service
construction process. To conclude this section, we thus enter more concretely into the
domain of service discovery. The definition of activity, and in particular the goal element
within the LPML process specification can be mapped straightforwardly onto the properties of
the service templates (Table 1) which are at the basis of semantic discovery. The semantic
annotations of type functional classification that are used to annotate a goal element are
transferred to values of the hasFunctionalCategory property. The operations, given through
inputOperation and outputOperation in LPML are converted to hasInput and hasOutput
respectively. Last, there are other semantic annotations that can be attached to activities,
which are of type requirement and non-functional property. These map to hasRequirement
and hasPreference accordingly. Table 3 shows a concrete service template that was directly
derived from mapping the LPML goal element in Table 2 according to the schema in Table 1.
The ‘st’ prefix stands for the service template namespace http://cms-wg.sti2.org/ns/service-
template#.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 38 of 57

Table 3: Concrete service template for the wind speed service

windSpeedService rdf:type st:ServiceTemplate ;
 st:hasFunctionalCategory <http://www.example.org/weather#WindSpeed> ;
 st:hasInput rdf:type <http://www.w3.org/2003/01/geo/wgs84_pos#lat> ;
 st:hasInput rdf:type <http://www.w3.org/2003/01/geo/wgs84_pos#long> .

In a next step, SPARQL queries can be derived from the RDF-based service templates that
can be executed against the semantic service descriptions in the service repository. A
possible SPARQL query for the template in Table 3 is depicted in Table 4. Note that the
classes and predicates are no longer taken from the service template schema but from the
minimal service model (prefixed with msm) which borrow some elements from SA-WSDL,
identified with the prefix sawsdl. The query selects services which match exactly the
functional category that is searched, and that offer operations with the given input types. Had
our service template contained hasOutput specifications, those would have appeared in the
query in a similar way to the input types. More sophisticated query specifications that are
investigated in the context of service location consider, in addition to the exact match
achieved with the example in Table 4, plug-in, subsumes, and fail match degrees common in
the literature. One approach to do this is to use subclass relations in the SPARQL query; i.e.,
the service classification does not reference wind speed directly but rather any subclass of
the concept http://www.example.org/weather#WindSpeed. Executing the SPARQL query
against the repository results in a collection of service endpoints that match the functional
classification, and the input and output parameters respectively.

Table 4: SPARQL query to be executed against the service repository

SELECT ?service ?operation ?endpoint
WHERE {
 ?service rdf:type msm:Service ;
 rdfs:isDefinedBy ?endpoint ;
 msm:hasOperation ?operation ;
 sawsdl:modelReference <http://www.example.org/weather#WindSpeed> .
 ?operation msm:hasInputMessage ?input ;
 msm:hasOutputMessage ?output .
 ?input sawsdl:modelReference <http://www.w3.org/2003/01/geo/wgs84_pos#long> ;
 sawsdl:modelReference <http://www.w3.org/2003/01/geo/wgs84_pos#lat> .

This passage from a goal specification to a set of possible service endpoints is followed for
all goal elements in the LPML model. At the level of the design-time composer any of the
discovered endpoints might be selectable, as they fulfill the basic requirements: typing, as
well as input and output parameters. In order to optimize a process, it is however necessary
to choose the service that best fits a user’s objective and expectations and ranking becomes
important. The ranking and selection service is invoked with the set of possible service
endpoints as input; i.e., ranking and selection depends on the discovery service too.

There are further, more sophisticated means defined in WSMO-Lite to annotate a service,
namely pre-conditions, effects and non-functional parameters. These more complex
elements of semantic service descriptions are in most cases given by WSML axioms that are
persisted as RDF literals. The axioms are extracted from the service descriptions if needed
and loaded into the reasoning service for query resolution in the scope of discovery, ranking
and selection or process optimization.

4.3 SOA4All Functional Processes
In the previous sections we presented the SOA4All platform services and an example of the
integrated usage of them. At this point it is important to address the integration perspective
from a functional perspective, meaning the definition of a precise specification of functional
processes involving the needs for platform services but particularly also infrastructure. The

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 39 of 57

aim of this definition is twofold: i) define what SOA4All does and offers in terms of
functionality and ii) check whether the platform services offer what is expected from them in
terms of interfaces to complete the functional processes at hand.

Functional processes should include the service delivery platform functionality; i.e. functional
processes operate over platform services. As a rule of thumb to define whether a process is
functional or not, we could say that if no platform service is involved in a process, this
process is not functional. Functional processes are grouped according to their area of
application. To this extent we consider two main SOA4All functional areas: service
provisioning and service consumption. These names are borrowed from the equivalent
applications within the SOA4All Studio to facilitate the mapping between the user-oriented
tools and the processes behind them. We do not consider any functional process coming
from the analysis platform of the studio, because the analysis components of WP1 are
considered to be part of the DSB infrastructure rather than platform services. Monitoring, as
part of analysis, is a service of the runtime infrastructure rather than of the service delivery
components; i.e., the platform services.

4.3.1 Service provisioning

The category service provisioning covers processes that allow the discovery, annotation and
composition of services at design time, and the actual deployment of composed services to
an execution engine. This category includes the service crawling, semantic annotation of
WSDL and RESTful services and service composition.

Service Crawling : This process uses fundamentally the crawler service functionality for
service discovery. As described for the crawler service, this process deals with the collection
of information related to services from the Web and the management of this data for enabling
efficient and intelligent retrieval of service related artefacts storing these descriptions either
as RDF metadata (in the service repository platform service), or as consolidated non-RDF
archive files (internal repository). As discussed in the integrated example before, the crawling
process would also be able to detect semantic service descriptions directly, which then,
without manual intervention, can be stored in the repository.

Hence the crawling process presents interaction between the following platform services:
crawler and service repository. The crawler can be triggered by the SOA4All Studio.

Figure 7: Service provisioning functional processes

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 40 of 57

Semantic Annotation of WSDL Services : The service descriptions are created by use of
the provisioning tool SOWER of the SOA4All Studio, which is used for annotating WSDL files
with SA-WSDL. The process assumes that we dispose of several service descriptions
(provided for instance by the crawler service functionality for service discovery). The user
proceeds to select the service endpoint and to semantically annotate the WSDL services
using SOWER. The annotations are saved in the service repository. This process presents
interaction only between the SOA4All Studio and one platform service, the service repository.

Semantic Annotation of RESTful Services : As in the previous process, the service
descriptions are created by using SOA4All Studio functionality (in this case the SWEET tool),
which is used for annotating RESTful services with Micro-WSMO. The annotations are saved
in the service repository. This process presents interaction only between the SOA4All Studio
(SWEET) and one platform service, the service repository.

Process Template Generation : Through this process the user is able to define new process
templates using the template generator service. The templates are syntactic descriptions of a
process saved as XML in a repository. This is intended for domain expert users that generate
the templates for their usage in the process generation functional process. The process
templates should be semantically annotated to allow their further discovery and reuse within
the Process Management functional process. These templates use a similar set of
annotations than other services, being the only difference that they are abstract in the sense
that cannot be used to discover and invoke actual services

Service Composition : The Service Composition functional process involves all the steps of
service construction in SOA4All in design time. It is related with multiple platform services
and also to other SOA4All components, such as parts of the SOA4All Studio as can be seen
in Figure 8, taken over from [33].

Figure 8: Design-time composition overview

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 41 of 57

This functional process has several steps:

• Process Creation: The Process Editor of the SOA4All Studio provides the process
creation interface for the end users. As stated in the integration example before, the
graphical artefacts of a service composition are specified by means of LPML. These
LPML descriptions are saved in a syntactic repository. The user might start the
definition of the process by loading a process template designed in the process
template process described above or start drawing the process from scratch.
Internally the design-time composer (DTC) platform service allows the creation of
processes at design time. The DTC deals with tasks such as resolving goals, binding
services, expanding templates, checking I/O compatibilities and creating data flow via
connectors, helping users in completing an eventually executable process model.
These activities require service discovery support in finding adequate service
bindings. Although matching user requirements and process-specific constraints, the
outcome of this iterative collaboration between user, process editor and composer
does not necessarily yield an optimized model. In fact, the design-time composer
works mainly on local solutions only and does not care about the global optimization
of a process specification – although some global process requirements and
constraints are taken into account.

• Process Optimization: Process optimization involves the usage of the process
optimizer platform service. As it was stated before, this component might be used to
further optimize the completed compositions created by the process creation
functional process explained before. The optimizer seeks a better global cost function
in terms of functional and non-functional qualities of services. The results of the
optimizer are better service bindings and enhanced dataflow. In order to do that, the
optimizer needs to use the discovery, ranking and selection and reasoning and
services support. Hence, the process optimization involves the usage of the service
repository, discovery, reasoning, ranking and selection and process optimizer
platform services. It is optionally triggered by the process editor once complete
service compositions are in place

• Process Deployment: Once a complete model is established that satisfies a user’s
preferences and requirements in terms of functionality and performance, the
execution engine service is called in order to deploy the process in the execution
engine and to expose it as a Web service. As described in Section 3, the execution
engine transforms the complete LPML model into a BPEL model enhanced with some
SOA4All-specific extensions. These extensions are heavily influenced by
BPEL4SWS. Additionally, a corresponding WSDL endpoint is specified to allow for
public access. Consequently, the execution engine offers one more public service for
any deployed process, in addition to the basic ‘deployProcess’ service that the engine
hosts per default.

This process presents interaction between the SOA4All Studio (Process Editor), and the
following platform services: design-time composer, process optimizer discovery, reasoning,
ranking and selection, the service repository and the deployment via execution engine
(Figure 9). The process also makes use of the Template Generator component, which is not
deployed as a platform service, but offers functionality in the process creation. The figure
below shows a sequence diagram with a simplified view of the usage of the main
components of the service composition functional process.

4.3.2 Service consumption

The category service consumption covers processes that allow the execution of semantically
annotated services. These services can be single services (WSDL, RESTful or simple Web
APIs) stored in the service repository, or composed services described using the process
editor and deployed using the process deployment functional process described above.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 42 of 57

These processes are deployed as BPEL services to the execution engine platform developed
within SOA4All, and therefore exposing a WSDL interface. From the functional processes
perspective, both services and processes are exactly the same and can be consumed as
semantically annotated services using the same functionality.

Service Invocation : Service consumption includes the actual execution of semantically
described services, thanks to the annotations performed with the Provisioning Platform tools
and stored in the service repository. However, the actual execution of services still happens
at syntactic level, requiring an interchange of messages, typically in XML in traditional WS
services, but not restricted to those, for they might also be through invocation of URLs and
involving other format of responses such as JSON in RESTful services. This means that it is
necessary to ground information attached to the service. This information describes how the
semantic data should be written in an XML form that can be sent to the service, and how
XML data coming back from the service can be interpreted semantically by the platform.
These two processes are respectively known as “lowering” and “lifting”. To perform these
transformations the service invocation process uses the Service Grounding platform service.

It is important to notice that from the WP1 point of view, there is no difference between the
services to be consumed from third-parties or services composed and deployed using the
functional processes stated above. This is due to the fact that both types of services expose
Web service interfaces and are annotated semantically in the same way. Hence the service
consumption process presents interaction between the following platform services: data
grounding service and service repository. The services are executed using the SOA4All
Studio consumption platform.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 43 of 57

Figure 9: Service composition process sequence diagram

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 44 of 57

5. SOA4All Runtime Configurations and Use
5.1 Scenarios and Business Models
This section provides a quick overview of possible relevant business models for SOA4All
infrastructure providers. We do not define which models should be followed, as this objective
will be investigated within the context of WP10. Rather, the aim is to show the existing
models that could be relevant, and provides advices for further research in WP10.

While trying to identify suitable business models for SOA4All infrastructure providers we
should try to answer questions such as what we really mean with the term “infrastructure”.
This definition may be subject to different interpretations, and be reflected in different
possible business models.

In a sense, the SOA4All infrastructure can be seen as the backbone to execute SOA4All
Studio applications and where to execute third parties services and processes (along with
support functionalities such as monitoring, QoS, etc.). It primarily refers to the federation of
distributed service buses. In this sense, we can find several similarities with the Grid/Cloud
paradigm, where different stakeholders are willing to offer/share their resources to run third
party applications/services (in principle, regardless of the nature of such applications).

Furthermore, we may consider the SOA4All infrastructure so to also include SOA4All Studio
components, thus covering two main categories of functionalities:

1. discovery of services (with all required functionalities to semantically annotate them, store
annotations, reasoning, etc..)

2. provisioning of added-value services for service compositions and execution (i.e. process
editor, execution engine, monitoring platform)

However, the incentives for offering platform services are much clearer as their direct benefit
is more obvious, also in terms of financial revenues. Just as an example, we report here a
short summary on what a project with similar objectives in terms of provisioning and
consumption platforms is performing (see COIN IP at www.coin-ip.eu).

We may find a clear mapping of SOA4All architecture components with the XaaS stack:

a) SOA4All “hardware” infrastructure providers � PaaS (Platform-as-a-Service)

b) SOA4All “software” infrastructure providers (i.e. providers of the fDSB) � IaaS
(Infrastructure-as-a-Service)

c) SOA4All Platform Services providers � SaaS (Software-as-a-Service)

It is unavoidable to investigate on possible similarities in terms of functionalities and business
models with the most popular search engine on the Web: Google. Finally, we consider an
infrastructure provider and associated business model which is under consideration within
the SOA4All project i.e. the Telco 2.0 platform provider.

The following sections provide a quick reference and summary on how the role of an
infrastructure provider is defined and which are the associated business models in different
initiatives: Grid/Cloud projects, COIN IP, Google Inc., and Telco 2.0 Platform providers.

5.1.1 Grid/Cloud Infrastructures

A very comprehensive analysis on most recent R&D technical and business solutions in the
area of Grid and Cloud computing can be found at: www.IT-Tude.com. The site analyses a
wide number of business cases and business models, and derives a generic value chain and
a taxonomy of business models which are relevant to SOA4All.

Generic Value Chain and Financial Flows: IT-Tude.com defines a ”Generic Value Chain”
(Figure 10). We identify two type of relevant actors for the role of SOA4All Infrastructure

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 45 of 57

Providers:

• “Resource/Infrastructure” provider: provides equipment on which the Grid
implementations run. This includes: hardware, network and system resources.

• “Resource/Infrastructure” operator: provides access to and use of the equipment that
is owned by the resource or infrastructure provider.

A further analysis (http://www.it-tude.com/financialflows.html) aims at identifying possible
financial flows amongst these actors. Resource providers are classified with a pricing model
involving an initial payment and a pricing-per-user.

Figure 10: Generic Value Chain according to IT-Tude.com

Business Models: Several business models are analysed and classified by IT-Tude.com.
These are grouped into three main categories:

• Category 1: "Grid Business Cases with a clear performance-associated benefit",
addressing one of the following problems/limitations:

o additional CPU power needed for executing a demanding application
o huge amount of data storage/memory is required
o access to heterogeneous, geographically distributed data resources is required.

• Category 2: "Grid Business Cases with a highly collaborative benefit". The benefit arises
from sharing complementary resources among participating organizations, utilized for a
common scope. Typical examples of this category are intra-organisational grids and
Virtual Organisations and the expected economic benefit in this case could be shared
among all participants in contrast to the first category where the main economic benefit is
anticipated from the end-user where the service or application will be provided or sold.
Also, the services of this category cannot be provided by a single provider since data or
other resources are necessary to be obtained from other providers.

• Category 3: "Grid Business Cases exploiting the component-based software paradigm".
This category comprising those business scenarios involving a service provider that
offers applications on a pay-per-use basis rather than by means of licensing or long term

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 46 of 57

static agreements and thus exploiting to the most the concepts of the next generation
Service Oriented Architectures

A more in-depth analysis of these three categories can be found at http://www.it-
tude.com/gridclassification.html.

The question which model category is the most relevant one for SOA4ALL infrastructure
providers could find several answers. Actually each of them seems to share relevant features
with the SOA4All infrastructure:

• Category 1 fits with SOA4All infrastructure’s need to access heterogeneous and
distributed data sources.

• Category 2 is matching SOA4All infrastructure’s need to share complementary resources
which could not be provided by a single infrastructure provider. On the other hand this
category seems also to be very organizational-oriented (either intra-company or virtual
organization).

• Category 3 is explicitly addressing Service-Oriented paradigms - SaaS makes software
accessible according to a service/utility model, but IT-Tude.com itself states clearly that
further advances in research are still required: “...when resources are not required, they
are not paid for, since computing power is purchased on a utility basis with operators only
paying for the power that they use. This is a highly technically complex model to build
and there are currently no SaaS services that underpinned by a true Grid hardware
platform. However this is seen as the next stage of development in the SaaS market”.

Taxonomy of Business Models: A further step is taken by the paper “A Taxonomy of Grid
Business Models” [35] which analyses existing business models and on the basis of the
result of the analysis: it formally defines a taxonomy of existing and future roles that a
stakeholder can take on within the value chains of the Grid and gives examples of those
roles. Finally, the paper applies the taxonomy to two reference business models: utility
computing and software-as-a-service.

Their analysis takes into account the role of Hardware Resources Service Providers, as “the
lowest layer of the classification representing hardware providers. The hardware can belong
to many different providers”. These include: Storage Resource Providers, Computing
Resources Providers, Network Services Providers, Devices Service Providers.

In both of the business cases analyzed, Resource providers receive a benefit from the usage
of their resources by end-users applications. Jobs monitoring is mandatory in order to
quantify such usage and create a billing system.

5.1.2 COIN Integrated Project

COIN is an Integrating Project of ICT FP7 (www.coin-ip.eu), whose mission is to study,
design, develop and prototype an open, self-adaptive, generic ICT integrated solution to
support the 2020 vision “by 2020 enterprise collaboration and interoperability services will
become an invisible, pervasive and self-adaptive knowledge and business utility at disposal
of the European networked enterprises from any industrial sector and domain in order to
rapidly set-up, efficiently manage and effectively operate different forms of business
collaborations, from the most traditionally supply chains to the most advanced and dynamic
business ecosystems”, starting from notable existing research results in the field of
Enterprise Interoperability and Enterprise Collaboration.

Software as a Service and Interoperability Service Utility Business Models: the
research activity concerned with business models is driven by and executed with a business
perspective in mind, aiming at answering a fundamental question: “What is the value
proposition for Enterprise Interoperability / Enterprise Collaboration in the forthcoming
decade?” Answering this question is a critical step for developing and ascertaining the
(potential) business models for SaaS-U. A deliverable with first results is currently released

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 47 of 57

as a public interim draft with an expected final release date in March 2010. Some insights of
this interim draft that are of interest to the discussion of potential business models for the
SOA4All Runtime are summarised below.

The business models research of COIN is concerned with business models for the
Interoperability Service Utility (ISU) infrastructure in general, and SaaS-Us as specific
business models leveraging the ISU capability with the focus on the combination of EI and
EC utility and value added services for delivering value in targeted market segments.

We can clearly find several similarities between COIN Service Utility and SaaS Platforms and
SOA4All infrastructure in terms of both functionalities offered (search, discovery,
orchestration) and the way it is distributed (i.e. distributed/federated approach). We may then
assume that business models that will be analyzed and defined within COIN could be
relevant also for SOA4All infrastructure providers. Further collaboration activities, aiming at
identifying synergies should be performed within the context of SOA4All WP10.

5.1.3 Google

If we consider SOA4All promised capability to discover “billions of services” on the Web, we
cannot avoid taking a quick look at Google: the most popular search engine of the Internet
represents a very interesting case in terms of business models.

It is easy to see how Google is sharing a number of common features and issues with
SOA4All:

• Scalability: ability to easily grow at marginal costs, ability to adapt its size to high load and
volumes, ability to monetize millions of users.

• Openness: content and services must be open and interoperable

• Co-creation: non-traditional actors become active part of the chain (Web 2.0 principles);
users, content creators and external developers are given the tools to create new
markets and enrich services

• Network effects: the reach of a critical mass of users constitutes a significant barrier

It is well recognised how Google’s main revenue source is advertising, like with AdSense and
AdWords models (www.google.com/adsense; www.google.com/adwords):

• “Google makes billions of dollars in revenue each fiscal quarter. Advertisers are
Google's customer” [36].

• “Google Business model: advertising is not a market but a business model; any
market that attracts advertising is a target for Google”.2

While we may investigate how the Google business model could apply to the SOA4All front-
end, a significant difference is constituted by the way Google deals with its resources:
http://en.wikipedia.org/wiki/Google_platform#Current_hardware. While technically highly
distributed, the Google infrastructure is totally owned or controlled by Google. On the one
hand, this represents an initial difference versus SOA4All, where the infrastructure can be
open to any provider; on the other, Google business model is also relying on advertising
directly published on third party sites, like in the case of “AdSense”. These similarities and
differences should be monitored and further analyzed within the context of SOA4All WP10.

5.1.4 Telco 2.0 Platform Provider

An infrastructure provider and associated business model which is under consideration within
the SOA4All project is the Telco 2.0 Platform Provider. The platform is an essential part of

2 http://www.slideshare.net/misteroo/all-about-google-presentation

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 48 of 57

the Telco 2.0 approach.

The Telco 2.0 initiative3 introduces the notion that telecoms should use the opportunity
provided by their position in the value chain in order to develop new “2-sided” business
models. 2-sided business models exist where an organization is able to extract value from 2
sides of a value chain. In the telecommunications context, one revenue ‘side’ consists of
essentially traditional revenues from core telco services such as voice and messaging; the
other revenue side is made possible by the telco’s position as a platform provider. This
second revenue stream is derived from offering platform services to other businesses who
then build on those services to offer services and applications to their own customers. An
important aspect of this second ‘side’ is the leveraging of the telco’s customer relationship to
add value to the offerings of the upstream customer’s offerings (e.g. by utilizing customer
data to provide better targeting of adverts).

This upstream platform ‘play’ can be broadly divided into B2B value-added services (VAS)
platforms and distribution platforms (as seen in Figure 11; Source: www.telco2.net).

Figure 11: Two-sided business model framework

Creating value-added services will enable third party organizations in multiple vertical sectors
to become much more effective and efficient in their everyday interactions and business
processes by allowing them to access and tailor services to their own specific needs and/or
to build novel applications and services to meet the particular needs of their own customer
base in a fast-changing technological environment.

Thus the platform provider is a key player in the Telco 2.0 approach. A service provider relies
on the existence of a platform to leverage the relationship with its downstream customers to
offer value added services to its upstream customers. The service provider may choose to
operate its own platform infrastructure or choose to use that of another organization. A
further possibility is that platform providers share their infrastructure with other platform
providers, hosting services on behalf of them and vice versa.

Within the telecoms sector Service Delivery Platforms have emerged as a way to support a
more personalized and instantaneous relationship between service providers and

3 http://www.telco2.net/

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 49 of 57

consumers. Typically they provide a service control environment, a service creation
environment, a service orchestration and execution environment, and abstractions for media
control, presence/location, integration, and other low-level communications capabilities.
Currently SDPs within telcos are optimized to handle their own specific services and
architectures. However, there are moves to transform SDPs into frameworks that support the
externalization of capabilities to third parties to build profitable services and to enable
efficient service composition [37], that allow telcos to monetize the customer profile data and
to stimulate service innovation by enabling mashups with Internet/Web 2.0 services and to
support the B2B platform of Telco 2.0 approach allowing 2-sided business models. To
support this there are standardization efforts in place to promote interoperability for such
frameworks.

The DSB (distributed service bus) of the SOA4All project offers a large scale, open,
distributed environment which can support the service platform required by the Telco 2.0
model. It is able to act as a shared repository and communication infrastructure and can host
the SOA4All Platform Services that are made available to users via the SOA4All studio. Key
requirements for a Telco 2.0 platform are scalability (i.e. able to support millions of
simultaneous users and services), resilience and proximity to users (to reduce latency).
Satisfying these requirements can improve the Quality of Service offered which is a key
differentiator for telcos (compared to say webcos without the same level of infrastructure).
Latency is a key issue in the telecoms domain due to the real-time requirements of services.
Existing Service Delivery Platforms have been built to support such services and this
capability has to be maintained in a platform supported by the DSB.

Clearly the reliance of the Telco 2.0 approach on the platform and the realization that SDPs
must evolve to enable this creates an opportunity for SOA4All technology to support the
additional requirements. A telco adopting the Telco 2.0 approach and acting as a platform
provider can combine its Service Delivery Platform supporting its services with the features
of a Distributed Service Bus. As such, using the categorization provided above, it is acting as
a SOA4All hardware infrastructure provider or Platform-as a-Service provider.

5.2 Scenario-specific Configurations
The goal of this section is to define concrete but abstractly specified usage scenarios and to
show how the Distributed Service Bus (DSB) and its particular features are needed and why.
As a result, guidelines on infrastructure depending on scenario requirements will be provided
so that each party which is interested in the SOA4All infrastructure layer can find the best
way to use it.

5.2.1 Summary of SOA4All DSB Features

The SOA4All bus architecture is based on dynamically composed software components and
can be adapted to fit everyone needs. A standard bus runtime contains only modules which
are required to build a network of nodes which will provide the Distributed Service Bus.
Depending on needs, the standard runtime can then be enriched by software components to
provide customized runtimes. The software components and features are listed and
described below:

• Optional modules :
o SOAP platform services support. A software component is dedicated to

provide SOAP based platform services binding to the DSB.
o REST platform services support. A software component is dedicated to

provide REST based platform services binding to the DSB.
o SOAP third party services support. A software component is dedicated to

provide SOAP based third party services binding to the DSB.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 50 of 57

o REST third party services support. A software component is dedicated to
provide REST based third party services binding to the DSB.

o Advanced monitoring feature based on WSDM. OASIS WSDM standard is
used by the DSB monitoring layer to provide monitoring information to
subscribers.

o Federation-level DSB transport support. A software component is dedicated to
provide the capability to send/receive DSB messages whose destination/origin
is one DSB node not belonging to the same DSB, but, to one of the DSBs it is
linked to through the federation.

• Mandatory modules :
o Management API. This API is used by SOA4All nodes managers to bind

platform services to the DSB. A future version will also provide some “super-
manager” API level. For example, a super-manager will have the capability to
authorize nodes to connect to the core DSB network i.e. an unknown node will
be rejected from the network.

o Inter DSB node message transporter based on Internet compliant standards :
HTTP, firewall friendly. This module is mandatory in order to provide the
distributed service bus feature.

o Load balancing/failover: The platform services can be replicated on multiple
nodes if needed. The routing and endpoint choice strategy is the role of the
DSB node consuming such a service. The DSB node consumer routing and
the transport modules work together to finally access an endpoint which fits
the requested QoS needs.

5.2.2 SOA4All Infrastructure Providers

SOA4All infrastructure providers can be defined as actors which will provide hardware,
network or software resources to run the SOA4All DSB software. These providers can be
classified in several groups depending on their interest and on their business model. The
following sections will try to give an exhaustive list of providers’ types.

Hardware providers

Hardware providers will offer hardware resources on which SOA4All software will run. Since
the nodes of a given DSB communicate freely using IP connections, all required ports must
have been opened. However, in general, we can assume that one DSB is deployed upon a
set of hardware resources provided by a same hardware provider, so, these ports opening
requirements may not be a big problem, as the hardware resources may belong to a same
network area, and so, be protected from uncontrolled access from the Internet by specific
firewalls and NAT mechanisms. In case resources to host a given DSB are not provided by
a same hardware provider, these hardware resources must be reachable from outside of
each provider network area. This will only be possible by opening required network ports on
the corresponding organizations firewalls.

Once a given DSB is deployed, the only requirement, in order for it to join a federation of
DSBs is to select one specific resource, to act as a direct (or indirect, see below) gateway
to/from the public network area, and configure it so that it can communicate with the other
components of the federation (each component represents one DSB part of the federation).
The only requirement for a given hardware resource to act as a peer of the federation layer,
is to be capable to send and receive messages based upon the ProActive underlying
communication substrate. This is not very constraining however, as ProActive
communications can be handled by relying on only the http port, or better, on ssh-based
connections, a mechanism that has proven to be secure because authentication is enforced.
Even if the selected specific resource lies behind a firewall or belongs to a NAT, ProActive is
able to route messages to/from it as soon as one machine of the network domain enables
Internet access: this machine exchange messages with the specific resource through ssh

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 51 of 57

tunnels, easily set up by configuring the ProActive runtime appropriately (see [38]).

As a hardware provider, there are two installation alternatives driven by security concerns.
The first one is a total access to the machine. In this case, the SOA4All community will be
able to deploy, install and configure the SOA4All DSB node directly. The second alternative,
which will be potentially the most used, is the installation by the provider itself. In this case,
the SOA4All consortium must provide a simple and automated DSB node installer (see a
sketch of available deployment and installation facilities [2]) and the newly installed DSB
must provide complete management API which is also accessible and exposed over the
Internet as Web and REST services (see M&M API definition in [2]).

Software providers

The SOA4All software providers can be divided in three families. In all the cases, the
software providers rely upon hardware providers (which might prove to be the same in
practice!) since they need to have access to hardware resources to run the software on.
Please refer to the previous section about hardware providers for more details.

1. DSB software providers: The main goal is to increase the number of DSB nodes. It is
really important to keep a control over nodes which want to join the core DSB
network, i.e. we cannot accept that someone who is installing a DSB node on its
server will be connected to the Core DSB network without any control.
By increasing the number of nodes connected to the core SOA4All node network,
providers will give the opportunity to :

a. Increase the number of access points. It means that a SOA4All consumer will
potentially have the choice between several access points to the SOA4All
network, and may prefer to chose the geographically closer access point

b. Increase service availability by replicating some services. Adding a new node
in the network can automatically replicate a selection of core platform services
on the new node.

c. Add the capability to bind platform service from a closer location. A best
practice is always to bind a platform service on a node which is physically the
closest one to reduce message transport delays and length of the
communication path between the DSB node and the final service. The
message transport on this physical link is not under control of the DSB itself,
i.e. it may be unreliable, so the shorter it is, the better; on the contrary to DSB-
level communication between DSB nodes can be considered as reliable
enough and are under total DSB control.

2. Service providers: This type of provider can be described as an actor which has
developed a set of services and who wants to provide them to the SOA4All core
community (the SOA4All DSB developers and managers). This actor is not interested
by the DSB side but only by binding its services to a DSB node. Several solutions are
possible to bind the services of this provider :

a. The provider sends a complete description of the service to the SOA4All
managers. It is up to the managers to bind the service if they think that the
service is mature enough and can really provide some added value to the
core platform services.

b. The provider uses a “software provider management API” to bind its service to
the DSB. By using this API, the service becomes available and reachable
from all the SOA4All consumers (modulo restrictions if the API provides a way
to define them). The newly bound service is placed in what can be called a
“service sandbox”. Once the service has been validated by the SOA4All
managers and potentially by the SOA4All users (based on a rating feature), it
can be moved from the “service sandbox” to the “community service” space.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 52 of 57

3. DSB and service providers: A merge between the two previous software providers’
views. It is the easiest way to enrich the DSB network and the core platform services.
This type of providers can be defined as “premium partners” for whom all rights are
granted. It means that the SOA4All consortium allows such a provider to easily
provide a new set of services to all the SOA4All service consumers. This is only
possible if the provider has installed one (or more) DSB node instance on his side
and has bound its services to it (this DSB being part of the federation if any). The
SOA4All management API needs to be invoked (invoker to be defined) to add this
new node to the DSB. As a result, all the services which are bound to this node
become available and accessible to all the SOA4All service consumers.

Figure 12: Different Provider roles in building the SOA4All services community

Building the Federated Distributed Service Bus with Providers

As a result, connecting all these provider types to the “Core DSB Network” is leading to a
federation of DSB nodes: the Federated Distributed Service Bus aka fDSB. A summary view
is available in Figure 12, and detailed below:

1. The “Core DSB Network” can be considered as the base infrastructure, nowadays
built by the SOA4All project partners acting as hardware resource and software
providers. This network of DSB nodes contains all the features and platform services
needed to provide the minimal SOA4All infrastructure.

2. The companies A and D are connected to the Core DSB network by federation links
(dashed big arrows on the figure). These companies both host internally a DSB
network. The sum of these company networks and the Core DSB network complies to
what is called the federation architecture pattern.

3. The company B hosts a single DSB node which is exposed and connected to the
Core DSB network (meaning that this node had to open all needed ports to be part of
the Core DSB network).

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 53 of 57

4. The company C provides a single service. This service is connected to the Core DSB
network with the help of a binding component hosted by the Core DSB network
(binding is very loose, compared to e.g., B being part of the Core DSB network, and
as a consequence is depicted by a dotted arrow in the figure) .

It is important to understand that this DSB we name “Core DSB network” is behaving exactly
the same as any other DSB (e.g. Company A in the figure) and plays the same role in the
federated architecture of DSBs as any other. One major reason of its apparently specific
status is that it has been deployed first, as a bootstrapping element for creating a bigger
community, i.e. a federation. In parallel, imagine that other companies (e.g. A, D) have also
decided to deploy their own SOA4All DSB. Then, knowing the address of the entry point to
the Core DSB network, they decided to create a partnership relation with the Core, so joining
the federation as illustrated in the figure.

The “Core DSB network” nodes are deployed on SOA4All partners resources for the time
being, but in the future and as a successful sustainability result of SOA4All, we hope that the
core be deployed on resources provided by one or several hardware providers, external to
SOA4All, but wishing to set up collectively what is named a “Service Park” [12].

5.2.3 Use cases

There are many possible use cases scenarios of such flexible federation architecture. We
devise a few of them below.

SOA4All Islands: Business or governmental entities, or spontaneous emerging user
communities may decide to maintain one DSB through which access is granted to a bunch of
thematic related services (i.e. in the telco domain, or banking, leisure, etc). Interest of relying
upon a DSB is for obvious reasons as non-functional associated properties like monitoring,
logging, etc. but also for more end-user oriented ones (i.e. accessing to a third-party service
through the DSB lets the consumer gains some benefits, i.e. some miles or a cost reduction
in case the service is not free, etc, and if he is a provider, lets him benefit from some
advertisement because the service is deployed or at minimum proxy-fied onto the DSB). On
exchange, the DSB hosting community gets some information about prosumer profiles,
community size, and could have as goal to become a visible, popular, well-ranked service
ecosystem.

Federation of SOA4All islands: Even with the presence of such SOA4All islands, it
becomes possible to build up a federation along the same kind of architecture described in
the above figure between Companies “A”, “D”, and “Core”.4 Technically, the federation would
be set up by using tools presented in Section 3.1. The main motivation would be to enlarge,
extend the offered set of service thematic in a meaningful, coherent manner (e.g. as for a
travel agency service infrastructure that federates several but complementing thematic
services offered by flight companies, airports, car renting, hotel, sporting and leisure
activities, etc). Here we not only federate services (this is a “simple” DSB duty), but we
enable to federate several service marketplaces. Within the federation, SOA4All islands can
be bound together, either in an all-to-all manner, or, not. Indeed, it might happen that island
A subcontracts the execution of some required services to island B for any commercial
reason, and not to island B’, because B and B’ even if both part of the federation act as
competitors on the open market (i.e. B offers telcos services as SMS, conferencing, etc, as
B’, but A has agreed to use only B). So in this case DSB A will never have to send messages
to DSB B’ directly, so no need to have A be bound to B’. However if island A is partnering
with island C, and island C has also partnered with island B’ in the context of setting up this
service park, this still allows a client of DSB A to benefit, but indirectly, of services published
on DSB B’ through DSB C intermediary.

4 Federation of SOA4All islands = a service park.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 54 of 57

5.2.4 Scenario-specific configurations

In the sections above, several DSB usage scenarios have been introduced in order to show
all the features and possible installations that are offered by the SOA4All DSB. To conclude
this section, we provide a detailed approach of the procedures to follow to deploy, install,
configure and bind services to the DSB under different usage scenarios.

In the following scenarios, it is assumed that:

1. A DSB installer is provided. This installer will download the required modules selected
by the user: SOAP support, REST support, SCA support, proxy support, etc... In the
scenarios description, the installation task will only be described as “Install the
SOA4All DSB binary package with support of …”.

2. A DSB configuration tool/script is provided. This tool will allow the manager to set the
DSB properties such as name, network configuration (IP address, network ports …)
and is also used to connect the local DSB node to the ‘Core DSB Network’. This tool
is launched after installation step described in previous point.

3. A management tool is available (SOA4All Studio). This management tool provides :

a. The list of nodes available in what is called ‘the Core DSB Network’

b. A DSB management API client to easily call management operations on DSB
nodes

Scenario 1 – Provide a platform service

In this scenario, a service provider wants to expose a WSDL/REST service to the SOA4All
community without deploying any SOA4All software:

1. Get the SOA4All DSB node reference you want the service to be bound to.
2. Call the bindWSDL/bindREST operation of the ServiceBinder service of the DSB

management API like bindWSDL(wsdlURI) where wsdlURI is the WSDL URI of the
platform service or bindREST(restURI) where restURI is the REST service base URI.

Once the service is bound to the DSB node, it is automatically exposed by other nodes of the
federation and so accessible to all external service consumers.

Scenario 2 – Install a DSB node

In this scenario, a provider wants to deploy a DSB node to join an existing DSB federation.
The provider does not want to bind additional platform services and will only act as a new
DSB access point. In order to act as a new access point, the DSB node must provide at least
the SOAP and REST support.

1. Install the SOA4All DSB binary package with SOAP and REST support. This will
install the DSB runtime plus the SOAP and REST JBI Binding Components. These
components will expose the platform services which are deployed on other DSB
nodes.

2. Configure the DSB node to join the ‘Core DSB Network’
3. Start the DSB node

Once the DSB node is started, it will detect the platform services which are already
deployed/bound and will automatically expose them as SOAP/REST services. As a result, a
new DSB access point is available and exposes all the other platform services to external
service consumers.

Scenario 3 – Install a DSB node and provide platfor m services

This scenario is a mix of Scenario 1 ‘Provide a Platform service’ and of Scenario 2 ‘Install a
DSB node’. The DSB platform provider has to follow the steps defined firstly in scenario 2 to
install the DSB node and then he has to follow the Scenario 1 in order to bind and expose his
platform services to the DSB network.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 55 of 57

6. Conclusion
This deliverable was the second architecture documentation of SOA4All and provided an
extended and more precise definition of the SOA4All architecture and in particular its
components: service bus infrastructure and platform services.

An updated and extended specification of the distributed service bus infrastructure was
given. The DSB federation architecture was introduced and the associated tools that enable
the deployment of the federation, easy integration of PEtALS DSBs and management of the
federation architecture was explain, in order to create partnerships among service providers
in so-called service parks. Furthermore, extended support for invoking platform and third
party services were added to the bus in order to allow for both RESTful services and
traditional WS-* stack (WSDL/SOAP) services. Lastly, an updated specification of the
monitoring infrastructure was given that supports both passive and active monitoring on
SOAP and REST services. Passive monitoring, also known as real-user monitoring, refers to
the approach that tracks the quality of services (QoS) as well as the end-user behaviours by
capturing all the messages that go across the DSB as users invoke external services. Active
monitoring, also known as synthetic monitoring, is to test the performance of services by
triggering fake requests that simulate the actions of actual users.

In a second part, focus is set on specifying the platform services of their access interfaces.
Some of the platform services are implemented as RESTful ones, while others are exposed
via WSDL services. Moreover, the integration of the platform was exemplified first with a
consolidated example of service location and construction, and then from a functional
perspective by defining a precise specification of functional processes involving the needs for
platform services but particularly also infrastructure. The aim of the functional processes
section was to define what SOA4All does and offers in terms of functionality and to check
whether the platform services offer what is expected from them in terms of interfaces to
complete the functional processes at hand.

In a third and last part, this deliverable provided a quick excursion towards possible relevant
business models for SOA4All infrastructure providers. An observable problem with the
SOA4All approach was the focus on service providers and consumers only, and the
negligence of the infrastructure provider role. This missing role is however crucial in
particular in the scope of the service bus and hence the SOA4All Runtime realization.
Although, this deliverable is not defining business models and exploitation plans, it is
important to understand the different roles, application scenarios and the resulting platform
needs and configurations. This last part thus outlines different usage scenarios from an
infrastructure point of view, and how different runtime configurations allow for optimized
infrastructure deployments that do not require heavy-weight service bus installations for all
scenarios. Matching infrastructure requirements to bus configurations is important in keeping
the infrastructural backbone as simple as possible.

Herewith, this second architecture deliverable concludes and in a next step the presented
technicalities and tools will be implemented and integrated with the existing realization of the
previous milestone. Furthermore, the SOA4All Runtime team will continue to provide the
fundamental building blocks for the realization of an integrated SOA4All experience and the
resulting Global Service Delivery Platform.

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 56 of 57

References
[1] D. Tapscott: The Digital Economy: Promise and Peril In The Age of Networked Intelligence,

McGraw-Hill, 1997.

[2] R. Krummenacher, I. Toma, Ch. Hamerling, J.-P. Lorre, F. Baude, V. Legrand, Ph. Merle, C.
Ruz, C. Pedrinaci, D. Liu and T. Pariente Lobo: SOA4All Reference Architecture Specification,
SOA4All Project Deliverable D1.4.1A, March 2009.

[3] Ch. Hamerling, V. Legrand, F. Baude, E. Mathias, C. Ruz, M. Fried, R. Krummenacher, Ph.
Merle and N. Dolet: SOA4All Runtime, SOA4All Project Deliverable D1.4.1B, September 2009.

[4] L. Nixon, E. Simperl, R. Krummenacher and F. Martin-Recuerda: Tuplespace-based computing
for the Semantic Web: A survey of the state of the art, Knowledge Engineering Review 23(2),
2008, 181-212.

[5] R. Krummenacher, I. Filali, F. Huet and F. Baude: Distributed Semantic Spaces: A Scalable
Approach to Coordination, SOA4All Project Deliverable D1.3.2A v1.1, August 2009.

[6] R. Krummenacher, M. Fried, F. Huet, I. Filali, L. Pellegrino and Ch. Hamerling: Distributed
Semantic Spaces: A First Implementation, SOA4All Project Deliverable D1.3.2B, September
2009.

[7] R. Krummenacher, F. Huet, M. Fried, L. Pellegrino and B. Norton: A Distributed Semantic
Marketplace, SOA4All Project Deliverable D1.3.3A, March 2010.

[8] T. Vitvar, J. Kopecky, J. Viskova, and D. Fensel: WSMO-Lite Annotations for Web services, 5th
European Semantic Web Conference, June 2008: 674-689.

[9] J. Farrell and H. Lausen, Semantic Annotations for WSDL and XML Schema (SAWSDL), W3C
Recommendation, August 2007.

[10] M. Maleshkova, J. Kopecky and C. Pedrinaci, Adapting SAWSDL for Semantic Annotations of
RESTful Services, Beyond SAWSDL Workshop at OnTheMove Federated Conferences &
Workshops, November 2009: 917-926.

[11] F. Baude, I. Filali, F. Huet, V. Legrand, E. Mathias, Ph. Merle, C. Ruz, R. Krummenacher, E.
Simperl, Ch. Hamerling, and J.-P. Lorre: ESB Federation for Large-Scale SOA, 25th ACM
Symposium On Applied Computing, 2010.

[12] C. Petrie and C. Bussler: The Myth of Open Web Services: The Rise of the Service Parks, IEEE
Internet Computing 12(3), 2008: 96-95.

[13] E. Al-Masri and Q.H. Mahmoud: QoS-based Discovery and Ranking of Web Services, IEEE
16th International Conference on Computer Communications and Networks, 2007: 529-534.

[14] N. Artaiam and T. Senivongse: Enhancing Service-Side QoS Monitoring for Web Services, 9th
ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2008.

[15] E.M. Maximilien and M.P. Singh: A framework and ontology for dynamic Web services
selection, IEEE Internet Computing 8(5), 2004: 84-93.

[16] E. Al-Masri and Q.H. Mahmoud: Web Service Discovery and Client Goals, Computer 42(1),
2009: 104-107.

[17] D.A. Menasce: QoS issues in Web services, IEEE Internet Computing 6(6), 2002: 72-75.

[18] T. Vitvar, J. Kopecky, J. Viskova and D. Fensel: WSMO-Lite Annotations for Web Services, 5th
European Semantic Web Conference, 2008: 674-689.

[19] J. Kopecky, K. Gomadam and T. Vitvar: hRESTS: An HTML Microformat for Describing
RESTful Web Services. IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, 2008: 619-625.

[20] Apache Axis2/Java - Next Generation Web Services: http://ws.apache.org/axis2/

 SOA4All –FP7 – 215219 – D1.4.2A Final SOA4All Reference Architecture Specification

© SOA4All consortium Page 57 of 57

[21] A. Mos, C. Pedrinaci, G. Alvaro Rey, J. Manuel Gomez, D. Liu, G. Vaudaux-Ruth, and S.
Quaireau: Multi-Level Monitoring and Analysis of Web-Scale Service Based Applications, 2nd
Workshop on Monitoring, Adaptation and Beyond at ICSOC/ServiceWave, 2009.

[22] N. Steinmetz, H. Lausen and M. Brunner, 7th Web Service Search on Large Scale, International
Conference on Service Oriented Computing, November 2009: 437-444.

[23] C. Pedrinaci, J. Domingue and R. Krummenacher, Services and the Web of Data: An
Unexploited Symbiosis, AAAI Spring Symposia, March 2010.

[24] S. Agarwal, M. Junghans, O. Fabre, I. Toma and J.-P. Lorre: First Service Delivery Prototype,
SOA4All Deliverable D5.3.1, September 2009.

[25] J. de Bruijn and H. Lausen and A. Polleres and D. Fensel, The Web Service Modeling
Language WSML: An Overview, 3rd European Semantic Web Conference, June 2006: 590-
604.

[26] I. Toma, D. Roman, D. Fensel, B. Sapkota and J.M. Gomez, A Multicriteria Service Ranking
Approach Based on Non-Functional Properties Rules Evaluation, 5th International Conference
on Service-Oriented Computing, November 2007: 435–441.

[27] I. Toma, N. Steinmetz, H. Lausen, S. Agarwal and M. Junghans: First Service Ranking
Prototype, SOA4All Project Deliverable D5.4.1, September 2009.

[28] F. Schnabel, L. Xu, Y. Gorronogoitia, M. Radzimski, F. Lecue, G. Ripa, S. Abels, S. Blood, M.
Junghans, A. Mos and N. Mehandjiev, Advanced Specification Of Lightweight, Context-aware
Process Modelling Language, SOA4All Project Deliverable, September 2009.

[29] F. Lécué, Optimizing QoS-Aware Semantic Web Service Composition, International Semantic
Web Conference, October 2009: 375-391.

[30] G. Greco, A. Guzzo, L. Pontieri and D. Saccà, Mining Expressive Process Models by Clustering
Workflow Traces, 8th Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining, May 2004: 52-62.

[31] A. Simov: WSMO Data Grounding Component, SOA4All Project Deliverable D3.4.4, September
2008.

[32] F. Fischer and B. Bishop: Framework and API for Integrated Reasoning Support, SOA4All
Project Deliverable D3.2.1, August 2008.

[33] M. Maleshkova, C. Pedrinaci and J. Domingue, Supporting the Creation of Semantic RESTful
Service Descriptions, Workshop on Service Matchmaking and Resource Retrieval in the
Semantic Web at 8th International Semantic Web Conference, October 2009.

[34] Y. Gorroñogoitia, M. Villa, F. Lecue, M. Radzimski and G. di Matteo: Advanced Prototype For
Service Composition and Adaptation Environment, SOA4All Project Deliverable D6.4.2, March
2010.

[35] J. Altmann, M. Ion, A. Adel and B. Mohammed: A Taxonomy of Grid Business Models,
International Workshop on Grid Economics and Business Models, 2007: 29-43.

[36] M. Elgan: Google's Business Model: YOU Are the Product, on EarthWeb.com, February 2009.

[37] K. Kimbler: Evolving Service Delivery Platforms: Essential Plumbing For Smart Pipes, tmforum
Insights Report, 2009.

[38] B. Amedro, F. Baude, D. Caromel, C. Delbé, I. Filali, F. Huet, E. Mathias and O. Smirnov: “An
Efficient Framework for Running Applications on Clusters, Grids and Cloud” in Cloud
Computing: Principles, Systems & Applications, Springer Verlag, to appear.

