
ALFRED
Personal Interactive Assistant for Independent Living and Active Ageing

WP3 – ALFRED Core

D3.5.2 – App Development Reference and
Marketplace Integration

Deliverable Lead: ASC

Delivery Date: 03/2016

Dissemination Level: Public

Version 1.0

This deliverable provides a documentation of the first
efforts being put into a well-defined app development
reference for third party developers. It specifies the scope
of this first version and the degree of fulfilment of the
requirements to be covered by the documentation.
Moreover, it specifies how developers will be able to
develop for the Personal Assistant Service and how to
consume the shared ALFRED APIs.

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
2 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Document Status

Deliverable Lead Gerrit Klasen, ASC

Internal Reviewer 1 Robin Persson, TALK

Internal Reviewer 2 Tim Dutz, TUDA

Type Deliverable

Work Package WP3: ALFRED Core

ID D3.5.2: App Development Reference and Marketplace Integration

Due Date 31.03.2015

Delivery Date 31.03.2015

Status For Approval

Note

This deliverable is subject to final acceptance by the European Commission.

Disclaimer

The views represented in this document only reflect the views of the authors and not the
views of the European Union. The European Union is not liable for any use that may be
made of the information contained in this document.

Furthermore, the information is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose. The user of the information uses it at its
sole risk and liability.

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
3 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Project Partners

Ascora GmbH, Germany

Atos Spain sau, Spain

Worldline, Spain

Charité - Universitätsmedizin Berlin -
Department of Geriatrics, Germany

Asociacion de Investigacion de la Industria
Textil, Spain

Technische Universität Darmstadt, Germany

National Foundation for the Elderly, The
Netherlands

Talkamatic AB, Sweden

E-Seniors, France

TIE Nederland N.V., The Netherlands

IESE Business School, Spain

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
4 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Executive Summary

In the context of T3.5, the main element is the extendibility through new apps. Third party
developers are welcome to contribute to the overall ALFRED eco system. Related
deliverables 3.5.1 and 3.5.2 aim to support and advise them the procedure for the whole
progress.

D3.5.2 however demonstrates the achievement of all formulated goals in D.3.5.1, which
have not been reached so far. As the Context-Aware Dialogue Engine (CADE) and
Knowledge and Information Storage (KIS) interfaces already were present, missing other
API access points for the Personalization Manager (PM), Health Monitor (HM),
Marketplace (MP) and Game Manager (GM) have been added to the Personal Assistant
Shared library. A third party developer now has the promised, full functional access to the
Personal Assistant API components. It offers inter-communication methods to every
relevant module provided by the PA. As a result, third party apps are able to use the
functionality of the Game Manager and others.

In addition, two third party solutions, “HealthMonitorDemo” and “CalendarAppDemo” are
uploaded to the Github-organisation1 as tangible examples. While “HealthMonitorDemo”
will demonstrate the integration of CADE and the Health Monitor Client of the Personal
Assistant, the “CalendarApp” will do the same for CADE and KIS. These samples are
accompanied by the promised “how to”–file, explaining the integration process step by
step. As shown there, third party apps connect to the Personal Assistant Service, and can
also use the available APIs in the same way.

Beside the description of their integration in general, D3.5.2 additionally points out the
special preparations needed for CADE, which allows the user to communicate with the
ALFRED system via voice interaction. Apps can offer this service to the end user, but
special preparations have to be performed to use this functionality in the app. It is
necessary to provide a dialogue domain description (DDD), as described in deliverable
D3.3.2, and to communicate with the CADE backend from the app itself. Other commands
are referenced in the annexed “how to”-document.

Finally, the marketplace integration will allow the developer to distribute his or her app on
Alfredo Marketplace Webserver. However, an end user will be able to install their apps
with the Alfredo Marketplace Android app, which also is integrated into the Personal
Assistant.

1
 https://github.com/ALFREDProject, as created in D.3.5.1

https://github.com/ALFREDProject

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
5 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Table of Contents

1 Introduction .. 7
1.1 ALFRED Project Overview .. 7

1.2 Deliverable Purpose, Scope and Context .. 8
1.3 Document Status and Target Audience ... 8
1.4 Abbreviations and Glossary ... 8
1.5 Document Structure ... 8

2 App Development Reference ... 9

2.1 Context and Scope .. 9

2.2 State of the Prototype .. 9

2.3 Requirements and Preparations .. 10
2.3.1 Personal Assistant ... 10
2.3.2 Third Party Apps .. 11

2.4 Deployment (Installation) ... 12
2.5 Execution and Usage .. 15

2.5.1 Integration of the Personal Assistant ... 15
2.5.2 Using the implementations with CADE .. 17
2.5.3 CalendarAppDemo / HealthMonitorDemo examples 20

2.6 Test Plan ... 21

2.7 Target Performance ... 21

2.8 Limitations and Further Developments .. 21

2.8.1 Limitations .. 22
2.8.2 Further Development ... 22

2.9 Summary ... 22
3 Marketplace Integration ... 23

3.1 Context and Scope .. 23

3.2 State of the Prototype .. 23
3.2.1 App Marketplace Android ... 24

3.2.2 App Marketplace Web .. 24
3.3 Requirements and Preparations .. 25

3.3.1 App Marketplace Android ... 25

3.3.2 App Marketplace Web .. 26
3.4 Deployment (Installation) ... 27

3.4.1 App Marketplace Android ... 27

3.4.2 App Marketplace Web-UI ... 27
3.5 Execution and Usage .. 27

3.5.1 App Marketplace Web .. 29
3.6 Test Plan ... 37

3.6.1 Test Plan Marketplace Android Client .. 37

3.6.2 Test Plan Marketplace Web ... 37
3.7 Target Performance ... 37
3.8 Limitations and Further Developments .. 38
3.9 Summary ... 38

4 Conclusion ... 39

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
6 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

List of Figures and Listings

List of Figures

Figure 1: Screenshot – Source Code Snippet of the PA in Android Studio 11
Figure 2: Screenshot Android Settings – Selecting the Security Settings 13
Figure 3: Screenshot Android Security Settings – Allowing Unknown Sources 14
Figure 4: Overview of the Personal Assistant Architecture .. 15
Figure 5: Sequence Diagram of the CADE Interaction for Third Party Apps 18

Figure 6: View of My Apps from the Developer Role’s Perspective 30
Figure 7: View of Add App from the Developer Role’s Perspective 31
Figure 8: View of My Tests from the Tester Role’s Perspective ... 32

Figure 9: View of Approve for Testing from the Approver Role’s Perspective 33
Figure 10: View of Approve for Publication from the Approver Role’s Perspective 34
Figure 11: View of Tests Management from the Approver Role’s Perspective 36

List of Tables

Table 1: Implemented and Planned Features .. 10
Table 2: ALFREDO Marketplace Implemented Features ... 23
Table 3: Key Performance Indicators ... 37

Listings

Listing 1: Old way of connecting to the Personal Assistant Service 16
Listing 2: New way of connecting to the Personal Assistant Service 17

Listing 3: Handling incoming CADE command .. 19
Listing 4: Executing CADE Action .. 20

Listing 5. Integration with Personal Assistant. Login access. ... 24
Listing 6. Register user into the ALFRED OAuth ... 25
Listing 7. Login with new user using the ALFRED OAuth .. 25

Listing 8: Message transmission trough PersonalAssistentCommons 28

Listing 9: Message handling in MobileAssistentFoundation ... 28

Listing 10: Message to obtain the current apps by category .. 29
Listing 11: Message sent to the CADE. ... 35

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
7 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

1 Introduction

ALFRED – Personal Interactive Assistant for Independent Living and Active Ageing – is a
project funded by the Seventh Framework Programme of the European Commission under
Grant Agreement No. 611218. It will allow older people to live longer at their own homes
with the possibility to act independently and to actively participate in society by providing
the technological foundation for an ecosystem consisting of four pillars:

 User-Driven Interaction Assistant to allow older people to talk to ALFRED and to
ask questions or define commands in order to solve day-to-day problems.

 Personalized Social Inclusion by suggesting social events to older people, taking
into account their interests and their social environment.

 A more Effective & Personalized Care by allowing medical staff and caretakers to
access the vital signs of older people monitored by (wearable) sensors.

 Physical & Cognitive Impairments Prevention by way of serious games that help
the users to maintain and possibly even improve their physical and cognitive
capabilities.

This deliverable provides a documentation of the first efforts being put into a well-defined
app development reference for third party developers. It specifies how (third-party)
developers will be able to develop for the Personal Assistant Service and how their
applications can be enabled to consume the shared ALFRED APIs.

1.1 ALFRED Project Overview

One of the main problems of western societies is the increasing isolation of older people,
who do not actively participate in society either because of missing social interactions or
because of age-related impairments (physical or cognitive). The outcomes of the ALFRED
project will help to overcome this problem with an interactive virtual butler (a smartphone
application also called ALFRED) for older people, which is fully voice controlled.

The ALFRED project is wrapped around the following main objectives:

 To empower older people to live independently for longer by delivering a virtual
butler with seamless support for tasks in and outside the home. This virtual butler
(the ALFRED app) aims for a very high end-user acceptance by using a fully voice
controlled and non-technical user interface.

 To prevent age-related physical and cognitive impairments with the help of
personalized serious games.

 To foster active participation in society for the ageing population by suggesting and
managing events and social contacts.

 And finally, to improve caring by offering direct access to vital signs for carers and
other medical staff as well as alerting in case of emergencies. The data is collected
by unobtrusive wearable sensors monitoring the vital signs of ALFRED’s users.

To achieve its goals, the project ALFRED conducts original research from a user centred
perspective and applies technologies from the fields of Ubiquitous Computing, Big Data,
Serious Gaming, the Semantic Web, Cyber Physical Systems, the Internet of Things, the

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
8 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Internet of Services, and Human-Computer Interaction. For more information, please refer
to the project website at http://www.alfred.eu.

1.2 Deliverable Purpose, Scope and Context

The context of D.3.5.2 is based in T3.5. This task deals with the extendibility though new
apps. Third party developers are welcome to contribute to the overall ALFRED ecosystem,
so that the benefit of the whole ALFRED system increases.

For achieving these goals, the purpose of this deliverable is the demonstration of the
fulfilment of the work in task 3.5, as first documented in D.3.5.1. To be concrete, the
Personal Assistant Commons library will be demonstrated. It allows the communication
between apps and the Personal Assistant (PA) and thus the external usage of all PA
components. In addition, one integration use case will be shown with the Context-Aware
Dialogue Engine (CADE), accompanied by a “how to”-document attached to this
deliverable. To also provide practical examples, two app implementations named
“HealthMonitorDemo” and “CalendarAppDemo” will be introduced. They concretize the
usage for these guidelines.

1.3 Document Status and Target Audience

This document is listed as “public” in the Description-of-Work (DoW), as it provides general
information about ALFRED’s software extensions. While the document mainly aims at the
project’s contributing partners, this public deliverable can also be useful for the wider
community.

1.4 Abbreviations and Glossary

A definition of common terms and roles related to the realization of the ALFRED project as
well as a list of abbreviations is available in the supplementary document “Supplement:
Abbreviations and Glossary”, which is provided in addition to this deliverable. Further
information can be found at http://www.alfred.eu.

1.5 Document Structure

This deliverable is broken down into the following sections:

 Chapter 1 provides an introduction for this deliverable including a general overview
of the project, and outlines the purpose, scope, context, status, and target audience
of this deliverable.

 Chapter 2 outlines the steps needed to work with the Personal Assistant Service.

 Chapter 3 describes the steps needed to integrate the app into the ALFREDO
marketplace.

 Finally, Chapter 4 concludes the aforementioned content.

http://www.alfred.eu/

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
9 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2 App Development Reference

Developers should consider getting their hands on the sample applications, as stated in
chapter 2.5.3, to get the best in-depth information on how to handle the communication
with the first prototypes. However, the following sections will give an overview on the
overall API.

2.1 Context and Scope

The App Development Reference is targeted at developers for the ALFRED ecosystem.
While offering practical and theoretical examples and documentation, new developers
should be attracted for participating to the overall system.

2.2 State of the Prototype

In the overall architecture, the Personal Assistant and the Mobile Assistant Foundation
form the central component of ALFRED. They connect all components, and allow an inter-
component communication to the Game Manager, Health Monitor, CADE, Cloud
Information Storage, and Personalization Manager.

Within this prototype, the Personal Assistant Commons library created in D.3.5.1 was
completed to support the communication to the missing APIs. It can be found at Jenkins
CI2 and is not attached, because it is improved continuously, although its main
functionalities are finished. The first prototype existing in D3.5.1 implemented first
communication interfaces to CADE and KIS to bind the Personal Assistant Service to an
app. The final implementation also added missing API bindings like Health Monitor,
Personalization Manager, Marketplace and Game Manager. It also improved CADE
bindings towards new frontend libraries. Finally, it provides a microphone button also
usable for apps that use a GUI of their own.

For a better experience for third-party-developers, an organization has been created on
github.com, a web-based Git repository hosting service, which should host all open,
ALFRED-associated projects3. So, the developer is able to see all apps in only one sight.

“HealthMonitorDemo” and “CalendarAppDemo”-apps were developed and uploaded to
github. Beside the improved commons-library and “how to”-documents, they form a
reference for developers.

2
 http://alfred.eu:8081/job/Personal%20Assistant%20Commons/

3 https://github.com/ALFREDProject.

http://alfred.eu:8081/job/Personal%20Assistant%20Commons/
https://github.com/ALFREDProject

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
10 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Table 1: Implemented and Planned Features

2.3 Requirements and Preparations

This section defines the prerequisites needed to run the Personal Assistant (and the
Mobile Assistant Foundation) on an Android device, and to guide the developer on how to
write applications that can benefit from the Personal Assistant.

2.3.1 Personal Assistant

In order to allow communication between a third party app and Personal Assistant,
developers need to have the latter installed on their device.

To work with the Personal Assistant, it is mandatory to get the Personal Assistant App on
the development device, because all services that the ALFRED ecosystem offers are
made available through the Personal Assistant Service.

The Personal Assistant App can be obtained through the ALFRED CI server4. Because of
continuous improvement, this APK is not attached to this document.

It will run on Android Phones starting with Android targeting SDK version 19 (that is,
Android 4.4). Tests showed however, that it can safely run as well under Android 5.1 . In

4
 http://alfred.eu:8081/job/Personal%20Assistant/

Feature Status D3.5.1 Status D3.5.2

Creation of Github organisation √ √

Sample application for Personal Assistant usage √ √

Description of third party app integration In progress √

Personal Assistant Commons (PAC) library √ √

PAC CADE connection Prototype √

PAC KIS connection √ √

PAS MP connection X √

PAS PM connection X √

PAS GM connection X √

PAS HM connection X √

Two other 3
rd

 party solutions on Github X √

HowTo document for integration X √

http://alfred.eu:8081/job/Personal%20Assistant/

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
11 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

terms of devices, the Personal Assistant runs best on devices from the Google Nexus
collection.

Sideloading of apps needs to be allowed for the Personal Assistant to work (See Figure 3).
Besides of that, a working WiFi or mobile plan is required for the speech interaction to
work.

2.3.2 Third Party Apps

For the best developing experience, it is recommended to utilize Android Studio (see
Figure 1) because many of the source files used in the current prototype and in future
versions will utilize features of Android Studio, e.g. so called "regions", which allow folding
(= hiding) certain parts of the source code if they are not needed.

Figure 1: Screenshot – Source Code Snippet of the PA in Android Studio

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
12 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

For third-party-developers, an organization has been created on github.com, a web-based
Git repository hosting service, which should host all open, ALFRED-associated projects.
These projects are supposed to offer a reference for the developer. During the ALFRED
project, more and more exemplary application development projects will be added to the
organization. As mentioned earlier, the ALFRED organization can be found at github.5

For D3.5.2, two 3rd party apps, HealthMonitorDemo and CalendarAppDemo, were
developed and are now available on the github organization, showing different ways of
interacting with different parts of the ALFRED system. While HealthMonitorDemo uses
CADE and HMC APIs (responsible for speech interaction and health data screening),
CalendarAppDemo uses CADE and KIS (also for speech, and storage of userdata). Third
party developers will be able to use these apps as samples for their own projects.
Separately, some “how to”-files will be published to explain procedures in a more
conventional way. They are online at github and attached to this deliverable and describe
the integration process in a more general way then what the concrete example of CADE
does in section 2.5.2.

With the implementation of the “Personal Assistant Commons”-project started in D3.5.1,
also a repository was added to github, which functions as a “blueprint” repository for third
party developers. With this solution, they are not only able to use this template as a base
for their own project, but for communicating with the Personal Assistant. It has several
functions integrated like the call of the service, the initialization of CADE, and others.
These are two key concepts, which can be easily applied on the other APIs available.

2.4 Deployment (Installation)

For installing the PA itself, installation of third party apps needs to be allowed on the
Android Device.

On Android 4.4 (and Android 5), this can be achieved by going to the settings screen on
the device, and selecting the “Security” item, as depicted in Figure 2.

5 https://github.com/ALFREDProject.

https://github.com/ALFREDProject

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
13 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 2: Screenshot Android Settings – Selecting the Security Settings

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
14 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 3: Screenshot Android Security Settings – Allowing Unknown Sources

After selecting the “Security” item, the corresponding “Security” screen will pop up and will
allow you to tick the box next to “Unknown sources” (see Figure 3), which will allow the
installation of the ALFRED Personal Assistant app.

The APKs are available on the ALFRED CI Server, which utilizes Jenkins6. A user account
on this build server is required before one can download the APKs.

If a third party app should be installed, one may proceed the same way in case of testing.
The official way as an end user will be to do this with the ALFREDO marketplace. How this
is done is described in chapter 3: Marketplace Integration.

6
 http://alfred.eu:8081/job/Personal%20Assistant/

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
15 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.5 Execution and Usage

After the Personal Assistant and the commons-libaray were set up, the following chapter
now shows the process a developer has to follow in case of his own app integration.

2.5.1 Integration of the Personal Assistant

Figure 4: Overview of the Personal Assistant Architecture

An app that consumes the services of the ALFRED ecosystem needs to include the
personalassistantshared-debug.aar which is part of the binary package you get with this
deliverable. Alternatively, it can be found in the Jenkins CI already mentioned for the
“PersonalAssistantCommons”. This Commons-library provides templates the Personal
Assistant itself and especially every third party app uses. Already in previous versions,
very little code was required to actually use and connect to the Personal Assistant Service.

The PersonalAssistant class needs a context provided in the constructor. The only event
available is the setOnPersonalAssistantConnectionListener, which offers the two methods
OnConnected and OnDisconnected.

OnConnected is called after the library has established the connection to the Personal
Assistant Service. In the OnConnected method, it is possible to initialize several APIs like the

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
16 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

GameManager or CADE. The OnDisconnected method is used likewise for cleaning up the
used instances.

This is the overall initialization workflow for the Personal Assistant Service.

Finally, the Init method has to be called. It will do the binding to the service itself.

This procedure can also be seen in Listing 1:

Listing 1: Old way of connecting to the Personal Assistant Service

In this case, we will react on the OnConnected event, and will create a new instance of the
Context-Aware Dialogue Engine (CADE). This object can then be used throughout the
application lifetime.

In general, every wrapper library will need an injected dependency, an instance of the
Messenger class, which gets created by the PersonalAssistant object.

The version in D.3.5.1 was improved a second time. The way of connecting is still valid,
but is adopted by a base activity called AppActivity. It is part of commons library and takes
the Personal Assistant registration inclusive all wrappers as seen above. So, one has no
longer to use this snippet in his own in-app-code. The app only has to extend from
AppActivity.

In addition, a user should be able to interact with the PA, although another third party app
may be open. Therefore, another, smaller microphone button should be provided for every
app having a GUI. AppActivity also does this, including registering broadcast receivers for
button press actions.

So, a developer has to do nothing more than extending this class and setting the
predefined listener to the microphone button in onCreate(), as seen in Listing 2: New way
of connecting to the Personal Assistant Service.

personalAssistant = new PersonalAssistant(this);

personalAssistant.setOnPersonalAssistantConnectionListener(new

PersonalAssistantConnection() {

 @Override

 public void OnConnected() {

 // Do some stuff

 }

 @Override

 public void OnDisconnected() {

 // Do some cleanup stuff

 }

});

personalAssistant.Init();

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
17 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Listing 2: New way of connecting to the Personal Assistant Service

2.5.2 Using the implementations with CADE

Having the Personal Assistant bound to an app, a developer may want to use some
components, which are provided by the assistant, for example CADE.

If the integration of CADE has been considered for an app, some additional tasks for the
integration of the overall voice command infrastructure have to be performed.

First, every developer needs to provide a Dialogue Domain Description (DDD), as
described in D4.1.2. This description will then be installed into the CADE Session Manager
and CADE Backend, which is running on an ALFRED server instance.

Additionally, the developer will need to integrate an additional IPC channel, which is based
on Intents. By extending AppActivity, this is already done. The Personal Assistant Service
will send a special Intent to the calling application. Important: The appname described in
the DDD has to be the same as the actual Android application’s name. Note the case
sensitivity. This intent has the plaintext command as payload (also the same in DDD and
app) and some additional parameters belonging to the command to call. Figure 5 depicts a
complete run of the speech interaction.

public class MainActivity extends AppActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 circleButton = (CircleButton) findViewById(R.id.voiceControlBtn);

 circleButton.setOnTouchListener(new CircleTouchListener());

 }

}

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
18 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 5: Sequence Diagram of the CADE Interaction for Third Party Apps

Thanks to the Personal Assistant Commons library, the app is able to handle that intent
accordingly. The library provides a mocked Cade class with the method needed. The
receiving app simply needs to implement an interface of the external component (CADE).

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
19 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Listing 3: Handling incoming CADE command

CADE has four methods, which could be called in the IPC channel of the Personal
Assistant (perform actions and queries, validate speech commands and recognize queried
entitites). The NewIntent() method of AppActivity ensures, that the needed perform-
method in the third party app will be called instantly.

For instance, an action named "ShowCalendarAction" was called. To encapsulate the
code properly, the developer may search for the called action in a switch-environment and
launch an action class of their own, carrying the context and mocked cade-instance as
parameters.

public class MainActivity extends AppActivity {

 final static String SHOW_CALENDAR_ACTION = "ShowCalendarAction";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 ...

 }

 @Override

 public void performAction(String calledAction, Map<String, String> map) {

 switch (calledAction) {

 case SHOW_CALENDAR_ACTION:

 ShowCalendarAction sca = new ShowCalendarAction(this, cade);

 sca.performAction(calledAction, map);

 break;

 default:

 break;

 }

 }

 @Override

 public void performWhQuery(String s, Map<String, String> map) {}

 @Override

 public void performValidity(String s, Map<String, String> map) {}

 @Override

 public void performEntityRecognizer(String s, Map<String, String> map) {}

}

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
20 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Listing 4: Executing CADE Action

Having done some work in her action-class, the developer needs to send a command back
to the Personal Assistant, that she has taken care of the response from the Personal
Assistant Service. With the help of the mocked cade class from shared-libary, the call of
cade.sendActionResult(true); informs the PA that the action was finished successfully.

The latter again informs CADE server about the success. This behaviour of CADE
could be transferred to other external components needed, so the developer has

access to all resources.

2.5.3 CalendarAppDemo / HealthMonitorDemo examples

As promised earlier, two example apps were implemented to give a third party developer
references, how an app can be integrated into the Personal Assistant. Both solutions
extend from the commons library and are now shortly explained.

The first app is called “HealthMonitorDemo” and is responsible for showing health data to
the user, including: Steps already made, body temperature, heart beat rate and respiration

public class ShowCalendarAction implements ICadeCommand {

 MainActivity main;

 Cade cade;

 CalendarView mView;

 public ShowCalendarAction(MainActivity main, Cade cade) {

 this.main = main;

 this.cade = cade;

 }

 @Override

 public void performAction(String s, Map<String, String> map) {

 mView = (CalendarView) main.findViewById(R.id.calendar);

 mView.initCalendarView(false);

 cade.sendActionResult(true);

 }

 @Override

 public void performWhQuery(String s, Map<String, String> map) {

 }

 @Override

 public void performValidity(String s, Map<String, String> map) {

 }

 @Override

 public void performEntityRecognizer(String s, Map<String, String> map) {

 }

}

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
21 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

rate. While the first two values always are shown, the user can choose between displaying
heart or respiration rate. He can do it with in-app-clickhandlers (which are not interesting
for integration) or by using DDD-commands. For the latter, the app integrates CADE from
the PA to be able to receive the commands. In addition, HealthMonitorDemo implements a
SAF/HMC facade. Like the CADE-façade, HMC-wrapper connects to the PA to get cached
measurement data. It is done similar to Listing 4, even though it is the developer’s decision
when to use it: Directly when the app was called (MainActivity) or after a special speech
command was given (Action-Class).

The second solution called “CalendarApp” is responsible for letting users insert meetings
via speech and showing a simple calendar. This app also uses DDDs, which enable the
decision of which calendar month to display right now, or which meeting to insert into the
calendar. For the latter, CalendarApp uses KIS for information storage, saving the meeting
to insert and the corresponding date. When older users start the program with already
inserted meetings, the app automatically will contact the PA over the KIS-wrapper to
request all occurrences for the selected month.

2.6 Test Plan

In order to fulfil the requirements of a proper testing plan, a testing framework will be
utilized. Because every app will most likely be written using Android Studio / Eclipse /
similar in the Java programming language, it makes sense to use the most wide-spread
testing framework for Java, JUnit, which has seamless integration into the aforementioned
IDEs. Every 3rd party app, which will officially be added to the Marketplace, should have
been tested properly.

The Personal Assistant (and each of its subcomponents, including the Mobile Assistant
Foundation) and every example app being uploaded to Github are written based on the
principles of “test-driven development”. For each of the functionalities a unit test is written
in first place, which keeps failing until the desired functionality is accomplished.

In terms of the new, small microphone view being present for every GUI-app, the same
principles apply as for the other components. However, for testing the user interface, the
Application Exerciser Monkey is used. This tool is part of the Android testing tools, and
allows testing the user interface in terms of robustness.

2.7 Target Performance

The target performance for the Personal Assistant is still valid from D3.2.2. Therefore, it
should be ensured that these goals are still reached, when 3rd party developer apps are
used in addition to the PA performance itself.

2.8 Limitations and Further Developments

In this chapter, the current state of the deliverable will be compared to limitations and
further development.

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
22 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.8.1 Limitations

The current prototype of the Personal Assistant has implemented the access to KIS,
CADE, the Game Manager, the ALFREDO Marketplace and the Health Monitor. Missing
APIs not having been implemented in D3.5.1 were caught up in this version. So, app
developers now have full access to all functionality needed.

2.8.2 Further Development

As the current implementation phase ends in project month 30, the required API
functionalities are present, as well as the 3rd party developer integration guidance. This
blueprint is embodied with the PA commons library, example apps and a how to
document. From project month 31 onwards, there will be continuous improvement of all
components, based on the user studies feedback.

2.9 Summary

As the Personal Assistant and the Mobile Assistant Foundation were already developed,
Personal Assistant Commons library in an early stage provided access to CADE and KIS.
Implementing the missing APIs (MP, HM, GM, PM), the library has been finished.
Nevertheless, based on the user studies, there will be continuous improvements.

The test plan and the target performance from D3.2.2 are still valid. They referenced to the
Personal Assistant, whose performance should stay the same, because these plans
already took 3rd party app integration into account.

The Personal Assistant Commons library was written to support third party developers. It
delivers templates and wrappers for how to implement an app correctly, so that it may
communicate fore- and backwards with the PA.

With the ALFRED project at Github, a repository was created for developers to have a
better experience for app creation. There, one can find the two apps HealthMonitorDemo
and CalendarAppDemo as a reference on how external solutions may interact with the
Personal Assistant. In addition, “how to”- documents offer another attempt to explain
proper development.

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
23 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3 Marketplace Integration

In addition the Personal Assistant described in earlier sections, the Alfredo Marketplace is
the component of the ALFRED platform that supports the location of ALFRED apps and
eases their deployment.

The Alfredo Marketplace is useful for both older end users, as well as for the partners in
charge of the development of ALFRED apps and 3rd developers.

3.1 Context and Scope

To be part of the ALFRED ecosystem, a mobile app has to include some integration with
several components in order to accomplish its final goal, to take advantage of the services
and the infrastructure of the ALFRED platform. In this section will be explained which
components have to be integrated and how it has to be done.

On the other hand for locating an app in the Alfredo Marketplace, a specific workflow and
testing have been passed in order to guarantee the quality of the ALFRED apps before
publishing it. Each application has to pass a set of tests in order to be ready for
publication.

3.2 State of the Prototype

In the first version of this deliverable, the integration between the ALFREDO Marketplace
and the rest of the ALFRED components had not been implemented. Current version
includes the Marketplace Android Client integration with PA and PM, and offers the
wrapper for integrating the ALFREDO marketplace with the rest of the apps. Marketplace
Web prototype includes the integration with CADE and the centralized OAuth.

Table 2: ALFREDO Marketplace Implemented Features

Features of ALFREDO Marketplace Client P2 D3.5.1 D3.5.2

Martetplace Android Client – Integration PA x √

Martetplace Android Client – Integration PM x ongoing

Marketplace Web integration CADE x √

Marketplace Web integration OAuth x √

Legend

Planned Feature for P2 Blue

Feature not planned for P1 Orange

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
24 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.2.1 App Marketplace Android

The only way to allow the communication between the Marketplace services and any
application is enabling the connection using the Personal Assistant Commons to the
Mobile Assistant Foundation.

For example, a third party application can enable communication through the Personal
Assistant Commons by sending a Message to the PA with the corresponding linking code
to the service selected.

The marketplace application now uses the Personal Assistant to access the marketplace
services. These services are hosted on a remote server that will enable a variety of market
information. The image below shows a little example on how to use the Personal Assistant
in the call login app to market.

Listing 5. Integration with Personal Assistant. Login access.

The login service shown above is one of many services that the Personal Assistant
enables to the developers to use.

3.2.2 App Marketplace Web

The Marketplace Web is the web app for ALFREDO and runs independently from the
ALFREDO Web Portal. The Marketplace Web allows developers to create, test and
publish applications for the PAS. It has a version control for updates and a testing system
to verify that the functionalities required work as expected.

In order to allow those functionalities, a set of roles has been defined. Depending on the
role, a user will be able to do different actions and therefore each role has its own screens.

The Marketplace web provides the services that allow end users to browse apps published
on the marketplace and install them on their devices through the ALFREDO Android
Client. It does the installation through a Push Service. It also provides a search
functionality that allows users to search for apps matching specific filter parameters and
provides the means to read the app description. The user will be able to also see the
comments and feedback provided by other users of the apps to help make the decision.

In order to integrate with the CADE, a push message is sent to the CADE when an
application is published.

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
25 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

The Admin user can create new users, these users are integrated with the centralized
OAuth with the following code:

Listing 6. Register user into the ALFRED OAuth

Listing 7. Login with new user using the ALFRED OAuth

3.3 Requirements and Preparations

This section provides information about what potential users, administrators (people that
will install the platform), and software developers (people that will develop mobile
applications and publish them on the platform), need to do in order to use the
functionalities, described in the previous section, of the delivered prototype.

3.3.1 App Marketplace Android

The main requirement is to install the Personal Assistant application, because it has the
main functionality to enable the Alfred services to all the third party apps.

To create a third party application, Android Studio is chosen to integrate the Personal
Assistant Commons library and create the application. Because it is the main Android

OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("application/json;charset=UTF-8");

RequestBody body = RequestBody.create(mediaType, "{\n \"name\": \"" +

user_name + "\",\n \"email\": \"" + user_mail + "\",\n \"" + user_mail

+ "\": \"\"" + user_password + "\",\n \"roles\": [\"" + user_role +

"\"]\n}");

Request request = new Request.Builder()

 .url("http://alfred.eu:9000/auth/register")

 .post(body)

 .addHeader("accept", "application/json")

 .addHeader("content-type", "application/json;charset=UTF-8")

 .addHeader("cache-control", "no-cache")

 .build();

Response response = client.newCall(request).execute();

OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("application/json;charset=UTF-8");

RequestBody body = RequestBody.create(mediaType, "{\n \"email\": \"" +

user_mail + "\",\n \"password\": \"" + user_password + "\"\n}");

Request request = new Request.Builder()

 .url("http://alfred.eu:9000/auth/login")

 .post(body)

 .addHeader("accept", "application/json")

 .addHeader("content-type", "application/json;charset=UTF-8")

 .addHeader("cache-control", "no-cache")

 .build();

Response response = client.newCall(request).execute();

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
26 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

development framework to create Android applications, it is recommended to install
Android studio.

3.3.2 App Marketplace Web

To install the required software to make the App Marketplace Web-UI work, the next steps
will have to be followed.

1. Before installing the needed packages it is recommended to update the package
index of the Advanced Packing Tool (APT). This is done via the command:

sudo apt-get update

2. To have a fully working environment available, it is needed to run the following
command with a user that is eligible to use “sudo” to install Tomcat server that will
be responsible for deploying and presenting the App Marketplace Web-UI:

sudo apt-get install tomcat7

3. After the installation of tomcat7 a change to port 80 may be needed. (Further
configurations in http://tomcat.apache.org/tomcat-7.0-doc/config/). The file
/etc/tomcat7/server.xml has to be edited. Open the file with a file editor (e.g., vi)

sudo vi /etc/tomcat7/server.xml

4. In lines 72 to 75 of the standard config, the port attribute from the connector tag has
to be changed from “8080” to “80”:

<Connector port=”8080” protocol=”HTTP/1.1”

connectionTimeout=”20000”

URIEncodign=”UTF-8”

redirectPort=”8443” />

5. Additionally line 47 (the last line) in /etc/default/tomcat7 has to be changed to match
the following:

AUTHBIND=yes

6. Now the following three commands need to be run:

sudo touch /etc/authbind/byport/80

sudo chmod 500 /etc/authbind/byport/80

sudo chown tomcat7 /etc/authbind/byport/80

7. Tomcat can now be restarted to make changes take effect:

sudo service tomcat7 restart

8. A MySQL Server database is needed to provide the persistence, to install it the next
command has to be executed:

sudo apt-get install mysql-server-5.6

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
27 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

9. Once all the steps above are worked through, the preparations for the App
Marketplace Web-UI are done.

3.4 Deployment (Installation)

This section provides guidelines on how to install and deploy the first prototype of the
Media Data Streams on a Debian Linux or a Debian based derivate machine, i.e., Ubuntu
or Linux Mint.

3.4.1 App Marketplace Android

The installation instructions are same as described in section 2.4.

3.4.2 App Marketplace Web-UI

To deploy the App Marketplace Web-UI in the prepared infrastructure, these steps have to
be followed.

1. The following command has to be executed to create the database and populate it
with the basic information needed.

mysql < create_database_script.sql

2. If the database is installed on another server, a new ddbb.properties file must be
set. Set the corresponding ddbb.properties, following the one provided and execute
the following command.

./setdatabase.sh AppMarketplaceWebUI-1.0.war ddbb.properties

3. After that, the application file needs to be moved to the deployment folder of
Apache Tomcat.

sudo mv .AppMarketplaceWebUI-1.0.war /var/lib/tomcat7/webapps

4. Once all the steps above are done, the App Marketplace Web-UI is ready to be
used.

3.5 Execution and Usage

This section describes how to use the different subcomponents of the prototype. To
access the App Marketplace Web, it will be available in the deliverable repository.

App Marketplace Android

To enable communication with the Marketplace services, a call to the
mobileassitantfoundations has to be made via the personalassistantcommons. For example,
here are the calls from the third party app with the personalassistantcommons integrated
library:

The call from the personalassistantcommons using the Messenger class to connect to the
main service:

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
28 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Listing 8: Message transmission trough PersonalAssistentCommons

When the call reaches the mobileassistantfoundations:

Listing 9: Message handling in MobileAssistentFoundation

Then it calls the ALFRED servers to retrieve information about the user. After that, the
required information is returned back to the personalassistantcommons library and so on to
the third party application.

The current state of the module enables applications to access any service of the
marketplace. Because of the marketplace SDK migration to the Personal Assistant, any UI
can be used because of its not direct dependency.

Any application included the Marketplace application use the Personal Assistant facade to
access the services. For example in the listing below, there is an example that applications
can use and marketplace actually does:

Message msg = getMessage(code);

Bundle data = new Bundle();

data.putString("callerName", callerName);

msg.setData(data);

try {

 messenger.send(msg);

} catch (RemoteException e) {

 e.printStackTrace();

}

case MarketPlaceConstants.GET_APP_LIST:

 try {

 MarketMessageClass marketMessageClass = new MarketMessageClass();

 marketMessageClass.replyTo = msg.replyTo;

 marketMessageClass.data = msg.getData();

 marketMessageClass.json =

msg.getData().getString(eu.alfred.personalassistant.service.alfredomarket.Mar

ketPlaceConstants.EXTRAS_JSON);

 MarketCRUDTaskFactory.getInstance(getApplicationContext(),

 msg.what).execute(marketMessageClass);

 } catch (IllegalStateException e) {

 e.printStackTrace();

 }

 break;

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
29 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Listing 10: Message to obtain the current apps by category

3.5.1 App Marketplace Web

Depending on the role, a user will be able to do different actions and therefore each role
has its own screens. The roles as well as the available screens are listed below.

 Developer

o Allowed to: Create apps, submit media, submit information, publish the app
and/or update it (Last two only after reaching the status “approved for
publication”)

o Screens: My Apps, Add App

 Tester

o Allowed to: Go through the tests prepared for the app, answer the questions
verifying that the app works properly

o Screens: My Tests

 Approver

o Allowed to: Create/delete/update tests, approve an app for testing and allow
the developer to publish an application or reject it for some reason (the last
two only after the testing is done)

o Screens: Approve for testing, Approve for publication, Tests Management

 Admin

o Allowed to: Every action

o Screens: Every screen

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
30 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 6 shows the My Apps screen that lists all the apps created by a developer. The
figure shows different lists depending on the status.

Figure 6: View of My Apps from the Developer Role’s Perspective

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
31 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

In

Figure 7 the “Add App” screen is shown. This screen allows the developer to create a new
app providing the name of the app, a description and other information to enrich it.

Figure 7: View of Add App from the Developer Role’s Perspective

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
32 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 8 shows the “My Tests” screen. On this screen a tester will see the apps that have
tests in progress or are already finished. By clicking on the listed apps, the tester will get
into the detail-view and will be able to see questions and provide an answer to them.

Figure 8: View of My Tests from the Tester Role’s Perspective

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
33 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 9 shows the “Approve for Testing” screen. On this screen, an approver can assign
a group of tests to a user.

Figure 9: View of Approve for Testing from the Approver Role’s Perspective

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
34 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

In Figure 10 the “Approve for publication” screen can be seen. On this screen the approver
can see a list of apps and their status. From this screen the approver can “Approve” or
“Reject” an app.

Figure 10: View of Approve for Publication from the Approver Role’s Perspective

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
35 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

When an application is approved for publicising, a notification is automatically sent to the
CADE in order to inform it that it has to load the DDDs for this application.

Listing 11: Message sent to the CADE.

OkHttpClient client = new OkHttpClient();

Request request = new Request.Builder()

 .url("http://alfred.url:9090/users/" + user_id + "/ddds/" +

application_name)

 .put(null)

 .addHeader("accept", "application/json")

 .addHeader("content-type", "application/x-www-form-urlencoded")

 .addHeader("cache-control", "no-cache")

 .build();

Response response = client.newCall(request).execute();

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
36 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 11 depicts the “Test Management” screen. On this screen an approver is able to
create new tests, and he/she can group them to categories and assign specific groups of
tests to an app.

Figure 11: View of Tests Management from the Approver Role’s Perspective

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
37 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.6 Test Plan

3.6.1 Test Plan Marketplace Android Client

The test plan for the Marketplace Android Client is still valid form D3.2.2. Therefore, it
should be ensured that these goals are still reached which 3rd party developer apps are
used.

3.6.2 Test Plan Marketplace Web

Due to the fact that the Marketplace Web is fully focused on the UI, it cannot be properly
tested with unit tests or automated checks. Instead, testing will be performed based on
real users who will log in to the system and test its functionality. For this purpose, different
web browsers, system languages and user profiles will be tested and feedback will be fed
directly to the development team, so that it can be considered for integration into the final
prototpe delivered at the end of the project.

3.7 Target Performance

Table 3 list the defined key performance indicators (KPI) for this component:

Table 3: Key Performance Indicators

Topic Description Target KPI

Ease of Use Ease of use is an important topic and performance
indicator for this component. Each component
owner should be able to use this component
without greater knowledge of the connected
databases but only with knowledge of the provided
interfaces.

Based on a short feedback
questionnaire the overall component
owner contentment we want to
achieve is 90%. The questionnaire
will consider the configuration
complexity, integration and usage of
the component and its API.

Availability The Marketplace Web component should provide a
high availability and allow users to request the
event data at any time.

After the provision of the second
prototype version the availability shall
be 95% or higher.

Privacy Privacy is a rather important topic for this
component, as sensitive information is displayed in
the web UI.

After the second prototype, the
number of sustained complaints
regarding breaches of data privacy
should be 0.

Authentication
Server Usage

Using the authentication server within ALFRED
dramatically improves the security of the system as
a whole.

The second prototype should be used
by all sensitive components, dealing
with user data.

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
38 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.8 Limitations and Further Developments

Although the current version of the Marketplace web prototype includes integration with
the CADE server, this integration is in an early stage, and some manual actions have to be
done. In further development iterations the integration with the CADE can be enhanced by
sending the DDDs instead of only informing the CADE to load them from a static path.

The Marketplace Android Client is ready to be integrated with the Personalization
Manager; this integration will be completed when the PM component was available.

3.9 Summary

The current deliverable includes and describes the upgraded versions of the ALFREDO
prototypes (client and web).

The current prototype of the Marketplace Web has already implemented the access to the
CADE and the centralized user authenticator.

The Marketplace Android Client has been integrated with the PA, and it is ready to be
integrated with the PM. This integration will be done when the PM component was
available.

The Marketplace provides a centralized location to place the developed applications and
gives the possibility to go through a testing flow in order to guarantee the quality of the
approved applications. It has simplified and integrated access to other components in
order to make it easy to develop tests and integrate these applications.

The Marketplaces prototypes contain all functionalities that are needed to ease the life of
users, app developers, as well as service developers. The Marketplace Web of the App
Marketplace contains all means to provide users of ALFRED with a good selection of apps
and offer a reliable and straight-forward UI to extend the ALFRED app ecosystem.

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
39 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

4 Conclusion

This deliverable has presented and described the overall approach established to get
developers to work with the ALFRED ecosystem. It is mandatory for developers to
understand the need for a unified approach, as the ALFRED system presents it.

Furthermore, the public visibility from a developer’s perspective by choosing Github as a
main platform for publicly available projects was explained. For further support, a “how to”
file and two example projects, HealthMonitorDemo and CalendarAppDemo, have been
uploaded. They guide developers through the implementation process. The Personal
Assistant Shared library was completed, functioning as an access point to the Personal
Assistant modules like CADE, GM and others. Overall, it is shown how to integrate the
Personal Assistant Service itself into the app, and how to integrate the ALFRED APIs.

As a result, third party developers will be able to create their ALFRED related apps much
easier, spending less time into the implementation and producing more valuable outputs
for elderly people.

Form the point of view of the Alfredo Marketplace integration, the current prototype has
already implemented access to CADE and the centralized user authenticator. The
functionalities of Marketplace Web UI have been presented as well as the Android
Marketplace app, so that developers, testers and users may interact with their
corresponding components.

To extend the functionality of the PAS, The Marketplace Web-UI of the App Marketplace
contains all means to provide users of ALFRED with a good selection of apps and offer a
reliable and straight-forward experience.

The Application Marketplaces prototypes contain all functionalities that are needed to ease
the life of users, app developers, as well as service developers.

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
40 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Annex A: How to integrate 3rd party apps into Personal
Assistent (PA)

Getting the connection library for the Personal Assistent
1. First step is to inherit the „Personal Assistent Shared“-library into your app.

This libary enables the developer to access functionalities from

 CADE (Context-Aware Dialogue Engine)

 KIS (Knowledge and Information Storage)

 GM (Game Manager)

 HM (Health Monitor)

 PM (Personalization Manager)
… which are all part of the Personal Assistent.

2. Therefore, clone git@alfred.eu:dgilbert/personalassistantcommons.git.

3. The cloned project has following path:
\personalassistantcommons\PersonalAssistantShared\build\outputs\aar

You can find PersonalAssistentShared-debug.aar there. Copy it.
4. Paste the file into yourproject\app\libs

5. Run Android Studio. There, put into your build.gradle (module):

'eu.alfred.personalassistant.sharedlibrary:PersonalAssistantShared-

debug@aar'

6. Build the project.

mailto:git@alfred.eu:dgilbert/personalassistantcommons.git

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
41 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Using the library in your app
Now, the Personal Assistent Shared-library is in your project. To use it correctly and enable it for accessing
PA modules / being accessed

1. Now, your MainActivity can extend from „AppActivity“.

What AppActivity does:

 It already integrates the every Personal Assistent Module.

 In addition, it registers the „CircleButton“, the PA also uses.

 Registers corresponding recievers (for start / stop listening).

So, your on create looks like:

IMPORTANT: Dont implement your own TouchListener, otherwise it will not work.

2. As you can see, you are referencing to a „CircleButton“. It is an overlay to your app GUI, so that you

also will be able to continue speaking, although you are not in the Personal Assistent App itself.

Define the Button also in your activity_main.xml-file:

public class MainActivity extends AppActivity

{

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 circleButton = (CircleButton) findViewById(R.id.voiceControlBtn);

 circleButton.setOnTouchListener(new CircleTouchListener());

 }

}

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
42 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3. Till now, the app has a microphone button. Of course, you want to use the GameManager,

HealthMonitor etc. as well. In addition, some methods only should be called if they are accessed via

speech. Thats why you AppActivity forces you to override the following four methods:

 PerformAction is called every time, when your DDD sends an action command to your device

 (for instance, call my buddy John)

 PerformWhQuery is called every time, when your DDD sends a query to your device

 (for instance, return the phone number for John)

 PerformValidity is called every time, when your DDD sends a validity request to your device (for

instance, is there a phone number for my parameter „John“?)

 PerformEntityRecognizer is called every time, when your DDD asks your device, if is has entries for

a request (for instance, are there phone numbers for my parameter „John“?)

 Every of these methods have firstly the name of the action as a parameter, secondly a map of other

arguments your action to call might use. Here, actionname is „HowToPostureAction“, which is

figured out in the switch-construct.

 In this example, we want to call an action, which shows an image with body posture instructions.

Because we may launch different kinds of actions / query, it is recommended to use own action /

public class MainActivity extends AppActivity {

 final static String HELP_TO_POSTURE_ACTION = "HowToPostureAction";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 circleButton = (CircleButton) findViewById(R.id.voiceControlBtn);

 circleButton.setOnTouchListener(new CircleTouchListener());

 }

 @Override

 public void onNewIntent(Intent intent) {

 super.onNewIntent(intent);

 }

 @Override

 public void performAction(final String calledAction, final Map<String,

String> map) {

 switch (calledAction) {

 case HELP_TO_POSTURE_ACTION:

 HelpToPostureAction htpa = new HelpToPostureAction(this, cade);

 htpa.performAction(calledAction, map);

 break;

 default:

 break;

 }

 }

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
43 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

query classes for this, like „HelpToPostureAction“. You could give the context and wrappers, you

want to use as parameters.

4. Lets see the action we just called.

 Important here: Implement ICadeCommand as an interface, so that „performAction(…)“ and others are

callable in this class as well.

 Here, we use the arguments, our called action has beside it (Map<String,String>). For this example, the

map has one key-value-pair. The key is called „selected_posture“ and is self explaining. The value
however could be another String called „lie“, „sit“ or „stand“. Dependent on what the user said, the
app sets an ImageView to its screen, telling how to sit, stand or lie correctly.

public class HelpToPostureAction implements ICadeCommand {

 final static String LIE = "lie";

 final static String SIT = "sit";

 final static String STAND = "stand";

 MainActivity main;

 Cade cade;

 public HelpToPostureAction(MainActivity main, Cade cade) {

 this.main = main;

 this.cade = cade;

 }

 @Override

 public void performAction(String s, Map<String, String> map) {

 ImageView howToImage = (ImageView) main.findViewById(R.id.image_howto);

 String posture = map.get("selected_posture");

 if(posture.equals(STAND)) {

 howToImage.setImageResource(R.drawable.howto_stand);

 } else if(posture.equals(SIT)) {

 howToImage.setImageResource(R.drawable.howto_sit);

 } else {

 howToImage.setImageResource(R.drawable.howto_lie);

 }

 cade.sendActionResult(true);

 }

 @Override

 public void performWhQuery(String s, Map<String, String> map) {}

 @Override

 public void performValidity(String s, Map<String, String> map) {}

 @Override

 public void performEntityRecognizer(String s, Map<String, String> map) {}

}

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
44 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

5. So, we have launched our app with speech, and did an action with it. Finally, we have to inform

CADE, that our speech ended, to CADE my say something like a results report.

 Therefore, we use „cade.sendActionResult(true)“. The same procedure has to be followed for
queries, validity checks, and entity recognizers.

6. Of course, as said in the beginning, you are able to use other APIs like KIS. Just use them in your

action / query just before you call „cade.sendActionResult(true)“. Here an example for KIS, reading

from a bucket created before, searching for entries for a specific date.

 Except for CADE, most of other API methods have responses. So, continue coding when OnSuccess
was called.

JSONObject obj = new JSONObject();

try {

 obj.put("date", day+"_"+(month+1)+"_"+year);

} catch (Exception e) {}

cloudStorage.readJsonArray("GarysCalendarBucket", obj, new

BucketResponse() {

 @Override

 public void OnSuccess(JSONObject jsonObject) {

 }

 @Override

 public void OnSuccess(JSONArray jsonArray) {

 try {

 for(int i = 0; i < jsonArray.length(); i++) {

 TextView tv = new TextView(getApplicationContext());

 tv.setText(jsonArray.getJSONObject(i).toString());

 eventView.addView(tv);

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void OnSuccess(byte[] bytes) {

 }

 @Override

 public void OnError(Exception e) {

 }

});

ALFRED WP3
Public App Development

Reference and
Marketplace Integration

D3.5.1 - App Development Reference and
Marketplace Integration

Document
Version: 1.0

Date:
2016-03-31

Status: For Approval
Page:
45 / 45

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 To get an overview of all commands you have (Inclusive their responses), see

 CADE:
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/s
rc/main/java/eu/alfred/api/speech/Cade.java

 Note: Don’t use StartListening / StopListening. It is already done by „AppActivity“.

 GameManager:
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/s
rc/main/java/eu/alfred/api/gamemanager/GameManager.java
MarketPlace:
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/s
rc/main/java/eu/alfred/api/market/MarketPlace.java

 Note: Should only be used from the Marketplace App.

 PersonalizationManager:

http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/s
rc/main/java/eu/alfred/api/personalization/webservice/PersonalizationManager.java
HealthMonitor:
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/s
rc/main/java/eu/alfred/api/sensors/SAFDataFacade.java
Knowledge and Information Storage:
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/s
rc/main/java/eu/alfred/api/storage/CloudStorage.java

7. No problems so far? Congratulations, you just developed an app interacting with the Personal

Assistent.

http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/speech/Cade.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/speech/Cade.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/gamemanager/GameManager.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/gamemanager/GameManager.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/market/MarketPlace.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/market/MarketPlace.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/personalization/webservice/PersonalizationManager.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/personalization/webservice/PersonalizationManager.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/sensors/SAFDataFacade.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/sensors/SAFDataFacade.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/storage/CloudStorage.java
http://alfred.eu:9292/dgilbert/personalassistantcommons/blob/master/PersonalAssistantShared/src/main/java/eu/alfred/api/storage/CloudStorage.java

