

Project Number: 215219

Project Acronym: SOA4ALL

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication Technologies

D1.1.1 Design Principles for a Service Web
v1

Activity N: 1 – Fundamental and Integration Activities

Work Package: 1 – Service Web Architecture

Due Date: M6

Submission Date: 31/08/2008

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: CEFRIEL

Revision: 2.0

Author(s): Elisabetta Di Nitto
Rafael González-Cabero,
Christophe Hamerling,
Jacek Kopecký,
Omair Shafiq,
Tomas Vitvar,
Gianluca Ripa
Lai Xu
Maurilio Zuccalà

CEFRIEL
Atos Origin
EBM WebSourcing
UIBK
UIBK
UIBK
CEFRIEL
SAP
CEFRIEL

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 2 of 43

Version History

Version Date Comments, Changes, Status Authors, contributors, reviewers

1.0 02/05/2008 First draft material
Rafael González-Cabero

(Atos Origin)

1.1 05/05/2008 Definition of table of content and
section on terminology

Elisabetta Di Nitto (CEFRIEL)

1.2 04/06/2008 Section on terminology extended Gianluca Ripa (CEFRIEL)

1.3 30/06/2008 Structure extended, sections on basic
principles and terminology updated

Elisabetta Di Nitto (CEFRIEL),
Rafael González-Cabero (Atos
Origin)

1.4 15/07/2008 Section about enterprise service bus
filled in

Christophe Hamerling, Jean-Pierre
Lorre (EBM WebSourcing)

1.5 25/07/2008 Contributions from various partners Elisabetta Di Nitto (CEFRIEL),
Christophe Hamerling (EBM
WebSourcing), Jacek Kopecký (STI),
Omair Shafiq (STI), Tomas Vitvar
(STI), Lai Xu (SAP)

1.6 29/07/2008 Review comments Stuart Campbell (TIE)

1.7 19/08/2008 Review comments Nathalie Steinmetz (UIBK)

2.0 31/08/2008 Final version Elisabetta Di Nitto, Gianluca Ripa,
Maurilio Zuccalà (CEFRIEL)

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 3 of 43

Table of Contents

Executive summary.. 6

1. Introduction.. 8

1.1 PURPOSE AND SCOPE OF THIS DELIVERABLE .. 9
2. Basic definitions.. 11

2.1 THE OASIS MODEL ..11
2.2 THE OASIS SEE REFERENCE ONTOLOGY..12
2.3 THE SECSE MODEL...15
2.4 THE SOA4ALL DEFINITIONS ADAPTED FROM THE NEXOF-RA GLOSSARY.......16

2.4.1 Main entities under study .. 17
2.4.2 Semantic aspects .. 18
2.4.3 Actors .. 19
2.4.4 Types of services .. 19
2.4.5 Activities .. 20
2.4.6 Architecture-related terms... 21
2.4.7 Terms related to technology ... 21
2.4.8 BPM concepts ... 21

3. Principles of the Service Web Architecture ... 22

3.1 SERVICE-ORIENTATION PRINCIPLES..22
3.1.1 Standardized Service Contract Principle .. 22
3.1.2 Loose Coupling Principle .. 23
3.1.3 Abstraction Principle ... 23
3.1.4 Reusability Principle.. 23
3.1.5 Autonomy Principle ... 23
3.1.6 Statelessness Principle ... 23
3.1.7 Discoverability Principle .. 23
3.1.8 Composability Principle... 24

3.2 THE WEB PRINCIPLES ..24
3.2.1 Distributed Principle .. 24
3.2.2 Openness Principle ... 24
3.2.3 Interoperability Principle.. 24
3.2.4 Human-centric Principle .. 24

3.3 AUTONOMIC COMPUTING PRINCIPLES ..25
3.3.1 Self-healing Principle .. 26
3.3.2 Self-configuration Principle ... 26
3.3.3 Self-optimization Principle... 26
3.3.4 Self-protection Principle .. 26

3.4 FORMAL SEMANTIC DESCRIPTIONS ...26
3.4.1 Ontology-based Principle.. 27
3.4.2 Centrality of Mediation .. 27
3.4.3 Ontological Role Separation ... 27
3.4.4 Independency of description with respect to implementation 27
3.4.5 Problem Solving Principle ... 27

4. Current technologies... 28

4.1 WEB SERVICES..28
4.2 REST ...28

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 4 of 43

4.3 ENTERPRISE SERVICE BUS ...30
4.4 WS POLICY...30
4.5 SAWSDL..31
4.6 WSMO ...31
4.7 BPM TECHNIQUES: BPML, BPEL ..33

5. Challenges for the SOA4All Architecture... 35

5.1 HETEROGENEITY ..35
5.2 WORLDWIDE ACCESS MECHANISMS..35
5.3 SEMANTIC PROVISIONING OF SERVICES...35
5.4 DECENTRALIZED DYNAMICITY AND ADAPTABILITY..36
5.5 MATCHING REQUESTS AND SERVICES..36
5.6 ENABLING N:M ASYNCHRONOUS INTERACTIONS...36
5.7 ENABLING SERVICE PROSUMERS ..36
5.8 SUPPORTING BOTH MACHINE AND HUMAN-BASED COMPUTATION.................36

6. Conclusion... 36

7. References ... 36

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 5 of 43

Acronyms

Acronym Definition

B2B Business to Business

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

EAI Enterprise Application Integration

ESB Enterprise Service Bus

IT Information Technology

JBI Java Business Integration

JCA J2EE Connector Architecture

OMG Object Management Group

OWL Web Ontology Language

REST Representational state transfer

SAWSDL Semantic Annotations for WSDL

SESA Semantically-Enabled SOA

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description Discovery and Integration

WSDL Web Service Description Language

WSFL Web Services Flow Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

XLANG XML-based extension of WSDL

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 6 of 43

Executive summary
SOA4All aims at providing an infrastructure that brings Web services and Service Oriented
Architecture (SOA) to a Web scale, based on the design principles that made the Web such a
successful platform.

One of the main objectives of the Work Package 1 of the SOA4All project is to define an
architecture for SOA4All getting the best out of the Web principles, the SOA principles, and the
Semantic Web principles. In order to achieve this result, a multidisciplinary research team has been
created involving end-users and people with different research interests. Thus, there was the need
to agree on the driving principles, to define a common terminology and to set the research
challenges to address during the project. Some of these issues have been already addressed in the
Description of Work but they are refined and stated more precisely in this document.

This deliverable analyzes the main principles, definitions, technologies, and challenges that will
drive the development of the first version of the SOA4All architecture. In the first part of this
deliverable several reference models and glossaries are considered:

• the OASIS Reference Model for Service Oriented Architectures 1.0 [MacKenzie 2006],

• the OASIS Reference Ontology for Semantic Service Oriented Architectures release
candidate 2 [Kerrigan 2008],

• the Conceptual Model built by the SeCSE project [Colombo 2005 and SeCSE 2007],

• the NEXOF-RA glossary that at the current time is under preparation (see http://www.nexof-
ra.eu/).

The second part presents the principles and rationale behind a service Web architecture along with
outlining how such principles will provide the means and methods for an Internet-scale deployment
and adoption of SOA infrastructures. These principles are:

• Service-Orientation Principles. The SOA design paradigm captures a distinctive approach
to the analysis, design, and implementation to all types of service-oriented IT environments,
introducing a set of principles which govern aspects of communication, architecture, and
processing logic. According to [Erl 2007] these principles are: Standardized Service
Contract Principle; Loose Coupling Principle; Abstraction Principle; Reusability Principle;
Autonomy Principle; Statelessness Principle; Discoverability Principle and Composability
Principle;

• Web principles. The Web is based also on a collection of principles that lead to a highly
scalable means for electronic publication. The provision of Web-based lightweight
integration infrastructures will facilitate openness and easy adoption for both the service
provider and the consumer. SOA4All should analyze and apply these principles to service-
orientation, which will lead to a global, dynamically changing environment of services
accessible for third-party usage, beyond the boundaries of single organizations.

• Autonomic Computing principles. The concept of Autonomic Computing was first
introduced in [Kephart 2003] where autonomous systems were characterized as self-
manageable systems. In the context of services, the idea of self-management is very
important, especially when we think at systems that are created by composing services
offered by third parties and that should be able to react to the cases in which these services
provide incorrect results or are unresponsive.

• Formal Semantic Descriptions. Current standards for describing Web services use
syntactic notations such as WSDL. Since these descriptions are machine readable but not
machine understandable, only IT personnel can carry out most of the tasks associated with
creating and maintaining Web service-based applications such as Web service discovery,
composition, and invocation. These tasks can be automated to a great extent by applying

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 7 of 43

semantic technologies (such as OWL-S [Martin 2004], WSMO [Roman 2006], WSDL-S
[Akkiraiju 2005]).

The principles presented above are very high level and can be addressed from various points of
view, using various technologies. Besides, some specific challenges are identified and are
addressed by the SOA4All project. The SOA4All Service Web Architecture focuses on these
challenges and discusses how they relate to the general principles. These challenges have been
preliminarily derived from the main SOA4All objectives. They are:

• Heterogeneity. It should be assumed that worldwide distributed systems contain many
different kinds of hardware / software systems and environments. Thus, a Service Web
infrastructure should be able to handle such heterogeneity.

• Worldwide access mechanisms. Services should be accessible worldwide. This means
that they should be identifiable in a unique way and should be invoked despite potential
heterogeneity.

• Semantic provisioning of services. Formal semantic descriptions of services allow
powerful reasoning and precise matching of requests with services. However, formal
semantics introduces a relevant computational overhead that has to be taken into account
for usage at runtime. Thus, as long as computational overhead represents a problem, some
lightweight approaches should be studied.

• Decentralized dynamicity and adaptability. A central control on the life cycle of all
services would hamper access and therefore scalability. Thus, service provisioning and
modification should be as much as possible decentralized and unconstrained, without
hampering the possibility of building solid service compositions out of them.

• Matching requests and services. Even if services are accessible worldwide, without proper
support for matching requests and services it may be difficult for a service consumer to find
the right service to use. Thus, proper matching mechanisms need to be provided. While so
far the literature has focused on centralized matchmakers, the real challenge is to distribute
the execution of matching algorithms on multiple nodes.

• Enabling n:m asynchronous interactions. The classic client-server model of interaction
no longer reflects the nature of the Web. Thus, we should introduce richer models of
interaction to address situations where multiple entities collaborate by playing different roles
(even multiple roles), each of them sending and receiving complex messages.

• Enabling service prosumers. Active consumers (often referred as prosumers) become part
of the content providing process and often even form democratic communities of content
creators. Applying this idea of content creation (that is part of the phenomenon known as
Web 2.0) to service creation is not as simple since to date the development of services has
been an activity for specialists. Therefore, the challenge is to understand the kinds of tools
that should be offered to users in order to let them become service prosumers.

• Supporting both machine and human-based computation. The last challenge is to see
humans as being part of SOA4All service Web infrastructure. This requires proper user
interfaces and mechanisms supporting the communication between services based on
machine computation and human-based services.

The work presented here will be incrementally extended and completed during the project. In
particular, the next step of the Work Package 1 will be to review the challenges driving the
development of the SOA4All architecture in the light of the requirements that are being defined by
other Work Packages.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 8 of 43

1. Introduction
Service-orientation is a broad design paradigm that permits the separation of concerns and uses
services as the basic building blocks of functionality. Services can be called by their users in order
to obtain some results. They are usually owned by third parties that manage their provisioning
usually by exploiting some software systems. One of the main characteristics of SOA is that service
interfaces are published, discovered and invoked typically over the Internet. SOA is currently
enjoying massive adoption in large corporations since it promises to close the gap between what
companies require and what IT is able to deliver. Moreover, SOA promises a more flexible IT
infrastructure that is able to react to business changes more quickly than the classic monolithic IT
systems. Finally, SOA is built on top of internet standards, making interaction among companies
easier and cheaper. This, on the long term, will enable the formation of business ecosystems able
to traverse enterprise boundaries.

Unfortunately, these promises are still not realized. Most stakeholders currently use SOA primarily
for internal integration and far less for external integration. In particular, companies seem still
reluctant to expose their business services on the Internet. This situation is changing however, as
increasingly companies such as Yahoo, eBay, Amazon and Google are exposing their services over
the Web; allowing others to integrate these services in order to build new applications in so-called
“mash-ups.”

Parallel to the emergence of SOA as a valid infrastructure alternative for large enterprises, the Web
has continued its success and has become the dominant information medium for consumers and for
the entire range of companies. It has helped many small and medium sized enterprises to be
globally visible in a world dominated by global players. Consumers have been dazzled by new
means of participation brought forward by Web 2.0 technologies such as blogs. Technologies that
further simplify user contributions such tagging have unleashed the power of communities with
efforts such as Wikipedia demonstrating that it is possible to create large and shared information
sources.

Today, the Web contains just around 25,000 Web services(1) of which many, perhaps the majority,
are experimental - a minuscule amount in comparison to the 30 billion Web pages constituting its
content. In fact, SOA is largely still an enterprise specific solution exploited by, and located within,
large corporations as part of their in-house supply chains. Nevertheless, complex mobile devices
and more efficient wireless communications facilitate ubiquitous computing and as optical and
broadband communication infrastructures expand, the number of Web services is expected to grow
exponentially in the next few years. This expected growth could be also supported by other
phenomena:

• More companies will publish their offerings as services, which are accessible through the
Web, and which has been inspired by the success of early adopters (e.g. Amazon).

• Web 2.0 has popularized concepts such as mash-ups and syndication though technologies
such as RSS, Atom. They have thereby illustrated comparatively simple means for business
networking and business flexibility.

• Efforts to turn the Web into a general platform for accessing and interconnecting arbitrary
devices and arbitrary services are maturing.

Hence, there is a need to master very large systems and to handle the complexity of these systems
confidently. While humans will certainly be involved in those activities concerning system design,
their participation in repetitive activities related to configuration and maintenance should be
reduced, providing systems with learning capabilities and self-organizing functions. Crucially,
systems and software must be secure, robust, dependable and optimized in terms of functionalities

1 source: http://seekda.com

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 9 of 43

to cater for multiple audiences.

Besides, the progresses of semantic technologies enable the automation of data and service
management, exploiting the semantics associated to the information. The Semantic Web aims at
extending the Web so creating the pre-conditions needed by software agents for carrying out
complex tasks while browsing Web pages. Smart agents, exploiting the semantic technologies, can
extracts information from Web resources (i.e. text mining, image processing, video processing,
sound processing, …) and from the relationships the users establish between them (i.e. by means
of links and annotations or implicitly putting items in their virtual shopping cart) adding value to the
information and creating new knowledge.

In particular, we envisage that the combination of Semantic Web and SOA will lead to the creation
of a “service Web”—a Web where billions of parties are exposing and consuming services
seamlessly and transparently and where all types of stakeholders, from large enterprises to SMEs
and individual end users, engage as peers consuming and providing services within a network of
equals.

However, SOA will not scale nor be widely adopted without properly incorporating the same
principles that made the Web scale to a worldwide communication infrastructure. A significant
mechanization of service lifecycle activities2 and a balanced integration of services provided by
humans and machines are also pre-requisites to provide support to such an infrastructure. In a
service-oriented world, users should be able to seamlessly discover and select services on the
basis of their requirements and context. Users should be allowed to create on their own new
complex services, using as building block other more simple pre-existing services, in a computer
aided fashion. These new user generated services should be (semi) automatically adapted or
integrated in to the whole system. Solving these problems in a scalable and manageable manner is
a major pre-requisite to realize a Web interconnecting a large number of services (as the current
Web does for information sources).

1.1 Purpose and Scope of this deliverable
SOA4All aims at providing an infrastructure that brings Web services and Service Oriented
Architecture (SOA) to a Web scale, based on the design principles that made the Web such a
successful platform. To enable this infrastructure there are a number of key research questions that
must be addressed, namely:

• How can interoperability issues be resolved to allow provided services to be invoked?

• What mechanisms can be used to decouple service providers and requests to enable n:m
relationships between services and maximise interactions on the Service Web?

• Which core services are required within the infrastructure to provide users with access to the
Web of Services and what are the right interfaces for interacting with them?

• How can we ensure that the infrastructure scales to the Web as expected?

One of the main objectives of the work package 1 is to define an architecture for SOA4All getting
the best out of the Web principles, the SOA principles, and the Semantic Web principles. In order to
achieve this result a multidisciplinary research team has been created involving people with different
research interests and end-users. Thus, there was the need to agree on the driving principles, to
define a common terminology and to set the research challenges to address during the project.
Some of these issues have been already addressed in the Description of Work but they are refined
and stated more precisely in this document.

This deliverable analyzes the main principles, definitions, technologies, and challenges that will

2 location, negotiation, adaptation, composition, invocation and monitoring as well as service
interaction requiring data, protocol and process mediation

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 10 of 43

drive the development of the first version of the SOA4All architecture.. Well-established Web
principles such as openness, need for interoperability, decentralization, dynamicity, etc., are
considered as starting points in this work. The experience and results of previous efforts within
W3C’s Web services standardization, in OASIS Semantic Execution Environment architecture
group, and in the NEXOF-RA project have been incorporated and used as important inputs for this
deliverable.

Consistently, the document is structured as follows

• Section 3 establish a proper terminology for the SOA4All project,

• Section 4 survey the literature to identify those principles that are considered to be the pillars
of the service Web,

• Section 5 briefly describes the basic technologies upon which the service Web will be built

• Section 6 identifies those challenges to address within the SOA4All project.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 11 of 43

2. Basic definitions
Services represent an effective solution to let software systems distributed across the world and
developed by different organizations to interoperate. Examples of this come from the world of
business to business interaction, but also in other contexts, such as ambient intelligence and
pervasive computing we are assisting to an increasing interest in this area. The interest is even
stronger in the area of grid computing where services permit to parallelize computationally-intensive
tasks.

Given this large variety of usage contexts, and the relative youth of the discipline itself, a fully
agreed set of definitions is still missing. This is why the first part of this deliverable focuses on
establishing those definitions that will be used through the following of the SOA4All project.

Several reference models and glossaries can be taken as starting points in this activity. The ones
that we consider are the OASIS Reference Model for Service Oriented Architectures 1.0 released in
2006 [MacKenzie 2006], the OASIS Reference Ontology for Semantic Service Oriented
Architectures release candidate 2 [Kerrigan 2008], and the conceptual model built by the SeCSE
project [Colombo 2005 and SeCSE 2007]. These will be described in detail in the following sections.
Finally, Section 3.4 provides the selection of definitions that will be adopted by the project. These
have been mainly derived form the NEXOF-RA glossary that at the current time is under preparation
(see http://www.nexof-ra.eu/).

2.1 The OASIS model
Figure 1 shows the main concepts in the OASIS model [MacKenzie 2006].

Figure 1. Main concepts from the OASIS reference architecture.

In this model a Service is “a mechanism to enable access to one or more capabilities, where the
access is provided using a prescribed interface and is exercised consistent with constraints and
policies as specified by the Service Description”. A Service is offered by a Service Provider and can

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 12 of 43

be exploited by a Service Consumer. Of course, this is possible if the Service Consumer has
Visibility on the Service. The concept of Visibility is decomposed in the concepts of Awareness,
Willingness3, and Reachablity.

The Interaction with a Service usually happens through message exchange and it is based on the
knowledge of the Information model (i.e., the format of data, their structural relationships, and the
definition of the used terms) and the Behavior model (i.e., the temporal sequence of actions
supported by the Service) of the Service. The interaction with a Service can lead to the occurrence
of some Real World Effects.

While the aforementioned terms (Interaction, Real World Context, and Visibility) are related to the
usage of the service by some other party, other important elements that are connected directly to
Services are Contract and Policies, Service Descriptions, and Execution Context. A Policy
represents some constraint or condition on the use, deployment or description of an owned entity as
defined by any participant. A Contract, on the other hand, represents an agreement by two or more
parties. The Execution Context includes the technical and business elements needed for an
interaction with the Service as well as processes and agreements that are in place. All interactions
are grounded in a particular execution context, which permits service providers and consumers to
interact and provides a decision point for any policies and contracts that may be in force.

More details on the definition of the various terms can be found in [MacKenzie 2006]. Here it is
highlighted the fact that such characterization of SOAs is particularly interesting because of its focus
on the usage of a service more than on its internals. In fact, a special attention is paid to the context
in which the service is executed and to its effects on the real world. The concepts introduced in the
model are fully independent from specific technologies. This means that they do not apply only to
the main instantiation of SOAs, i.e., Web Services, but are in principle applicable to other
instantiations (see, for instance, REST, Jini, OSGI services). For this reason building the SOA4All
architecture on top of this concepts leads to an architecture capable of supporting different and new
technologies in the future.

2.2 The OASIS SEE Reference Ontology
The OASIS SEE (Semantic Execution Environment) Technical Committee (TC)4 continues the work
initiated by the Web Service Execution Environment (WSMX) project and working group5. It also
receives and provides input to several other projects in Europe such as DIP6, ASG7, TripCom8,
SUPER9, SOA4ALL10, COIN11, and other projects in the area of Semantic Web Services under FP6
and FP7 programme . The aim of the OASIS SEE TC is to provide guidelines, justifications and
implementation directions for an execution environment for Semantic Web Services. The resulting
infrastructure will incorporate the application of semantics to service-oriented systems and will

3 The willingness to establish an interaction between two parties could be automatically determined
using descriptions. For example, a mediator for descriptions may provide 3rd party annotations for
reputation. Another source for reputation may be a participant’s own history of interactions with
another participant
4 http://www.oasis-open.org/committees/semantic-ex/
5 http://www.wsmx.org
6 http://dip.semanticweb.org
7 http://asg-platform.org
8 http://www.tripcom.org
9 http://www.ip-super.org
10 http://www.soa4all.org
11 http://www.coin-ip.eu

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 13 of 43

provide intelligent mechanisms for consuming Semantic Web Services.

The specifications developed by OASIS SEE TC is a Reference Ontology for Semantic Service
Oriented Architectures (SSOAs) [Kerrigan 2008] which is based on extensions of the OASIS SOA
Reference Model described in section 2.1. It extends the Reference Model with the key concepts of
semantics that are relevant for Semantically-enabed Service Oriented Architectures. It helps use
semantic technologies to further solve problems that SOAs (Service Oriented Architectures) are
limited by. The model from OASIS SEE TC specifications has been defined formally using an
ontology. The aim of this ontology is to provide a point of reference formally specified so that it can
support the definition and development of SSOAs.

The OASIS Reference Ontology for SSOA extends the Oasis Reference Model, focusing on the
aspects concerned with Visibility, Service description, Real world effect, and Interaction. In
particular, Figure 2 shows the main extensions proposed by the Reference Ontology on the
Reference Model.

The main principle of the Reference Ontology is to describe all service-oriented concepts through
an ontology-based formalism that are connected via mediators. Thus, Mediators represent the way
the services are made visible and therefore replace the Visibility concept in the Reference Model.
Indeed, the Ontology on the side of the Service Description concept introduces the concept of Goal
Description. This is a representation of the requirements for a service from the point of view of a
consumer. Goal Descriptions and Service Descriptions describe the Functionality expected or
offered by a service and thus enable Reachability of the service. The Behavioural and Information
models, describe the Interaction that occurs between the service and its consumers.

Service
Description

Service
Description

InteractionInteraction

Information
Model

Information
Model

Behavioural
Model

Behavioural
Model

StructureStructure

SemanticsSemantics

ActionsActions

ProcessProcess

Goal
Description

Goal
Description

MediatorMediator

FunctionalityFunctionality

Real World
Effect

Real World
Effect

ReachabilityReachability

C
ap

ab
ili

ty

M
ed

ia
tio

n

In
te

rf
ac

e

V
is

ib
ili

ty

Figure 2 – Relationships between the OASIS Reference Model and the OASIS Reference Ontology.

Figure 3 details the main concepts in the OASIS Reference Ontology that are the following:

• Ontology: Service Descriptions, Goal Descriptions. Mediators (see below) can import
Ontologies in order to utilize the terminology that they provide

• Service Description: A formal description of all the information needed in order to use (find,
select, invoke, …) a service, made by the provider

• Goal Description: Formalization of the requesters needs in accordance with their specific
context

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 14 of 43

• Capability: Service Descriptions and Goal Descriptions can be linked to a Capability.
Capability is described as the pre and post conditions on the state of the information space
and on the state of the real-world; the former are named preconditions and postconditions
the latter as assumptions and effects

• Mediators: Described in terms of the entities it is able to connect to. States how it will resolve
mismatches;

• Interface: It is a part of the service description. It specifies in detail how the communication
with the service should take place.

Figure 3 – OASIS Reference Ontology.

The SEE TC provides a testbed for the Web Services Modeling Ontology (WSMO)12, which is
anticipated as a contribution for use by the TC and will seek to demonstrate the viability of using

12 http://www.wsmo.org

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 15 of 43

WSMO concepts, relationships and definitions as a means to achieve successful dynamic
interoperation of multiple ambient services, whether or not they share a common design or source.
The SEE TC will not implement actual software products or solutions based on the specifications
developed along the course of work of this group.

2.3 The SeCSE model
SeCSE is a FP6 project focusing on engineering service-centric systems. It proposes a conceptual
model aiming at providing a common terminology for services. This model has been designed to be
extensible in order to be easilyaccommodated and extended. It is worth to note that the SeCSE
Conceptual Model has been investigated, by the NEXOF-RA team (www.nexof-ra.eu) as an important
piece of work for the Reference Model of NESSI Open Service Framework (NEXOF).

The SeCSE model, when compared to the OASIS Reference Architecture and Reference Ontology,
provides more details on some aspects, in particular, it defines the structure of Service Descriptions
and their publication and discovery processes, the structure of a Service Composition, what is need
to negotiate Service Level Agreements (SLAs) and what is need to monitor a service. In addition,
the model highlights the various stakeholders that have a role in a service-centric system life cycle,
as well as the various classes of services that may participate in a service-centric system. The
model is described using UML and is explained in [Colombo 2005 and SeCSE 2007]. Within this
document we focus on two of the main diagrams; the one describing the stakeholders interested in
the service-oriented activities and the one that classifies services in various categories.

The diagram of Figure 4 shows that three main kinds of stakeholders can play some role in a
service-centric system. These stakeholders are Systems (also composed of some hardware part),
Persons, and Organizations. All these can act as Services, Service Consumers, Providers,
Developers, etc. The classification is incomplete, that means that other roles could be discovered in
the future. The fact that Service is available as role (Actor) in the diagram allows us to represent the
fact that various stakeholders, not necessarily a Software System, can implement a Service.

Service Integrator
<<Actor>>

Person

Agent-Actor

Organization

Service Developer
<<Actor>>

Service Monitor
<<Actor>>

Service Consumer
<<Actor>>

Service Provider
<<Actor>>

Agent
{complete, disjoint}

Actor
{incomplete, overlapping}

Legacy System

Service Certifier
<<Actor>>

System

Service Intermediary
<<Actor>>

Testing Authority
<<Actor>>

Software System

Service
<<Actor>>

Negotiation Agent
<<Actor>>

Figure 4 – Stakeholders and roles in the SeCSE model.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 16 of 43

Service Composi tion

Sta teless Service

Sim ple Service

Curren t Service S tateSta teful Service 11 11

has

Composi te Service

Abstract Service Concrete Service
0 ..* 0..*0 ..* 0..*implements

Conversa tiona l Service

Service State less/Sta te ful Services
{complete , d isjoin t}

Abstract/Concrete Services
{complete , d isjoin t}

Simp le/com posed Services
{com ple te, disjo int}

The th ree h ierarchies
represented in this diagram
are com plete and
overlapping

Figure 5 – Classes of services in the SeCSE model.

As shown in Figure 5 a Service can be Abstract when it has a description but it misses an
implementation or it can be Concrete if the opposite case applies. It can be Stateless or Stateful. So
called Conversational Services are seen as a specific case of Stateful services where the state that
is maintained by the service is related with the specific conversations it is engaging with its
Consumers. Finally, a Service can be Simple or Composite. A Composite Service is obtained by
aggregating other Services in a Service Composition.

The SeCSE conceptual model also highlights the fact that a Service is characterized by one or more
Service Descriptions that are composed of various Facets. Each Facet focuses on a specific aspect
of a Service (its syntactic interface, its behaviours, its QoS characteristics, …). The discovery of
Services is based on a matching between a Service Request and a Service Description and can
happen at various stages in the service life cycle (at requirement time, design time, runtime). A
Service Composition can be bound to Abstract or Concrete Services. In the first case, the binding
has to be concretized before the execution of the corresponding invocation. The Monitoring of
services is an activity that is performed while services are running, but it requires planning and
design activities prior execution in order to properly define what and how to monitor.

2.4 The SOA4All definitions adapted from the NEXOF-RA glossary
The NEXOF-RA glossary13 is a selection of terms that is being prepared by the NEXOF-RA project,
in cooperation with NESSI related projects, and is intended to form a common glossary across the
projects and beyond. It takes many of its definitions from established standards or pseudo
standards. These terms concern various aspects of the service lifecycle ranging from requirement
analysis to operation. One of the inconveniences of such glossary with respect to the models that
we have previously described is that the various terms are defined in isolation and the relationships
between terms are not highlighted. This can easily lead to ambiguities and missing definitions. Its
main advantage stands in the fact that it is much broader than the other models.

SOA4ALL defines its terminology starting from the NEXOF-RA glossary in order to enable
interaction with the other projects of the NESSI platform. In particular, in this section those terms of
the glossary are selected that are of interest of the SOA4All project. SOA4ALL will propose
modifications to some definitions and introduce new definitions to cover aspects that are relevant to

13 See http://www.nexof-ra.eu/.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 17 of 43

the SOA4All project. The new definitions are identified by looking at the main objectives of the
SOA4All project and at its case studies.

In the following subsection we group the definitions in various categories. Section 2.4.1 presents the
main terms in the service context, Section 2.4.2 lists the terms defined by the Semantic Web
community, Section 2.4.3 lists the possible actors that can be involved in the service life cycle,
Section 2.4.4 focuses on the main activities belonging to the service life cycle, Section 2.4.6
presents the architecture-related terms, Section 2.4.7 focuses on terms related to technology, and,
finally, Section 2.4.8 presents terms that come from the Business Management domain.

2.4.1 Main entities under study

Atomic Service: An Atomic Service is a service that does not invoke other services.

Binding: An association between an interface and a concrete implementation. A binding specifies
the protocol and data format to be used in transmitting messages, defined by the associated
interface, to a specific endpoint.

Composite Service: A Composite Service is a software service implemented through the
composition of software services.

Conformance: Fulfilment of a product, process or service of all requirements specified; adherence
of an implementation to the requirements of one or more specific standards or technical
specifications. [EBXML 2001]

Execution context: The execution context of a service interaction is the set of infrastructure
elements, process entities, policy assertions and agreements that are identified as part of an
instantiated service interaction, and thus forms a path between those with needs and those with
capabilities. Note: this definition is not part of the NEXOF-RA glossary. It has been derived from
[MacKenzie 2006]

Non-functional Property or Quality of Service: a set of quantifiable quality properties of a service.

Non-functional Requirement: A non-functional requirement specifies a particular quality of the
system rather than a function of the system. Two kinds of non-functional requirements are typically
distinguished: 1. Execution qualities observable at run-time such as security, availability, reliability,
etc.; 2. Evolution qualities observable at design time such as scalability and extensibility.

Requirement: A condition or capability needed by a user to solve a problem or achieve an
objective. [Pohl 2005]

Service: A service is an abstract entity consisting of a set of capabilities offered by one or more
providers to consumers. The service is provided by means of consumer service requests. The
capabilities of the service and information how to use these capabilities are described in a service
description. It can be realized by living beings, information systems, machines, etc.

Service Behaviour: The observable effects of an operation or event, including its results. [EBXML
2001]

Service Capability: A Service Capability is the functionality offered by a service, including quality of
the service.

Service Composition: Service Composition is a combination of service invocations that allows the
consumer to achieve a given goal. Note: the NEXOF-RA definition is the following: Service
Composition is the act of executing a service coordination.

Service Contract: The service contract is a formal, agreed, binding contract between a service
consumer and a service provider.

Service Choreography: A Service Choreography is the specification of interactions among a set of
services, described from a global perspective.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 18 of 43

Service Description: A service description is a set of documents that describe the interface, the
accessibility and the capability of a service.

Service Interface: The service interface is the specification of how to perform service requests.

Service life cycle: Comprises the design-time, runtime, and retirement of a service.

Service Implementation: The core business logic written in a specific language. [Margolis 2007]

Service Orchestration: A Service Orchestration is the description of how a specific service can be
realised by interacting with other services. The orchestration is under control of a single endpoint.
An Orchestration may be executable.

SLA: The SLA is a formal, agreed, binding contract between a service consumer and a service
provider constraining the quality of service.

Software Service: A Software Service is a special service which can be accessed by the service
consumer only via a piece of software. This software constitutes the interface between the service
consumer and the software service. It does not determine whether the service is realized by a
human or a piece of software. The interfaces to human services are proxies to enable an interaction
with the human.

Web Service: A Web Service is a software service designed to support interoperable XML based
machine-to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). [W3C 2004]

2.4.2 Semantic aspects

Concept: A concept is an element of a semantic model. This specification makes no assumptions
about the nature of concepts, except that they must be identifiable by URIs. A concept can for
example be a classifier in some language, a predicate logic relation, the value of the property of an
ontology instance, some object instance or set of related instances, an axiom, etc. [W3C 2007]

Semantics: Semantics in the scope of this specification refers to sets of concepts identified by
annotations. [W3C 2007]

Ontology: An ontology is an explicit specification of a conceptualization14. [Gruber 1993]

Semantic Annotation: A semantic annotation in a document is additional information that identifies
or defines a concept in a semantic model in order to describe part of that document15. [W3C 2007]
Note: the NEXOF-RA definition is the same, plus the following sentence: In SAWSDL, semantic
annotations are XML attributes added to a WSDL or associated XML Schema document, at the
XML element they describe. Semantic annotations are of two kinds: explicit identifiers of concepts,
or identifiers of mappings from WSDL to concepts or vice versa. [W3C 2007]

Semantic Model: A semantic model is a set of machine-interpretable representations used to
model an area of knowledge or some part of the world, including software. Examples of such
models are ontologies that embody some community agreement, logic-based representations, etc.
Depending upon the framework or language used for modelling, different terminologies exist for
denoting the building blocks of semantic models. [W3C 2007]

14 “A conceptualization is an abstract, simplified view of the world that we wish to represent for some
purpose. Every knowledge base, knowledge-based system, or knowledge-level agent is committed
to some conceptualization, explicitly or implicitly.” [Gruber 1993]
15 In SAWSDL, semantic annotations are XML attributes added to a WSDL or associated XML
Schema document, at the XML element they describe. Semantic annotations are of two kinds:
explicit identifiers of concepts, or identifiers of mappings from WSDL to concepts or vice versa.
[W3C 2007]

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 19 of 43

2.4.3 Actors

Actor: This may be either: 1. A person or organization that may be the owner of agents that either
seek to use services or provide services. 2. A physical or conceptual entity that can perform actions.
Examples: people; companies; machines; running software. An actor can take on (or implement)
one or more roles. An actor at one level of abstraction may be viewed as a role at a lower level of
abstraction.

Agent: An agent is a software program acting on behalf of a person or organization. [W3C 2004]

Application Service Provider: An Application Service Provider (ASP) is a organisation that offers
individuals or organisations access over the Internet to applications and related Software Services
that would otherwise have to be located in their own personal or enterprise computers.

Business Entity: Something that is accessed, inspected, manipulated, produced, and worked on in
the business. [EBXML 2001]

Business Partners: An entity that engages in business transactions with another business
partner(s). [EBXML 2001]

Service Requester: Is the actor asking for a service. A service requester might agree SLAs with
providers, ensures the services address the correct business requirements, and provides funds for
using services. Note: the NEXOF-RA definition is the following: Agrees SLAs with providers,
ensures the services address the correct business requirements, and provides funds for using
services.

Service Aggregator: A client application that automatically pipelines the services needed to
retrieve a requested result.

Service Intermediary: A service intermediary is the actor whose main role is to transform
messages in a value-added way.. Note: the NEXOF-RA definition is the following: A service
intermediary is a Web service whose main role is to transform messages in a value-added way.
(From a messaging point of view, an intermediary processes messages en route from one agent to
another.) Specifically, we say that a service intermediary is a service whose outgoing messages are
equivalent to its incoming messages in some application-defined sense. [W3C 2004]

Service Provider: A Service Provider makes services available to consumers. It may define with
consumers some Service Level Agreements that regulate the terms of the service offer. Note the
NEXOF-RA definition is the following: Agrees SLAs with requesters and makes services available to
them in compliance with the SLA.

Service Registry or Registry: A mechanism whereby relevant repository items and metadata
about them can be registered such that a pointer to their location, and all their metadata, can be
retrieved as a result of a query. [EBXML 2001]

Service Repository or Repository: A location or set of distributed locations where Repository
Items, pointed at by the registry, reside and from which they can be retrieved. [EBXML 2001]

Service Role: An abstract set of tasks that is identified to be relevant by a person or organization
offering a service. Service roles are also associated with particular aspects of messages exchanged
with a service. [W3C 2004]

Service Goal: it is the representation of an objective for which fulfilment is sought through the
execution of a service. Note: this definition has been derived from [Roman 2006]

2.4.4 Types of services

The definitions in this section are not part of the NEXOF-RA glossary and have been derived from
[SeCSE 2007].

Stateless service: A service that does not maintain an internal state between different invocations.

Stateful service: A service that maintain an internal state between different invocations. It

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 20 of 43

includes: a) services for which the execution of the same operation at different times by different
consumers can produce different results, even if the input data are the same; b) services that
require their operations to be called in a specific order. Note: the NEXOF-RA definition is the
following: A Service with a state. It includes: a) services for which the execution of the same
operation at different times by different consumers can produce different results, even if the input
data are the same; b) services that require their operations to be called in a specific order.

Conversational (or interactive) service: Service that requires its operations to be called by the
same Service Consumer in a specific order. In many cases, the result of the execution of one
operation depends also on the operations previously executed by the same Consumer.

Simple service: Service not formed by other services.

Composite service: Aggregate service resulting from the composition of different services.

Abstract service: It represents the abstract notion of Service. It has a double aim; 1.From the
Service Provider perspective it is intended to capture the idea of "business service", that is, an
offered service which does not necessarily have a concrete implementation. 2.From the Service
Consumer perspective it represents a desired service, thus related to a Service Request. An
Abstract Service may be published and discovered, just as concrete services. Before being able to
serve a Service Request it has to be "concretized" in a concrete service.

Concrete service: A service that has a concrete implementation and can, therefore, be executable.

2.4.5 Activities

Business Activity: A business activity is used to represent the state of the business process of one
of the partners. [EBXML 2001]

Business Process: A Business Process is a collaborative service that is closely linked to a
business purpose.

Business Process Modelling: The activity of analysing and designing the structure of business
processes and the resources needed to implement them.

Design Time: Comprises all activities that a service provider has to perform prior to the provision of
a service. The design time ends with the agreement on an SLA.

Runtime: Comprises all activities that service providers and service consumers have to perform
during the provision of a service. Note: the NEXOF-RA definition is the following: Comprises the
provision of a service starting with the agreement on an SLA.

Semantic Web Service Creation. Service Creation combines activities related to construction of
semantic descriptions of the Web services, their annotation, and the creation of the ontologies used
to define the formal descriptions. Note: this definition is not part of the NEXOF-RA glossary. It has
been derived from the Infraweb project.

Service Discovery: An activity of finding and identifying a service that is expected to fulfil user
requirements.

Service Deployment: All of the activities that make a service available for use.

Service Execution: The process for delivering operational services to the service consumer.

Service Invocation. The invocation of services is usually hard-coded within client applications. In
contrast, automatic Service Invocation is the automatic invocation of a Web service by a computer
program or agent, given only a declarative description of the targeted service. Note: this definition is
not part of the NEXOF-RA glossary. It has been derived from the Infraweb project.

Service Location. Location provides the proper means to find and situate services. Service
Location involves the integration of a set of subtasks such as Service Crawling, which collects
information about Web Services from the Web; Semantic Indexing that allows data collected by the
Service Crawling subtask to be analyzed and organized in a way that facilitates intelligent queries;

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 21 of 43

Service Discovery, which uses reasoning techniques for providing intelligent matching of requests
and services; and last but not least Service Ranking and Service Selection for ordering services and
then identifying which is the most suitable service according users needs

Service Monitoring: An activity that provides an awareness of the state of a service.

Service Provisioning or Service Supply: Service provisioning is the execution of a functionality
offered by a service in order to satisfy a specific request from a consumer. It can be regulated by an
agreement.

Service Publication: Any action to expose the service description.

Transaction: An agreement, communication, or movement carried out between separate entities or
objects, often involving the exchange of items of value, such as information, goods, services and
money.

2.4.6 Architecture-related terms

Autonomic System: An autonomic computing system is a system able to configure itself in the face
of a changing environment.

Reference Architecture: A reference architecture is an architectural design pattern that indicates
how an abstract set of mechanisms and relationships realizes a predetermined set of requirements.

Service-Oriented Architecture: Service-Oriented Architecture is an architectural style, based on
services.

Service-Oriented Infrastructure: Service-oriented infrastructure results from applying the
principles of service orientation to IT infrastructure. [TheOpenGroup 2007]

2.4.7 Terms related to technology

End Point: An association between a binding and a network address, specified by a URI, that may
be used to communicate with an instance of a service. An end point indicates a specific location for
accessing a service using a specific protocol and data format. [W3C 2004]

Enterprise Service Bus: An ESB is an integration platform that combines messaging, Web
services, data transformation, and intelligent routing to reliably connect and coordinate the
interaction of significant numbers of diverse applications across extended enterprises with
transactional integrity. [Chappell 2004]. Note: the NEXOF-RA definition is the following: An ESB is
an standards-based iintegration platform that combines messaging, Web services, data
transformation, and intelligent routing to reliably connect and coordinate the interaction of significant
numbers of diverse applications across extended enterprises with transactional integrity. [Chappell
2004]

Mashup: Mashup is a (Web) application that combines data from more than one source into a
single integrated tool; an example is the use of cartographic data from “Google Maps” to add
location information to real-estate data, thereby creating a new and distinct Web service that was
not originally provided by either source.

2.4.8 BPM concepts

Business Process Description: Specifies an activity graph that includes a set of activities as well
as their relationships.

Business Process Context: Defines a context in which a business has chosen to employ an
information entity. [EBXML 2001]

Business Process Library: A repository of business process specifications and business
information objects within an industry, and of common business process specifications and common
business information objects that are shared by multiple industries. [EBXML 2001]

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 22 of 43

3. Principles of the Service Web Architecture
In this section the principles and rationale behind a service Web architecture are presented along
with outlining how these principles will provide the means and methods for an internet-scale
deployment and adoption of SOA infrastructures. First it begins by describing the SOA paradigm.
Then the SOA principles are contrasted with the principles underlying Web, Autonomic computing,
and the Semantic Web.

3.1 Service-Orientation Principles
Service-orientation provides a broad design paradigm that permits the separation of concerns and
uses services as the basic building blocks of functionality. Service-oriented computing represents a
new generation of distributed system that encompasses its own design paradigm and design
principles, design pattern catalogs, pattern languages, a distinct architectural model, and a set of
associated technologies and frameworks [Erl 2007]. Service-orientation provides a way of thinking
about the design of a solution in terms of services, service-based development and the outcomes of
those services.

As it has already been stated, the architectural model aims at enhancing efficiency, agility, flexibility
and productivity by positioning services as the primary atomic functional elements. In the context of
SOA4ALLs work, these services are classified according to:

• The functionality they provide within the architecture. These can be distinguished between
business and middleware services. Business services (such as booking a hotel room) are
services which various service providers supply through their back-end systems.
Additionally, they are the subject of integration and interoperation within the architecture and
can provide a certain value for users. On the other hand, middleware services (e.g. those
that provide discovery and interoperability support) are lower level services that are used to
facilitate the integration and interoperation of business services.

• The abstraction level within the architecture. Namely, these can be distinguished between
Web services and services. A service is a general service that might take several forms
when instantiated (such as purchasing a flight), whereas a Web service is an actual
implementation of the service that is designed to support interoperable XML based machine-
to-machine interaction over a network and that is consumed by and provides a concrete
value for a user (such as the purchase of a particular flight from Innsbruck to Vienna).

All these classes of services should be designed and developed, according to a common approach.
The SOA design paradigm captures a distinctive approach to the analysis, design, and
implementation to all types of service-oriented IT environments, introducing a set of principles which
govern aspects of communication, architecture, and processing logic. According to [Erl 2007] these
design principles are: the Standardized Service Contract Principle; Loose Coupling Principle;
Abstraction Principle; Reusability Principle; Autonomy Principle; Statelessness Principle;
Discoverability Principle and Composability Principle. Each of these design principles is briefly
explained in one of the following sections.

3.1.1 Standardized Service Contract Principle

In order to make the description of service capabilities understandable to any interested party, the
properties of a service should be compliant with some design standard, namely the service contract.
The service contract may include any information regarding the identification of the services (e.g.
URL, name, textual description); functional properties, such as the type of the input/output
parameters, interaction model; and non-functional properties, such as QoS, the location of the
service, security constraints, etc.

Standardization supports the interpretability of services, resulting in an increase in the predictability
of the service behaviour. The ability to predict the future behaviour of a service is a key mechanism
to achieve scalability, since it allows the evaluation of the necessary computational resources

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 23 of 43

required to enact a specific service. This mechanism enables the intelligent provisioning of
resources to prevent software resources running out.

3.1.2 Loose Coupling Principle

The Loose Coupling Principle states that the interface of a service should be decoupled or from (or
loose coupled to) its consumers and the surrounding. Loose coupling, as presented in [Kayne
2003], intentionally sacrifices precision in the description of the interfaces of services for a greater
good: the achievement of flexible interoperability among systems which are heterogeneous with
respect to technology, location, performance, and availability. Loosely coupled applications aim to
be more reusable and adaptable to new requirements.

Loosely coupled systems, such as event-driven systems [Eugster 2002, Luckham 2002] or space-
based systems [Krummenacher 2007] have proven to be highly scalable when compared with
tightly coupled systems.

3.1.3 Abstraction Principle

The Abstraction Principle dictates that the details of a given software artefact should be hidden
where those details are not indispensable for others to effectively use it. Therefore, all the
information necessary to invoke the service is contained in the service contract; and all the
knowledge of the underlying logic, technology, etc. should be completely buried. This principle can
be considered as a synonym to the old software engineering concept of black boxing.

The Abstraction Principle enables replaceability, which as outlined in [Armstrong 2003], combined
with fault isolation and fault recovery, enhances scalability.

3.1.4 Reusability Principle

The Reusability Principle states that the functionality provided by services is as domain and context
independent as feasible, in such way that facilitates their reuse [Erl 2007]. As a direct consequence
of the application of this principle the logic of a service should be highly generic, independent from
its original usage scenario. The Reusability Principle is a key enabler for SOA infrastructures, since
it makes possible the creation of huge libraries of domain-independent services that leverage the
construction of new complex context-dependent services.

3.1.5 Autonomy Principle

The Autonomy Principle states that services should be able to carry out their processes
independently from outside influences. The only way to affect the results of a service should be
through the modification of the input parameters as specified in the service contract.

Service autonomy increases reliability and more importantly predictability and fault isolation, which
as presented in [Armstrong 2003] leads to an increase of the overall system scalability.

3.1.6 Statelessness Principle

The Statelessness Principle dictates that services should minimize resource consumption by
deferring the management of state information to when strictly necessary [Erl 2007]. This notion of
statelessness has been taken to the extreme in the REST architectural style [Fielding 2000], which
has also been successfully applied to SOA in recent years.

Note that this principle affects more the service implementation aspects rather than the service
design, at least at a conceptual level. Therefore it will not be further discussed in this document.

3.1.7 Discoverability Principle

The Discoverability Principle states that we should annotate services with metadata to enable
services to be discovered by interested parties. This principle is closely related with the
Standardized Service Contract Principle, since the discovery process could be performed using the
information contained in the service contract.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 24 of 43

3.1.8 Composability Principle

The Composability Principle identifies services as effective composition participants, regardless of
the size and complexity of the composition [Erl 2007]. From a bottom-up perspective, we consider
combining simpler services into larger services; from a top-down view, service composition is an
effective way to tackle with the complexity of certain types of processes.

The Composability Principle is a core element within the definition of a service Web, since the ability
to create new services easily, using existing ones, is a key pre-requisite to the widespread take-up
of SOA.

3.2 The Web principles
The Web is based also on a collection of principles, identified below, that lead to a highly scalable
means for electronic publication. The provision of Web-based lightweight integration infrastructures
will facilitate openness and easy adoption for both the service provider and consumer. SOA4ALL
should analyze and apply these principles to service-orientation, which will lead to a global,
dynamically changing environment of services accessible for third-party usage, beyond the
boundaries of single organizations. Within this environment, services will undergo many changes;
and there will be a very high churn rate. For instance, users and resources will appear, disappear,
and change location; resources can be initially free, and then transform to pay-per-use; and
occasionally be blocked, out of service, etc.

The major principles we will incorporate to SOA4All from the Web are described in the following
subsections.

3.2.1 Distributed Principle

The Distributed Principle is the process of aggregating several computing entities’ power to
collaboratively run a single task, transparently and coherently. Those entities appear as a single
centralized system. Applying this principle to the middleware architecture will allow the transparent
distribution of components over the network so that executing processes running in middleware can
be scaled across numerous physical servers over a network. The distributed principle would also
apply to business services, enabling running processes to span across enterprises distributed over
a network.

3.2.2 Openness Principle

The Openness Principle states that a system should be easy to extend; in principle everybody
should be able to contribute effortlessly to the system either as a provider or consumer of
information. The usage of this infrastructure as a service provider or user must be as simple,
smooth, unrestricted and even as possible. Openness is a major and essential necessity to ensure
global adoption of a software environment.

3.2.3 Interoperability Principle

Interoperability should be provided through the integration of heterogeneous proprietary and legacy
solutions through common interfaces based on standards where they exist. Interoperability on the
Web is, at least in theory, platform and vendor neutral allowing all providers and requesters of
information to participate on level playing field.

3.2.4 Human-centric Principle

The Human-centric Principle puts humans in the centre of the architecture. This principle is
associated with concepts such as personalizing business services, facilitating service usability,
promoting multichannel access and service delivery, building trust, and achieving efficiency,
accountability, and responsiveness according to user requirements. It will also facilitate the
seamless implementation of business processes across organizational boundaries.

Clearly this principle has been defined by considering the current Web reality that is constituted of a
number of information services all accessible through a human oriented, Web-based interface. It

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 25 of 43

does not apply to those Web Services that are accessible through some programmatic interface.

Within SOA4All we envisage an environment in which services can be used and composed by
everyone. In this context, it is of paramount importance to understand how to reinterpret this
principle in a novel way.

3.3 Autonomic Computing principles
The concept of Autonomic Computing was first introduced in [Kephart 2003] where autonomous
systems were characterized as self-manageable systems.

In the context of services, the idea of being able to self-manage is very important, especially when
we think at systems that are created by composing services offered by third parties. Such system
do not have any control on the way the component services are actually offered, Therefore, they
should be equipped with some self-management capability that would allow them to react to the
cases in which these services provide incorrect results or are unresponsive

As is identified in [Parashar 2006] the basic requisites for a self-manageable system are:

• Knowledge aware. The system should possess knowledge not only of its components,
status, capacity, etc., but also of the context of its activity and those of other resources within
the infrastructure.

• Able to sense and analyze environmental conditions. This includes both the ability to
proactively take the pulse of individual components and services, looking for ways to
improve its functions, and the ability to notice change and understand the implications of that
change. The definition of environment here usually includes all that is important and has an
effect on the execution of the system, but it is not explicitly defined as an input to the system.

• Able to actuate on its environment. The self-manageable system should be able to plan
for and affect changes by altering its own state and effecting changes in other components
of the environment.

As presented in [Parashar 2006], Autonomic Computing leverages the Web Services model to
facilitate communication among heterogeneous components.

The characteristics of autonomous systems are being applied today in four fundamental areas of
self-management to drive significant operational improvements where traditional manual-based
processes are neither efficient nor effective. These four areas (depicted in Figure 6) are related to
different attributes of autonomous systems, and they are self-configuring capabilities, self-healing
capabilities, self-optimizing capabilities, and self-protecting capabilities.

Figure 6 – Autonomic Computing Attributes

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 26 of 43

For each of these main areas of applicability, a design principle can be extracted where it is
believed it should be incorporated in SOA4All in order to leverage the construction, configuration
and deployment of infrastructures that enable Web scale service-oriented environments.

3.3.1 Self-healing Principle

According to the Self-healing Principle, computing systems should be able to detect, diagnose, and
repair localized problems resulting from failures both in software and hardware. With this purpose,
systems should analyze monitoring information (ranging from simple log files to more structured and
complex provenance information). The system would then match the diagnosis against known
software patches (or alert a human programmer if there are none), install the appropriate patch, and
retest.

3.3.2 Self-configuration Principle

The Self-configuration Principle states that systems should configure themselves automatically in
accordance with high-level declarative policies. These policies specify what is desired, not how it is
to be accomplished [Kephart 2003]. The deployment, configuration, and integration of large,
complex or highly changing systems is a challenging, time-consuming, and error-prone task even
for experts. When a component is introduced in the environment, it should announce its capacity
and should be incorporated seamlessly. The rest of the system should then adapt to its presence
and be aware of its functionality. Within the context of service compositions, this would mean that
any time a new service appears, compositions could reconfigure themselves to take advantage from
the presence of the new service.

3.3.3 Self-optimization Principle

The system should continually seek ways to improve their operation, identifying and seizing
opportunities to make themselves more efficient in performance or cost [Kephart 2003]. Thus this
principle implies that the system should be able to monitor itself and should be able to carry out
actions to tune its resources. These tuning actions could mean reallocating resources, such as in
response to dynamically changing workloads, to improve overall utilization, or ensuring that
particular business transactions can be completed in a timely fashion [Miller 2005]. This principle in
the SOA4All context applies to service compositions. They should be able to show some degree of
self-optimization is order to address the evolution of component services.

3.3.4 Self-protection Principle

The Self-protection Principle can be seen as two different but correlated facets, since it declares
that the environment should exhibit:

• Proactiveness. The environment should anticipate problems based on early reports from
sensors and take steps to avoid or mitigate them

• Coordinated responsiveness. The overall environment should react as a whole, They will
defend the system as a whole against large-scale, correlated problems arising from
malicious attacks or cascading failures that remain uncorrected by self-healing measures.

These two facets in the SOA context refer to execution environment of service compositions.

3.4 Formal Semantic Descriptions
Current standards for describing Web services use syntactic (XML-based) notations such as WSDL.
Because these descriptions are machine readable but not machine understandable, the semantics
of Web services can only be interpreted by humans; thus IT personnel must carry out most of the
tasks associated with creating and maintaining Web service-based applications. The requirement
for specialist workers to be involved in all points in the Web service lifecycle causes numerous
problems, the most significant of which are the impossibility to scale and the lack of responsiveness.
Maintaining millions of services, let alone billions, to cope with environmental and context changes
solely through human effort is simply not feasible.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 27 of 43

Tasks such as Web service discovery, composition, and invocation can be automated to a great
extent by applying semantic technologies (such as OWL-S [Martin 2004], WSMO [Roman 2006],
WSDL-S [Akkiraiju 2005]). Semantics allow programs to access services through a machine-
processable description of offered capability rather than as an endpoint. The use of semantics thus
forms a scalable access layer over Web service data and processes. In the following we summarize
some principles mostly derived from [Fensel 2007].

3.4.1 Ontology-based Principle

The mark-up of a Web service with formal descriptions makes them computer-interpretable, use-
apparent and agent-ready [McIlraith 2001]. The combination of semantics with service-orientation
allows us to define scalable, semantically rich, formal service models founded on ontologies.
Ontologies are used as the data model meaning that all resource descriptions as well as all data
interchanged during service usage are based on Ontologies.

The extensive usage of Ontologies to the modelling of service-based applications will facilitate the
intelligent management and operation of SOA environments. Semantics will enable the
management of categories of services as a whole; aiding the user in the visualization and update of
services; facilitating the (semi) automation of service lifecycle activities, such as service discovery,
contracting, negotiation, mediation, composition, and invocation; and enabling the advanced
monitoring of execution and provenance analysis associated with the enactment of millions of
services.

3.4.2 Centrality of Mediation

As a complementary design principle to loose coupling, mediation addresses the handling of
heterogeneities that naturally arise in open environments. Heterogeneity can occur in terms of data,
underlying Ontology, protocol or process. Mediation mechanisms should handle all these aspects
by making sure that heterogeneous information and protocols/processes can still exist but it does
not prevent service compositions from working properly.

3.4.3 Ontological Role Separation

Users, or more generally clients, exist in specific contexts, which will not be the same than those of
available Web services. For example, a user may wish to book a holiday according to preferences
for weather, culture and childcare, whereas Web services will typically cover airline travel and hotel
availability. Thus, it is necessary to differentiate between the desires of users or clients and
available services.

3.4.4 Independency of description with respect to implementation

The descriptions of semantic Web services elements should be independent of the executable
technologies. While the former (the description) requires a concise and sound description
framework based on appropriate formalisms in order to provide concise semantic descriptions, the
latter (the implementation) is concerned with the support of existing and emerging execution
technologies for the Semantic Web and Web services.

3.4.5 Problem Solving Principle

A SESA is a Semantically-Enabled SOA, that is, a SOA where all principles listed above hold.
Indeed, the other main principle of SESA is the problem-solving principle, that is, the ability to
discover and invoke services according to a goal-based approach. Users (service requesters)
describe requests as goals. Such goals are expressed according to a semantic approach and are
independent from services. SESAs are able to solve those goals through logical reasoning over
their descriptions [Vitvar 2007].

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 28 of 43

4. Current technologies
This section will focus on technologies that the project considers most relevant to the service Web
architecture. For the sake of brevity, each technology is only presented briefly.

4.1 Web Services
Web Services are software components that comply to two main standards, WSDL [WSDL 2007]
and SOAP [SOAP 2007]. WSDL (Web Service Description Language) defines the syntactical
structure of the programmatic interface offered by a Web service. In particular, it defines the
operations offered by the Web service in terms of their parameters and return value. SOAP (Simple
Object Access Protocol) is the communication protocol being used by Web services. It is an XML-
based language, it prescribes the structure that all messages exchanged between a Web service
and its consumers should comply to. Both WSDL and SOAP are independent of a specific
programming language and of the transport protocol being used. In most cases, however, Web
Services rely on HTTP as the transport protocol. This allows the communication to pass through
firewalls. Another standard that is related to Web Services is UDDI (Universal Description Discovery
& Integration) [UDDI 2004]. It defines how to communicate with a registry for publishing information
about Web Services interfaces and for discovering services.

4.2 REST
Representational State Transfer (REST) is the name of an architectural style developed by
R. Fielding as a formalization of the architectural principles underlying the World-Wide Web
[Fielding 2000]. REST is composed of a number of constraints that ensure certain beneficial
properties of the resulting architecture. These properties have made the Web scalable and
evolvable, and it could have grown to the size and popularity it has today, without showing any
signs of inherent barriers to future growth.

The Web is (was intended to be) an internet-scale distributed hypermedia system, i.e., a non linear
way of presenting multimedia information (text, graphics, audio, video, etc.) associated by means of
hyperlinks. This goal implies certain requirements, which affect REST as well. In particular, the Web
needs to be:

• Simple, with a low barrier of entry, to attract users and developers

• Extensible, to be able to grow past the initial simplicity

• Distributed hypermedia, to be able to use the power of many internet hosts

• Anarchically scalable, to isolate performance issues of independent parts

• Independently deployable, both in terms of hosts and in terms of protocols and data formats,
to allow gradual evolution and coexistence of old and new components

• Human-oriented, both optimized for better user experience, and tolerant of humans' erratic
interactions with the system

The REST architectural style contains the following ingredients (which are themselves simpler
architectural styles):

• Client-server. This style separates the concerns of the server (serving data, processing
user inputs) from those of the client (user interface, presentation and interaction). This
simplifies portability of the user interface even to platforms that would not support servers,
and it also allows the components to evolve independently.

• Layering. While an actual system may consist of hierarchical layers that build one on
another, the components are constrained only to see the immediate layers with which they
interact. This restriction puts a bound on the overall system complexity and promotes
component independence, while adding overhead and latency to the interactions, which are

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 29 of 43

mitigated by the increasing performance of computers and networks.

• Stateless communication. “Each request from client to server must contain all of the
information necessary to understand the request, and cannot take advantage of any stored
context on the server.” [Fielding 2000] To understand this constraint, the state of an
application must be separated into the state of resources on the server, and the state of the
interaction (also known as the session) between the client and the server. This constraint
adds communication overhead (again, mitigated by increased performance of modern
systems), and it makes servers relinquish some of the control over how the application is
behaving. On the positive side, stateless communication improves the scalability of servers
(by freeing their resources between requests) and the reliability of applications (by
simplifying the task of recovering from partial failures), as discussed in [Richardson 2007].

• Uniform interface. All the components in a RESTful system must support a single uniform
interface. In particular, HTTP's uniform interface consists of basic methods (GET to retrieve
Web pages, POST for submitting data to a resource, etc.). With a single interface, a Web
browser can access any Web resource, and there is no need for specialized browsers for
different resources; implementations are decoupled from the applications. REST uniform
interface is optimized for large-grain hypermedia data transfer, which is not necessarily
efficient for all applications.

• Caching. To improve network efficiency and server scalability, components on the Web are
allowed to cache responses marked as cacheable. ISPs (Internet Service Providers) and
organizations may deploy large caches to lower the bandwidth used by the users of the
Web; but also the client browser incorporates a cache to improve the perceived
performance. Caching introduces the potential problem of data inconsistency, but the human
users of the Web handle this problem easily.

• Code on demand. Finally, REST allows client functionality to be extended by downloading
and executing code from the server. This is typically scripts inside Web pages (most
commonly in Javascript), or as embedded programs such as applets and Flash programs.
By allowing code-on-demand, the client software only needs to implement a reduced set of
required features. A common example of user interface extensions through code-on-demand
is the Web 2.0 wave of AJAX Web sites.

These constraints are all applied to the architecture of the Web, as embodied mainly in the
HyperText Transfer Protocol HTTP. Nevertheless, some of these constraints cannot be easily
enforced, and it is common for Web sites to break some of them (most notably, the stateless
communication constraint is often broken by using cookies for session maintenance),.

In addition, the hypermedia aspect of the Web leads to a further pair of requirements, which affect
Web architecture, especially in the area of document formats:

• Links and connectedness. Resources on the Web must be able to refer (link) to other
resources, the user must be allowed to navigate the resulting graph of links freely.

• Addressability. Stemming from the requirement for links, it is necessary that all resources
are addressable. For this, REST uses URIs (Uniform Resource Identifiers).

REST was designed with the human-oriented Web in mind; however, the constraints can also be
applied to machine-oriented Web services. An automated, machine-oriented Web application or
service is said to be RESTful when it uses the uniform interface (using all the methods as
appropriate), when its communication is stateless, and when it enables cacheability.

In contrast to RESTful Web services, traditional SOAP-based Web services commonly only use the
POST method, use transient messages that are not cacheable, and keep conversation sessions
between the server and the client. These violations lead towards tighter coupling between the client
and the service, and limit interoperability and scalability of the resulting systems.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 30 of 43

4.3 Enterprise Service Bus
The key item for integration of services within a SOA is the Enterprise Service Bus (ESB). The goal
of an ESB is to provide virtualization of the enterprise resources, allowing the business logic of the
enterprise to be developed and managed independently of the infrastructure, network, and provision
of those business services.

Enterprise Service Bus (ESB) is a new class of integration tools. It supports integration and is also
characterized by transformation and routing functions. More in-depth descriptions of the ESB
concept are available in [Chappell 2004, Craggs 2005].

Originally, first commercial ESB products were described both as a way to integrate existing
middleware services (J2EE application servers, message-oriented brokers, etc.) and products (e.g.,
B2B solutions) and to connect applications with the required protocols. More recently, since the
advent of the SOA approach, ESBs have also been presented as a way to create a SOA.

ESBs clearly face two major challenges:

• How to integrate heterogeneous technology and products, possibly produced by separated
vendors, in a way that is appropriate with respect to the size of each particular integration
problem?

• How to provide the required features to fully address the specifics of SOA needs?

The Java business Integration (JBI) standard seeks to address the first challenge by adopting the
SOA principles. An ESB is built from JBI containers that can be an integration framework, a host for
Java connectors, an XSLT engine, a mediation engine, a service orchestrator, etc. JBI maximizes
the decoupling between the JBI containers that all provide and consume services. The ESB links
the containers together, allowing them to interact.

Currently, it turns out that JBI-compliant ESBs are mostly open-source ESBs that aim at promoting
highly configurable and made-to-measure ESBs in order to better fit business needs.

The JBI specification has been standardized by the Java Community Process (JCP) expert group.
The JBI specification promotes a plug-in based architecture which enables the creation of tailored
integration solutions by putting together the best-of-breed integration components. One of the main
interest for using JBI compliant software in an ESB is that it is based on Web Services best
practices (WSDL usage, loose coupling, XML messaging).

Companies are currently struggling with the second challenge, as they realize that an ESB vendor's
solution does not fit their needs. The reasons are manifold: for example, the ESB does not provide
management models to control and enforce QoS at different levels and track consumer usage; it
does not fit into existing management and security frameworks; it is unable to connect to or evolve
toward a B2B architecture. This problem will still be open, as long as SOA technology editors do not
address the immediate and long-term business needs, and concrete functional SOA.

4.4 WS Policy
The Web Service Policy Framework16 (WS-Policy) defines a syntax and semantics for service
providers and service requestors to describe their requirements, preferences, and capabilities.

A policy is defined as a collection of policy alternatives where each alternative is a collection of
policy assertions. An assertion is a basic unit of policy. It is used to represent a requirement,
capability, or a behaviour of a Web Service. A policy assertion specifies characteristics which are
critical for selecting and using the Web Services, for instance contextual properties. An assertion
can include an arbitrary number of child assertions and attributes. To facilitate interoperability, WS-
Policy defines a normal form for policy expressions which is a straightforward XML Infoset

16 http://www.w3.org/Submission/WS-Policy/

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 31 of 43

representation of a policy, enumerating each of its alternatives that in turn enumerate each of their
assertions. An example of a WS Policy assertion is the need for credentials expressed as username
and password for accessing a resource.

A policy is built up using assertions and nested combinations of operators and attributes. Policy
syntax is used to describe acceptable combinations of assertions to form a complete set of
instructions to the policy processing infrastructure, for a given Web Service invocation. Each set of
assertions is termed an alternative.

When applied in the Web Services model, policy is used to convey conditions on an interaction
between two Web Service endpoints. Satisfying assertions in the policy usually results in behaviour
that reflects these conditions. Typically, the provider of a Web Service exposes a policy to convey
conditions under which it provides the service. A requester might use this policy to decide whether
or not to use the service. A requester may choose any alternative since each is a valid configuration
for interaction with the service, but a requester must choose only a single alternative for an
interaction with a service since each represents an alternative configuration.

4.5 SAWSDL
Semantic Annotations in WSDL and XML Schema [Farrel 2007] is a W3C specification that defines
how to add semantic annotations to Web Service Description Language and to XML Schema
[XMLSchema 2004]. It defines extension attributes that can be applied to elements in both WSDL
and XML Schema in order to annotate WSDL interfaces, operations and their input and output
messages. SAWSDL is the first step towards standardization in the area of Semantic Web Services.

Semantic annotations in WSDL and XML Schema are used for these purposes:

• Associating WSDL interfaces with some taxonomical categories to help semantic Web
service discovery,

• Describing the purpose or applicability of WSDL operations to help discovery or composition,

• Linking and mapping inputs, outputs and faults of WSDL operations to semantic concepts to
help facilitate mediation and service discovery and composition.

While the semantic annotations are used to point to taxonomies, ontologies or mappings, SAWSDL
is independent of any particular ontology language or mapping language. The mechanism only
requires that the concepts in the semantic models can be identified with URIs.

SAWSDL can be split in two parts: semantic model references from elements in WSDL or XML
Schema to concepts in a semantic model (usually an ontology or taxonomy), and data mappings
between XML and semantic models. A more detailed presentation of these two aspects can be
found in Deliverable D1.2.1 “WSMO grounding in SAWSDL” [Kopecký 2008].

4.6 WSMO
The Web Service Modeling Ontology [Roman 2006] is a conceptual model for describing the
semantics of Web services and related entities, for the purpose of automating some aspects of
service discovery and usage. WSMO is complemented by the Web Service Modeling anguage
[Bruijn 2005], a concrete language that implements the conceptual model and fleshes out the
details. In the following, all statements about WSMO also apply to WSML.

WSMO has four main building blocks:

• Ontologies for knowledge representation

• Web services represent the semantics of services

• Goals represent user requests that can be satisfied with services

• Mediators represent components that bridge any heterogeneities

Ontologies and ontological instances (data) are used in all the other parts of WSMO. For

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 32 of 43

representing ontologies with varying levels of expressivity and reasoning complexity, WSML
provides several fragments: WSML-Core allows basic modeling supported by most knowledge
representation technologies. Figure 7 illustrates the relationships between the various fragments of
WSML.

Figure 7. WSML Ontology Language Fragments.

WSML-Flight and WSML-Rule extend WSML-Core with techniques of Logic Programming for
advanced reasoning with axioms and rules. WSML-DL extends WSML-Core with modeling
constructs coming from Descriptive Logic. And finally, WSML-Full unifies both branches (Logic
Programming and Descriptive Logic) and thus provides the most expressive language.

Mediators are used where different descriptions express similar meaning differently. For instance,
ontology mediators can be used to import OWL ontologies into WSML, or to map between different,
yet semantically overlapping terminologies.

Finally, goals and Web services describe what users want and what Web services provide. In
WSMO, descriptions of goals and Web services have the same structure, therefore in the following,
we will only talk about Web service descriptions, in terms of what a service provides, and the reader
may also read it in terms of what a client requests.

A Web service description captures the functional semantics (the capability) of a Web service, i.e.
what the service does, and the behavioral semantics (the interface), i.e. how the service
communicates with other parties.

Functional semantics are expressed with a capability to construct that specifies the preconditions
and assumptions that must be valid before the service can be used, and the post-conditions and
effects which are expected to be valid after the service is successfully invoked.

The behavioral semantics part of the description of a Web service has two aspects: external
behavior called choreography, i.e. how the clients talk to the service, and internal behavior called
orchestration, i.e. how the service uses other services to implement its functionality.

Figure 8 illustrates the structure of WSMO Web service (and goal) descriptions:

WSML-Core WSML-Flight WSML-Rule

WSML-DL WSML-Full

descriptive
logic

logic
programming

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 33 of 43

Figure 8. Structure of WSMO Web Service Description.

A WSMO choreography is a state machine, with its states described using ontologies, in terms of
concepts, their instances and the relations between them. Inputs and outputs of the Web service
are represented as instances of certain concepts that can be read or written by the client
communicating with the service. Each concept in the choreography state ontology can be assigned
to a role which determines whether the clients may read or update (or both) the values of instances
of that concept. In WSMO these concepts and instances are called accessible.

The accessible concepts must be available to the client using some underlying messaging protocol.
Therefore, a choreography definition includes grounding, which defines the protocol for reading and
writing of the accessible concepts by the clients; in other words, the grounding specifies how the
client may communicate with the service.

4.7 BPM techniques: BPML, BPEL
Business Process Management (BPM) is an IT-enabled management discipline that treats business
processes as assets to be valued, designed and enhanced in their own right. BPM technologies
support both human-centric processes (e.g., claims processing, accounts payable or customer
servicing) and system-intensive processes (e.g., straight-through processing or trade settlement),
as well as a mixture of both (e.g., loan granting) [Di Nitto 2008].

SOAs represent one of the most relevant approaches for building IT systems supporting BPM.
Thus, various initiatives have been started to make business processes easily translated in some
executable languages able to compose and coordinate various services. In this context, two of the
most well-known initiatives are BPML and BPEL.

The Business Process Modelling Language (BPML) is a standard developed and promoted by
BPMI.org (the Business Process Management Initiative) [Curbera 2002]. BPML can be seen as a
language competing with other workflow description standards such as IBM’s WSFL (Web Services
Flow Language) and Microsoft’s XLANG (Web Service for Business Process Design) which recently
merged in to BPEL4WS (Business Process Execution Language for Web Service). After BPMI.org
merged with the OMG, BPMI.org finally decided to drop BPML in favour of BPEL4WS.

BPEL4WS (in short BPEL) was proposed by BEA, IBM and Microsoft. In July 2002, the first version
of BPEL was published [Curbera 2002]. Subsequently, SAP and Siebel joined the effort and the

Web Service

Capability (functional semantics)

preconditions

assumptions effects

postconditions

Interface (behavioral semantics)

Orchestration
(using other services)

Choreography
(interface for clients)

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 34 of 43

second version of BPEL [Andrews 2003] was published in May 2003. There are also other versions
of BPEL: Websphere Integration Developer version 6.0 (informally WebSphere BPEL), Oracle
BPEL and so on. The latest version of BPEL has been described in [Arkin 2005]. Many major
vendors of business solutions have joined the Web Services Business Process Execution Language
Technical Committee (WSBPEL TC), including Adobe, Hewlett-Packard, NEC, Oracle and Sun.

BPEL is also known as a Web services flow language, Web service execution language, Web
service composition language, Web service orchestration language and Web-enabled workflow
language. Web services composition languages, such as BPEL, build directly on top of Web Service
Description Language (WSDL). BPEL can provide and/or use one or more services described by
means of WSDL. A Web service composition language can glue composed services together into a
process model. BPEL provides the means to specify such a process model in an executable
manner. An important difference between WSDL and a Web service composition language is
revealed when considering the states. WSDL is in essence stateless while Web service composition
languages such as BPEL record states for processes, but don't describe the interfaces for the
individual webservices.

BPEL combines the features of a block structure language inherited from XLANG with those for
directed graphs originating from WSFL [van der Aalst 2003]. The language is intended to support
the modelling from two types of processes executable and abstract processes. An abstract, (not
executable) process is a business protocol, specifying the message exchange behaviour between
different parties without revealing the internal behaviour for any one of them. An executable process
specifies the execution order between a number of activities constituting the process, the partners
involved in the process, the messages exchanged between these partners, and the fault and
exception handling specifying the behaviour in case of errors and exceptions.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 35 of 43

5. Challenges for the SOA4All Architecture
The principles presented in Section 3 are very high level and can be addressed from various points
of view, using various technologies, including those that we have briefly summarized in Section 4. In
the current section we focus on the specific challenges that are concerned with the SOA4All service
Web architecture and discuss how these challenges relate to the general principles of Section 3.

The challenges discussed below have been preliminarily derived from the main SOA4All objectives.
They will be integrated in the next deliverables with those challenges that will emerge from the
analysis of the requirements that are being defined for the various case studies that will be
developed during the project. Following each of the challenge, a summary table,Table 1,
summarizes the challenges in this section and their mapping to the general principles.

5.1 Heterogeneity
It should be assumed that worldwide distributed systems contain many different kinds of hardware /
software systems and environments. In particular, distributed service-based systems can contain
different kinds of services possibly built using different standards (for instance, in Section 4 Web
and REST services have been presented).

Thus, a service Web infrastructure should be able to handle such heterogeneity. To do so, it has to
implement some of the principles that have discussed in Section 3, and, in particular, the
standardized service contract, loose coupling, and abstraction principles of SOAs as well as the
openness and interoperability principles of Web and the independency of descriptions with respect
to implementations principle of semantic descriptions. Fully addressing these principles, in fact,
allow consumers to interact with services regardless the standard they adopt.

When the service Web infrastructure is also able to handle heterogeneity at the semantic level it
becomes much more powerful. In this case it is implementing the centrality of mediator principle and
it is highlighting the importance of the role of mediator as the one that keeps the mapping between
different semantic descriptions.

5.2 Worldwide access mechanisms
Services should be accessible worldwide. This means that they should be identifiable in a unique
way and should be invoked despite potential heterogeneity.

Thus, if a wide-spread service Web infrastructure is to be realized, a worldwide communication
infrastructure able to deliver the following is required:

• A global addressing schema, that allows each service to be addressed in a unique way,
regardless the device that is hosting it. In its simplest form, this may be a unique name and,
more elaborately, a description of the capability of a service (that is, the degree to which it
can be used to achieve a certain goal).

• A transport layer to transmit requests for service invocations and the results from them.

• A platform-independent interface. This commonly accepted interface should process
service requests and access to service implementations. Of course issues such as efficiency
should be properly addressed since, as pointed out in [Fielding 2000], a uniform interface
may degrade efficiency while gaining in standardization.

The main principles that are concerned with this challenges are, once again, standardized service
contract, abstraction, and openness. Indeed, the implementation of the ontology-based principle
allows for sophisticated ways of describing services and identifying them within the Web.

5.3 Semantic provisioning of services
As suggested by the ontology-based principle, formal semantic descriptions of services allows

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 36 of 43

powerful reasoning and precise matching of requests with services. However, formal semantic
introduces a relevant computational overhead that has to be taken into account for usage at
runtime. In the future new processor architectures with higher computational capabilities will solve
this problem.

Thus, until the computational overhead will represent a problem, some lightweight approaches
should be studied. They represent a compromise in the trade of between expressive power and
computational speed. The challenge is to understand to what extent we can simplify semantic
languages without losing too much of their capabilities. An example of a lightweight approach is
SAWSDL that has been discussed in Section 4.5.

Another issue that requires special care from the semantic description perspective is the
coexistence in the service Web of software services and human services. Thus, we need to
understand how human services are described and how they are accessed and provided.

Of course, semantic provisioning of services addresses all principles that are concerned with
semantics, but it also implements the human-centric principle. As is discussed above, people can
be those who execute services. Even in their usual role of service users, they should be put at the
centre of the world and supported in all their activities concerned with the identification, analysis,
and selection of services. In all these activities, of course (lightweight) semantic approaches can
introduce significant simplifications for people.

5.4 Decentralized dynamicity and adaptability
Services can appear, be modified, or disappear in an ad hoc fashion. Thus, it should be possible to
control the life cycle of services and to handle their dynamicity by offering proper mechanisms that
enable the adaptation of those systems that exploit these dynamic services (see for instance
[Colombo 2006]). Adaptation usually is concerned with the possibility of replacing on the fly a
service with another similar one that can be identified and selected during the execution of the
system.

Of course, a central control on the life cycle of all services would hamper access and therefore
scalability. Thus, their provisioning and modification should be completely decentralized and
unconstrained, without hampering the possibility of building solid service compositions out of them.

Addressing this challenge means to implement most of the principles that have been outlined in
Section 3. Note though the important role of the autonomic principles that are those that enable and
drive the possibility of self-adapting a system based on the status of the services it is using and of
all those that could replace them.

5.5 Matching requests and services
Even if services are accessible worldwide, without proper support for matching requests and
services it may be difficult for a service consumer to find the right service to use. Thus, proper
matching mechanisms need to be provided. While so far the literature has focused on centralized
matchmakers, the real challenge is to distribute the execution of matching algorithms on multiple
nodes. In [Cugola 2008] an approach to enable such matching by using a distributed
publish/subscribe infrastructure is presented. The approach exploits content-based routing to route
requests towards those services that can fulfil them. This routing approach is based solely on
syntax-based properties of requests and services. The challenge here is to explore the use of the
additional information provided by the semantic-based description of services in order to create
techniques that provide smarter routing, which will result in a highly scalable and reactive smart
semantic middleware.

Many principles are related to this challenge. Among the others, the discoverability principle and the
problem solving principle appear to be the most relevant. Of course, matching addresses the
discoverability principle providing proper discovery techniques. Indeed, it also addresses the
problem solving principles in all cases in which the request is expressed in terms of high-level goals
that then need to be associated with specific service descriptions.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 37 of 43

5.6 Enabling n:m asynchronous interactions
The classic client-server model of interaction no longer reflects the nature of the Web. Thus, we
should introduce richer models of interaction to address situations where multiple entities
collaborate by playing different roles, each of them sending and receiving complex messages. More
importantly, the role (requestor or responder) that each entity plays in those interactions might be
interchanged.

It is believed that a publish/subscribe approach could suit the requirements since it offers multicast
communication. Also, it allows the interacting party to remain anonymous thus guaranteeing a high
level of loose coupling.

Besides the loose coupling principle, publish/subscribe also addresses the distribution principle and,
indirectly, the composability principle. It, in fact, enables a new kind of composition approach where
the composition logic can be decentralized in the various interacting peers instead of being
centralized in a single component as it would happen when using a normal BPEL engine (see
Section 4.7).

5.7 Enabling service prosumers
From a purely technological viewpoint, the mechanisms used in Web 2.0 are similar to the
“standard” Web. However, Web 2.0 brings a number of Web-related concerns to the fore which,
when incorporated into SOA, will be an important ingredient of a Service Web. In particular, within
Web 2.0 the provision of content has been democratized – in contrast to the standard Web where
users are considered to be passive spectators of read-only content. Active consumers (often
referred as prosumers) become part of the content providing process and often even form
democratic communities of creators.

Applying this idea to services is not as simple since to date the development of services has been
an activity for specialists. Therefore, the challenge is to understand the kinds of tools that should be
offered to users in order to transform them in service prosumers.

Clearly, this challenge is related to the human-centric and to the problem solving principles, but it
also has an impact on the discoverability and composability principles since the ultimate aim of
prosumers is to build new services by discovering and composing those that already exist. In many
cases, the point of view of a prosumer will be different than the point of view of who has developed
a certain service. Thus, the ontological role separation principle will have to be addressed in order
to cover this viewpoint mismatch.

5.8 Supporting both machine and human-based computation
Section 5.3 has highlighted the role services operated by humans could have. Indeed, incorporating
human interaction and cooperation in a comprehensive fashion creates a route to solving tasks
such as service ranking and mediation, which otherwise remain computationally infeasible. In
several scenarios, Web 2.0 and human computing approaches, together with their underlying social
consensus-building mechanisms, have proven the potential of combining human-based services
with services provided via automated reasoning. As we have already discussed, the transparent
provisioning of services abstracting over whether the ‘engine’ is a human or machine will
significantly increase the overall quality of services available to the end-user. In the end, a service
need not necessarily by supplied by a computer program, enabling for example, current approaches
to service discovery and (human) expert finders to be combined.

From this perspective the challenge is, therefore, to see humans as being part of our service Web
infrastructure. This requires proper user interfaces and mechanisms for standard services to human
services communication.

Several principles are concerned with human-based computation. In particular, the discoverability,

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 38 of 43

composability, and problem solving principles are seen here from a new perspective. Not only
machines but also people can discover and compose services or solve problems. The
implementation of such principles in the service-based architecture has to take this consideration
into account.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 39 of 43

Table 1. Challenges and principles.

Heterogeneity
Worldwide access

mechanisms

Semantic

provisioning of

services

Decentralized

dynamicity and

adaptability

Matching requests

and responses

Enabling n:m

asynchronous

interactions

Enabling service

prosumers

Supporting both

machine and

human-based

computation

Standardized Service Contract Principle X X X

Loose Coupling Principle X X X X X

Abstraction Principle X X X

Reusability Principle X X

Autonomy Principle X X

Statelessness Principle

Discoverability Principle X X X X

Composability Principle X X X X

Distributed Principle X X

Openness Principle X X X X

Interoperability Principle X X X

Human-centric Principle X X X

Self-healing Principle X

Self-configuration Principle X

Self-optimization Principle X

Self-protection Principle X

Ontology-based Principle X X X X X

Centrality of Mediation X X X X

Ontological Role Separation X X X X

Independency of descriptions with respect to

implementations X X X

Problem Solving Principle X X X X X

SERVICE-ORIENTATION PRINCIPLES

THE WEB PRINCIPLES

AUTONOMIC COMPUTING PRINCIPLES

FORMAL SEMANTIC DESCRIPTION PRINCIPLES

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 40 of 43

6. Conclusion
This deliverable tries to set the stage for the SOA4All service Web architecture by adopting a
proper terminology, mostly inherited by the NEXOF-RA glossary, defining the main general
principles for the service Web, shortly presenting some interesting technologies, and, finally,
identifying some challenges for the development of the SOA4All architecture.

We have considered as principles those defined in the fields that can be considered the main
pillars of the SOA4All project, in particular, Web services, Web, and semantic Web. We have
also discussed the principles that are the basis of autonomic computing since we think that
some of them should be addressed by the SOA4All architecture in order to enable the
development of flexible service compositions that are able to self-adapt to the external
situation in which they run.

While discussing the challenges that we have identified, we have tried to relate them to the
principles that could help in addressing them.

The work presented here will be incrementally extended and completed during the project. In
particular, the next step will be to review the challenges that will be driving the development
of the SOA4All architecture in the light of the requirements that are being defined by the
owner of use cases.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 41 of 43

7. References
1. [Akkiraju 2005] Akkiraju R., Farrell J., Miller J., Nagarajan M., Schmidt M.T., Sheth A.,

Verma K., WSDL-S Technical NoteVersion 1.0 Web Service Semantics, available at:
http://www.w3.org/Submission/WSDL-S/, 2005

2. [Andrews 2003] Andrews, T. Curbera, F. Dholakia, H. Goland, Y. Klein, J. Leymann,
F. Liu, K. Roller, D. Smith, D. Thatte, S. Trickovic, I. and Weerawarana. S. (2003)
Business process execution language for Web services, version 1.1, May 2003.

3. [Arkin 2005] Arkin, A. Askary, S. Bloch, B. Curbera, F. Goland, Y. Kartha, N. Liu, C.K.
Mehta, V. Thatte, S. Yendluri, P. Yiu, A. and Alvesa, A. (2005) Web services
business process execution language, version 2.0, December 2005

4. [Armstrong 2003] Armstrong J., Making reliable distributed systems in the presence
of software errors. PhD thesis, Royal Institute of Technology, Swedish Institute of
Computer Science (SICS), Stockholm, December 2003.

5. [Brickley 2004] Brickley D., Guha R.V., (Eds.) RDF Vocabulary Description Language
1.0: RDF Schema W3C Recommendation 10 February 2004 available at:
http://www.w3.org/TR/rdf-schema/

6. [Bruijn 2005] Jos de Bruijn (editor): The Web Service Modeling Language WSML,
version 0.21 available at http://www.wsmo.org/TR/d16/d16.1/v0.21/.

7. [Craggs 2005] Steve Craggs, "Best-of-Breed ESBs - Making your choice", Global
Integration Summit, May 23-25, 2005, Banff, Canada.

8. [Chappell 2004] Dave Chappell, "Enterprise Service Bus: Theory in Practice", O'Reilly
Media, June 2004 (1st edition).

9. [Colombo 2005] Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., and Zuccalà,
M.. Speaking a Common Language: A Conceptual Model for Describing Service-
Oriented Systems, International Conference on Service Oriented Computing (ICSOC
2005), December 2005.

10. [Colombo 2006] Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A Service Composition
Execution Environment Supporting Dynamic Changes Disciplined Through Rules.
ICSOC 2006: 191-202.

11. [Cugola 2008] Cugola, G. and Di Nitto, E. 2008. On adopting Content-Based Routing
in service-oriented architectures. Inf. Softw. Technol. 50, 1-2 (Jan. 2008), 22-35.

12. [Curbera 2001] Curbera, F.; Nagy, W.A.; and Weerawana, S., “Web Service: Why
and How?”, In Proceedings of the OOPSLA-2001 Workshop on Object-Oriented Ser-
vices. Tampa, Florida, 2001.

13. [Curbera 2002] Curbera, F. Goland, Y. Klein, J. Leymann, F. Roller, D. Thatte, S. and
Weerawarana. S. (2002) Business process execution language for Web services,
version 1.0, July 2002.

14. [Di Nitto 2008] Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K., A
Journey to highly dynamic, self-adaptive service-based applications, to appear on the
Automated Software Engineering Journal, 2008.

15. [EBXML 2001] Team, T. A. ebXML Glossary 2001.

16. [Erl 2007] Erl T., SOA Principles of Service Design, the Prentice Hall Service-
Oriented Computing Series from Thomas Erl, 2007.

17. [Eugster 2002] Eugster P.Th., Felber P., Guerraoui R., Handurukande S.B., “Event
systems. How to have your cake and eat it too”, 22nd International Conference on

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 42 of 43

Distributed Computing Systems Workshops (ICDCSW '02), 2002.

18. [Farrell 2007] Farrell J., Lausen H. (Eds.), Semantic Annotations for WSDL and XML
Schema W3C Recommendation 28 August 2007, available at:
http://www.w3.org/TR/sawsdl/.

19. [Fensel 2007] Fensel, D., Lausen, H., Polleres, A., De Bruijn, J., Stollberg, M.,
Roman, D., Domingue, J. Enabling Semantic Web Services: Web Service Modeling
Ontology. Springer, 2007.

20. [Fielding 2000] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of California, Irvine, 2000. Chair:
Richard N. Taylor.

21. [Foster 2004] Foster I., Frey J., Graham S., Tuecke S., Czajkowski K., Ferguson D.,
Leymann F., Nally M., Sedukhin I., Snelling D., Storey T., Vambenepe W.,
Weerawarana S, Modeling Stateful Resources with Web Services, downloadable at:
http://www.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf, Version
1.1, 2004.

22. [Gruber 1993] Gruber, T. R. A translation approach to portable ontology specifications
Knowl. Acquis., Academic Press Ltd., 1993, 5, 199-220.

23. [Kayne 2003] Kayne D., Loosely Coupled, The Missing Pieces of Web Services Rds
Associates Inc, ISBN: 1881378241, 2003.

24. [Kephart 2003] Kephart, J.O. and Chess, D.M., “The vision of autonomic computing”,
IEEE Computer, January 2003, 36:1, pages: 41-50.

25. [Kerrigan 2008] M. Kerrigan, B. Norton, A. Mocan (Editors): “Reference Ontology for
Semantic Service Oriented Architectures”, OASIS SEE (Semantic Execution
Environment) Technical Committee specifications, Release Candidate, June 2008.
Available at http://www.oasis-open.org/apps/org/workgroup/semantic-
ex/document.php?document_id=27923.

26. [Kopecký 2008] Jacek Kopecký, Adi Schütz, 1.2.1 WSMO grounding in SAWSDL,
SOA4All Deliverable D1.2.1 2008.

27. [Kreger 2001] Kreger, H. Web Services Conceptual Architecture, downloadable at:
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf 2001.

28. [Krummenacher 2007] Krummenacher R., Simperl E. and Fensel D.: Towards
Scalable Information Spaces. Workshop on New forms of reasoning for the Semantic
Web: scaleable, tolerant and dynamic, ISWC 2007.

29. [Luckham 2002] Luckham D., The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems, Addison-Wesley Professional,
2002.

30. [MacKenzie 2006] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz
(eds.): Reference Model for Service Oriented Architecture 1.0, OASIS SOA-RM
Technical Committee Specification, 2 August, 2006, available at: http://www.oasis-
open.org/committees/download.php/19679/soa-rm-cs.pdf.

31. [Margolis 2007] Margolis, B. SOA for the Business Developer: Concepts, BPEL, and
SCA (Business Developers series) Mc Press, 2007

32. [Martin 2004] Martin D., Burstein M., Hobbs J., Lassila O., McDermott D., McIlraith S.,
Paolucci M., Parsia B., Payne T., Sirin E., Srinivasan N., Sycara K., “OWL-S 1.1
Release: Semantic Markup for Web Services”, available at:
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2004.

 SOA4All –FP7 – 215219 – D1.1.1 Design Principles for a Service Web v1

© SOA4ALL consortium Page 43 of 43

33. [McIlraith 2001] McIlraith S., Son T.C., and Zeng H., (2001) Semantic Web Services.
IEEE Intelligent Systems, 16(2):46–53.

34. [Miller 2005] Miller B., The autonomic computing edge: Can you CHOP up autonomic
computing?, available at: http://www.ibm.com/developerworks/autonomic/library/ac-
edge4/, 2005.

35. [Parashar 2006] Parashar M., Hariri S., (Eds.) Autonomic Computing: Concepts,
Infrastructure, and Applications, 1st Ed., CRC, 2006.

36. [Pohl 2005] Pohl, K.; Böckle, G. & van der Linden, F. Software Product Line
Engineering. Foundations, Principles, and Techniques. Springer, Berlin, 2005.

37. [Richardson 2007] Leonard Richardson and Sam Ruby. RESTful Web Services.
O'Reilly Media, May 2007.

38. [Roman 2006] Dumitru Roman, Holger Lausen, Uwe Keller (editors): Web Service
Modeling Ontology (WSMO), version 1.3 2006 available at
http://www.wsmo.org/TR/d2/v1.3/.

39. [SeCSE 2007] SeCSE consortium, Refined conceptual model, Project deliverable
A5.D9.2, 2007, available at http://secse.eng.it.

40. [SOAP 2007] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition),
Recommendation, W3C, April 2007. Available at http://www.w3.org/TR/2007/REC-
soap12-part1-20070427/.

41. [TheOpenGroup 2007] The Open Group: Service-Oriented Infrastructure Project
Description, Version 1.1, July 2007.

42. [UDDI 2004] UDDI Version 3.0.2, OASIS UDDI Spec Technical Committee Draft,
October 2004. Available at http://www.oasis-open.org/committees/uddi-
spec/doc/spec/v3/uddi-v3.0.2-20041019.htm.

43. [van der Aalst 2003] van der Aalst, W.M.P. Don't go with the flow: Web Services
composition standards exposed, IEEE Intelligent, February 2003.

44. [Vitvar 2007] Tomas Vitvar, Michal Zaremba, Matthew Moran, Maciej Zaremba, Dieter
Fensel: SESA: Emerging Technology for Service-Centric Environments. IEEE
Software 24(6): 56-67 (2007).

45. [W3C 2004] W3C: Web Services Glossary 2004. http://www.w3.org/TR/ws-gloss/.
Accessed on 2008-06-16.

46. [W3C 2007] W3C: Semantic Annotations for WSDL and XML Schema – Terminology.
http://www.w3.org/2002/ws /sawsdl/spec/#Terminology. Accessed on 2008-05-30.

47. [WSDL 2007] Web Services Description Language (WSDL) Version 2.0.
Recommendation, W3C, June 2007. Available at http://www.w3.org/TR/wsdl20/.

48. [XMLSchema 2004] XML Schema Part 1: Structures. Recommendation, W3C,
October 2004. Available at http://www.w3.org/TR/xmlschema-1/.

