
Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
1 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

WP2 – Concept, Requirements & Specification

D2.4: Architecture Definition and Functional
Specification

Deliverable Lead: ASC

Contributing Partners: ATOS, WORLD, CHA, AITEX, TUDA, NFE, TALK, ESE, TIE, IESE

Delivery Date: 06/2014

Dissemination Level: Public

Version 1.0

Based on the requirements identified in D2.3, this
deliverable introduces the global architecture of the whole
ALFRED system. This architecture defines the
components and their interaction between each other in
detail. The architecture is the foundation of the functional
specification in this document. This specification will
define all functionalities provided by each component. The
sequence of actions and the involved subcomponents will
be explained in detail for each functionality.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
2 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Document Status

Deliverable Lead Michael Krummen, ASC

Internal Reviewer 1 Nina van der Vaart, NFE

Internal Reviewer 2 Tim Dutz, TUDA

Type Deliverable

Work Package WP2: Concept, Requirements & Specification

ID D2.4: Architecture Definition and Functional Specification

Due Date 31.05.2014

Delivery Date 30.05.2014

Status For Approval

Document History

Contributions

V0.1, ASC, 26.03.2014

V0.2, ASC, 16.04.2014

V0.3, ASC, TALK, WORLD, TIE, AITEX, 23.04.2014

V0.4, ASC, TALK, WORLD, TIE, AITEX, TUDA, 30.04.2014

V0.5, ASC, TALK, WORLD, TIE, AITEX, TUDA, 09.05.2014

V0.6, ASC, TALK, WORLD, TIE, AITEX, TUDA, 21.05.2014

V0.7, ASC, 23.05.2014

V0.8, ASC, NFE, TUDA, 28.05.2014

Final Version V1.0, ASC, 30.05.2014

Note

This deliverable is subject to final acceptance by the European Commission.

Disclaimer

The views represented in this document only reflect the views of the authors and not the
views of the European Union. The European Union is not liable for any use that may be
made of the information contained in this document.

Furthermore, the information is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose. The user of the information uses it at its
sole risk and liability.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
3 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Project Partners

Ascora GmbH, Germany

Atos Spain sau, Spain

Worldline, Spain

Charité - Universitätsmedizin Berlin -
Department of Geriatrics, Germany

Asociacion de Investigacion de la Industria
Textil, Spain

Technische Universität Darmstadt, Germany

National Foundation for the Elderly, The
Netherlands Talkamatic AB, Sweden

E-Seniors, France

TIE Nederland N.V., The Netherlands

IESE Business School, Spain

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
4 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Executive Summary

The main objective of this deliverable is to provide a detailed view of the whole ALFRED
system. The deliverable is divided into two main parts: The global architecture definition
and the functional specification. The global architecture definition shows all involved
components of the ALFRED system. Each identified component is described in detail,
providing insights to the encapsulated business logic. Each component as well as each
subcomponent is described thoroughly. In the functional specification the services of each
identified subcomponent of the ALFRED system is described.

The whole AFRED system is divided in eight components; each component provides
encapsulated functionality to the rest of the system. The main functionalities of each
component are as follows:

 The Personal Assistant component will be realised as the end user application of
the ALFRED system. This component will be virtual butler ALFRED running on a
mobile device. In this Personal Assistant component the functionalities of all other
components will be merged. It will not provide actual end user functionalities, but it
acts as a runtime environment and a mediator between ALFRED apps and the
functionalities of the ALFRED system.

 The Health Monitor component is a distributed system. It encapsulates on the one
hand the runtime environment for wearable sensors as well the accumulation of the
sensor data on the mobile device of the end users. On the other hand it will collect
and process the data to health information on a server.

 The Knowledge and Information Storage component is an abstraction of all
required databases in the ALFRED system. It enables the other components to
store any data save and secure.

 The Context-aware Speech Recognition component handles all voice based end
user input. It is a distributed system with a client and a server side. To achieve more
accurate voice recognition, information from the Personalisation Manager and the
ALFREDO Marketplace are utilized.

 The Personalisation Manager component will be the central point for all user
profile information. It will be able to reason about provided data, to generate
information about the user. The information is then provided as a service to the
other components of the ALFRED system.

 The Event Manager component gathers event information. The event information
will be automatically collected by crawling specific domains in the internet and
manually from user input in a web portal.

 The Game Manager component will provide and manage the serious game of the
ALFRED system. It uses information for the Personalisation Manager and the
ALFREDO Marketplace in order to suggest games to the end user of the virtual
butler. In addition, it will monitor the end user by analysing data from the Health
Monitor to adapt the serious games to the needs of the end user.

 The ALFREDO Marketplace component will be the repository for all ALFRED
apps. It will be a distributed system with a server and client side, providing all
functionalities to manage the deployment lifecycle of the ALFRED apps.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
5 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Table of Contents

1 Introduction .. 10
1.1 ALFRED Project Overview .. 10

1.2 Deliverable Purpose, Scope and Context .. 11
1.3 Document Status and Target Audience ... 11
1.4 Abbreviations and Glossary ... 11
1.5 Document Structure ... 11

2 Global Architecture Definition .. 13

2.1 Overview ... 13
2.2 Personal Assistant ... 15

2.2.1 Overview .. 15
2.2.2 Extensions ... 16

2.2.3 User Interaction .. 16
2.2.4 API Wrapper .. 16
2.2.5 Mobility Assistant Foundation .. 16

2.3 Health Monitor ... 17
2.3.1 Overview .. 17
2.3.2 Sensor Abstraction Framework .. 17
2.3.3 Health Monitor Client ... 19

 The Health Profile Manager ... 20
 The Data Pre-process Framework ... 20

 The Data Transmission Manager .. 20
 The Metadata Repository .. 21

2.3.4 Health Monitor Server .. 21

 The Facade ... 23
 The Controller .. 23

 Data Post-process Framework .. 24
 Health Profile Manager .. 24

 Health Monitor Configurator ... 24
 Alarm Manager .. 25
 Data Analysis Framework .. 25
 Metadata Repository.. 26

2.3.5 Web Portal ... 26
 The View .. 27
 The Controller .. 28
 The Model .. 28

2.4 Context-aware Speech Recognition .. 29

2.4.1 Overview .. 29
2.4.2 Frontend... 30

 Dialogue Facade ... 30

2.4.3 Backend ... 30
2.4.4 Session Manager ... 31

2.5 ALFREDO – Marketplace .. 31
2.5.1 Overview .. 31

2.5.2 Backend ... 32
2.5.3 Frontend... 33

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
6 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 ALFREDO Web component ... 33
 ALFREDO Mobile component ... 34

2.6 Personalization Manager ... 35
2.6.1 Personalization Orchestrator .. 37

2.6.2 Recommendation Engine ... 37
2.6.3 Personalisation Profile Administrator ... 37
2.6.4 Reasoning Engine .. 38

2.7 Event Manager .. 39
2.7.1 Web Portal ... 41

2.7.2 Web Crawler .. 41
2.7.3 Event Miner .. 41
2.7.4 Events Knowledge Base Administrator .. 42

2.8 Game Manager .. 43
2.9 Knowledge and Information Storage ... 47

2.9.1 Overview .. 47
2.9.2 User Data ... 48
2.9.3 Access ... 49

2.9.4 Cloud Storage – Facade .. 49

2.9.5 Cloud Storage – Nexus .. 50
2.9.6 Cloud Storage – Management ... 50
2.9.7 Cloud Storage – Wrapper .. 51

3 Functional Specification ... 52
3.1 Overview ... 52

3.2 Personal Assistant ... 52
3.2.1 Overview .. 52
3.2.2 Core ... 52

 Recognizing Input and providing Output .. 53

3.2.3 Apps and Games ... 54
3.2.4 Suggestions component .. 56
3.2.5 API Wrapper .. 57

3.3 Health Monitor ... 57
3.3.1 Overview .. 57

3.3.2 Sensor Abstraction Framework .. 57
 Register Driver ... 57

 Register/Unregister Listener .. 58
 Sensor Monitoring ... 60

3.3.3 Health Monitor Client ... 62
 Receive Sensor Information .. 62
 Transmit Sensor Information ... 64

 Manage Health Profile Information .. 65
3.3.4 Health Monitor Server .. 66

 Transfer Sensor Data .. 67
 Notify Alarm ... 69
 Manage Health Profile ... 70
 Configure Health Monitor ... 70
 Manage Alarms ... 71

 Configure Sensor Analysis .. 71
 Analyse Sensor Data ... 71

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
7 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.4 Context-aware Speech Recognition .. 73
3.4.1 Public ... 73

 Dialogue Domain ... 73
 Haptic Input ... 73

 Activities .. 75
3.5 ALFREDO - Marketplace ... 75

3.5.1 Overview .. 75
3.5.2 Public Services .. 76

 Downloading and installing an application ... 76

 Uninstalling an application ... 77
 Upgrading an application ... 77
 Getting application information .. 78
 Searching for an application .. 79
 Rating an application ... 80

3.5.3 Developer services .. 80
 CRUD operations for developer ... 80

3.5.4 Tester services ... 82

3.6 Personalization Manager ... 83

3.6.1 Overview .. 83
3.6.2 Personalization Orchestrator .. 85
3.6.3 Personal Profile Administrator .. 85

3.6.4 Recommendation Engine ... 86
3.6.5 Reasoning Engine .. 87

3.7 Event Manager .. 88
3.7.1 Overview .. 88
3.7.2 Web Portal ... 90

3.7.3 Web Crawler .. 90

3.7.4 Event Miner .. 91
3.7.5 Events Knowledge Base Administrator .. 92

3.8 Game Manager .. 93

3.9 Knowledge and Information Storage ... 96
3.9.1 Overview .. 96

3.9.2 Public Services .. 97
 Storage .. 97

 Authorization .. 99
3.9.3 Private Services ... 100

 Administration .. 100
 Authentication .. 100

4 Summary and Next Steps .. 102

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
8 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

List of Figures

Figure 1: Infographic - Overview of the Architecture of the ALFRED System 13
Figure 2: Infographic - Architecture of the Personal Assistant ... 15

Figure 3: Infographic - Overview of the Architecture of the Health Monitor 17
Figure 4: Infographic - Architecture of the Sensor Abstraction Framework 18
Figure 5: Infographic - Architecture of the Health Monitor Client 19
Figure 6: Infographic - Architecture of the Health Monitor Server 22
Figure 7: Infographic - Architecture of the Web Portal of the HM 27

Figure 8: Infographic - Architecture of the Context-Aware Dialogue Engine 29
Figure 9: Infographic – Architecture of the ALFREDO Marketplace 32
Figure 10: Infographic - Architecture of the Personalization Manager 36
Figure 11: Infographic - Architecture of the Event Manager... 40

Figure 12: Infographic - Game Manager modules ... 44
Figure 13: Infographic - Architecture of the Knowledge and Information Storage 48
Figure 14: UML Sequence Diagram – PA: Recognizing User Input 53

Figure 15: UML Sequence Diagram – PA: Handling Apps & Games 54

Figure 16: UML Sequence Diagram – PA: Requests to PA Functionality 55
Figure 17: UML Sequence Diagram – PA: Receiving Incoming Suggestions 56
Figure 18: UML Sequence Diagram – SAF: Register Driver .. 58

Figure 19: UML Sequence Diagram – SAF: Register Listener ... 59
Figure 20: UML Sequence Diagram – HM/SAF: Search Driver ... 61

Figure 21: UML Sequence Diagram – HM/SAF: Retrieve Sensor Data 61
Figure 22: UML Sequence Diagram – HM/SAF: Sensor Monitoring, Dispatch Data 62
Figure 23: UML Sequence Diagram – HM/Client: Receive Sensor Information 63

Figure 24: UML Sequence Diagram – HM/Client: Access Metadata Repository 64

Figure 25: UML Sequence Diagram – HM/Client: Transmit Sensor Information 65

Figure 26: UML Sequence Diagram – HM/ Client: Manage Health Profile Information 66
Figure 27: UML Sequence Diagram – HM/Server: Common Behavior to all Requests 67

Figure 28: UML Sequence Diagram – HM/Server: Transfer Sensor Data 68
Figure 29: UML Sequence Diagram – HM/Server: Notify Alarm .. 69
Figure 30: UML Sequence Diagram – HM/Server: Manage Health Profile 70
Figure 31: UML Sequence Diagram – HM/Server: Configure HM 71

Figure 32: UML Sequence Diagram – HM/Server: Analyze Sensor Data 72
Figure 33: UML Sequence Diagram – CADE: Enabled App. ... 73
Figure 34: UML Sequence Diagram – CADE: PTT Activated. ... 74
Figure 35: UML Sequence Diagram – CADE: Started Activity ... 75
Figure 36: UML Sequence Diagram – AM: Downloading and Installing an Application 76

Figure 37: UML Sequence Diagram – AM: Uninstalling an Application 77
Figure 38: UML Sequence Diagram – AM: Upgrading an Application 78

Figure 39: UML Sequence Diagram – AM: Getting Application Information 79
Figure 40: UML Sequence Diagram – AM: Searching for an Application........................... 80
Figure 41: UML Sequence Diagram – AM: Rating an Application 80
Figure 42: UML Sequence Diagram – AM: CRUD Operations for Developer 81
Figure 43 : UML Sequence Diagram – AM: Review Process ... 82

Figure 44: Activity Diagram – AM: Application Lifecycle .. 83
Figure 45: UML Sequence Diagram – PM: Overview .. 84

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
9 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 46: UML Sequence Diagram – PM: Interactions and Processes of the
Personalization Orchestrator ... 85
Figure 47: UML Sequence Diagram – PM: Interactions and Processes of the Personal
Profile Administrator... 86

Figure 48: UML Sequence Diagram – PM: Interactions and Processes of the
Recommendation Engine ... 87
Figure 49: UML Sequence Diagram – PM: Interactions and Processes of the Reasoning
Engine .. 88
Figure 50: UML Sequence Diagram – EM: Overview .. 89

Figure 51: UML Sequence Diagram – EM: Interactions and Processes of the Web Portal
sub-component .. 90
Figure 52: UML Sequence Diagram – EM: Interactions and Processes of the Web Crawler
sub-component .. 91
Figure 53: UML Sequence Diagram – EM: Interactions and Processes of the Event Miner
sub-component .. 92
Figure 54: UML Sequence Diagram – EM: Interactions and Processes of the Events
Knowledge Base Administrator sub-component .. 93

Figure 55: Game Manager and interfacing components .. 94

Figure 56: UML Sequence Diagram – KIS: General Message Handling 97
Figure 57: UML Sequence Diagram for KIS Service – Create Bucket 98
Figure 58: UML Sequence Diagram for KIS Service – Delete Bucket 98

Figure 59: UML Sequence Diagram for KIS Services – CRUD Operations for Data Objects
 ... 99

Figure 60: UML Sequence Diagram for KIS Service – Authorization Management 100
Figure 61: UML Sequence Diagram for KIS Service – Database Management 100
Figure 62: UML Sequence Diagram for KIS Service – Authentication Management 101

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
10 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

1 Introduction

ALFRED – Personal Interactive Assistant for Independent Living and Active Ageing – is a
project funded by the Seventh Framework Programme of the European Commission under
Grant Agreement No. 611218. It will allow older people to live longer at their own homes
with the possibility to act independently and to actively participate in society by providing
the technological foundation for an ecosystem, consisting of four pillars:

 User-Driven Interaction Assistant to allow older people to talk to ALFRED and to
ask questions or define commands in order to solve day-to-day problems.

 Personalized Social Inclusion by suggesting social events to older people, taking
into account their interests and their social environment.

 A more Effective & Personalized Care by allowing medical staff and caretakers to
access the vital signs of older people monitored by (wearable) sensors.

 Physical & Cognitive Impairments Prevention by way of serious games that help
the users to maintain and possibly even improve their physical and cognitive
capabilities.

1.1 ALFRED Project Overview

One of the main problems of western societies is the increasing isolation of older people,
who do not actively participate in society either because of missing social interactions or
because of age-related impairments (physical or cognitive). The outcomes of the ALFRED
project will help to overcome this problem with an interactive virtual butler (a smartphone
application also called ALFRED) for older people, which is fully voice controlled.

The ALFRED project is wrapped around the following main objectives:

 To empower older people to live independently for longer by delivering a virtual
butler with seamless support for tasks in and outside the home. This virtual butler
(the ALFRED app) aims for a very high end-user acceptance by using a fully voice
controlled and non-technical user interface.

 To prevent age-related physical and cognitive impairments with the help of
personalized serious games.

 To foster active participation in society for the ageing population by suggesting and
managing events and social contacts.

 And finally, to improve caring by offering direct access to vital signs for carers and
other medical staff as well as alerting in case of emergencies. The data is collected
by unobtrusive wearable sensors monitoring the vital signs of ALFRED’s users.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
11 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

To achieve its goals, the project ALFRED conducts original research from a user centred
perspective and applies technologies from the fields of Ubiquitous Computing, Big Data,
Serious Gaming, the Semantic Web, Cyber Physical Systems, the Internet of Things, the
Internet of Services, and Human-Computer Interaction. For more information, please refer
to the project website at http://www.alfred.eu.

1.2 Deliverable Purpose, Scope and Context

The purpose of this deliverable is to act as a clear guidance for the technical
implementation during the whole course of the project. It gives not only an overview of the
overall architecture of the ALFRED system but also provides deep insights in the
mechanisms, functionalities and responsibilities of each part of the ALFRED system. This
allows the parallel implementation of components and subcomponents while ensuring a
seamless integration of all components at a later stage. The Architecture Definition and
Functional Specification deliverable is also the basis for the work on the technical
specification (with Deliverable D2.5).

The descriptions in the document are high level and explicit without concrete technological
selections. This abstraction level will allow for an accurate and detailed common view
between all partners of the ALFRED project; enabling the examination of the state-of-the-
art with the same perspective afterwards during the technical specification.

1.3 Document Status and Target Audience

This document is listed in the Description-of-Work (DoW) as “public”, as it provides general
information about the goals and scope of the ALFRED project and can therefore be used
by external parties in order to get according insight into the project activities.

While the document mainly aims at the project’s contributing partners, this public
deliverable can also be useful for the wider scientific and industrial community. This
includes other publicly funded research and development projects, which may be
interested in collaboration.

1.4 Abbreviations and Glossary

A definition of common terms and roles related to the realization of the ALFRED project as
well as a list of abbreviations is available in the supplementary document “Supplement:
Abbreviations and Glossary”, which is provided in addition to this deliverable. Further
information can be found at http://www.alfred.eu.

1.5 Document Structure

This deliverable is broken down into the following sections:

 Chapter 1 provides an introduction for this deliverable including a general overview
of the project, and outlines the purpose, scope, context, status, and target
audience.

 In chapter 2 all components of the ALFRED system are defined. This is done by
first providing an overview of the whole ALFRED system. Then the components are

http://www.alfred.eu/

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
12 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

explained in detail, by showing the internal structure of the components and
describing the responsibilities of the containing subcomponents.

 Chapter 3 uses the same structure as chapter 2 in order to define all provided
functionalities of the components of the ALFRED system. With the help of high level
UML sequence diagrams all involved subcomponents for any given functionality are
shown.

 Chapter 4 closes the deliverable with a summary and the next steps for the
ALFRED project based on the outcomes of the task behind this deliverable.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
13 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2 Global Architecture Definition

2.1 Overview

The global architecture of the ALFRED system shows the interaction and the
responsibilities of all components, subcomponents and modules, of which the ALFRED
system as a whole is made up of. This chapter introduces the seven main components of
the ALFRED system, as depicted in Figure 1.

Figure 1: Infographic - Overview of the Architecture of the ALFRED System

Each component of the ALFRED system provides encapsulated functionalities to the rest
of the system. The most visual component will be the Personal Assistant (PA)
component, which will provide the main interaction point to the end user of the ALFRED
system and which will run as an app on a mobile device (the “ALFRED device”). It is this
component that what will be perceived by the user as the “virtual butler ALFRED”. The
Personal Assistant component will merge all functionalities of the other seven components
and their subcomponents and it will provide some of these functionalities to third-party
apps and games that are associated with the ALFRED system, the so-called “extensions”
to ALFRED.

The other seven components can be divided into two categories. The first category is
made up of those components that have both an online subcomponent, and a mobile
subcomponent running locally on the ALFRED device. There are four of these
components, and they are:

Personal Assistant

Game Manager

Health Monitor

Personalization Manager

Context-Aware Dialogue Engine

Event Manager

Market Place
ALFREDO
Mobile

Component

Web Portal

Personalization
Orchestrator

Recommendation
Engine

Personal Profile
Administrator

Reasoning Engine

API Wrapper
Personalization

Facade
Web Portal

Event Miner

Event Crawler

Event Knowledge
Base Administrator

Storage

Facade

Sensors

Sensor
Abstraction
Framework

Health
Monitor Client

Health Monitor Server

Storage

Meta Data
Repository

Controller

Manager and
Frameworks

Facade

Web PortalFacade

App Manager

API Wrapper

Storage

Session
Managment

User Interface
Layer

Facade

Reassoner

ControllerAdapter

Facade

ALFRED System

Mobile Assistant Foundation

Extensions

API Wrapper

Suggestion
Manager

Dialog
Management

Core

Dialog Domain
Manager

Information
State

Backend

Legend

Internal
Subcomponent

External Gateway User Interface

Internal Gateway

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
14 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 The Health Monitor (HM) component has a mobile subcomponent running locally
on the ALFRED device that encapsulates the framework which provides access to
the external sensors and wearables that are part of the ALFRED solution. The
online subcomponent of the HM collects the raw sensor data and processes it to
health information.

 The Context-aware Speech Recognition (CADE) component handles all voice
based end user input. It interacts with the end user via the mobile subcomponent.
To achieve more accurate voice recognition, information from the Personalisation
Manager (see below) and the ALFREDO Marketplace (see below) are utilized in the
more sophisticated interpretation of the user input by the online, server-based
subcomponent of CADE.

 The ALFREDO Marketplace (AM) component will be the repository for all ALFRED
extensions (= apps). On the ALFRED device, the respective subcomponent
provides management functionalities to the end user, such as finding, installing,
updating and deleting an ALFRED extension. On the server side, the
subcomponent of the AM provides functionalities required to manage ALFRED
extensions from a provider’s perspective.

 The Game Manager (GM) component will provide and manage the serious game of
the ALFRED system. It uses information for the Personalisation Manager and the
ALFREDO Marketplace in order to suggest games to the end user of the virtual
butler. In addition, it will monitor the end user by analysing data from the Health
Monitor to adapt the serious games to the needs of the end user.

The second category of components includes subsystems with only a single online,
server-sided component:

 The Personalisation Manager (PM) component will be the central hub for all user
profile information. It will be able to reason on the provided raw data in order to
acquire new, more complex knowledge about the user. All this information is then
provided as a service to the other components of the ALFRED system.

 The Event Manager (EM) component gathers event information, which is
automatically collected by crawling specific domains in the Internet and manually
through user input in a web portal. Not depicted in Figure 1 is the Knowledge and
Information Storage (KIS) component. It acts as a provider of various types of
databases to the components of the ALFRED system. It thus enables the other
components to store all data save and secure, ensuring data sustainability and
privacy.

The following subchapters provide a brief overview for each of ALFRED’s eight main
components.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
15 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.2 Personal Assistant

2.2.1 Overview

The Personal Assistant (PA) provides a unified access point to the functionalities of the
other ALFRED components. It’s running locally on the ALFED mobile device and consists
of the following subcomponents:

 Extensions: all kinds of third-party applications and games not part of the ALFRED
system (as described in this document), but rather building upon the functionalities
provided by it.

 User Interaction: contains modules which handle user interaction.

 API Wrapper: this subcomponent contains modules that allow extensions to access
functionalities provided by other ALFRED components.

 Mobility Assistant Foundation: the core of the Personal Assistant and as such, of
the ALFRED system as a whole. Connects and manages all components and
extensions.

Figure 2 depicts the architecture of the Personal Assistant in detail.

Figure 2: Infographic - Architecture of the Personal Assistant

Input / Output

Extensions

Personal Assistant

API Wrapper

Mobility Assistant Foundation

Personalization
Manager API

Wrapper

Context Aware Dialogue Engine (CADE)

Health Monitor
API Wrapper

Apps &
Games

Runtime

Extensions
Interface

KIS
API Wrapper

Authorization
Manager

Suggestion
Manager

Context
Provider

Input from
User

Apps

Games

Output to
User

Event and Game Suggestions

Visual Output

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
16 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.2.2 Extensions

Extensions are all types of third-party applications, including (serious) games, which are
based on the ALFRED system. Such extensions are developed within the ALFRED
project, but the project team also aims to establish a community of developers that will
provide additional extensions after the project itself has run out. Extensions will be
managed and handled by runtime modules, residing within the Personal Assistant core
component.

2.2.3 User Interaction

When the user presses ALFRED’s main (and only) button, she initiates the CADE
component (see chapter 2.4), which will then listen to user’s voice, try to interpret what it
has received and eventually, if a command has been understood, trigger the respective
function in the ALFRED system. In some cases, however, it may also be necessary to
involve another modality, such as a graphical user interface. This, for example, could
happen when the user wants to call a person by saying her name, but when CADE is not
able to understand that name and thus requires further clarification. In these situations,
CADE could provide a number of options, or even a virtual keypad to the user.

2.2.4 API Wrapper

In order to enable extensions to access the system’s components via a unified interface, it
is meaningful to encapsulate the calling mechanisms to these components and to provide
API wrappers instead. These wrappers offer a standardized interface and hide the
distribution of the ALFRED components across the local device and the cloud.

2.2.5 Mobility Assistant Foundation

The Mobility Assistant Foundation is the core subcomponent of the Personal Assistant
component and as such, of the entire ALFRED application. It handles extensions, forwards
user interaction to the respective components, method calls between components, and so
forth.

Requests from extensions to the internal API wrappers will be handled by the Extensions
Interface module. This additional interface will hide the structure of the internal
components from external ones and assures to keep control over the extensions’ activities.

Extensions may need additional information about the user (i.e., where she is at and what
she is doing) or the device itself (e.g., which apps are currently active). Such information
will be accessible through the Context Provider module, which is part of the Mobility
Assistant Foundation subcomponent.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
17 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.3 Health Monitor

2.3.1 Overview

The Health Monitor (HM) environment involves four main pieces of software. The general
layout is described in the following infographic (see Figure 3):

Figure 3: Infographic - Overview of the Architecture of the Health Monitor

The four main subcomponents of the HM component are:

 The Sensor Abstraction Framework (SAF) provides access to sensor
measurements through an open API called the SAF API.

 The Health Monitor Client is the subcomponent installed locally on the ALFRED
device. It receives information from the sensors via the SAF and is in constant
communication with the Health Monitor Server.

 The Health Monitor Server is a cloud-based subcomponent that receives and
interprets information from the Health Monitor Client.

 The Web Portal provides web-based access to the HM services.

A more detailed overview of these components is given in the sections that follow.

2.3.2 Sensor Abstraction Framework

The Sensor Abstraction Framework (SAF) is an extensible independent subcomponent
running locally on the ALFRED device, which can provide access to various kinds of
sensors (especially those within wearable devices). The following figure depicts the
architecture of this subcomponent (see Figure 4):

Client component

Sensor Abstraction Framework (SAF)

SensorsSensorsSensors

Health Monitor Client

Health Monitor Server

Web Portal

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
18 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 4: Infographic - Architecture of the Sensor Abstraction Framework

Access to sensors is realized by registering in the Driver Registry, so that different Sensor
Drivers know how to communicate with different sensor types. All Sensor Drivers provide
the same interface to interact with all types of sensors. For example, one driver may
recognize, configure and capture data from a particular type of temperature sensor.

The Sensor Pool maintains information about all active sensors, that is, sensors from
which measurements must be taken. Typically, a sensor is active when there is at least
one listener registered for it.

The Sensor Monitor receives all sensor measurements, coming from all active sensors in
the system, that is, the sensors included in the Sensor Pool, and stores them into an
internal buffer. This private storage uncouples the Sensor Monitor from the Sensor Data
Dispatcher, effectively implementing the producer-consumer pattern and supporting
significant speed differences between both modules.

The Sensor Data Dispatcher module dispatches sensor measurements among all the
registered Sensor Listeners. Each listener will be able to listen to measurements coming
from one or more sensors.

The Listener Registry maintains information about all registered Sensor Listeners.

The Health Monitor Client (see section 2.3.3) is registered in the SAF just like any other
listener and thus receives sensor measurements from a set of preselected (health-related)
sensors on a regular basis.

Two main design choices drive the architecture of the SAF subcomponent: independence
and extensibility. The SAF is an independent subcomponent that can work stand alone
and does not depend on any other components of the ALFRED system. The framework
can be easily extended by registering new drivers that receive information from new
sensor types. This feature enables third parties to integrate new sensors with new
capacities along with new extensions that make use of such capacities, providing extra
value to the overall ALFREDO ecosystem.

Sensor Abstraction Framework (SAF)

SensorsSensorsSensors

Sensor Driver
Sensor Driver

Sensor Driver
Sensor Monitor

Internal
Buffer

Sensor Data
Dispatcher

Driver Registry

Listener Registry
Sensor Driver

Sensor Driver
Sensor Listener

Sensor Pool

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
19 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.3.3 Health Monitor Client

The Health Monitor Client represents the bridge between the user and the Health Monitor
service and it is responsible for two major functionalities:

 Providing easy access to the user health profile.

 Receiving information from sensors and transmitting such information 'conveniently
pre-processed' to the Health Monitor Server.

The following figure (Figure 5) describes the architecture that supports these services.

Figure 5: Infographic - Architecture of the Health Monitor Client

The four main modules of the Health Monitor Client subcomponent are:

 The Health Profile Manager that provides access to the user’s health profile.

 The Data Pre-process Framework that receives all data coming from the sensors
and pre-processes it for further transmission.

 The Data Transmission Manager is responsible for transferring all data to the
Health Monitor Server.

 The Metadata Repository provides support to the other three modules. It contains
all the metadata the other modules require to perform their activities.

The first functionality (access to the user profile) is realized by the Health Profile Manager,
whereas the second functionality (transmitting sensor data) is realized by the Data Pre-
process Framework and the Data Transmission Manager.

Health Monitor Client

Data Transmission ManagerData Pre-process Framework

Data Receiver

Data Pre-
processor

Data Compressor

Personalization
Manager API Wrapper

Health Profile Manager

Data Transmitter

Health Data
Manager

Carers Data
Manager Internal

Storage
Internal
Storage

SAF API Wrapper

Health Monitor API
Wrapper

 Metadata Repository (stateful)

Config Data

Sensor
Config Data Processing

Config Anomaly
Config

Healt Profile Data

Health
Data

Carers Data

Person Data

Person
Data

Internal
Storage

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
20 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 The Health Profile Manager

This module provides easy access to the user’s health profile. The Health Data Manager
submodule involves access to the user’s health data. The Carers Data Manager
submodule includes granting and revoking the appropriate permissions to a caregiver,
presumably by specifying the carer identifier, the carer relationship and by confirming the
operation. Both submodules depend on the Metadata Repository module to retrieve and
manipulate the required information (see section 2.3.3.4).

 The Data Pre-process Framework

This module is registered in the SAF as a listener and receives measurements coming
from a collection of previously configured sensors. All measurements are received through
the Data Receiver subcomponent.

All measurements are pre-processed and prepared for further transmission by the Data
Pre-processor. The type of pre-processing depends on the sensor type, the measurement
data and the associated configuration. The configuration can be obtained from the
Metadata Repository (see section 2.3.3.4). Part of the configuration is sensor-
measurement dependent and another part must be defined by the medical staff.

As an example of a sensor-measurement dependent configuration, consider detecting
changes in the position of the user. In this example, measurements coming from an
accelerometer may be discarded if they match (with some tolerance) previous
measurements, so there is no need to process, transmit and store those values. Only
significant changes in the values are interesting and will be processed

As an example of a configuration defined by the medical-staff consider measurements
taken only at particular moments in the patient’s daily life, taking maximum, minimum or
average values.

The Data Pre-process Framework may require Internal Storage for calculations. In the first
example presented before, temporary storage between successive measurements is
required for storing previous values of the accelerometer. In the second example,
temporary storage between successive measurements is required for calculating
maximum, minimum and average values.

The Data Pre-process Framework must work in combination with the Data Post-process
Framework included in the Health Monitor Server, since the latter is the consumer of the
pre-processed data.

 The Data Transmission Manager

This module obtains data pre-processed by the Data Pre-process Framework and
efficiently transmits it to the Health Monitor Server.

Before transmitting data, it may be compressed by the Data Compressor in order to obtain
a better communication performance and optimize resource utilisation.

The data is finally transmitted to the Health Monitor Server, making use of the Health
Monitor API.

An Internal Storage is required in order to uncouple pre-processing from transmission and
to support changes in the speed of both activities. This storage is also required to

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
21 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

temporarily store all data, during communication failures, congestion or disconnection
periods, for later retransmission.

 The Metadata Repository

This module provides homogeneous access to all the metadata that the other modules
depend on. In particular, we are considering the following metadata collections:

 Person data that provides information about the user.

 Health Profile data that provides information about the user’s health, carers, user-
carer relationships, and granted permissions.

 Configuration data that consists of the following categories:
o Sensor configuration: information about the sensors available for the user, as

well as their proper configuration. This is required for configuring SAF-Health
Monitor Client connection.

o Data Processing configuration: information about how sensor measurements
must be pre- and post-processed. This is required for configuring the Data
Pre-process Framework.

o Anomaly configuration: information about anomaly detection. Necessary for
early-detection of anomalies in the client-side or for complementing Data
Processing configuration in order to perform appropriate pre-processing
activities for enabling easy detection of anomalies in the server-side.

The task of this module is twofold. On the one hand, it uncouples the Health Monitor Client
subcomponent from external sources under a common repository interface. On the other
hand, it functions as a cache, so that the same data will not be retrieved twice, improving
performance and yielding failover capabilities. To that end, an Internal Storage module is
provided.

The Metadata Repository is an intermediate storage space. All the information will
ultimately be obtained from either the Personalisation Manager or the Health Monitor
Server.

2.3.4 Health Monitor Server

This subcomponent is a stateless (process-only) cloud based element, due to the fact that
flexible and fast scalability is required with increasing load. As more and more devices are
expected to join the ecosystem, resource consumption will boost and the only way to
guarantee reasonable performance is to rely on flexible cloud platforms.

The Health Monitor Server represents the core of the HM environment and performs two
main roles:

 It is the counterpart of the Health Monitor Client subcomponent and maintains a
permanent connection with it, receiving sensor data and conveniently storing them.

 It publishes a collection of health-related services consumable by other components
of the ALFRED system, and makes them available through the Health Monitor API.

To achieve these functionalities the Health Monitor Server uses the following architecture
(see Figure 6).

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
22 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 6: Infographic - Architecture of the Health Monitor Server

These are the main modules of the Health Monitor Server:

 The Facade publishes the Health Monitor API.

 The Controller controls the main workflow that will follow after a request.

 The Data Post-process Framework is the module responsible for receiving sensor
data coming from the Health Monitor Client, post-processing it, and storing it.

Access

Health Monitor Server

Data Analysis FrameworkAlarm ManagerHealth Profile Manager

Health Data
Manager

Carers Data
Manager

Data Postprocess
Framework

Data Receiver

Data
Uncompressor

Data Post-
processor

Anomaly Detector

Alarm
Configurator

Alarm Notifier

Alarm Tracker

Data Transmitter

Health Monitor API
Wrapper

Facade

Data Post-
process Facade

Health Profile
Facade

Alarm Facade
Data Analysis

Facade

 Controller

Data Post-
process

Controller

Health Profile
Controller

Alarm Controller
Data Analysis

Controller

Personalization
Manager API Wrapper

KIS API Wrapper

 Metadata Repository (stateless)

Healt Profile Data

Health
Data

Carers Data

Person Data

Person
Data

Config Data

Sensor
Config Data Processing

Config Anomaly
Config

Security
Controller

Health Monitor
Configurator

Sensors
Configurator

Data Processing
Configurator

Anomaly
Configurator

Alarm
Config Data Analysis

Config

Analysis
Configurator

Data Loader

Data Analyzer

Anomaly Detector

Configurator
Facade

Configurator
Controller

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
23 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 The Health Profile Manager deals with all user health profile related operations,
including health data and carers data manipulation.

 The Health Monitor Configurator includes all the HM configurations required for
keeping track of user health.

 The Alarm Manager is the module responsible for managing alarms (configuration,
notification, etc.) due to detected anomalies.

 The Data Analysis Framework is the module that provides access to previously
recorded sensor data, as well as appropriate tools for analysing them.

In the next sections more details about these modules are provided.

 The Facade

The Facade is the public interface of the Health Monitor Server, and encapsulates the
Health Monitor API as a single point of communication. The provided services are grouped
into four categories:

 Data Post-process Facade: transfers pre-processed measurement data from the
Health Monitor Client.

 Health Profile Facade: accesses and manipulates the user health profile.

 Configurator Facade: manages HM configurations

 Alarm Facade: manages alarms.

 Data Analysis Facade: retrieves and analyses measurement data.

The Facade component relies on the Controller in order to realise the published
functionalities. For each inbound request, the appropriate Facade submodule will be
activated. After checking that the request is authenticated and authorized, the Facade
submodule will forward the request to its Controller counterpart, as explained in the next
section.

 The Controller

The Controller module captures all valid requests and begins the workflow, calling the
appropriate components and orchestrating processing. To that end, it relies on the
following internal submodule:

 The Data Post-process Controller, responsible for managing all operations related
to measurement data reception and post-processing.

 The Health Profile Controller, responsible for managing all operations related to
health data management.

 The Configurator Controller, responsible for managing all operations related to the
HM configurations.

 The Alarm Controller, responsible for managing all operations related to alarms.

 The Data Analysis Controller, responsible for managing all operations related to
data retrieval and analysis.

 The Security Controller, responsible for checking that the operation is performed by
a valid user with appropriate permissions. This submodule is consulted by the
Facade after receiving the inbound request and before proceeding with further
processing.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
24 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 Data Post-process Framework

This module receives pre-processed sensor measurements coming from the Health
Monitor Client through the Data Receiver subcomponent.

Data may be compressed by the Health Monitor Client (see section 2.3.3.3). If this is the
case, then it must be uncompressed before proceeding. The Data Uncompressor is
responsible for this task.

Data may be post-processed in order to obtain extra measurements for further decision
taking. The type of post-processing depends on the measurement data and the associated
configuration. The configuration can be obtained from the Metadata Repository (see
section 2.3.4.8).

The Data Post-process Framework must work in combination with the Data Pre-process
Framework included in the Health Monitor Client (see section 2.3.3.2 for further
information).

Post-processed data is checked in order to find anomalies that might trigger alarms. This
is the goal of the Anomaly Detector submodule. Information about which anomalies must
be checked and how, is available under the Metadata Repository (see section 2.3.4.8).

Finally, data must be transmitted to the final storage system, incarnated by KIS. This is the
Data Transmitter submodule's purpose.

 Health Profile Manager

This module provides access to all operations related to health profile management, that
is, all operations related to health and carers data. The following submodules in charge of
the different portions of these data can be identified:

 The Health Data Manager submodule provides tools for managing the user’s
medical records (e.g. patient diseases, analysis results, history, etc.).

 The Carers Data Manager submodule publishes operations to manage care
information, define user-caregiver relationships and define access levels of carers
on user data.

Irrespective of the concrete submodule, the managed metadata must be obtained/stored,
using the Metadata Repository (see section 2.3.4.8).

 Health Monitor Configurator

The Health Monitor requires some specific configurations to keep track of the user’s
health. This module provides access to all operations related to user health configuration
management. In particular, we can identify the following submodules:

 The Sensors Configurator submodule is responsible for managing the configuration
of the different sensors. An example of a sensor configuration parameter may be
the accuracy level, or the sampling period used to capture measurements. This
data could be different depending on the user’s medical history.

 The Data Processing Configurator submodule provides tools for configuring sensor
data processing. Again, depending on the user, this data may vary. For example,
for some users a comprehensive monitoring process would be required; for other
users just average or aggregated values would suffice.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
25 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 The Anomaly Configurator submodule is responsible for managing anomaly
configurations. The carer should define what is an anomaly based on sensor
measurements. This submodule does not include how to notify anomalies. This is
the purpose of the Alarm Configurator subcomponent included in the Alarm
Manager component (see section 2.3.4.6).

Irrespective of the concrete submodule, the managed metadata must be obtained/stored
using the Metadata Repository (see section 2.3.4.8).

 Alarm Manager

This module is responsible for managing all aspects regarding health-related alarms in the
system. On the one hand, the Alarm Configurator submodule provides all operations
required to set up and configure alarms (adding, configuring and removing) to the end-
user. Alarm configurations include information about the anomaly to be detected, as well
as information about how to notify the incidence. All the information about alarm
configuration must be stored using the Metadata Repository (see section 2.3.4.8). On the
other hand, the Alarm Notifier and Alarm Tracker realise the alarm processing subsystem.
The Alarm Notifier receives alerts coming from the Anomaly Detector included within the
Data Post-process Framework (see 2.3.4.3) and notifies the incidences to all parties
involved. Different notification channels may be used (e.g. e-mail or PUSH notifications),
depending on the particular alarm configuration. The Alarm Tracker is an optional
submodule that will be included in case the system needs to register the result of
notifications (i.e. whether the notification has successfully reached its destination). As
stated before, all the information related to alarms, including the information about who
must be notified and how, is available under the Metadata Repository (see section
2.3.4.8).

 Data Analysis Framework

This module supplies appropriate tools for retrieving and analysing the historical sensor
measurements, managed by the Data Post-process Framework.

The Analysis Configurator provides tools for setting user preferences useful for the Data
Analysis Framework. These preferences are finally obtained and stored in the Metadata
Repository (see section 2.3.4.8).

The Data Loader is responsible for loading the data from the persistent store (aka KIS) in
an efficient way.

The Data Analyser submodule analyses data according to user preferences, obtaining
maximum, minimum and average values as demanded, as well as other required statistical
parameters.

The Anomaly Detector identifies a posteriori the anomalies included in the analysed data
(presumably detected and successfully notified in real time). With some heuristics, the
anomaly detector can recognize patterns in historical data for the early detection of serious
diseases.

All results generated by these submodules are prepared for consumption by external
components (for example the Web Portal, see section 2.3.5).

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
26 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 Metadata Repository

This module provides access to all the metadata the other modules depend on in a
homogeneous way. In particular, we are considering the following metadata collections:

 Person data: information about the user.

 Health Profile data: information about the user’s health, his/her caregiver, the
relationships and granted permissions.

 Configuration data: considering at least the following subcategories:
o Sensor configuration: information about the sensors available for the user, as

well as their proper configuration. This is required for configuring SAF-Health
Monitor Client connection.

o Data Processing configuration: information about how sensor measurements
must be pre- and post-processed. This is required for configuring the Data
Pre-process Framework included the Health Monitor Client and the Data
Post-process Framework included in the Health Monitor Server.

o Anomaly configuration: information about anomaly detection. This is
necessary for detecting anomalies in the Data Post-process Framework.

o Alarm configuration: information about alarms.
o Data Analysis configuration: information about how to analyse and present

results to users through the Data Analysis Framework.

It should be noted that the metadata available in the Metadata Repository of the server
side does not exactly match the metadata available in the Metadata Repository of the
client side (see section 2.3.3.4). Each Metadata Repository will include strictly necessary
metadata to achieve its consumers’ functionalities.

Again, the task of this module is twofold. On the one hand, it uncouples the Health Monitor
Server modules from external sources under a common repository interface, hiding the
complexities of external APIs under a comfortable homemade interface. On the other hand
it provides symmetry with the Health Monitor Client, combining into the same component a
collection of data semantically related.

It should be noted that the Metadata Repository included in the Health Monitor Server is
stateless (unlike the Metadata Repository included in the Health Monitor Client, see
section 2.3.3.4 for further information). This means that it does not provide cache
capabilities; it only represents means to access metadata in a homogeneous way.

All the information will ultimately be obtained from either the Personalisation Manager or
the KIS.

2.3.5 Web Portal

The Web Portal provides web-based access to the HM services. The architecture is
depicted in the following figure (see Figure 7).

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
27 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 7: Infographic - Architecture of the Web Portal of the HM

A MVC (Model View Controller) pattern is used for the Web Portal architecture:

 The View provides access to the web application, receiving user inputs and
rendering appropriate outputs

 The Controller takes control of the request and begins the workflow in order to
generate an adequate response to each request

 The Model encapsulates the actual data/services requested by the user. In our
case, all data/services are finally implemented in the Health Monitor Server, and
interpreted by this component

In the next sections, these modules are further described.

 The View

The View is in direct contact with the final user. It manages the inputs and displays the
outputs received from the other modules.

The View can be divided into three submodules:

 The Health Profile Front End is the submodule responsible for receiving and
displaying information related to the user’s health data. This includes tools for
medical caregivers to define and review patient medical records, as well as
configurations for controlling its health.

 The Alarm Front End is the submodule responsible for receiving and displaying
information related to the alarms. This includes tools for carers to define and
configure anomaly detection rules and alarms.

 The Data Analysis Front End is the submodule responsible for receiving and
displaying information related to the measurement data and its analysis. This

Web Portal

Health Monitor API
Wrapper

View

Health Profile
Front End

Alarm
Front End

Data Analysis
Front End

Model

Controller

Security
Controller

Health Profile
Controller

Alarm Controller
Data Analysis

Controller

Health Profile
Model

Alarm Model
Data Analysis

Model

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
28 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

includes tools for caregivers to define and configure the data processing rules. It
also includes tools for real time monitoring as well as historical data mining.

To achieve these functionalities, the View is in direct communication with the Controller.

 The Controller

The Controller orchestrates the process that takes place for every inbound request
received through the view. We can identify the following submodules:

 The Health Profile Controller is responsible for controlling all health data related
requests.

 The Alarm Controller is responsible for controlling all alarm related requests.

 The Data Analysis Controller is responsible for controlling all data analysis related
requests.

 The Security Controller is responsible for guaranteeing that requests are valid
(essentially, that they come from authenticated users).

For each request, the Controller will have to implement a particular workflow, that is, a
sequence of steps, most of which will involve interacting/manipulating the Model in some
way.

 The Model

The Model encapsulates the atomic services provided by the HM in a way that allows
simple interaction from the Controller component. To that end, it is internally composed of
three submodules:

 The Health Profile Model includes the atomic services related to health data
management.

 The Alarm Model includes the atomic services related with alarm management.

 The Data Analysis Controller includes the atomic services related to data analysis
management.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
29 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.4 Context-aware Speech Recognition

2.4.1 Overview

The Context-Aware Dialogue Engine (CADE) is responsible for spoken interaction
between ALFRED and the end user. It allows the user to give spoken queries and
commands, interprets the utterances and provides verbal feedback and responses. It also
identifies ALFRED apps corresponding to the user’s intention. CADE interfaces with other
ALFRED components in order to fetch app resources, request information and trigger
activities. CADE consists of the following subcomponents:

Figure 8: Infographic - Architecture of the Context-Aware Dialogue Engine

 Frontend: mainly consisting of an automatic speech recognizer and a text-to-
speech synthesizer. It also provides the facades to other ALFRED components.

 Backend: consisting of dialogue move engine, natural-language interpreter, etc.

 Session Manager: providing each frontend with access to a backend, and routing
communication between frontend and backend.

Dialogue Manager Core

Dialogue
Move Engine

Turn
Manager

Backend

Frontend

User Interface Layer

Text To
Speech

Synthesizer

Automatic
Speech

Recogniser

Dialogue Domain
Description

Facade

Session ManagementSession
Manager

Interpretation Generation Interpretation

GUI
Generation

GUI
Interpretation

Dialogue Domain Manager

Activities
Facade

Dialogue
Domain Facade

Haptic Input
Facade

Information
State

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
30 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

The subsequent subsections describe the CADE subcomponents in more detail.

2.4.2 Frontend

The CADE Frontend provides the user interface layer of the spoken dialogue support in
ALFRED. It runs locally on the ALFRED device and consists of the following parts:

 Automatic Speech Recognizer (ASR)

 Text-To-Speech Synthesizer (TTS)

 Dialogue Facade (see subsection 2.4.2.1)

The ASR listens to the microphone and returns a textual hypothesis of what the user has
said, along with confidence values. Inversely, the TTS receives text to be spoken and
outputs it via the mobile device’s speakers.

Within the ALFRED project, neither ASR nor TTS engines will be developed. Instead,
already existing speech engines will be adopted and wrapped within the frontend
subcomponents.

 Dialogue Facade

The CADE Frontend provides the dialogue facade, enabling other ALRED components to
trigger dialogues. For example, the Event Manager can invoke a service in the facade in
order to trigger ALFRED to ask the user about participating in an upcoming event. The
facade also receives notifications from the graphical user interface, e.g. when the user has
clicked the push-to-talk button.

2.4.3 Backend

The CADE Backend contains the main logic governing spoken dialogue interaction
between ALFRED and the user. It typically runs on a server, and consists of the following
parts:

 Information State: Contains dialogue related information such as dialogue history,
issues currently under discussion, and beliefs shared by the user and the system.

 Interpretation: Produces semantic interpretations of the user utterances
recognised by the ASR.

 Dialogue Move Engine (DME): Uses dialogue plans defined in Dialogue Domain
Descriptions (see below) in order to identify the user’s intention and find
corresponding apps. The DME may ask follow-up questions to the user and request
information from other ALFRED components. It may also request to start or stop
activities in other ALFRED components.

 Generation: Produces textual realizations in natural language from semantic
representations of dialogue moves that the DME has selected.

 Turn Manager: Distributes the “turn” (the right and opportunity to speak) between
the user and the system.

 Dialogue Domain Description: Describes the ontology, the plans and the
grammar of a particular dialogue domain. The ontology defines concepts, entities
and actions that the user and the system may reference in questions, answers and
requests. The dialogue plans describe how actions are carried out and how
questions are answered. Plans also describe what information is needed in order to

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
31 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

carry out the actions or answer the questions. The grammar defines mappings
between linguistic surface forms and semantic entities. In ALFRED, there will be a
Core Domain Description, describing the dialogue domain for the core functionality
of the assistant, as well as app-specific domain descriptions. The Core Domain
Description will be relatively small, as most functionality in the assistant will be
provided by the apps. The app-specific domain descriptions will be stored in the
ALFREDO Marketplace and will be defined by app developers in a high-level format
such as XML.

 Dialogue Domain Manager: Contains Dialogue Descriptions for specific ALFRED
apps.

 GUI Interpretation: Produces semantic representations of input received from the
GUI.

 GUI Generation: Produces graphical descriptions from semantic representations of
dialogue moves that the DME has selected. In ALFRED, this may be used for
generating clarification buttons when the system is uncertain what the user said.

2.4.4 Session Manager

The frontend and the backend of CADE communicate via the Session Manager. When a
new frontend connects to the Session Manager, it first ensures that there is an available
backend that can serve it. It then associates them to each other and routes subsequent
messages in both directions

2.5 ALFREDO – Marketplace

2.5.1 Overview

One of the main achievements of the ALFRED project will be the delivery of new
functionalities for older end users. Those new functionalities will be provided by installing
new applications, called extensions, on the ALFRED system. The place where end users
can find those extensions will be the ALFREDO Marketplace.

Additionally, the Marketplace will provide for a web based user interface for developers of
ALFRED extensions. This web application will be usable from any modern web browser
and will allow developers to register and login to manage the extensions that they have
uploaded to the ALFREDO Marketplace. The web application will also provide testers with
tools to review applications in order to accept or reject their publication in the ALFREDO
marketplace.

The ALFREDO Marketplace is divided into two subcomponents (see figure 9):

 The Backend is responsible for the business logic of the ALFREDO Marketplace
and will provide a façade to communicate with other ALFRED components. It
consists of the modules API Component, APP Manager and Web façade.

 The Frontend is divided into two modules Web Component and Mobile
Component. It will be responsible for offering the façade between end user and the
ALFREDO system

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
32 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 9: Infographic – Architecture of the ALFREDO Marketplace

In the following subsections, the two segments Backend and Frontend will be discussed in
detail.

2.5.2 Backend

The backend encapsulates the business logic for application management and the
communication with other ALFRED components. This description covers mainly these two
functions.

ALFREDO
Mobile Component

UserUser

BACKEND

ALFREDO
Web Component

DeveloperDeveloper

Web Façade

TesterTester

FRONTEND

Net Controller

Installation
Controller

APP Info Controller

Search Controller

APP Manager

API Component

Review Controller

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
33 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

The business logic will be represented by the APP Manager. It will act as the core of the
Marketplace, responsible for the operations requested by other components of the
ALFRED system, such as the Game Manager or the Context-aware Dialogue Engine. The
App Manager is composed of the following subcomponents:

 APP Info Controller is responsible for requesting application information from the
device and from the Knowledge and Information Storage (KIS) and provide it to
other ALFRED components.

 Search Controller is a key component which will manage the search of
applications on the ALFRED system. This controller will forward the search query to
the KIS component.

 Net Controller, responsible for uploading and downloading applications from the
net to the ALFRED device

 Installation Controller, responsible for installing and uninstalling the applications
on the ALFRED device

 Review Controller, responsible for the review process of applications. Only
accessed via web by testers

The backend is also responsible for the communication with other ALFRED components.
To provide easy application management access, the backend will encapsulate the logic of
the operations in an API Component. The main responsibility of this component will be to
handle all the requests from other ALFRED components and allocate the required tasks to
the APP Manager. Vice versa, the API Component will handle the responses from tasks
executed by the APP Manager, returning the right feedback to the ALFRED component
which has performed the call.

Finally the backend encapsulates all the requests from the web interface. The Web façade
is responsible for handling web requests, in a similar manner to the API component. The
Web façade will provide a public interface to expose the methods of the ALFREDO Web
Component (see section 2.5.3.1)

2.5.3 Frontend

The frontend segment will provide the user interface layer. .

The Marketplace will be accessible through a web based user interface and a mobile user
interface.

Developers and testers will be able to access the Marketplace via web. . Developers will
be able to upload, update or remove their own applications. Testers will be able to pass
test cases to the uploaded applications in order to accept or reject them. These two user
roles will be described in the next section.

The older end users will be able to access the Marketplace via their ALFRED device. They
will be able to install, uninstall, upgrade and search for applications.

 ALFREDO Web component

The Web component is the web interface for ALFREDO marketplace.

From a technical perspective, this component will be realized as a web application
providing a web based UI for service providers and consumers. It will target technical

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
34 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

experts (developers and testers) and will offer tools to submit or review new applications
for older people.

 The component provides for two roles: The Tester is responsible for testing and
subsequently approving or rejecting the submitted applications by developers

 The Developer is the application publisher. He will be able to upload a new
application or a new version of an already published application

 ALFREDO Mobile component

The Mobile component will run on the ALFRED device and will communicate with the
backend through the API Component.

As mentioned before, end users will be able to perform the operations to install, uninstall,
update, rate and search applications within their ALFRED device.

This mobile component will be integrated within the ALFRED system providing a mobile
based user interface. This will allow end users to discover, buy, install, upgrade and
uninstall applications via this component.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
35 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.6 Personalization Manager

The Personalisation Manager will provide the older end user with a personalized
experience . This component will host specific information of users (i.e. older person) and
contribute to the privacy assurance. The gathered information is relatively static, including,
personal information of the older person (e.g., age, marital status, gender, nationality,
family members, contact details, etc.),health related information (e.g., allergies, medical
history, known conditions or medications, etc.), and personal preferences for applications
and the installed ALFRED applications. These persisted data will be available via the
Personalisation Manager using web services, while safeguarding the privacy of the older
person. The privacy assurance will be achieved by examining the privacy access levels of
requesters and the access level of the requested information. The requesters can be
individuals related in some manner with the older person such as carers, family members,
doctors, nurses, etc.
Moreover, this component will provide personalized suggestions for events that can be of
interest for the older person. The recommendations can work both pro-actively (e.g.,
provide recommendations every 12 hours) and re-actively (e.g., respond to inputs such as
“Find me a bingo game in Berlin for tomorrow”). The resulted recommendations will be
based on information such as:

 The personal profile of the older person (e.g., recommend events close to the home
address of the user).

 Health related information (e.g., would not recommend physically demanding
events to a user with a heart condition).

 Social networks context (e.g., events that friends of the older person are
participating in).

 A knowledge base of events (e.g., social, athletic, musical, etc.).

 And possible user input when he/she asks for recommended events.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
36 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

The Personalisation Manager will consist of four main building blocks as is depicted on the
high-level architecture infographic below (see Figure 10).

Figure 10: Infographic - Architecture of the Personalization Manager

A short description of the sub-components is presented below and more in depth
description follows in the next sections (2.6.1 – 2.6.4).

 The Personalization Orchestrator will be the interface of the Personalisation
Manager component with the other components and will be responsible for the
allocation of specific tasks to the appropriate sub-component (e.g.,
Recommendation Engine, Personalization Profile Administrator, Reasoning Engine)

 The Recommendation Engine will provide recommendations for events which are
of interest to the older person based on his profile, preferences history, social and
location context, health condition, etc.

 The Personalization Profile Administrator will provide the appropriate
models/information schemas to store profile information of the older person such as
name, family status, contact details, blood type, known significant medical issues,
etc. It will store the actual information in the KIS component and will perform CRUD

(short for “Create, Read, Update, Delete”) operations on them. The Personalization
Profile Administrator will be responsible for the delivery of information to other
components, with the help of the Reasoning Engine.

 The Reasoning Engine will be responsible for using the semantically rich
information stored in KIS via the Personalization Profile Administration. The engine
will assist both sub-components of the Personalisation Manager and external
components (such as CADE) to take “intelligent decisions” and actions through
intelligent reasoning.

Personal Profile Administrator

Recommendation Engine
Personalization

Orchestrator

Recommendation
Handler

Classifier

Requests
Receiver

Results
Provider

Tasks
Scheduler

Rules

P
er

so
n

al
iz

at
io

n
 M

an
ag

er
 A

P
I

Matchmaker

API Wrapper

KIS API Wrapper

Health Monitor
API Wrapper

Event Manager
API Wrapper

Reasoning Engine

Access Rights and
Authentication

Handler

Social Networks
Miner

Context Extractor

Repository
Handler

Personal Profile
Model

Storage Mediator

P
er

so
n

al
iz

at
io

n
 F

ac
ad

e

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
37 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.6.1 Personalization Orchestrator

The Personalization Orchestrator will act as an interface between the internal sub-
components of the Personalisation Manager (Personalization Profile Administrator, Data
Mediator and the Recommendation Engine) and the other components of the ALFRED
system such as the HM, the Knowledge and Information Storage and the Personal
Assistant. The Personalization Orchestrator will obtain inputs and requests through the
Personalisation Manager API and be responsible for the orchestration and allocation of the
required tasks. Any associated inputs to the appropriate sub-component will be provided
through the Personalization Orchestrator subcomponent. It will provide back to the
requester the results.

2.6.2 Recommendation Engine

This component is going to enhance the personalized ALFRED experience with
recommendations tailored to the personal profile of the user (older person) and his/her
context, based on parameters that include social, locational and health information. It will
work pro-actively, providing for recommendations in intervals or on specific locations,
according to the user settings. Additionally it will react on specific commands (e.g., provide
recommendations based on user commands such as “find me swimming courses in
Berlin”). The recommendations will be triggered in both cases by the Personalization
Orchestrator and the results will be transferred through the Personalization Orchestrator to
the Personal Assistant (or another app that acts as a mediator),presented through its
Suggestion sub-component.

The recommendation engine will include the results of extensive mining of social networks,
to provide social context aware recommendations. This is motivated by the fact that both
the ALFRED objectives as well as the defined use cases consider the social inclusion
extremely important for its users (older persons). The mining of social networks will be
performed by the Reasoning Engine. Health related aspects will be taken into account
when suggesting events and activities, as well as mobility levels and accessibility.. Last
but not least, user preferences will be used to recommend activities and based on
previous choices that results will be refined. These criteria will be defined in forms of rules
and will be used in statistical models and matchmaking algorithms that will be applied on
the knowledge base/data which includes available events, user inputs, personal profile and
historical data, social and locational context.

2.6.3 Personalisation Profile Administrator

This component will be critical for the personalized experience of the user. It will handle all
information related to the older person based on rich models/schemas explicitly
representing personal information, contact information and significant medical information
(e.g., allergies, serious conditions, medications the older person is using, etc.).
Additionally, users (or else, stakeholders) related to the older person such as family
members and carers will be handled through the Personalization Profile Administrator as
well as their specific privileges (data access levels) associated to the older person.

User settings and preferences concerning the behaviour of applications and functionalities
of the ALFRED system will be handled through the Personalization Profile Administrator
along with the interaction data of the user with the system.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
38 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Both internal processes in the Personalisation manager as well as other ALFRED
components (HM) will consult the Personalization Profile Administrator. For example,
internally the Recommendation Engine will use personal profile information to provide
recommendations tailored to the user. On the other hand, through the Personalization
Orchestrator, a query for medical history of an older person may be received for examining
if indications of increased heart rate should trigger an alarm.

The Personalization Profile Administrator sub-component acts as a mediator to the data
which are handled in the KIS. Through the KIS API it will perform CRUD operations on the
data, provided that with the help of the Reasoning Engine it is determined that the
requester of the CRUD operation has the access rights for the operation.

2.6.4 Reasoning Engine

The Reasoning Engine subcomponent will act as a decision-making mechanism, based on
personal information. It contributes to the functionalities of the Personalization Manager.
This description covers mainly three processes that are performed thanks to the
Reasoning Engine.

 First, it contributes to the privacy assurance by determining the access rights level
of data requesters. The personal profile of older persons includes very sensitive
information (e.g., medical history) as well as less sensitive (e.g., personal settings
and preferences). These data will be “characterized” by different levels of access
privileges. Also, users related to the older person will have access levels specified.
So when a user requests information about an older person, the Reasoning Engine
will be in charge of comparing the user access level to the one of the information
he/she requested, and decide if the information should be provided or not.

 Second, it helps with the determination of context in certain older person
“commands” to ALFRED. For example, the older person asks ALFRED to call her
daughter with the following verbal input “Call my daughter”. This input to the CADE
component (see section 2.5) will be treated with the Personalisation Manager by
retrieving the personal information of Helen. The Reasoning Engine will determine
who Helen’s daughter is and what her contact details are. This depends heavily on
the personal profile model description requiring rich semantic information to allow
such reasoning.

Finally, the Reasoning Engine will capitalize on social networks of the older person that
are defined in his/her social networks account (for which ALFRED will need certain access
rights) to provide social context for the user. For example by mining “social networks
friends” of the older person and extracting events they published, the Reasoning Engine
can the Recommendation Engine with events to suggest to the user (e.g., “Helen your
friend Emma is going to a bingo game that is taking place 2 km from your home”).

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
39 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.7 Event Manager

The Event Manager is responsible for building and maintaining a Knowledge Base1 of
events (e.g., social, athletic, musical, and educational, etc.). This Events Knowledge Base
will be used by the Recommendation Engine of the Personalisation Manager (see section
2.6) to provide personalized selections of events that the older person could be interested
in. This will help older persons to stay engaged and active. The population of the Events
Knowledge Base with events can be manual or semi-automatic.

Manual population concerns cases where users enter events through a web portal. Semi-
automatic population concerns the use of web crawlers, data processing and user
evaluation of the extracted events in order to populate the Knowledge Base (the
interaction also takes place through a web portal).

In the context of the Event Manager, we consider three types of users.

The Personalisation Manager which communicates with the Event Manager through its
API and can only read events.

The other two users are the “simple users” and the “reviewers” – both interacting with the
Event Manager through its GUI sub-component. The simple users can enter events, or
mine events in the web and select which should be used in the Events Knowledge Base.
However, the events that will actually be considered “valid” and can be used for
recommendations of events to older persons will be only those that are examined and
accepted by the reviewers. This reviewing process is performed to protect the Events
Knowledge Base from simple users that would attempt to enter malformed events in it.
Also the users that act as reviewers, have administrative rights on the Web locations that
will be crawled when mining for events and can perform all CRUD operations in the Events
Knowledge Base. The Event Manager is composed by 4 main building blocks as is
depicted in the figure below:

1 A Knowledge Base is a centralized repository for information

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
40 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 11: Infographic - Architecture of the Event Manager

The main building blocks of the Event Manager component are briefly described below
with a more detailed description following in the next sections (2.7.1 -2.7.4).

 The Web Portal provides a GUI for users to enter events or search for events
based on various criteria (e.g., location, type of event, date, etc.) and then select
results that they would like to save in the Events Knowledge Base. Moreover users
can browse for events already stored in the Events Knowledge Base.

 The Web Crawler fetches content (in form of text) from specified locations on the
Web related to events. The fetched content is passed for further processing to the
Event Mining sub-component

Web Portal

New Events Search

New Event Form

Event Miner

Event
Summarization

Storage

KIS API Wrapper

Event Crawler

Crawling Policies

Information
Extraction

Text Classification

Content Fetcher

Raw Content
Dumper

Events Knowledge Base
Administrator

Knowledge Base
Handler

Storage Mediator

Data Processor

Events Description
Model

Persisted Events
Browser

Result Events
Evaluator

Web

Ev
en

ts
 K

n
o

w
le

d
ge

 B
as

e
Fa

ca
d

e

Ev
en

ts
 C

ra
w

le
r

Fa
ca

d
e

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
41 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 The Event Miner processes the fetched contents to extract event descriptions and
provides a summary to the user. It parses the description in the appropriate form for
the Events Knowledge Base.

 The Events Knowledge Base Administrator defines the information model of the
event data and is responsible for CRUD operations to the events

2.7.1 Web Portal

The Web Portal sub-component will provide a user interface for users to populate the
Events Knowledge Base with specific events, or trigger the crawling of events based on
one or more criteria (such as type of event, location, and time period, etc.). Events
originating from non-administrator users have to be evaluated first by reviewers before the
events are actually considered valid, while events confirmed by reviewers are stored in the
Events Knowledge Base. In the case of manually inserting the event, the form will include
all the necessary information to populate the model for the description of events. In the
case of semi-automatic extraction of events from the web, the resulted events will be
presented to the user and she will decide, which of them should be added to the Events
Knowledge Base. Finally through the Web portal all users (both regular and reviewers) can
browse the events that are stored in the Events Knowledge Base. The reviewers have the
administrative rights in the Events Manager, including the rights to evaluate events that are
proposed by regular users and the rights to perform CRUD operations upon the Events
Knowledge Base. In essence, reviewers are in charge of determining which events will be
sent to/used by the Personalization Manager.

2.7.2 Web Crawler

The Web Crawler subcomponent will fetch the contents from a pre-defined set of web
locations (as defined by the selection policy). This process is initiated by a user via the
Event Manager’s Web Portal. The user will also be able to arrange an interval policy to
regularly check and fetch the contents for a set of selected URLs. The Web Crawler
subcomponent has the purpose to retrieve contents and to pass the returned contents to
the Data Mining subcomponent for further processing. It’s worth mentioning that the Web
Crawler will be designed to respect politeness policies which aim to ensure that the
crawler does not overload websites with its requests.

2.7.3 Event Miner

The Event Miner subcomponent is the most sophisticated part of the Event Manager
component and its tasks start when raw content is passed on from the Web Crawler. The
Event Miner parses the raw content (mainly text) and processes it. It is out of this
document’s scope to get into the specific details of this processing, but on high level it will
perform text classification to identify the type of events and information extraction to
identify locations, dates, times, etc. At this point the user’s entries and criteria can be used
to filter the results to those that are matching to the user’s inputs (e.g., events that take
place in Berlin only). Finally, the extracted event is summarized and presented to the user.
If the user indicates the event as relevant, it will be persisted in the Events Knowledge
Base.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
42 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.7.4 Events Knowledge Base Administrator

The Events Knowledge Base Administrator sub-component is responsible for creating,
retrieving, updating and deleting data from the KIS component where the events are
stored. These events are made available through the Events Knowledge Base
Administrator in 2 cases.

 The persisted events are available through the Web Portal for users that potentially
want to review the data already saved in the Knowledge Base.

 The Events Knowledge Base Administrator will be available as a service for the
Events Manager API. It will be used by the Personalisation Manager as a client,
searching events from the knowledge base and matching with other parameters
such as personal profiles of the older persons (among other parameters). Finally it
recommends events tailored to the likings and profile of the user.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
43 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.8 Game Manager

The Game Manager (GM) component is responsible for managing a specific subset of the
application extensions to the ALFRED personal assistant, namely the (serious) games.
Depending on the criteria applied, these games can be grouped into various categories,
such as single-player and multiplayer games, games for cognitive impairments prevention
and games for physical impairments prevention. In the context of this document and for
the sake of simplicity, it is sufficient to differentiate between two types of games: games
that run entirely on the mobile device and do not require additional hard- or software
(mobile games), and games that make use of external devices, such as specialized
sensors and TV screens (indoor games).

In a sense, the GM links these games to the ALFRED application, and vice versa. It runs
locally on the user’s mobile device and interfaces several other components of the
Personal Assistant, such as the SAF, the PM, and the SM. This is necessary, as the GM
fills multiple roles:

 Game management: When a game client is downloaded from the ALFREDO
marketplace and installed on the device, it is automatically registered by the GM
with a profile describing its specific characteristics (e.g., number of minimum
players, certain physical capability requirements for playing the game). Over time,
the GM enriches game metadata with additional information, such as gameplay
duration, user performance and results. This metadata is used to improve the
game configuration settings and to make more sophisticated game suggestions
(see below). Some anonymous metadata may also be send back to the MP in order
to improve customer satisfaction. For instance, the average usage times of games
can be used as a type of user rating that is superior to the custom five-star user
ratings as known from conventional online software distribution platforms.

 Game suggestions: The GM suggests games to the user depending on the current
situation. In its simplest form, this could mean that the GM frequently suggests
random games at a specific time of day or when the user is at a specific location.
More sophisticated versions of the GM will combine dynamic contextual information
on the user’s current activity and wellbeing (acquired, for example, via the SAF)
with static data such as user preferences and game metadata in order to identify
the optimal moment to make a game suggestion.

 Game control: The GM’s main task lies in configuring and starting games, and in
monitoring the user’s performance during gameplay. When the user decides that
she would like to play a game (either following a suggestion made by the GM or by
another user, or because she initiates a game session herself by issuing the
corresponding command to the Personal Assistant), the GM configures the game
using dynamic context information and static metadata (very similar to the game
suggestion process). The corresponding options for this configuration must be
provided by the games (for example, by allowing for different text font sizes). If the
game in question requires specific external devices to function, the GM is
responsible for establishing and maintaining the communication with these, for
example by using the mobile device’s Bluetooth module. Finally, the GM is
responsible for monitoring the user’s performance during gameplay and for storing
this data (as it is subsequently used for improving the game suggestion and
configuration process, see above).

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
44 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

According to the GM’s roles as described above, the GM is internally made up of four
“modules”, and three types of APIs which are used by the modules to communicate with
other internal components, external (i.e., cloud-based) components, and external devices.
The following Figure 12 shows a logical depiction of these modules and APIs.

Figure 12: Infographic - Game Manager Modules

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
45 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 Reasoner Module (GM-RM): The GM’s Reasoner Module combines information
gathered from the PM, HM, CP and the GM’s Database Module (see below) in
order to (a) identify situations in which a game should be suggested to the user and
(b) to select an appropriate game for the specific situation. If the Reasoner Module
detects a suited combination of the contextual situation and the games currently
available, it triggers the SM in order to present a suggestion of a game to the user.
A more sophisticated version of the Reasoner Module could additionally take into
account information acquired from the SAF, thus also reacting to the user’s physical
wellbeing as determined by vital sensors.

 Controller Module (GM-CM): The Controller Module is the part of the GM that
communicates directly with the ALFRED games, both mobile and indoor, by way of
the GM Games API. It is responsible for starting and stopping a game on request
of the user, and for gathering feedback from the game regarding user performance.
This data is forwarded to the Adapter Module, which in turn then pushes it into the
Database Module. If required (in the case of indoor games, see below), the
Controller Module also establishes a connection to external devices via the GM
Device API.

 Adapter Module (GM-AM): The Adapter Module is responsible for using
information from the PM, HM, CP, and the GM’s Database Module (see below) to
adapt/configure/initialize games that the user has started. It also maintains the GM’s
Database Module and communicates with the MP via the GM Component API and
the Game Manager API Client of the ALFREDO Marketplace in order to receive
game description profiles (see below) and to make some (anonymous) information,
gathered in the user’s local database, available to the MP.

 Database Module (GM-DM): The GM’s internal Database Module gathers all
information about game clients currently installed on the device (both mobile and
indoor). The Adapter Module (see above), which is responsible for maintaining the
Database Module, associates the “vanilla” game profiles as loaded from the
ALFREDO MP during game installation with player usage statistics over time, such
as how the player has performed in various game sessions, how she rated the
game when asked for, when she accepted and when she declined suggestions to
play this specific games, and whom she has played the game with (in case of
multiplayer games).

Besides the Game Manager, ALFRED’s serious games pillar (pillar IV) of course also
includes a set of games. As already pointed out above, these games can be grouped into
the categories of mobile games and indoor games. Since indoor games require external
devices in order to be playable, these devices can also be considered as being part of
ALFRED’s game suite (although they are not directly associated to the ALFRED project).

 Mobile Games: All games that can run directly on the ALFRED mobile device and
that do not require additional hardware (including WiFi-connection) are considered
“mobile games”. Mobile games can be both single- and multiplayer games, they can
be serious games (such as games providing for cognitive decline prevention) or
pure entertainment games, and they can be of any genre (puzzle, strategy,
reaction, and so forth). Mobile games will make up the bulk of ALFRED’s game
suite. They can communicate with the ALFRED Game Manager using the GM
Games API (more specifically, they communicate with the Game Manager’s
Controller Module). Some of these games may rely in part or entirely on voice

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
46 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

commands, and thus require the CADE to forward such commands to the game.
Some mobile games may also be biofeedback games and make use of the player’s
vital parameters, such as her heart rate, to adapt the game mechanic. To this end,
these games will pull such information from the SAF (if the required data is
available).

 Indoor Games: Contrary to mobile games, indoor games require additional
hardware (and possibly software running on that external hardware) to function. As
most of such hardware will be non-moveable (such as WiFi routers, TV screens, or
bicycle ergometers), the games are essentially limited to the (indoor) locations
where these devices are deployed at – hence the name. Just like mobile games,
indoor games can receive push messages from the CADE framework to react to
voice commands issued by the user, and they may pull sensor data from the SAF to
react to a user’s changing vital parameters. Additionally, these games will also rely
on the GM’s Controller Module to establish and maintain a communication with the
external devices via the GM Device API.

External Devices: For some types of games, it may be reasonable to rely on additional
hardware in order to deliver a satisfying game experience. This holds especially true for
various types of exergames, games that require physical activity from their players. Such
games usually rely on sensor hardware to track a user’s movements (examples for this are
camera-based approaches such as Microsoft’s Kinect, or sensor mats such as Nintendo’s
Balance Board). While the ALFRED project will not provide for any such hardware itself,
some of the games developed for the ALFRED solution may rely on external, commercially
available sensors and actuators. The Controller Module of the Game Manager component
uses the GM Device API to communicate with external devices

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
47 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

2.9 Knowledge and Information Storage

2.9.1 Overview

The Knowledge and Information Storage (KIS) will be used for the privacy-aware data
management in the ALFRED system. Data will be stored in so called “buckets”. These
small data storage units can be used to store data isolated from each other based on the
origin. This allows a good privacy management of the data because it enforces that a
client of the KIS has only access to data in a specific bucket. This principle is also known
as a sandbox in other ICT domains.

The KIS is the central storage point of all data in the ALFRED system. The KIS is
segmented into three parts (see Figure 13):

 The User Data segment contains all concrete databases, which will store the actual
user data. These databases will be based on different data structure concepts, such
as NoSQL, semantic, binary.

 The Cloud Storage segment contains all components, which will provide the actual
business logic for the KIS.

 The Access segment contains concrete implementations of API wrappers for
different target platforms in order to easily access the functionality of the KIS from a
specific platform, e.g. for the target mobile platform.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
48 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 13: Infographic - Architecture of the Knowledge and Information Storage

In the following subsections the three segments, User Data, API Wrapper and Cloud
Storage, will be discussed in detail. For the Cloud Storage segment, its internal
segmentation will be used: Storage Wrapper, Nexus, Management and Facade.

2.9.2 User Data

The actual user data will be stored in different databases, selected on basis of the
requirements for the data. The concrete databases are not yet selected, but databases on
different data structure concepts are foreseen. This is indicated by the three different
databases depicted in Figure 13 in the User Data segment:

Database
Wrapper

Data Type
Wrapper

Data Type
Wrapper

Database
Wrapper

Data Type
Wrapper

Data Type
Wrapper

Database
Wrapper

Data Type
Wrapper

Data Type
Wrapper

Management

Authorization
Manager

Authentication
Manager

Bucket
Manager

Wrapper
Manager

Facade

Administration
Facade

Authentication
Facade

Authorization
Facade

Storage
Facade

Meta-&
Configuration

Data

Storage Wrapper

NoSQL Semantic Binary

Nexus
Administration

Controller

Authentication
Controller

Authorization
Controller

Storage
Controller

Mediator

Cloud Storage

User Data

Access
API

Wrapper
API

Wrapper
API

Wrapper

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
49 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 NoSQL is a rather new2 approach to overcome drawbacks of relational databases.
There are already 150 different databases based on the NoSQL approach. The
technics used in these databases are quite different, but they have in common that
they are non-relational, distributed and horizontally scalable3. Since they are non-
relational they do not have a fixed data schema, this is useful to store and query
data effective in an environment, where the specific data is unknown at develop
time.

 Semantic data modelling has lost some attention over the last few years as it was
not possible to deliver the breakthrough the ICT domain hoped for. However it is
still highly relevant in ICT, as a solution to implement expert systems. In fact with
the approach of the semantic web4, data storages for semantic data are still a highly
discussed topic.

 Even so Binary data can usually be stored in any database as blob or as an
encoded string and are a more effective approach to use databases specialized for
this use case. Since different kind of assets are foreseen in the ALFRED project, a
binary data storage solution will be integrated in the KIS

The different databases in this segment will also be referred to as “External Databases”
as counterpart to Internal Database (see section 2.9.6).

2.9.3 Access

The Access segment in Figure 13 indicates different API Wrappers for the KIS. API
Wrappers are foreseen in order to provide simple access to the services.. These wrappers
will encapsulate the logic of the interface provided by the Cloud Storage – Facade (see
section 2.9.4) for a specific target language and platform as a library, e.g. a Java library for
Android. In that way, developers who want to use the KIS do not need to know the
implementation details for the Cloud Storage – Facade. Neither do they need to have
expertise with the chosen technology for the Cloud Storage – Facade.

One Wrapper will be designed to work in the mobile platform environment accessible by
the Personal Assistant (see section 2.2). This will allow third party developers to use the
specific services provided by the KIS with their ALFREDO App’s.

Last but not least, this will also allow shifting to any other storage solution as long as
corresponding API Wrappers are provided. This component-based approach will reduce
the dependencies of other components to the Cloud Storage component of the KIS.

2.9.4 Cloud Storage – Facade

The Facade is the public interface of the Cloud Storage. All functionalities are provided as
a well-defined service. This single point of communication guarantees the integrity of the
internal functionality and thereby also the integrity of the stored data. The provided
services are grouped in four categories:

 Storage – The provided services are for the storage, retrieving and the manipulation
of data in the KIS.

2 Around 2009
3 http://nosql-database.org/
4 http://www.w3.org/standards/semanticweb/

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
50 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 Administration – The provided services are for the administration of the Cloud
Storage, e.g. to add, modify or remove specific database to or from the User Data
segment (see Figure 13).

 Authentication – The provided services are for the administration of the clients of
the Cloud Storage, e.g. to register or remove a specific entity as a client of the
Cloud Storage. Each entity who wants to consume services of the KIS has to be
registered as a client of the Cloud Storage.

 Authorization – The provided services are for the administration of clients’ rights to
use services of the KIS for specific buckets. This allows the owner of a bucket to
share the data with other clients.

The Facade is also responsible for the authentication of clients, accessing the services of
the Facade.

2.9.5 Cloud Storage – Nexus

The Nexus is the heart of the Cloud Storage; it controls the processes for the data
management as well as the management of the Cloud Storage itself.

The services published by the Cloud Storage – Facade (see section 2.9.4) are routed
through a mediator subcomponent to the responsible controller subcomponents. These will
call internal routines to process the requests made by the before mentioned services.
There are four controllers for this purpose:

 Storage – Storage services provided by the Facade will be handled in this
controller. It will check the authorization (with the help of the Authorization Manager;
see section 2.9.6) of the client before it executes the necessary processes in the
context of a specific bucket. If data management for user data is required, the
controller requests information for the user data databases from the Wrapper
Manager and the Bucket Manager (see section 2.9.6) in order to access the right
databases.

 Administration – Administration services provided by the Facade will be handled in
this controller. It will access functionalities of the Wrapper Manager in order to add,
modify or remove databases to the access segment (see section 2.9.3) for the user
data.

 Authentication – Authentication services provided by the Facade will be handled in
this controller. It will access functionalities of the Authentication Manager in order to
add, modify or remove profiles of clients of the KIS.

 Authorization – Authorization services provided by the Facade will be handled in
this controller. It will access functionalities of the Authorization Manager in order to
add, modify or remove specific rights for specific clients for specific buckets.

2.9.6 Cloud Storage – Management

The Management of the Cloud Storage encapsulates the business logic for all
configurations for the Cloud Storage and the external databases for the user data. The
Management component has access to an internal database to ensure the persistency of
the configurations. This database will also be referred to as “Internal Database” as
counterpart to the External Databases (see section 2.9.2).

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
51 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

The functionalities provided by the Management are divided in four subcomponents, so
called Managers. Each Manager is specialized for a specific domain:

 The Wrapper Manager manages the External Databases. This includes the control
over and the persistent of the configuration of the databases in the Internal
Database. The manager chooses and provides for a given storage operation the
appropriate Database Wrapper.

 The Bucket Manager manages the buckets used for the data storage in the KIS.
The manager stores information of every bucket in the system and provides this
information for a given storage operation.

 The Authorization Manager manages the Access Control Lists (ACL). The ACL are
used to restrict or grand different levels of access to a specific bucket for a given
client of the KIS.

 The Authentication Manager manages a list of the clients of the KIS. This includes
some credentials for a specific client, such as a user name and an authentication
token. The manager provides the functionality to add or remove clients to the list of
clients as well as to authenticate a client, e.g. based on the user name and the
authentication token.

2.9.7 Cloud Storage – Wrapper

The Wrapper of the Cloud Storage manages the actual access to the databases where the
user data will be stored. For each database a specific Wrapper is needed. A Wrapper
consists of a Database Wrapper and any number of Data Type Wrappers. In this
constellation the Database Wrapper has different functionalities:

 single point of access for a specific database for the Cloud Storage

 providing of services to access the specific database for the Data Type Wrappers

Each Data Type Wrapper for a specific Database Wrapper will encapsulate the business
logic to store, modify and delete data in a specific data format. This allows for a flexible
adaption to different requirements and technologies.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
52 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3 Functional Specification

3.1 Overview

The functional specification will explain in detail all functionalities provided by each
component of the ALFRED system to the other components of the system.

Each component has its own section in this chapter. The interaction of the subcomponents
of the components described in the related section of chapter 2 will provide a detailed but
still fairly high level view of the functionalities. This will help to obtain an overview of the
functionality as well as an understanding of the orchestra of the involved subcomponents.

3.2 Personal Assistant

3.2.1 Overview

The Personal Assistant consists essentially of the mobile application. The application
handles user input (usually provided verbally by speaking with the device), performs
actions the user wants it to execute, starts and handles third party applications integrated
into ALFRED, makes suggestions regarding upcoming events and connects external
components.

3.2.2 Core

The core functionality of the mobile ALFRED application is to perform actions when the
user presses the main button on the user interface. As the main interaction will take place
in a verbal manner, speech recognition is essential.

After the words spoken by the user have been analysed ALFRED will perform actions
associated with the words the user said – for example: ALFRED will start an application.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
53 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 Recognizing Input and providing Output

Figure 14: UML Sequence Diagram – PA: Recognizing User Input

The communication between the mobile ALFRED application and its user will take place in
a verbal manner. To achieve this, the user has to press a button on the user interface of
ALFRED which in turn activates the CADE component. CADE activates the microphone
and may provide acoustical (or visual) feedback, so the user knows when to speak.

The audio data recorded by the microphone from now on will be transmitted to the CADE
component which analyses the data in order to determine the words the user has spoken.

The messages printed in orange in Figure 14 show the additional user interaction needed,
if CADE cannot identify the action(s) to perform. In this case further input is needed before
CADE can process the user’s request. Such input can be requested by presenting visual
output to the user. This kind of interaction will be useful if, for example, CADE is not able
to identify the users spoken input and needs further clarification.

Though the “Visual Output” component is intended for CADE it is also imaginable to
provide a public interface used by other components as well.

Output to the user will be provided acoustically. CADE will translate the output (usually
provided as textual data) into spoken words by using a Text-To-Speech (TTS) mechanism.

Visual OutputUser CADE Apps & Games Runtime

Activate Speech Input

Speech Input Activated

Speech Input

Analyse Speech Input

Start App / Game

Return Value(s)

Evaluate / Translate Return Value(s)

Spoken Output

Analyse further Input

Requesting further Input (if needed)

Further Input

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
54 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.2.3 Apps and Games

The extendable feature, integrating additional apps and serious games, requires
components to handle those apps. This will be done by a dedicated runtime. Though there
are two types of extensions (apps and games) there is only one runtime: the Apps &
Games Runtime. The steps of running an application or a game are shown in Figure 15.

Figure 15: UML Sequence Diagram – PA: Handling Apps & Games

The Apps & Game Runtime is responsible for launching and monitoring the apps and
games the user wants to start. The apps themselves are responsible for requesting
permissions and accessing device functions they need, in order to work correctly (as
shown in Figure 16).

CADE Apps & Games Runtime App / Game

Start App / Game

App / Game available ?

App / Game not available

App / Game already running ?

App / Game is already running

Launch App / Game

App / Game launched / executed

Return Value(s) - if appropriate

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
55 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 16: UML Sequence Diagram – PA: Requests to PA Functionality

Apps are able to interact with the ALFRED app through calling methods from an Extension
Interface. The Extension Interface offers functionalities which can be used by apps and
games to access internal components of ALFRED.

After an app has called the Extension Interface (e.g. for requesting some user data which
shall be used within the app) the Extension Interface in turn contacts an Authorization
Manager. The Authorization Manager checks the permissions the user has granted to the
requesting app and allows the app to perform its desired action or denies access.

As soon as an application has granted access to perform its desired action, this action
request will be forwarded to the corresponding API wrapper.

The way of presenting some output to the user is nearly the same as it is when the app
wants to perform an action. But instead of forwarding the action request to an API wrapper
the Authorization Manager forwards the output to the Output Controller. Outputs can be
tagged with a priority. This priority will be used by the Output Controller to present the
requested outputs in order.

App / Game Extension Interface Authorization Manager API Wrapper CADE

Request PA functionality

Check App / Game Permissions

Check Authentification

Authentification not successful

Check Authorization

Authorization not successful

Permissions OK

Request declined

Request declined

Forward Request

{AND / OR}

Call desired API Wrapper

Call CADE (e.g. for output)

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
56 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.2.4 Suggestions component

There are two types of suggestions which can be presented to the user: events and
games.

Suggestions will be created by external components (e.g. an event manager and a game
manager), forwarded to the mobile ALFRED application and presented to the user, if
appropriate. The process of filtering will be described below (see Figure 17).

Figure 17: UML Sequence Diagram – PA: Receiving and Filtering Incoming Suggestions

This process starts by receiving or requesting (depends on the mechanism used – push or
pull) a suggestion from an external component (e.g. an Event Manager). The Suggestion
Manager performs some checks on the incoming information (integrity of data, presence of
all information needed depending on the suggestion type, e.g.).

The Suggestion Manager uses another core component in order to retrieve additional
context information which is needed to make a decision on whether to suggest this event /
game or not: the Context Provider (see chapter 2.2.5).

As soon as the Suggestion Manager has retrieved all context information needed, it
decides – depending on the current user context – whether the current suggestion will be
presented to the user or kept for a later presentation. If the suggestion meets the current
user context the Suggestion Manager calls the CADE component in order to inform the
user about the received event or to play the suggested game.

In order to decide whether a suggestion will be presented to the user the Suggestion
Manager needs information about the user’s current context. Such information can consist
of the current location, the current local time, an activity the user is performing at the

Suggestion Deliverer Suggestion Manager Context Provider CADE

Suggestion received

Retrieve User Context

Current User Context

Evaluate User Context

{OR}
Keep Suggestion

Present Suggestion to User

Suggestion processed

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
57 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

moment and so on. Information like this will be retrieved by contacting the Context
Provider. For example: The Suggestion Manager receives a suggestion for a game that
shall be played by the user. To decide whether this game should be suggested right now,
the Suggestion Manager calls the Context Provider to return the user’s current context.
This context information specifies that the user is currently driving a car. The suggestion of
playing a game right now is not appropriate, so the Suggestion Manager will decide to
either not suggest that game at all or suggest it later.

3.2.5 API Wrapper

The API Wrappers encapsulates the functionality of the other ALFRED components. For
each component a distinct wrapper is used. This multiplexes all functionalities of the
ALFRED system in on place. Providing access to third party Apps in one point allows the
control of the access by the system and thereby by the end user.

3.3 Health Monitor

3.3.1 Overview

As stated in section 2.3, the HM is composed of four main pieces of software: (1) the
Sensor Abstraction Framework, (2) the Health Monitor Client, (3) the Health Monitor
Server and (4) the Web Portal. In the next sections we will describe the main services that
each component publishes, as well as the interaction that takes place internally in order to
realize such services.

3.3.2 Sensor Abstraction Framework

SAF is a framework that standardizes access to external sensors by publishing a
homogenous interface. All operations are forwarded to SAF using the SAF API Wrapper,
which encapsulates SAF functionality for a particular environment (e.g. Android-Java). In
the following subsections the main services provided by this framework are described.

 Register Driver

SAF is open for registering new types of sensors. To receive information from a new type
of sensor, a new driver must be registered within SAF. A driver is a piece of software that
knows how to communicate with a particular type of sensor. The implementation of the
driver is private (vendor-specific), but it must export a public and homogeneous interface
so SAF can obtain information from the sensors in a uniform way. This common interface
makes it possible to simply plug-in the driver in the framework.

The process is depicted in the following diagram (see Figure 18).

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
58 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 18: UML Sequence Diagram – SAF: Register Driver

The Driver Registry is responsible for managing sensor drivers. To that end it internally
maintains a collection of previously registered drivers. When a new driver is registered, it is
internally added to such collection.

Once the driver has been registered, a new type of sensors is available from SAF. To start
receiving measurements from a specific sensor of that type, it is necessary to register a
listener for that particular sensor.

 Register/Unregister Listener

To begin obtaining information from a concrete sensor supported by SAF a new listener
must be registered in SAF. A listener is a piece of software that gets activated whenever
new data is available in the sensor it is listening to. In this way, the publish/subscribe
pattern is implemented in SAF.

In the following diagram a sample registration process is described (see Figure 19).

SAF API Wrapper Driver Registry

Register driver

Register driver

Add to Collection

Success

Success

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
59 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 19: UML Sequence Diagram – SAF: Register Listener

First, the operation is forwarded to the SAF API Wrapper. When registering a new listener,
some information must be provided:

(i) An identifier of the sensor.
(ii) The driver that manages the sensor.
(iii) The sensor may emit more than one type of measurement, and the listener must

have the capability of specifying the type of measurement to receive (hereafter, for
the sake of simplicity, we will assume only one type of measurement per sensor).

(iv) Before receiving information from the sensor, an authentication/attachment/link
procedure may take place, so some form of credentials may be required.

(v) Some configuration may be transmitted to the sensor in order to alter its behaviour.

SAF API Wrapper Sensor Driver Sensor

Bind Sensor

Success

Success

Success

Bind Sensor

Register Listener

Driver Registry

Register Listener

Success

Listener Registry Sensor Pool

Search Sensor

Not Found

Bind Sensor

Search Driver

Add Sensor

Success

Add Listener to Collection

Success

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
60 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

All the information described above could be encoded as an URL (see Listing 1).

Listing 1: SAF – Example: URL Encoding

The Listener Registry receives the operation and checks whether the sensor is already
active, that is, it checks if the sensor is being monitored because there is another listener
already registered for it.

To this end, the Sensor Pool is consulted. If the sensor is included in the Sensor Pool,
there is no need to bind the sensor, since it was done before. Otherwise, as depicted in
the diagram, the sensor handshake/binding process must take place.

The Driver Registry is asked to perform the binding process. The Driver Registry searches
for the appropriate Sensor Driver and forwards the operation to it. The Sensor Driver
knows how to communicate with the sensor and accomplishes the connection.

Once the binding process is succeeded, the new Sensor must be actively monitored and
therefore it is added to the Sensor Pool.

Finally, the registered listener is added to the collection of already registered listeners.

The next time a listener is registered for the same sensor, neither the binding process nor
the addition to the Sensor Pool will take place. However, the listener will be added to the
collection of already registered listeners. Therefore, SAF allows multiple listeners per
sensor, allowing different apps to register to receive information from the same sensors.

Unregistering a listener is the reverse operation. If it is the only listener attached to the
sensor, then the sensor must be removed from the Sensor Pool. Finally de listener must
be removed from the collection of registered listeners.

 Sensor Monitoring

Once a listener has been registered to receive information from a concrete sensor, the
Sensor Monitor enables active monitoring on the device.

The monitoring service can be split into two sub-processes that are described in the
following paragraphs:

1. The collecting sub-process
2. The dispatching sub-process

The collecting sub-process, consists of the Sensor Monitor that is activated from time to
time and collects information from all bound sensor – those sensors included in the Sensor
Pool, that is, those sensor that have listeners attached -. But before collecting the
information it is necessary to obtain information about the active sensors, and then obtain
the Sensor Drivers that enable communication with them. This procedure is described in
the following diagram (see Figure 20).

 saf:sensordriver:sensorid:measurement?param1=value1¶m2=value2...

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
61 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 20: UML Sequence Diagram – HM/SAF: Sensor Monitoring, Search Driver

Once the active sensors are known and their drivers have been located, the monitoring
process must go on, as specified in the following diagram (see Figure 21).

Figure 21: UML Sequence Diagram – HM/SAF: Sensor Monitoring, Retrieve Sensor Data

Data are retrieved from the active Sensor by using its Sensor Driver. After that, data are
stored in the Internal Storage, an intermediate buffer/queue/storage useful for uncoupling
the monitoring sub-process from the dispatching sub-process and avoid
interferences/disturbances/speed differences between both sub-processes.

The sequence of messages described in the previous diagram should be replicated as
many times as active sensors exist within the Sensor Pool.

The dispatching sub-process, is initiated when data must be dispatched. The Sensor Data
Dispatcher gets activated and reads information from the intermediate memory. Then
information is conveniently forwarded to all registered listeners, as described in the
following diagram (see Figure 22).

Sensor Monitor

Timeout

Sensor Pool

Get Sensors

[Sensor1,...]

Driver Registry

Get Driver for Sensor1

Sensor Driver

Sensor Monitor Sensor Driver Sensor

Get Data

Get Data

Data

Data

Internal Storage

Save Data

Success

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
62 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 22: UML Sequence Diagram – HM/SAF: Sensor Monitoring, Dispatch Data

As explained in the diagram, once data has been read from the Internal Storage, it is
necessary to detect the origin of such data, that is, the sensor-measurement tuple that
generated the information. The next step involves obtaining all the listeners that were
registered for the tuple sensor-measurement from the Listener Registry. Finally, all
registered listeners must be notified. In the example above only the first listener is notified.
The procedure is replicated for all listeners..

3.3.3 Health Monitor Client

In this section we list the main services implemented by the Health Monitor Client.
Receiving information from sensors and transmitting it to the Health Monitor Server
establish the Health Monitor Client backbone. Also, the Health Monitor Client must provide
services to manipulate user-related data, including data about carers as well as user
health data.

 Receive Sensor Information

The Data Receiver subcomponent of the Data Pre-process Framework gets registered in
SAF as a listener for certain health-related sensors. The type, identification and
configuration of the sensors are obtained from the Metadata Repository and are user-
specific. This information is entered by user carers as we will show in next sections (see
section 3.3.4).

Once the Data Receiver has been registered as a listener, it begins receiving information
from the sensors. The process is further described in the following diagram (see Figure
23).

Sensor Data Dispatcher Internal Storage Sensor ListenerListener Registry

Get Data

Data

Find Data Origin

Get Listeners Registered for Origin

[listener1,]

Notify Data

Success

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
63 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 23: UML Sequence Diagram – HM/Client: Receive Sensor Information

The Sensor Data Dispatcher notifies captured data to the Data Receiver subcomponent,
which in turn forwards data to the Data Pre-processor subcomponent. Before pre-
processing data, the type of pre-processing must be determined. Such information is
available in the Metadata Repository and dictates what to do with the incoming data, which
is summarized in the following paragraphs.

Some pre-processing may involve obtaining previously calculated data. If this is the case
the Internal Storage is consulted. Then data is pre-processed.. If calculated data must be
stored for future references, it is saved in the Internal Storage. Finally, if data must be
transmitted to the Health Monitor Server it is sent to the Data Transmission Manager.

The obtained metadata is key to know the exact sequence of steps to undertake. Metadata
can be obtained from the Metadata Repository. The Metadata Repository is a common
place where all metadata can be accessed. It performs the role of cache and also
abstracts the underlying APIs for retrieving/updating the information. In the following
diagram this behaviour is illustrated (see Figure 24).

Data ReceiverSensor Data Dispatcher

Notify Data

Data Preprocessor

Preprocess Data

Internal Storage

Consult Preprocess Type

Metadata Repository

Preprocess Type

Preprocess

[If required] Consult Previous Data

Previous Data

[If required] Save Data

Sucess

Data Transmission Manager

[If required] Send Data

Success

Success

Success

Data Preprocess
Framework

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
64 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 24: UML Sequence Diagram – HM/Client: Access Metadata Repository

In the diagram, metadata related with sensor configuration is requested. If it is not
available locally (which means it has not been retrieved before) the request is forwarded to
the Health Monitor Server using its published API. To this end, the Health Monitor API
Wrapper is used. Data is then obtained and cached inside the Metadata Repository
internal storage. Later on, if the same data is requested it is not necessary to contact the
Health Monitor API Wrapper since the data has been cached locally.

The same occurs with metadata related to the user profile. In this case the Personalisation
Manager is contacted through the Personalisation Manager API Wrapper instead.

 Transmit Sensor Information

When the data have been pre-processed they are ready for further transmission to the
Health Monitor Server. The following diagram depicts the process (see Figure 25).

Metadata Repository Health Monitor API Wrapper

Get Sensor Config

Get Sensor Config

Sensor Config

Sensor Config

Internal Storage

Get Sensor Config

NULL

Store Sensor Config

Success

Get Sensor Config

Get Sensor Config

Sensor Config

Sensor Config

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
65 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 25: UML Sequence Diagram – HM/Client: Transmit Sensor Information

Before transmitting data, they may be compressed by the Data Compressor
subcomponent. After that, data should be stored inside the Transmission Manager Internal
Storage. This element uncouples the transmission elements from the rest of the system,
maintaining a private buffer. It also provides failover capabilities.

The Data Transmitter subcomponent is activated and data are sent to the Health Monitor
Server through the Health Monitor API Wrapper. Finally, if transmission succeeds data are
removed from the Internal Storage. Otherwise data are kept until they are successfully
retransmitted in future connections.

 Manage Health Profile Information

The user must be able to manage his health profile at any moment. At least two pieces of
information should be accessible in the Health Monitor Client: (1) user health data and (2)
carers data:

1. The user will be able to consult and manipulate – where the most basic
manipulation operation is ‘delete’ – his health related data.

2. The user will be able to define his carers and grant/revoke different permissions to
them.

The gateway to these operations is the Health Profile Manager component, included in the
Health Monitor Client. Irrespective of the type of information, the process followed by any
operation will look like this (see Figure 26).

Data Transmission Manager

Send Data

Data Compressor Internal Storage Data Transmitter Health Monitor API Wrapper

[If required] Compress Data

Data Compressed

Store Data

Success

Get Data

Data

Send Data

Success

Remove Data

Success

Success

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
66 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 26: UML Sequence Diagram – HM/ Client: Manage Health Profile Information

First, the command issued by the user reaches the Health Profile Manager, either through
the speech recognizer component or through the GUI. If the operation involves managing
sensitive data, confirmation from the user may be required.

The operation is then forwarded to the corresponding subcomponent – either the Carers or
the Health Data Management - which in turn accesses the Metadata Repository either to
obtain the requested information – if the operation is a query – or to update it – if it is a
modification operation.

As we have seen in previous sections, accessing the Metadata Repository may involve
forwarding the operation to the Health Monitor Server through the Health Monitor API
Wrapper. In particular, if the operation is a query operation and the information is not
available locally then it must be retrieved from the Health Monitor Server. Also, if the
operation is a modification operation, it must always be forwarded to the Health Monitor
Server.

3.3.4 Health Monitor Server

This element represents the core of the HM environment and publishes an API to access
its services. This API is structured in the form of a Facade, which can be further
decomposed into 4 different subcomponents.

All requests are received by the Facade and go through the Controller component. When a
request is received by the Facade, its validity is checked– using the Security Controller –
and then it is forwarded to the corresponding Controller subcomponent. In the following
diagram this behaviour is shown (see Figure 27).

Health Profile Manager
Health Data Manager/Carers

Data Manager
Metadata Repository Health Monitor API Wrapper

Manage Data

Manage Data

Manage Data

[If required] Manage Data

Data / Success

Data / Success

Data / Success

Data / Success

[If required] Confirmation?

OK

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
67 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 27: UML Sequence Diagram – HM/Server: Common Behavior to all Requests

First, the identity of the user who issued the command must be verified. To this end, the
Security Controller is called. Of course, this operation will depend on the authentication
mechanism and user policies implemented in the overall system (e.g. OpenId, oAuth, etc.).

After the identity has been verified, the system must guarantee that the identity has
permissions to execute the operation. To this end, the Security Controller is invoked again,
now to check whether the user is permitted to execute the service.

Finally, the operation is forwarded to the proper Controller and this one in turn makes as
many calls as necessary to other components in order to compose a valid response. In the
next sections we will describe the main services published by the Health Monitor Server.

 Transfer Sensor Data

An essential task of the Health Monitor Server is to receive sensor data from the Health
Monitor Client and post-process them, in order to (i) find anomalies and notify alarms and
(ii) store permanently the required data in KIS.

The Data Post-process Framework is responsible for such activities, and the process is
described in the following diagram (see Figure 28).

Health Monitor API Wrapper XXXFacade SecurityController XXXController

Operation

Operation

Identity is Valid?

Yes

Identity has Permissions?

Yes

<<Target Component>>

Operation

Response

Response

Response

<<Target Component>>

<<Target Component>>

Operation, ...

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
68 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 28: UML Sequence Diagram – HM/Server: Transfer Sensor Data

First, data are received by the Data Receiver subcomponent. If data are compressed, they
must be uncompressed by the Data Uncompressor subcomponent. Then, data are
forwarded to the Data Postprocessor subcomponent.

The Data Postprocessor subcomponent consults the Metadata Repository in order to find
out whether post-processing activities should take place and what kind of post-processing
is expected for the data. Afterwards post-processing takes place.

Once data have been post-processed, anomalies must be detected. This is the purpose of
the Anomaly Detector subcomponent. In order to detect anomalies, anomaly configuration
information must be retrieved from the Metadata Repository.

If anomalies are found, they must be notified to the Alarm Manager component. In the next
section we will review the process followed by the Alarm Manager in order to notify alarms.
For now we will assume that the job is done.

Finally, data are forwarded to the Data Transmitter subcomponent which in turn transmits
them to KIS, using to this end the KIS API Wrapper.

Data Receiver Data Uncompressor Data Postprocessor Anomaly Detector Data TransmitterMetadata Repository

Transfer Data

Data

Postprocess Data

Postprocess Type

Postprocess

Data

Detect Anomalies

Alarm Manager

Anomalies

[If Anomaly] Notify Anomaly

Success

Send Data

Success

Success

KIS API Wrapper

Store Data

Success

[If required] Uncompress Data

Consult Postprocess Type

Consult Anomalies Config

Anomalies Config

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
69 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 Notify Alarm

As we have seen in the previous section, if an anomaly is detected, this incidence is
reported to the Alarm Manager component. In particular, the Alarm Notifier subcomponent
takes control of the situation and proceeds as described in the following diagram (see
Figure 29).

Figure 29: UML Sequence Diagram – HM/Server: Notify Alarm

When the anomaly is received by the Alarm Notifier subcomponent, it accesses the
Metadata Repository in order to obtain all the configuration about that anomaly. In
particular we are interested in the following configuration data:

1. Whether alarms have been configured for the anomaly
2. Who is/are the receiver/s of such alarm
3. How the alarm/s must be notified, that is, which channels must be used to reach the

alarm destination, namely: e-mail, PUSH notification, etc.
4. If the alarm notification must be tracked, in order to reliably detect whether a

particular notification has reached its destiny and the destination is aware of the
incidence

Once all the information has been obtained, if the anomaly must be notified, the Alarm
Notifier proceeds with the specific kind of notification. The user carer is finally reached
through a particular channel.

If the alarm notification must be tracked, information about the alarm is transmitted to the
Alarm Tracker, which will enable appropriate mechanisms in order to ensure proper
reception of the alarm.

Alarm Notifier

Notify Anomaly

Metadata Repository

Get Alarm Config

Alarm Config

[If notify] Notify Using Channel

Success

Alarm Tracker

[If track] Track Alarm

Success

Success

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
70 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 Manage Health Profile

Managing the Health Profile involves typical CRUD operations on the following collections
of data:

 Health Data

 Carers Data

The overall process to access/manipulate data always follows the same steps, irrespective
of the particular data type. It is described in the following diagram (see Figure 30).

Figure 30: UML Sequence Diagram – HM/Server: Manage Health Profile

The appropriate Manager receives the operation and checks whether the operation issuer
has enough permissions to accomplish the operation. To that end, the Metadata
Repository is consulted, which in turn consults KIS. Received data are internally
interpreted in the Metadata Repository as permissions and these permissions are checked
later on in the Manager. If the operation is authorized then the process goes on,
forwarding the CRUD operation to the Metadata Repository which in turn forwards the
operation to KIS.

 Configure Health Monitor

In order to keep track of the user’s health, the HM requires some configurations regarding:

 Sensors

 Data Processing

 Anomalies

This component handles all operations that deal with these data. The overall process to
access/manipulate configurations always follows the same steps, irrespective of the

XXXManager Metadata Repository

CRUD Operation

Get User Permissions

Permissions

CRUD Operation

Check Authorization

CRUD Operation

KIS API Wrapper

Success

Success

Success

Read Data

Data

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
71 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

particular configuration type, and is very similar to the process sketched in the previous
section. It is described in the following diagram (see Figure 31).

Figure 31: UML Sequence Diagram – HM/Server: Configure HM

 Manage Alarms

The user must be able to manage alarms, that is, add, configure and remove them.
Typically, when an alarm is defined, the following information must be provided:

 An identifier of the anomaly that must be notified

 Who must be notified

 Which channels must be used for notification

In the end, the user must be able to apply CRUD operations to alarms. The overall
process to access/manipulate alarms always follows the same steps, and is very similar to
the process defined in the previous sections. We refer the reader to Figure 18 for further
information.

 Configure Sensor Analysis

The user configures preferences when sensor data must be analysed. The process
followed matches the same pattern presented so far, in order to manage any kind of
configuration (see Figure 31).

 Analyse Sensor Data

This operation involves obtaining measurements information and applying some kind of
processing on them. In the simplest case, no processing is done and therefore raw
measurements information is obtained.

XXXConfigurator Metadata Repository

CRUD Operation

Get User Permissions

Permissions

CRUD Operation

Check Authorization

CRUD Operation

KIS API Wrapper

Success

Success

Success

Read Data

Data

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
72 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

The processed measurements may belong to a particular time period or to specific time
instants. In the last case, if the last measurements are requested then ‘almost’ real-time
information is obtained.

The user may define some preferences in order to present results processed in some
specific way.

Finally, interesting a posterior data analysis may take place according to user preferences.
For example, automatic pattern recognition may be conducted. Also, posterior anomaly
detection should be supported.

The general procedure is shown in the next diagram (see Figure 32):

Figure 32: UML Sequence Diagram – HM/Server: Analyse Sensor Data

After the request is processed as described in Figure 15, the Data Analysis Controller
takes control and retrieves user preferences from the Metadata Repository. Then data are
efficiently retrieved from the Data Loader. If a particular kind of analysis is requested then
the Data Analyser gets activated and the analysis results are obtained. If anomaly
detection is required then the Anomaly Detector subcomponent is activated and
information about the detected anomalies is retrieved. Finally, according to the requested
operation, the result is made up and returned

Data Analysis Controller Metadata Repository Data Loader Data Analyzer Anomaly Detector KIS API Wrapper

Analyze Data

Get Preferences

Preferences

Get Data

Data

[If required] Analyze Data

Data Analysis

[If required] Detect Anomalies

Get Anomaly Config

Anomaly Config

Anomalies

Get Data

Data

Result

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
73 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.4 Context-aware Speech Recognition

3.4.1 Public

This subsection describes functionalities offered by CADE to the rest of the ALFRED
framework. The number of such functionalities is quite low. The reason for this is that most
aspects of the spoken interaction between the user and ALFRED are handled internally
within CADE, and by means of requests from CADE to other components. Nevertheless,
other components need to access CADE in certain situations, described in more detail
below.

 Dialogue Domain

Whenever a new ALFRED app has been installed, CADE needs to be informed so that it
can load the Dialogue Domain Description for the app and thereby understand spoken
input related to the app. For this reason, CADE offers a method for other components to
submit notifications that a new app has been installed or enabled.

3.4.1.1.1 Enabled App
This service should be invoked when a new ALFRED app has been installed. It will cause
the CADE backend to load the app resources from the Marketplace, enabling it to manage
spoken interactions in relation to the app (see Figure 33).

Figure 33: UML Sequence Diagram – CADE: Enabled App.

 Haptic Input

These services allow other components to provide input from the GUI to the Dialogue
Engine, allowing it to update its state and respond appropriately.

3.4.1.2.1 PTT Activated

API Wrapper

Enabled App

Frontend Session Manager

Enabled App

Dialogue Domain Manager

Get App Resources

Marketplace

Enabled App

Result

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
74 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

This service should be invoked when the push-to-talk (PTT) icon in the GUI is clicked. The
notification will then be forwarded to the ASR so that the system starts listening to the
microphone. (See Figure 34)

Figure 34: UML Sequence Diagram – CADE: PTT Activated.

API Wrapper

PTT Activated

Frontend ASR

PTT Activated

PA Core

Update Listening State

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
75 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.4.1.2.2 Option Selected
In the case that the GUI is used by the user to clarify what he or she has said, this service
is invoked when a choice is clicked. This notification will then be forwarded to the
backend, allowing it to update its state and respond.

 Activities

Whenever a component initiates or completes a speech enabled activity, it should use one
of the services below to notify CADE.

3.4.1.3.1 Started Activity
Whenever some component decides to initiate an activity that should be handled verbally
by ALFRED, it needs to notify CADE about this. For example, if the Event Manager
decides to suggest an event, it notifies CADE that it has started an activity. This allows
CADE to find a matching dialogue plan for the activity and thereby to ask the user a
question or notify him or her about some information in relation to the activity (see Figure
35).

Figure 35: UML Sequence Diagram – CADE: Started Activity

3.4.1.3.1.1 Stopped Activity

When some activities are completed, this fact should be communicated verbally to the
user. For example, if an event has been scheduled, the Event Manager notifies CADE that
the activity ended. This allows CADE to report the result of the new scheduling to the user
and to update its dialogue state accordingly. The sequence depicted in Figure 35 is similar
for Stopped Activity.

3.5 ALFREDO - Marketplace

3.5.1 Overview

The Marketplace offers a unique place where end users, developers and testers can find,
install, publish and test ALFRED applications.

API Wrapper

Started Activity

Frontend Session Manager

Started Activity

Turn Manager

Started Activity

Dialogue Move Engine

Started Activity

Generation

System Moves Selected

System Utterance to Speak

System Utterance to Speak

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
76 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Applications and games will be offered by the Marketplace in a mobile based UI that will
allow end users to discover, buy, install, upgrade and uninstall applications via the
Marketplace.

The Marketplace will also offer developers the possibility to publish ALFRED compliant
applications. To achieve this, the Marketplace will be accessible through a web based UI,
where developers will manage and control their published applications.

At the same time, a specific user role, called tester, will access the marketplace through
web or mobile in order to test, accept or deny submitted applications. This will assure that
the published applications will fulfil ALFRED requirements.

In the next subsections, we will describe the different sequences of the Marketplace’s
processes.

3.5.2 Public Services

One of the main purposes of the Marketplace is to provide other components with the
necessary data about available applications, either installed locally or on the market.
These functionalities will be encapsulated in an API Component which will be accessible
by other ALFRED components.

 Downloading and installing an application

End users will be able to download an application from the Marketplace to their device.
The process of download and install a new application is detailed in the diagram below
(see Figure 36).

Figure 36: UML Sequence Diagram – AM: Downloading and Installing an Application

API Component Net Controller

Request for App

KIS API Installation Controller

Request for App

App URI

Download App

Install App

OK

OK

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
77 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

The process starts with a request for the installation of a new application or game. The
Marketplace will forward the request to the KIS service, responsible for the application
storage management and the download will start. Once the game or application is on the
Marketplace,, the Marketplace will be responsible for the installation on the user’s device
and inform the involved components.

 Uninstalling an application

All ALFRED applications can be uninstalled whenever the user wants.

Figure 37: UML Sequence Diagram – AM: Uninstalling an Application

The process starts with the request for the uninstallation of a specified application. Then,
the API Component will handle the request and the Installation Controller will uninstall the
application from the user’s device, deleting the record from the KIS module and informing
the involved components.

 Upgrading an application

Users will be able to upgrade their installed applications through the Marketplace. The
process is depicted in the diagram below (see Figure 38).

API Component Installation Controller

Uninstall App

KIS API

Update data

Uninstall App

OK

OK

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
78 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 38: UML Sequence Diagram – AM: Upgrading an Application

This process can start both automatically or manually by the user. In any case, the
Marketplace will be responsible for the download via Net controller by requesting the
application to KIS and install the new version of the application as described in section
3.5.2.1.

 Getting application information

Some components like CADE need information about an application. The Marketplace will
be responsible to deliver that information to the petitioner.

API Component Net Controller

Request for App

KIS API Installation Controller

Request for App

App URI

Download App

Update App

OK

OK

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
79 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 39: UML Sequence Diagram – AM: Getting Application Information

When the process is started, the Marketplace forwards the call to the KIS component
which returns the information related to the application or game stored on the storage
service. The Marketplace manages the information and returns it to the component that
has started the process.

 Searching for an application

One of the key functionalities of Marketplace is to allow other components to discover new
applications by criteria. The diagram below (see Figure 40) describes the process of an
application search.

API Component App Info Controller

Request App Info

KIS API

Request App Info

App Info

Download App

App Info + APK

Network Controller

Request App

App APK

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
80 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 40: UML Sequence Diagram – AM: Searching for an Application

The Marketplace publishes a service via the API Component that forwards the query to the
specific KIS service. Then KIS returns the list of applications and/or games that matches
the criteria to the Marketplace which manages the information and returns it to the
component that has started the search.

 Rating an application

One of the functionalities the Marketplace offers to the ALFRED users is the possibility to
rate an installed application (see Figure 41).

Figure 41: UML Sequence Diagram – AM: Rating an Application

The API Component is requested to rate an application, the request is forwarded to the
APP Info Controller, handling the request and storing the rating via KIS.

3.5.3 Developer services

These services will only be accessible for developers and through the web based UI.

 CRUD operations for developer

Developers will be able to execute all four CRUD operations (Create, Read, Update and
Delete) on their authorized applications (see Figure 42).

API Component

search (criteria)

List <Application>

KIS APISearch Controller

List <Application>

search (criteria)

API Component

rate app

OK

KIS APIAPP Info Controller

OK

store rate

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
81 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 42: UML Sequence Diagram – AM: CRUD Operations for Developer

 The Create operation corresponds to the publishing process that consists of
uploading the application to the Marketplace. After that, the application is open for
the review process and will eventually be published on the Marketplace once it has
been reviewed.

 The Update operation works in a similar way as create because the update will
need to pass the review process as well. The developer will upload the application
and the review process will start.

 The Read operation will allow the developer to list all his operations and see the
status of the applications, e.g. under review, published or refused.

API Component Net Controller

Create/upload app

App Info Controller

Upload App

KIS API

Register app

Unregister app

OK

OK

OK

Remove app

Get app info

App info

App info

OK

OK

Get app info

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
82 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

 The Delete operation will remove the application and delete it from the Marketplace.

3.5.4 Tester services

The reviewing process will be only performed by tester users and will be accessible
through web or mobile based UI.

This set of operations is part of the reviewing process that will start once a developer
uploads an application. Testers will be responsible for the acceptance or rejection of an
application based on internal tests.

The review process of an application is depicted in the diagram below (see Figure 43).

Figure 43 : UML Sequence Diagram – AM: Review Process

In order to list his/her assigned applications, a tester sends a request to the Marketplace.
The API Components handles the request and queries to KIS API for the pending
applications for testing.

Once a tester has an overview of the assigned applications, he/she can select an
application and start reviewing it. Once an application has been reviewed, the tester can
decide if the application is ready to be published or not, depending on the test cases. The
tester sends the result to KIS which will store it. Finally the result is returned to the
component that has started the process.

It’s important to notice that an application will not be published until a tester has approved
it. The application lifecycle is described on the diagram below (see Figure 44).

API Component Review Controller

List apps for test

KIS API

apps

Review app

Store review status

OK

Review status

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
83 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 44: Activity Diagram – AM: Application Lifecycle

3.6 Personalization Manager

3.6.1 Overview

The Personalisation Manager component cooperates with most (other) components in the
ALFRED system. Many different functionalities of the ALFRED system will be achieved
with the help of the Personalisation Manager but the functionalities of the component itself
can be categorized in three types: providing access to user (i.e. older person) profile
information, providing context by reasoning on user profile information and recommending
events on which the older person could be interested.

In the following figure the high level overview of the processes and interactions of
components and sub-component is depicted. Sections 3.6.2 to 3.6.5 provide a more
detailed description of the functionalities and interactions.

App Upload
Approval process

start

Testing

App publication

Approval
passed?

YesNo

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
84 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 45: UML Sequence Diagram – PM: Overview

Personalization Manager
API

Personalization Orchestrator
Personal Profile
Administrator

Recommendation Engine Reasoning Engine KIS APIALFRED Component
Events Manager

API

Request CRUD
Operations Forward CRUD

request
Retrieve Personal
Profile data from

KIS

Return Personal
Profile data

Forward personal
profile information to

Reasoning Engine

Return decision
on requesters
access level

Results of CRUD
operation or
rejection of

request
Forward results or

rejection to
requesterResults of CRUD

operation

Request Context
Based Information

Forward Request

Allocate task to
Personal Profile
Administrator

Allocate task to
Reasoning Engine

Request Personal
Profile Information

Retrieve Personal
Profile Information

Return Personal
Profile Information

Forward Personal
Profile Information

Result information
based on personal

context
Return context
based extracted

information
Results of context
based information

Request Events
Recommendation

Forward Events
Recommendation

Request Allocate task to
Recommendation

Engine Get social networks
based context
information

Return social networks
based context
information

Request Personal
Profile Information

Forward Personal
Profile Information

Retrieve Personal
Profile Information

Return Personal
Profile Information

Request Available
Events

Return Available
Events Information

Result Personalized
Recommendation of

Events

Return Personalized
Recommendation of

Events
Resulted

Recommendation of
Events

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
85 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.6.2 Personalization Orchestrator

This sub-component receives the requests for services (functionalities) provided by the
Personalization Manager. The Personalization Orchestrator will orchestrate and allocate
the task for the appropriate sub-component to execute and then will provide back the
results. The functionalities and communications focusing on the Personalization
Orchestrator is depicted in the diagram below (see Figure 46).

Figure 46: UML Sequence Diagram – PM: Interactions and Processes of the
Personalization Orchestrator

3.6.3 Personal Profile Administrator

This sub-component is acting as a mediator to perform CRUD operations to the data that
are stored in the KIS component. Moreover it will be responsible for privacy and access
rights issues for the CRUD operations with the help of the Reasoning Engine. When a
CRUD operation is requested, the Personal Profile Administrator will retrieve the data from
the bucket where they are stored in KIS. It employs the Reasoning Engine sub-component
to examine the access level of the requester and the access level of the information of the
requested CRUD. If the result of the evaluation is that the requester is allowed to make the
operation, and then the Personal Profile Administrator will execute it, otherwise it will not.
The interactions focused on the Personal Profile Administrator are depicted in the diagram
below (see Figure 47).

Personalization Manager
API

Personalization Orchestrator
Personal Profile
Administrator

Recommendation Engine Reasoning Engine

Forward CRUD
request

Results of CRUD
operation or
rejection of

request
Forward results or

rejection to
requester

Forward Request

Allocate task to
Personal Profile
Administrator

Allocate task to
Reasoning Engine

Result information
based on personal

contextReturn context
based extracted

information

Forward Events
Recommendation

Request Allocate task to
Recommendation

Engine

Result Personalized
Recommendation of

EventsReturn Personalized
Recommendation of

Events

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
86 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 47: UML Sequence Diagram – PM: Interactions and Processes of the Personal
Profile Administrator

3.6.4 Recommendation Engine

This sub-component is recommending events that are personalized to the likings of the
older person. It uses data from various components and subcomponents such as the
Events Manager and the Personal Profile Administrator. It capitalizes on these data by
artificial intelligent applications (e.g., matchmaking, classification) and recommends events

Personalization Orchestrator
Personal Profile
Administrator

Recommendation Engine Reasoning Engine KIS API

Retrieve Personal
Profile data from

KIS

Return Personal
Profile data

Forward personal
profile information to

Reasoning Engine

Return decision
on requesters
access level

Results of CRUD
operation or
rejection of

request

Allocate task to
Personal Profile
Administrator

Request Personal
Profile Information

Retrieve Personal
Profile Information

Return Personal
Profile Information

Forward Personal
Profile Information

Request Personal
Profile Information

Forward Personal
Profile Information

Retrieve Personal
Profile Information

Return Personal
Profile Information

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
87 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

that could be of interest to the user. It communicates with the Reasoning Engine to obtain
context from social networks of the older person, with the Event Manager to get available
events, with the Personal Profile Administrator for user (older person) specific information
and finally with the Health Manager to obtain (relatively) real-time information about the
physical condition of the older person. The interactions and processes of the
Recommendation Engine are depicted in the diagram below (see Figure 48).

Figure 48: UML Sequence Diagram – PM: Interactions and Processes of the
Recommendation Engine

3.6.5 Reasoning Engine

This subcomponent will perform reasoning applications for providing three main
functionalities. The first functionality is a relatively simple process of identifying if a
requester of CRUD operations on personal profile data has the required access level for it.
This functionality involves communication with the Personal Profile Administrator only. The
second functionality concerns mining social networks of the user to provide social context
to the selection of recommended events. This functionality involves communications with
the Recommendation Engine and Personal Profile Administrator sub-components. Finally,
the Reasoning Engine will provide context information by reasoning over the personal
information of the user. The older person will communicate with the ALFRED system
through the CADE component (see section 3.4) and in some cases the commands/inputs
of the user can be resolved only with context knowledge for the user (see example “Call
my daughter” in section 2.6). Reasoning Engine can contribute making other components
context aware. This functionality is achieved in cooperation with the Personal Profile
Administrator sub-component.

Personalization Orchestrator
Personal Profile
Administrator

Recommendation Engine Reasoning Engine
Events Manager

API

Allocate task to
Recommendation

Engine Get social networks
based context
information

Return social networks
based context
information

Request Personal
Profile Information

Forward Personal
Profile Information

Request Available
Events

Return Available
Events InformationResult Personalized

Recommendation of
Events

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
88 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 49: UML Sequence Diagram – PM: Interactions and Processes of the Reasoning
Engine

3.7 Event Manager

3.7.1 Overview

The Event Manager’s objective is to build and maintain a Knowledge Base of events which
can be browsed and administered by users through a GUI; the real value of this Events
Knowledge Base however, concerns the use of the persisted events in the knowledge
base by the Personalisation Manager component to provide tailored recommendations of
events to ALFRED users.

The Event Manager component is built on 4 main blocks (namely, Web Portal, Web
Crawler, Event Miner and Events Knowledge Base Administrator) for which the
functionalities they provide will be explained in the following sections. The Event Manager
component’s interactions are composed solely with users through the Web Portal sub-
component and with the component through the Event Manager API.

Personalization Orchestrator
Personal Profile
Administrator

Recommendation Engine Reasoning Engine

Forward personal
profile information to

Reasoning Engine

Return decision
on requesters
access level

Allocate task to
Reasoning Engine

Request Personal
Profile Information

Forward Personal
Profile Information

Result information
based on personal

context

Get social networks
based context
information

Return social networks
based context
information

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
89 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

The high-level functionalities of the Event Manager are:

 Entering new events to the Events Knowledge Base

 Browsing events currently persisted in the Events Knowledge Base

 Searching the Web for events and evaluating which events should be persisted in
the Events Knowledge Base

 Making data from the Events Knowledge Base available through the Event Manager
API

The sequence diagram for Event Manager to provide the above functionalities is depicted
in the following diagram (see Figure 50).

Figure 50: UML Sequence Diagram – EM: Overview

Event Manager API Web Portal
Events Knowledge Base

Administrator
Web Crawler Event Miner Web

Request CRUD
Operations

KIS API

Send CRUD
Request

Perform CRUD
operations to
persisted data

Return results/
outcome of CRUD

operations

Pass results/
outcome of CRUD

requestDisplay results/
outcome of CRUD

request

Search the Web
for Events

Trigger Event
Crawler

Crawl URLs for
their contents

Return raw
contents

Pass raw contents
to Event Miner

Return
summarization of
extracted events

Display extracted
events

Select events to
be persisted Persist event

description
Create new event

record

Return outcome
of create event

operation

UserPersonalization Manager

Request Message
for available

events Pass request of
available events

Return available
events

Pass results of
available eventsResponse

Message with
available events

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
90 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.7.2 Web Portal

The Web Portal sub-component is the interaction point of users with the Events
Knowledge Base. Users through the Web portal are able to enter events to the Knowledge
Base, browse events that are already persisted in this knowledge base, or search the Web
for events with one or more parameters of their choosing and select which of the resulted
events should be persisted in the Events Knowledge Base. In general, users will be able to
perform CRUD operations through the Web Portal of the Events Knowledge Base.
However every user will have “delete” rights only to events that are inserted by him/her.

One or more (admin) users will be granted with rights to delete events submitted by any
user. This will be part of an “event review process” which allows special users (the
reviewers) to decide whether a manually entered event will be available to the users or will
be rejected (e.g. because of incorrect data). Only events which have passed this review
will be available for suggestion. The sequence diagram below (see Figure 51) visualizes
the interactions and processes of the Web Portal subcomponent.

Figure 51: UML Sequence Diagram – EM: Interactions and Processes of the Web Portal
sub-component

3.7.3 Web Crawler

The Web Crawler subcomponent will be triggered internally in the Event Manager either by
direct request through the Web Portal, or according to certain configurations to crawl for
events in defined intervals. When triggered, the crawler will check the list of URLs (called
seeds) to crawl and return its raw contents, passing them to the Event Miner until the
subset of remaining unvisited URLs (called frontier) are all crawled. The Web Crawler

Web Portal
Events Knowledge Base

Administrator
Web Crawler Event Miner Web

Request CRUD
Operations Send CRUD

Request

Pass results/
outcome of CRUD

requestDisplay results/
outcome of CRUD

request

Search the Web
for Events

Trigger Event
Crawler

Crawl URLs for
their contents

Return raw
contents

Return
summarization of
extracted events

Display extracted
events

Select events to
be persisted Persist event

description

User

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
91 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

interacts with two sub-components of the Event Manager, the Web Portal and the Event
Miner as well as with the Web to fetch contents. The sequence diagram (see Figure 52)
below visualizes these processes.

Figure 52: UML Sequence Diagram – EM: Interactions and Processes of the Web Crawler
sub-component

3.7.4 Event Miner

The Event Miner sub-component is activated when it receives information from the Web
Crawler of the raw contents of the various URLs. It will start processing the contents and
apply techniques such as information extraction to recognize locations, dates and similar
information about events, as well as text classification to recognize types of events.
Furthermore it will filter classified and extracted contents to possible user inputs and will
perform summarization of events. It will return extracted summarized events to the Web
Portal, from where the user will be able to decide which events should be persisted in the
Events Knowledge Base and which should not. The sequence of these actions is
visualized in Figure 53.

Web Portal
Events Knowledge Base

Administrator
Web Crawler Event Miner Web

Trigger Event
Crawler

Crawl URLs for
their contents

Return raw
contents

Pass raw contents
to Event Miner

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
92 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 53: UML Sequence Diagram – EM: Interactions and Processes of the Event Miner
sub-component

3.7.5 Events Knowledge Base Administrator

The Events Knowledge Base Administrator subcomponent is in charge of creating,
reading, updating and deleting event descriptions from the Events Knowledge Base. This
means that it acts as an administrator and mediator to the description of events that are
persisted in KIS through its API. It receives requests from the Web Portal subcomponent
such as browsing for events in the knowledge base, and in general to perform CRUD
operations on it. When creating events, the user enters the description of an event or the
user selects a resulted event from the mentioned semi-automatic event mining process to
be persisted in the Events Knowledge Base (see Figure 54).

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
93 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 54: UML Sequence Diagram – EM: Interactions and Processes of the Events
Knowledge Base Administrator sub-component

3.8 Game Manager

There are several interdependencies between devices, applications and components
which have an association to the Game Manager. See Figure 55 for the numbers as
referred to in the following list.

Event Manager API Web Portal
Events Knowledge Base

Administrator
Web Crawler Event Miner Web KIS API

Send CRUD
Request

Perform CRUD
operations to
persisted data

Return results/
outcome of CRUD

operations

Pass results/
outcome of CRUD

request

Persist event
description

Create new event
record

Return outcome
of create event

operation

Pass request of
available events

Return available
events

Pass results of
available events

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
94 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 55: Game Manager and interfacing components

 CADE to Indoor Games: Some indoor games may be fully voice controllable,
meaning that the user issues voice commands in order to influence the game
mechanic (such as “up”, “down”, “left”, and “right”). As a constant pulling of such
commands would be not very performant, the games need to register themselves to
the CADE and then wait for a command to be issued by the user, in which case the
CADE broadcasts the user command to all recipients.

 CADE to Mobile Games: See (1).

 CADE to GM: Some voice commands issued by the user may be relevant to the
Game Manager, more specifically the Controller Module. Examples of such
commands are “Start Game”, “Pause Game”, “Stop Game”, and so forth. For this
reason, the GM registers itself to the CADE in order to receive all broadcasted voice
commands.

 GM to MP & vice versa: When the user selects a game from the ALFREDO
Marketplace for installation on her device, the MP uses the GM Component API to
register the game to the Game Manager. It does this by forwarding the metadata
description file associated to the game’s installation files to the GM’s Adapter
Module, which then stores this data to the GM Database Module. This data is later
used by the GM Reasoner Module to select an appropriate game for a specific
situation. Over time, whenever the user plays that specific game, the GM Controller
enriches the game’s metadata via the Game Adapter with usage information, such
as for how long the user has played the game and how she has performed. This
information is used to enhance the game suggestion and configuration process and

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
95 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

parts of it may also be sent back to the MP, if the user allows this. To this end, the
GM Adapter frequently calls the Game Manager API Client of the ALFREDO MP
and uploads parts of the game’s usage history (for example once a week).

 GM to Mobile Games & vice versa: The GM Adapter Module uses various types
of information (see above) to configure games that are about to be started. To this
end, the games have to provide for such configuration options, e.g. different font
sizes. Vice versa, all ALFRED games should report a player’s performance and
usage history back to the Game Manager once a game session has ended, using
the GM Games API. The GM Controller receives the information and forwards it to
the GM Adapter, which in turn stores it in the corresponding game profile.

 GM to Indoor Games & vice versa: See (5).

 Mobile Games to SAF: Some types of games make use of a player’s vital data to
adapt their game mechanic. For instance, when the game detects that the player’s
heart rate rises above a certain limit, it may reduce the game difficulty to allow the
player to relax. To this end, such games may pull sensor data provided by the SAF.
They should, however, be able to handle cases in which the SAF cannot provide for
the data in question.

 Indoor Games to SAF: See (7).

 Indoor Games to External Devices & vice versa: Indoor Games require external
devices to function as intended, such as bicycle ergometers or TV screens. Usually,
the game clients and the devices will communicate with one another by way of the
Game Manager (more specifically: they will rely on the GM Controller to exchange
message between the GM Games API and the GM Devices API), but certain
settings may also support a direct communication of an external device and the
game client.

 GM to External Devices & vice versa: See (9).

 GM to SAF: More sophisticated implementations of the GM Reasoner Module may
pull information from the SAF to take into account a user’s vital data when making
situation estimations.

 GM to SM & vice versa: If the GM Reasoner Module detects a situation which it
considers appropriate for a game suggestion, it forwards an according notification to
the SM. If the user agrees to play the suggested game, the SM notifies the GM’s
Controller Module via the GM Component API. The GM Controller then waits for the
GM Adapter to configure the game and launches it afterwards.

 GM to PM: Both the GM Reasoner and the GM Adapter require user preference
information for decision making and will occasionally fetch this data from the PM
using the PM’s API wrapper.

 GM to HM: Similar to (13), both the GM Reasoner and the GM Adapter also require
information about the user’s health parameters to be able to determine situations
and game settings that suit the user’s specific capabilities. To this end, they both
will occasionally pull information from the HM using its API wrapper.

GM to CF: Similar to (13) and (14), both the GM Reasoner and the GM Adapter require
elemental context information such as the user’s current location. They will frequently
query the CF API for this data.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
96 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.9 Knowledge and Information Storage

3.9.1 Overview

The KIS provides the service to store, retrieve and manipulate knowledge and information.
While acting as a single point of data storage it allows the benefits of different database
solutions. For the whole ALFREDO ecosystem the functionalities to store and manipulate
data as well as to allow the user to share the stored data is important. These two
functionalities will be discussed in the first section of this chapter (see section 3.9.2). But
for the ALFRED system other functionalities are important as well. This is the
administration of the KIS, including the configuration of different databases as well as to
manage the clients, who have access to the services of the KIS. These two functionalities
will be discusses in the second section of this chapter (see section 3.9.3).

All provided functionalities of the KIS have the same base sequence. Figure 56 depicts
this general sequence of actions. When a functionality of an API Wrapper is used, it will
encapsulate the message and forward it to the Cloud Storage – Facade (see section 2.9.4
for all involved components). The Facade will temporally store the information of the
sender and the message. The sender of the message will then be authenticated within the
management segment of the KIS. If the sender is authenticated the message will be
further executed. For this, the message will be analysed and interpreted. If the sender
wants to execute an operation of a bucket he is not the owner of, he can act as a
surrogate. For this the authorization for the specific operation for the specific bucket is
checked. If the client is authenticated and authorized the operation encapsulated in the
message will be executed and the results will be returned to the Facade. Since the Facade
has temporally stored the information of the sender and message it can delegate the
response back to the API Wrapper over a specific communication channel.

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
97 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 56: UML Sequence Diagram – KIS: General Message Handling

3.9.2 Public Services

The two services described in this section will be accessible by the whole ALFREDO
ecosystem. This includes the storage of data as well as the service to define the access
rights to the data.

 Storage

The services provided encapsulated under Storage includes all services necessary for the
storage and manipulation of data. The following subsections will each describe one
provided service.

3.9.2.1.1 Create Bucket
In order to create a new bucket for a user, the request for the operation will be forwarded
to the Storage Controller. If a bucket for the user does not already exist a new bucket will
be created by the Bucket Manager. Figure 57 depicts the sequence of the involved
subcomponents of the KIS for this service.

API Wrapper Facade Controller

Request Message

Mediator

Response Message

Managment

Pack Message

Unpack Message

Authenticate Client

Authenticate Sender of Message

AuthenticateAuthenticated

Sender of the Message is Authenticated

Add Sender-Message to Heap

Excute Message

Message Executed

Remove Sender-Message from Heap

Process Request

Result

Sender acts as Surrogate?

{ODER}

Is Sender Authorized?

Success Is User Authorized?

Change User

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
98 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 57: UML Sequence Diagram for KIS Service – Create Bucket

3.9.2.1.2 Delete Bucket
In order to create a new bucket for a user, the request for the operation will be forwarded
to the Storage Controller. If a bucket for the user exists, the bucket will be deleted from the
Internal Database. Afterwards the data references to this bucket will also be deleted from
all External Databases, with the help of the Wrapper Manager. Figure 58 depicts the
sequence of the involved subcomponents of the KIS for this service.

Figure 58: UML Sequence Diagram for KIS Service – Delete Bucket

Storage Controller Bucket Manager

Get Bucket for User

Bucket ID

Create Bucket for User

Mediator

Create Bucket for User

Bucket IDBucket ID

Check if User has Bucket

Create Bucket

Storage Controller Bucket Manager Wrapper Manager Database Wrapper

Get Bucket for User

Mediator

Bucket ID

Bucket ID

Check if User has Bucket

Delete Bucket for User

Delete BucketBucket ID

Get All Wrapper for Bucket ID

Wrappers

Delete Bucket

Success Delete

Get All Wrapper for Bucket ID

Delete Bucket for User

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
99 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

3.9.2.1.3 CRUD operations for Data Object
All four CRUD operations (Create, Read, Update, and Delete) follow the same principle.
After the Mediator receives the operation request, the bucket and the wrapper for the
operation are identified. Finally, the operation is executed with the help of the fitting Data
Type Wrapper for the Data Base Wrapper (see Figure 59).

Figure 59: UML Sequence Diagram for KIS Services – CRUD Operations for Data Objects

 Authorization

The owner of a bucket can manage the access to his bucket with authorization
functionalities. Each bucket has its own ACL, defining the access rights of the bucket. The
sequence for managing the ACL is depicted in Figure 60. After the mediator receives the
request to modify the access rights for a specific bucket for a specific client, the Bucket
Manager will check if the user owns the specific bucket. If so, functionalities provided by
the Authorization Manager will be used in order to modify the ACL of the bucket
accordingly.

Storage Controller Bucket Manager Wrapper Manager Database Wrapper Data Type Wrapper

Get Bucket for User

Mediator

Bucket ID

Data Objects

CRUD Data Object for User

Check if User has Bucket

Get Wrapper For Data Type

Wrapper

CRUD Data Object

Data Objects

Choose Data Type Wrapper

CRUD Data Object

Call to Database

Result

Data Objects

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
100 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

Figure 60: UML Sequence Diagram for KIS Service – Authorization Management

3.9.3 Private Services

The two services described in this section will be accessible by the administration of the
ALFRED system only.

 Administration

The Administration services can be used by the administration of the ALFRED system to
configure the External Databases used in the KIS. For this, three different services will be
provided. They allow adding, changing and removing the configuration of an External
Database. Each of these services follows the same sequence depicted in Figure 61. After
the Mediator receives the operation request for the External Database administration the
Wrapper Manager will be used to execute the operation. Configuration alteration will be
also made in the running Database Wrapper. In case of the deletion of External Databases
additional steps will be taken to delete also the references to buckets for the database in
question.

Figure 61: UML Sequence Diagram for KIS Service – Database Management

 Authentication

The Authentication services can be used by the administration of the ALFRED system to
manage clients allowed to access the KIS. For this, three different services will be
provided. They allow adding, changing and removing of a client of the KIS. Each of these
services follows the same sequence depicted in Figure 62. After the Mediator receives the
operation request for the user administration, functionalities of the Authentication Manager

Authorization Controller Bucket Manager Authorization Manager

Get Bucket for User

Mediator

Bucket ID

Success

Modify Authorization for Bucket

Check if User has Bucket

Modify Authorization for Bucket

Success Modify ACL

Administration Controller Wrapper Manager Database Wrapper

Modify Wrapper Configuration

Mediator

Success

Success

Database Administration

Modify Wrapper Configuration

Modify Configuration

Modify Configuration

Success

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
101 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

will be trigger by the Authentication Controller. This will modify the credentials for a specific
client.

Figure 62: UML Sequence Diagram for KIS Service – Authentication Management

Authentication Controller Authentication Manager

Modify Credentials

Mediator

SuccessSuccess

User Administration

Modify Credentials

ALFRED WP2
Public Architecture Definition

and Functional
Specification

Architecture Definition and Functional Specification
Document
Version: 1.0

Date:
2014-05-30

Status: For Approval
Page:
102 / 102

http://www.alfred.eu/ Copyright © ALFRED Project Consortium. All Rights Reserved. Grant Agreement No.: 611218

4 Summary and Next Steps

This deliverable introduced first the architecture of the whole ALFRED system and second
all functionalities provided by the components of the ALFRED system.

In the first part of the document the global architecture of the ALFRED system was
introduced. The seven main components as well as the storage solution were explained in
detail. This was done by defining all subcomponents of each component and highlighting
the main responsibilities of each subcomponent.

The Personal Assistant is the heart of the ALFRED system as is it will be the main
interaction point for the end user. Since the focus of the ALFRED project is on the end
user, special consideration was taken to ensure a high level of adaptability to generic use
cases. This was done by separating all user related functionalities to ALFRED apps. This
is also true for the components of ALFRED which will be represented on the mobile device
of the end user with the client side of their distributed subsystem. By this “Eating Your Own
Dog Food” approach5 redundant functionalities will be limited and best practices enforced.
This will ensure a high quality of the Personal Assistant already in prototypical stages.

The before mentioned distributed subsystem consists of the following components: HM,
which will be responsible to gather, process and provide all health related information with
a focus on data collected by wearable sensors; Context-aware Speech Recognition, which
will be the interaction point for default user interaction with the end user; the ALFREDO
Marketplace, which will manage the entire deployment cycle for ALFRED apps, both from
end user and app provider perspective.

The other components of the ALFRED system will not be represented with a ALFRED app
on the mobile device of the end user. Instead they provide their functionality solely as a
web service: The Personalisation Manager will be the central point for all user profile data
with reasoning capabilities to create real user information; the Game Manager will take
control of the wellbeing of the end user by adapting and monitoring serious games; the
Event Manager represents the central point to gather information on social events from
different sources; the Knowledge and Information Storage will provide an abstracted
storage location to provide all components with a fitting data schema.

This deliverable will be the guidance for the integration, over the course of the entire
ALFRED project as it clearly identifies all functionalities and components needed for the
ALFRED system. This allows parallel work during the implementation phases of the project
while ensuring a seamless integration at a later stage. In addition, this deliverable will be
the foundation for the technical specification. Based on the results of this deliverable the
work on the technical specification will be done.

5 Harrison, W., "Eating Your Own Dog Food", Software, IEEE , vol.23, no.3, pp.5,7, May-June 2006

