
QUANTICOL
A Quantitative Approach to Management and Design of

Collective and Adaptive Behaviours

quanƟcol.
http://www.quanticol.eu

D4.1

CAS-SCEL language design

Revision: 1.0; March 31, 2014

Author(s): Luca Bortolussi (CNR), Rocco De Nicola (IMT), Cheng Feng (UEDIN), Vashti
Galpin (UEDIN), Jane Hillston (UEDIN), Diego Latella (CNR), Michele Loreti (IMT),
Mieke Massink (CNR), Valerio Senni (IMT),

Due date of deliverable: Month 12 (March 2014)

Actual submission date: March 31, 2014

Nature: R. Dissemination level: PU

Funding Scheme: Small or medium scale focused research project (STREP)

Topic: ICT-2011 9.10: FET-Proactive ‘Fundamentals of Collective Adaptive Systems’ (FOCAS)

Project number: 600708

Coordinator: Jane Hillston (UEDIN)

e-mail: Jane.Hillston@ed.ac.uk

Fax: +44 131 651 1426

Part. no. Participant organisation name Acronym Country
1 (Coord.) University of Edinburgh UEDIN UK
2 Consiglio Nazionale delle Ricerche – Istituto di Scienza e Tecnologie

della Informazione “A. Faedo”
CNR Italy

3 Ludwig-Maximilians-Universität München LMU Germany
4 Ecole Polytechnique Fédérale de Lausanne EPFL Switzerland
5 IMT Lucca IMT Italy
6 University of Southampton SOTON UK
7 Institut National de Recherche en Informatique et en Automatique INRIA France

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

Executive summary

We report on the progress made with the development of CAS-SCEL for what concerns its design
principles and the identification of primitives (such as movement primitives or space abstraction prim-
itives) and interaction patterns (such as broadcast communication or anonymous interaction) that are
needed in the case studies and, more generally, in Collective Adaptive Systems (CAS) design. Our first
concern has been the identification of abstractions and linguistic primitives for collective adaptation,
location modelling, knowledge handling, and system interaction and aggregation.

To this purpose we have taken as starting point a number of exploratory formalisms that are
based on, or have taken inspiration from PEPA and SCEL, two languages that partners of the project
have developed in the past years and that have proved very successful in modelling adaptive systems
(SCEL) and in supporting quantitative analysis (PEPA). We use four exploratory formalisms, StocS,
PALOMA, PEPA-S and Stochastic-HYPE, with specific features that are each very interesting for CAS
modelling and analysis and assess the impact of new primitives on CAS specification and verification,
by considering a concrete scenario, inspired by the bike-sharing case study.

Each of the exploratory languages has specific traits. One of the key features of StocS is the use
of attribute-based communication that is a valuable alternative to broadcast or binary synchronisation
that appear to be inappropriate in CAS and fits well with the notions of anonymity and dynamicity
of CASs. PALOMA, instead, stresses the role of locations as attributes of agents; their communica-
tion abilities depend on their location, through a perception function and only agents who enable the
appropriate reception action have the capability to receive the message. In PEPA-S heterogeneous
populations of indistinguishable agents operating on a set of locations are considered. PEPA-S aims
at distilling and studying the set interaction patterns that are typical of CASs. Like in PALOMA, in
PEPA-S the ability of agents to communicate depends on their location. Stochastic HYPE aims at
modelling three distinct types of behaviour: instantaneous events that happen as soon specific condi-
tions are met, stochastic events with durations drawn from exponential distributions and continuous
behaviour described by ODEs over systems variables.

In this report, we first present the general and desired features of modelling languages for CAS,
then we use the four different formalisms to model and analyse the running example based on city bike
sharing case study. Each language has a dedicated section that ends with an assessment with respect
to the desired features introduced in the first part of the report. A concluding section summarises our
contribution and describes the road map for the second year of the project.

QUANTICOL 1 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

Contents

1 Introduction 3

2 Patterns and Primitives for CAS 4
2.1 Three Scenarios . 4
2.2 Design Principles for CAS-SCEL . 5
2.3 A Running Example . 6

3 StocS: A stochastic variant of SCEL 7
3.1 Language Features . 8
3.2 Informal Semantics . 8
3.3 Example . 10
3.4 Discussion . 11

4 PALOMA 12
4.1 Language Features . 12
4.2 Semantics . 13
4.3 Example . 15
4.4 Discussion . 18

5 PEPA-S 19
5.1 Language Features . 19
5.2 Informal Semantics . 20
5.3 Example . 21
5.4 Discussion . 22

6 Stochastic HYPE 22
6.1 Language Features . 23
6.2 Informal Semantics . 23
6.3 Example . 24
6.4 Discussion . 27

7 Conclusions and Roadmap 28

QUANTICOL 2 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

1 Introduction

One of the main aims of WP4 is the design of a programming/specification language, that we named
CAS-SCEL, to be used to model, program and analyse collective adaptive systems. It has been
considered important that the language offers the possibility of integrating behavioural description
and knowledge management and provides specific abstractions or linguistic primitives for key concepts
like knowledge, behaviour, aggregation, and interactions. Moreover, it is essential that the language
provides different kinds of interaction patterns to take into account the different communication and
synchronisation capabilities of CAS and to support the multilayer structure of collective systems.
Another important aspect is that the language is mathematically founded to enable both qualitative
and quantitative analysis in a scalable manner.

The main purpose of the CAS-SCEL is to support modelling and programming of CAS systems
at different levels of abstraction, with the objective of defining a comprehensive framework for the
development, verification, and analysis of CAS. Therefore, the language design is focused on identifying
the appropriate compromise between expressiveness and minimality, as well as at establishing formal
foundations to guarantee feasible verification of both quantitative and qualitative properties.

In this report we shall present our first investigation in this direction and shall be concerned with
the identification of abstractions and linguistic primitives for collective adaptation, location modelling,
knowledge handling, and system interaction and aggregation. To this purpose we have taken as starting
point a number of exploratory formalisms that are based on, or have taken inspiration by PEPA [15]
and SCEL [8], two languages that partners of the project have developed in the past years and that
have proved very successful in modelling adaptive systems (SCEL) and in supporting quantitative
analysis (PEPA).

We have planned to assess the impact of new primitives on CAS specification and verification, and
to address scalability issues, by using the exploratory formalisms to model and analyse some of the
case studies (city bike-sharing, smart transportation systems, smart energy grid) of the project. In
particular, in this document we consider a concrete scenario, inspired by the bike-sharing case study,
and use all the exploratory formalisms to model it and to discuss the kind of analysis that can be
performed. This experiment will lay the bases for a first assessment of the different options and will
guide us in the work for the following years.

The four exploratory specification languages we use are StocS, PALOMA, PEPA-S and Stochastic-
HYPE that have specific, distinguishing features that we consider relevant for CAS specification and
verification.

• SCEL (Software Component Ensemble Language) [8], is a kernel language that has been de-
signed to support the programming autonomic computing systems. The stochastic variant of
SCEL, that we call StocS, is a first step towards the investigation of the impact of different
stochastic semantics for autonomic processes, that relies on stochastic output semantics, prob-
abilistic input semantics and on a probabilistic notion of knowledge. Moreover, StocS can be
used to experiment with attribute based communication (one of the distinguishing features of
SCEL) in the framework of CAS where neither broadcast nor binary synchronisation appear to
be appropriate. On the contrary StocS communication primitives fit well with the notions of
anonymity and dynamicity of CASs. StocS is presented in Section 3.

• In the process algebra PALOMA we have been investigating a model based on located Markovian
agents [4]. Each agent in the process algebra is parameterised by a location, which can be
regarded as an attribute of the agent. The ability of agents to communicate depends on their
location, through a perception function. This can be regarded as an example of a more general
class of attribute-based communication mechanisms, but for the QUANTICOL project and the
transport case studies particularly, the location attribute is perhaps the most relevant. The
communication is based on a multicast, as only agents who enable the appropriate reception

QUANTICOL 3 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

action have the ability to receive the message. Moreover the effectiveness of the communication
is subsequently adjusted according to the perception function. In all respects the language is
kept simple. Movement is not distinguished, but can be modelled (even synchronised movement)
as a state change which may induce change in other agents. More detail is given in Section 4.

• PEPA-S is an ongoing attempt to extend the stochastic process algebra PEPA [15] in a spatial
context, adopting the spatial interaction mechanism developed in [4] for Markovian agent models.
In PEPA-S heterogeneous populations of indistinguishable agents operating on a set of locations
are considered. PEPA-S aims at distilling and studying the set interaction patterns that are
typical of CASs. Indeed, even if this proposed specification language is based on PEPA, the
proposed ideas can be applied to other process specification languages. Like in PALOMA, in
PEPA-S the ability of agents to communicate depends on their location. Additional details
about PEPA-S are provided in Section ??.

• Stochastic HYPE is a process algebra developed to model three distinct types of behaviour:
instantaneous events that happen as soon as their conditions are met, stochastic events that have
durations drawn from exponential distributions (although other distributions can be modelled
by using timers and instantaneous events), and continuous behaviour described by ODEs over
the variables of the system. It provides a very expressive formalism that allows for modelling of
space in a discrete or continuous fashion. More detail is given in Section 6.

The rest of the report is organised as follows. In the next section we shall present the general
and desired features of modelling languages for CAS and shall introduce the running example based
on the city bike sharing case study that will be used throughout the report to assess our linguistic
proposals. In the subsequent sections we will present the key features of the different exploratory
formalisms; each language presentation will be followed by the modelling of the running example and
by a discussion aiming to assess its usability in the CAS framework both from the descriptive and
from the analytic point of view. A concluding section summarises our contribution and describes the
road map for the second year of the project.

2 Patterns and Primitives for CAS

In the initial phase of the project we have started analysing three major case studies (see Deliverable
5.1) that have been the main source of inspiration for both the design of new constructs and for their
assessment. In this section we first sketch the three different scenarios we have been considering, then
we outline the design principles we have derived from them.

2.1 Three Scenarios

The case studies we have considered are mainly concerned with the issue of designing smart cities that
will improve improve the quality of life of citizens. The focus is on problems connected with energy
consumption and transportation and with citizens mobility. In particular we have:

Smart transportation systems: These aim at enriching public transportation systems with an
information technology infrastructure in order to make the service more usable and friendly for
passengers, as well as more adaptive and robust with respect to traffic congestion and unpredicted
changes.

Smart energy grids: These have the objective of providing optimal control over energy production,
consumption, and distribution. Instantaneous supply of electricity must always meet the con-
stantly changing demand; thus forecasting production and demand is of central importance just
like the ability to influence user consumption by means of incentives or by guaranteeing partial
control over appliances.

QUANTICOL 4 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

City bike sharing: These schemes can help in reducing vehicular traffic, pollution, and energy con-
sumption. The main challenges to face when managing these systems are the reduction of costs
of bike redistribution among parking stations and the maximisation of user satisfaction by ap-
propriately locating parking stations and by guaranteeing availability of bikes and parking slots.

All three scenarios provide evidence that it is necessary to model spatial aspects, patterns of
user behaviours, to handle events that can cause abnormal conditions, and need to be handled via
re-routing or user incentives. It is clear that the modelling language should support the design of
adaptive behaviours within patterns of variability, the use of spatially dependent incentives to shape
the service request, and the gathering of information about service usage and users preferences. In
terms of analysis, the modelling language should also allow capacity planning and performance analysis,
as well as to study the behaviour of the system in presence of unexpected events and to provide control
strategies to ensure efficient emergent behaviour.

2.2 Design Principles for CAS-SCEL

This subsection reports on the progress made on CAS-SCEL with respect to design principles as well
as on the identification of primitives (such as movement primitives or space abstraction primitives)
that are needed in the case studies and, more generally, in Collective Adaptive Systems (CAS) design.

Modelling languages for CAS should support modularity and separation of concerns, and should be
expressive enough to allow succinct description of complex models. We have identified some general
desirable features of modelling languages for CAS, which we briefly summarise below.

Automated Derivation of the Model. The model of interest (e.g. a Markov process, or a set of
ordinary or partial differential equations) should be derivable automatically from a formally specified
high-level language. Moreover, different kinds of models (such as approximate ones) should be derived
in the same automated manner.

Agents+Environment view. The key components of CAS models are the individuals (also called
agents) that compose the collectivity and the environment they exist in. Modelling the environment as
an individual could be restrictive. The environment, for example, should be accessible by many agents
in parallel, model space and other distributed aspects such as events that have a different dynamics
from that of agents. Thus we believe it should be devised as a distinct part of the model.

Global and Local view. In CAS models, the agent behaviour could be specified individually
(local view) and replicated in populations. At the same time, one can be interested in specifying the
behaviour of groups of agents (global view), requiring that individuals adhere to it. So we need a
language supporting the definition of the micro-level and its quantitative behaviour and at the same
time supporting the specification of the macro-level non-functional (emergent) properties, which are
related to availability, reliability, robustness, and performance. This is also related to the choice
between centralised, decentralised, or mixed control.

Environment/Space Modelling and Awareness. A uniform language supporting various models
of space and locality is highly desirable. Also, space awareness is an important feature for allowing the
design of more sophisticated and realistic models. For example, communication within a range is a
realistic assumption requiring space-awareness. Different representations can also affect the efficiency
and applicability of analysis techniques, so the language should support explicit tuning of this aspect.

Bottom-up Design. The specification language should support incremental, compositional, and
bottom-up design of the model by first specifying the individual behaviour of agents, then their inter-
action mechanism, and finally interaction with the environment.

Control over Abstraction Level. Collective systems modelling can easily give rise to systems that
have an unmanageable size. The ability to move between different level of detail of the description,
without the need to completely redesign the model, is an important and desired feature.

QUANTICOL 5 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

Modelling Adaptation and Goal-orientedness. Without an optimal behaviour for agents, it is
common in Collective Systems to design adaptation patterns, allowing the agents to react to unpre-
dicted environment conditions in order to achieve their goal. Modelling adaptation requires the ability
to express agents behaviour in a goal-oriented fashion and to identify which events the agent is able
to control [5].

Support for Design and Analysis Techniques. Different analysis techniques may require more
or less strict conditions on the model under consideration. For example, statistical model checking
allows the analysis of models of moderate size without requiring very strict conditions. On the other
hand, mean-field/fluid-flow approximations techniques have stronger requirements but scale to much
larger models. This trade-off between precision and ability to use analysis techniques of interest should
be easily manageable in the language. In particular, satisfaction of the conditions for applicability
of analysis techniques should not be left to the user to prove. Therefore, a language for modelling
CAS should support different semantics, from a more detailed to a more abstract one, and provide
parameters as well as syntactic restrictions that ensure the applicability of the techniques of interest.

2.3 A Running Example

The city bike sharing case study will be used in the rest of the report to provide evidence of usability
of the different formalisms we shall introduce in the coming sections.

We consider a model of a bike sharing service, where we assume a city with m parking stations,
each one with its location `i ∈ Loc = {`1, . . . , `m}, a number of available bikes bi, and a number of
available parking slots si (for i = 1, . . . ,m). Parking stations are in one-to-one correspondence with
the set of possible locations, which should be considered as (disjoint) areas of influence in the city.
We also assume that we have n users of the bike sharing service: at any time, each user is positioned
in one location and can be in one of the two states Pedestrian and Biker. In each of those states, the
user can move around the city (with speed depending on the state) according to preferences modelled
by two probability transition matrices Qb and Qp of size m×m for the biker and the pedestrian state,
respectively. The user becomes a Biker or a Pedestrian using transitions named borrow and return.

In our model we identify two populations: parking stations (containing parking-slots and bikes)
and users (that may or may not have a bike).We would like to model bike borrowing/return from/to
stations in a distributed and adaptive way (avoiding a central server being aware of bikes/parking-slots
availability for each parking). A user in a location ` can borrow (or return) a bike by issuing a request
(e.g. by means of a mobile phone application) to the bike sharing system. This request can be satisfied
by a bike (or parking-slot) available within a neighbourhood of `. The latter condition is specified
via a neighbourhood predicate ϕn(`, `′) (modelling, for example, that a parking station `′ is easily
reachable from `, because it is near or may be reached by public transport etc.). The bike sharing
system answers with the location of a parking station which has an available bike (or an available
parking-slot), within a neighbourhood of `. In this response there is a degree of flexibility provided
by the condition ϕn(`, `′). This flexibility in the choice allows some control on which parking station
is selected among those that are in the neighbourhood of the current user location (including itself),
and can be used to re-balance bike/parking-slot availability by redirecting users to parking stations
that have more available bikes (or parking-slots)

In the next sections we introduce various language dialects currently under exploration in the
project. In particular, we would like to discuss the design choices and illustrate in practice the
possible advantages and disadvantages. Language features are shown at work on this example and
also discussed with respect to the analysis of Section 2.

QUANTICOL 6 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

3 StocS: A stochastic variant of SCEL

StocS is a modelling and programming language based on SCEL. SCEL (Software Component En-
semble Language) [9, 8], is a kernel language that takes a holistic approach to programming autonomic
computing systems and aims at providing programmers with a complete set of linguistic abstractions
for programming the behaviour of Autonomic Components (ACs) and the formation of Autonomic
Component Ensembles (ACEs), and for controlling the interaction among different ACs. A SCEL
program is formed by a set of components of the form I [K, P]. Each component consists of:

• a knowledge repository K, modelling the actual knowledge of the components;

• an interface I, providing named functionalities and other attributes;

• a process P , describing the actual behaviour of the component.

The knowledge repository K manages both application data and awareness data. Application data
are used for enabling the progress of ACs’ computations, while awareness data provide information
about the environment in which ACs are running (e.g. monitored data from sensors) or about the
status of an AC (e.g. its current location). The definition of SCEL abstracts away from a specific
implementation of knowledge repository. It is only assumed that there are specific operations for
adding knowledge items t to a repository (K ⊕ t), for removing elements, selected by a template T ,
from a repository (K 	 T), and for inferring elements from a repository (K ` T). In the sequel we
let V denote the set of values, K denote the set of possible knowledge repositories (or equivalently
knowledge states), I denote the set of knowledge items, T denote the set of knowledge templates. The
latter are used to retrieve data from the knowledge repository.

The component interface I is used to publish structural and behavioral information about the
component in the form of attributes, i.e. names acting as references to information stored in the
component’s knowledge repository. Let A be the set of attribute names (which include the constant
id used to indicate the component identifier); an interface I is a function in the set K → (A →
V). An interface defines a (partial) function from a a knowledge-base, attribute-name pair to the
domain of values. Among the possible attributes, id is mandatory and is bound to the name of the
component. Component names are not required to be unique, so that replicated service components
can be modelled. The evaluation of an interface I in a knowledge state K is denoted as I(K). The
set of possible interface evaluations is denoted by E.

A process P , together with a set of process definitions, can be dynamically activated. Some of
the processes in P execute local computations, while others may coordinate interaction with the
knowledge repository or perform adaptation and reconfiguration. Interaction is obtained by allowing
processes executed at a give AC to access knowledge in the repositories of other ACs. Processes can
perform three different kinds of Actions: get(T)@c, qry(T)@c and put(t)@c, used to act over shared
knowledge repositories by, respectively, withdrawing, retrieving, and adding information items from/to
the knowledge repository identified by c. We restrict targets c to the distinguished variable self, that
is used by processes to refer to the component hosting it, and to component predicates p, i.e. formulas
on component attributes. A component I [K, P] is identified by a predicate p if I(K) |= p, that is,
the interpretation defined by the evaluation of I in the knowledge state K is a model of the formula p.
Note that here we are assuming a fixed interpretation for functions and predicate symbols that are
not within the attributes (A). E.g. battery < 3 is a possible predicate, where < and 3 have a fixed
interpretation, while the value of battery depends on the specific component addressed.

StocS extends SCEL by modelling the time duration of actions and by replacing non-determinism
in the interaction with (local/remote) knowledge bases by probability distributions. StocS has a
Continuous Time Markov Chains operational semantics. Enriching SCEL with information about
action durations and adapting it to the modelling and programming of Collective Adaptive Systems
poses several challenges which we summarise in this section. In particular, we discuss design choices

QUANTICOL 7 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

Systems: Components: Processes:

S ::= C | S ‖ S C ::= I [K, P] P ::= nil | a.P | P + P | P | P | X | A(p̄)

Actions: Targets: Ensemble Predicates:

a ::= get(T)@c | qry(T)@c | put(t)@c c ::= self | p p ::= tt | e ./ e | ¬p | p ∧ p

Table 1: StocS syntax (Knowledge K, Templates T , and Items t are parameters)

both taking into account the analysis of Section 2 and the need for effective approaches to manage
model complexity and size.

3.1 Language Features

The syntax of StocS is presented in Table 1, where the syntactic categories of the language are
defined. Systems are sets of Components in parallel. Components contain a process P , used to
specify their behaviour, and a knowledge base K, used to model its internal awareness state as well as
its contact with the environment. Selected features of the component, depending on its internal state,
are made available to the external world through the interface I. Actions operate on local or remote
knowledge-bases and have a Target to determine which other components are involved in the action,
based on the values exposed by their interface and evaluated with respect to a Predicate.

Interaction with local or remote knowledge-bases is performed by sending/retrieving concrete
knowledge items (elements of I) as well as patterns, called knowledge templates (elements of T).
K is the set of possible knowledge states. So, in Table 1, K ∈ K, t ∈ I, and T ∈ T.

Knowledge repository. Knowledge is a key feature of StocS because it allows us to model
awareness, adaptation, and the environment in which the component exists. Each knowledge repository
is completely described by a tuple (K, I,T,⊕,	,`). The operators ⊕, 	, ` are used to add, withdraw,
and infer knowledge items to/from knowledge repositories in K, respectively. In SCEL operations on
knowledge induce a nondeterministic behaviour related to the selection of possible multiple knowledge
items matching a template. In StocS a knowledge repository reacts probabilistically to the different
operations. Indeed, ⊕, 	, ` operators may modify the state of the knowledge and have the following
signature, where Dist(X) denotes the class of probability distributions on a set X with finite support:

⊕ : K× I→ Dist(K), 	 : K× T ↪→ Dist(K× I), `: K× T ↪→ Dist(I).
Function ⊕ is total and defines how a knowledge item can be inserted into a knowledge repository:
K ⊕ t = π is the probability distribution over knowledge states obtained as the effect of adding
t. Functions 	 and ` are partial and compute the result of withdrawing (resp. inferring) a tuple
matching a given template from a knowledge state. For instance, the outcome of K	T is a probability
distribution over all pairs (K, t) ∈ (K × I) such that the item t matches the template T . Intuitively,
if K 	 T = π and π(K ′, t) = p then, when one tries to remove an item matching template T from K,
with probability p item t is obtained and the resulting knowledge state is K ′. Function ` is similar to
	 but it does not change the state of the knowledge.

3.2 Informal Semantics

The semantics of SCEL does not consider time related aspects of computation. More specifically, the
execution of an action of the form act(T)@c . P (for put/get/qry actions) is described by a single
and atomic transition of the underlying SCEL semantics. This entails that, on action completion,
the knowledge repositories of all components involved in the action execution have been modified
accordingly, abstracting away: (1) when the execution of the action starts, (2) when the possible
destination components are required to satisfy p, and (3) when the process executing the action
resumes execution (i.e. it becomes P).

QUANTICOL 8 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

In StocS we address those time-related issues at different levels of abstraction. Depending on the
degree of detail in modelling these aspects, we have four different semantics: action-oriented (act-or),
interaction-oriented (int-or), network-oriented (net-or), and activity-oriented (activ-or). These
semantics model the stochastic behaviour of a StocS system at different levels of abstraction, facili-
tating the management of the complexity of the model according to the application of interest. In the
remaining part of this section we briefly discuss these four variants and their motivations. A detailed
description of the four semantics can be found in [17, 18].

1. Action-oriented Semantics. Under this semantics an action of the form act(T)@c (respec-
tively put/get/qry) when enabled generates a single transition and has a state residence time
that is computed via an action rates function and depends on the source component interface,
the target component interface, and the retrieved knowledge item.

This semantics does not consider all the realistic aspects of predicate-based communication like,
for instance, the time needed to send a tuple item to all the components satisfying a given
predicate. However, it can be used when actions average execution time does not depend on the
number of components involved in the communication.

2. Interaction-oriented Semantics. This is based on the action-oriented semantics and distin-
guishes local and remote actions by assuming that local actions are executed instantaneously.
This kind of semantics is useful when local actions happen in a time-scale which is very differ-
ent (usually much smaller) from that of remote actions. In these situations it is reasonable to
consider as instantaneous the execution of local actions. As a useful side effect of ignoring the
duration of local actions, we obtain more concise models. This approximation can be considered
as an approach to reducing multi-scale models to single-scale models. A similar idea is explored
for Bio-PEPA models in [12] and used to abstract away from fast reactions in biochemical net-
works. The assumption we make for defining this semantics is that each remote (stochastically
timed) action is followed by a (possibly empty) sequence of local (probabilistic) actions. We
ensure this assumption is satisfied by imposing syntactic restrictions on processes. Then, by
realising a form of maximal progress [14] we execute a timed action and all of its subsequent
probabilistic actions in a single transition.

3. Network-oriented Semantics. This semantics provides the most detailed modelling among
the four semantics, which entails that actions are non-atomic. Indeed, they are executed through
several intermediate steps, each of which requires appropriate time duration modelling. In
particular, put actions are realised in two steps: (i) an envelope preparation and shipping
(one for each component in the system, other than the source), (ii) envelope delivery, with
its own delivery time, test of the truth value of the communication predicate, and update of
the knowledge-state. Also the actions get/qry are realised in two steps: (i) initiation of the
item retrieval by a source component by entering in a waiting state, (ii) synchronisation with
a destination component and exchange of the retrieved item. Since actions are not executed
atomically, their (partial) execution is interleaved with that of other actions executed in parallel.

4. Activity-oriented Semantics. This semantics is very abstract and allows us to explicitly
declare as atomic an entire sequence of actions, by assigning to it an execution rate of the entire
sequence. Since the execution of the sequence of actions is atomic, it allows no interleaving
of other actions. As an interesting consequence of this, we have a significant reduction in the
state-space of the system. This variant of the semantics is motivated by the fact that sometime
it is useful to perform a sequence of actions to update the knowledge repositories on different
components. The Activity-oriented semantics allows us to declare as atomic an entire sequence
of actions and to assign a rate to it. More generally, the purpose of this semantics is to have a
very high-level abstraction of the interaction mechanisms.

QUANTICOL 9 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

Pu , Pedestrian

Pedestrian , get(p next, L)@self.
Borrow

Biker , get(b next, L)@self.
Return

Borrow , qry(loc,L)@self.
get(bike res, ID)@near(L).
put(go, ID)@self.
get(bike)@loc(ID).
put(b)@self.
Biker

Return , qry(loc,L)@self.
get(slot res, ID)@near(L).
put(go, ID)@self.
put(bike)@loc(ID).
put(p)@self.
Pedestrian

Figure 1: User behavior as a StocS process.

3.3 Example

Our design choice to model the bike sharing system response to bike/slot requests is to make parking
stations themselves in charge of answering. This distributed solution is more efficient, robust, and
compositional (i.e. the service can scale without changing the infrastructure) than a centralised one.
A further advantage is that we can easily model a control over bike redistribution to minimise the cost
of bike reallocation by means of trucks. In particular, the choice between parking stations is realised
by using different response rates of parking stations: those that have more bikes available will have
higher response rates to bike requests. Similarly, parking stations that have more slots available will
have higher response rates to slot requests. By using a get action, we put these responses into a race
and, on average, users will be redirected to those services that need bike or slot re-balancing. We will
discuss this and other features of the model in the rest of the section.

A single user is represented as a component Iu [Ku, Pu], whose knowledge state Ku is an ele-
ment 〈s, `〉 in {b, p}×Loc denoting the user state (i.e. either being a pedestrian or a biker) and the user
location, and whose interface Iu, which defines the predicates biker, pedestrian, and loc(`) as follows:
Iu(〈b, `〉) |= biker, Iu(〈p, `〉) |= pedestrian, and Iu(〈s, `〉) |= loc(`), for every ` ∈ Loc and s ∈ {b, p}. Let
us summarise the role of the user knowledge operators (see [18] for details). The ⊕ operator allows: to
change state by ⊕(b) (change to biker state) and by ⊕(p) (change to pedestrian state), and to move
to a specified location `′ by ⊕(go, `′). The 	 operator allows movement to a location according to the
average user behavior in the pedestrian state, by 	(p next, L), and in the biker state, by 	(b next, L).
Finally, the ` operator allows retrieval of the current user location.

The users behaviour is given in Figure 1. Each user starts in the state Pedestrian, where movement
is possible through a local get of the item p next. The effect of this action is to change user location
into `j . The latter is also returned as a binding for the variable L. This information will be used to
compute the rate of the action (i.e. of the movement) by a suitable rate function R. For instance, the
rate of action put(go, `′)@self used to model the movement of a user towards location `′ is defined as
follows1:

R(σ,put(go, `′)@self, σ) =

{
λb · fdist(`, `′) if σ |= biker ∧∧ loc(`)

λp · fdist(`, `′) if σ |= pedestrian ∧∧ loc(`)

By using this function, the rate of a movement depends on the state of the user (pedestrian or biker)
and on the distance between the current and the target location.

The process Borrow first retrieves the current location L then performs a bike reservation (bike res)
from a parking station ID satisfying predicate near(L). The actual rate of this action depends on avail-
able bikes: the higher the number of available bikes is, the higher the execution rate is. As an effect
of this race condition, the ID of the near station containing more bikes is received by the user with a

1Due to space limitation, we leave out the definition of R, which can be found in [18].

QUANTICOL 10 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

0 100 200 300 400 500
Time

0

2

4

6

8

Bi
ke

s

Min bikes per PS
Max bikes per PS
Average bikes per PS

Figure 2: Simulation of bike sharing service.

higher probability than a near station with fewer bikes, causing a more balanced distribution of bikes
in the system. When the parking-slot is reserved, the user moves towards the parking stations. The
rate of this action depends on the distance between the user and the parking station. After that
process Borrow takes a bike; this operation is performed via a get action that decrements the bikes
available and increments the slots available. Finally, the user status is updated to biker b. A biker
moves around the city and, then, leaves his bike in a parking station by executing the process Return.
Its behaviour is similar to that of a pedestrian, except for the fact it reserves parking slots instead of
bikes.

A parking station is represented as a component Ip [Kp, nil] that has no behaviour (it is pas-
sive). Its knowledge state is a vector 〈ba, br, sa, sr, `〉 ∈ N4 × Loc denoting the number of available
bikes (ba), of reserved bikes (br), of available parking slots (sa), and of reserved parking slots (sr),
as well as the parking location `. The parking station interface Ip defines the predicates loc(`) and
near(`) as follows [18]: for every `, `′ ∈ Loc and ba, br, sa, sr ∈ N Ip(〈ba, br, sa, sr, `〉) |= loc(`) and
Ip(〈ba, br, sa, sr, `〉) |= near(`′) if ϕn(`, `′), where ϕn(`, `′) is a suitable neighbourhood predicate. An
initial state of this model is a term

‖mi=1 ((Iu [〈`i, p〉, Pu])[ki] ‖ Ip [〈bi, 0, si, 0, `i〉, nil])

which denotes, for i = 1, . . . ,m: (i) ki pedestrians in locations `i, and (ii) bi available bikes and si
available parking slots in parking station at location `i. Note that the number of reserved bikes as
well as the number of reserved slots is set to zero in the initial state of the system in every parking
station. The overall number of bikes in the system is preserved by the knowledge-update rules. Some
simple simulation analyses of the considered system are reported in Figure 2. These simulations,
based on action oriented semantics, have been performed with jRESP2. This is a Java framework that
can be used to execute and simulate SCEL/StocS specifications. Figure 2 compares the simulation
results of the considered case study where rates of bike and slot reservations depend on the number of
available resources (on the left) with the one where these rates are constant3 (on the right). We can
notice that the average number of available bikes in parking stations is similar in the two simulations.
However, when the bikes/slots reservation rate depends on the available resources, the bikes are more
evenly distributed over the different parking stations.

3.4 Discussion

We evaluate StocS against the features discussed in Section 2.

2http://jresp.sourceforge.org
3We consider 40 users moving over a grid of 4 × 4 locations. Each parking station starts with 5 bikes and 5 empty

slots.

QUANTICOL 11 March 31, 2014

http://jresp.sourceforge.org

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

Automated Derivation of the Model. StocS has four stochastic semantics with different
level of detail. Their formal semantics is already fully defined and can be used to derive automatically
a CTMC model from a StocS specification.

Agents+Environment view. In StocS, agents are generally modelled through components,
while the model of the environment is given by specifying the knowledge behaviour.

Global and Local view. Both the global and local views are addressed in StocS. Local view is
modelled via components and agents behaviour while the global view emerges from the components
interactions based on predicates.

Environment/Space Modelling and Awareness. In StocS the environment where com-
ponents operate is modelled via specific data available in the knowledge state. This enables both
environment awareness (agents behaviour can depend on the knowledge state) and, thanks to the
predicate based interaction specific of StocS, component interactions can be regulated/effected by
the current space configuration.

Bottom-up Design. The individual level is given by specifying the behaviour of single compo-
nent. The interaction is determined by the choice of blocking/nonblocking and one-to-one/multi-cast
actions as well as the chosen semantics (e.g. interaction-oriented abstracts local actions, while activity-
oriented focuses on sequences). Finally, the interaction with the environment is managed both by the
choice of the action performed and by the choice of the knowledge behaviour.

Control over Abstraction Level. StocS addresses this in two ways: (1) by assigning different
stochastic semantics for actions to the same syntax, thus allowing management of the size of the
underlying model without changing the design, (2) by exploiting the separation between the environ-
ment model and the agent behaviour, thus allowing consideration of different models of space and
corresponding different interpretations for communication predicate (e.g. graph based vs continuous
space, and corresponding neighbourhood function).

Modelling Adaptation and Goal-orientedness. By accessing and manipulating knowledge
repositories (local or remote), StocS components acquire information about their status (self-awareness)
and their environment (context-awareness) and can perform self-adaptation, initiate self-healing ac-
tions to deal with system malfunctions, or install self-optimising behaviours [8].

Support for Design and Analysis Techniques. Currently StocS does not provide any specific
tools supporting design and formal analysis. However, jRESP and its simulation API can be used to
simulate StocS specification as shown in the previous subsection.

4 PALOMA

PALOMA, the Process Algebra of Located Markovian Agents, is intended to provide a simple process
algebra-based formalism which can be used to generate models in the style of M2MAM [6]. M2MAM
is used to generate a mean field model, but being based on Markovian agents it is also amenable to a
discrete interpretation. The mean field model is specified by a number of matrices and vectors, and can
be analysed by solving a set of coupled ODEs. The intention is that PALOMA should be equipped with
both a discrete and a continuous semantics. The discrete semantics provides theoretical foundations for
discrete event simulation of the models. The continuous semantics facilitate the automatic derivation
of the matrices, and thus the underlying vector field ODEs of a M2MAM model, from the high-level
description. Here we focus on the discrete interpretation.

4.1 Language Features

In PALOMA each agent is a finite state machine and the language is conservative in the sense that no
agents are spawned or destroyed during the evolution of a model (although they can cease to change

QUANTICOL 12 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

state). The language has a two level grammar:

X(`) ::= !(α, r).X(`) | ?(α, p).X(`) | X(`) +X(`)

P ::= X(`) | P ‖ P

Agents are parameterised by a location, here denoted `. Agents can undertake two types of actions,
spontaneous actions, denoted !(α, r), and induced actions, denoted ?(α, p). When an agent performs a
spontaneous action, it does so with a given rate r, which is taken to be the parameter of an exponential
distribution, where 1/r is the expected duration of the action. Spontaneous actions are broadcast to
the entire system, and can induce change in any other agent which enables an induced action with the
matching type α. An induced action has an associated probability p, which records the probability
that the agent responds to a spontaneous action of the same type. In the style of the Calculus of
Broadcasting Systems (CBS) [20], this can be thought of as the probability that the agent hears the
propagated message. Alternative behaviours are represented by the standard choice operator, +. A
choice between spontaneous actions is resolved via the race policy, based on their corresponding rates.
We assume that there is never a choice between induced actions of the same type.

A model, P , consists of a number of agents composed in parallel. There is no direct communication
between agents, for example in the style of shared actions in PEPA or CSP. Instead, all communi-
cation/interaction is via spontaneous/induced actions. When an action is induced in an agent the
extent of its impact is specified by a perception function, u(α, `,X, `′, X ′), where α is the type of the
spontaneous action, ` and `′ are the locations of the sender and receiver respectively, and X and X ′

indicate that their current states are !(α, r).X and ?(α, p).X ′ respectively for some r and p. This is a
further probability which, given the locations of the two agents, their current states and action type
involved, determines the likelihood that the induced action occurs. In the terminology of CBS, this
is the probability that an agent who hears a message actually listens. This message passing modified
by perception functions can be used to implement attribute-based communication. For example, the
perception function might have value 1 when the two agents are within a communication radius r
of each other, but a value of 0 whenever the distance between them is greater than r. Obviously
this gives a rich set of possible styles of interaction, but note that each agent with an induced action
chooses independently whether to respond or not.

4.2 Semantics

The semantics proceeds in sequences of alternating steps. This can be regarded as giving rise to a
semi-Markov process in which the first step, corresponding to the spontaneous action, determines
a delay, whilst the second step, is probabilistic and determines what the next state will be. This
corresponds to each possible induced action making the choice of whether to respond, based both
on its inherent probability of “hearing” and the perception function. As each agent makes such a
decision independently, the probabilities can be multiplied to obtain the overall probability of a given
next state.

As with all calculi with broadcast actions, there is a challenge to know when the broadcast is “com-
plete” in some sense, i.e. when all possible agents have “heard” the message. We tackle this problem
by associating an ether element with the system, which provides the environment for all agents. A
spontaneous action can only be initiated if the ether is currently empty, E0 and no probabilistic tran-
sitions are enabled. A spontaneous action is deemed to be complete when all agents have moved to a
probabilistic state. At this point, a probabilistic resolution must be made to determine the next state.
This will have the effect of clearing the ether and creating the opportunity for the next spontaneous
message. In some cases a spontaneous action may not induce any actions in other agents. If this is
the case the message will propagate, without impacting any other agents, and the probabilistic step
will be trivially resolved.

QUANTICOL 13 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

E0, !(α, r).X(`)
(α,r)−−−→ [α, r, `,X], X(`)P →P/

A spontaneous action can occur if and only if the ether is empty, denoted by E0. The resulting
local state records that the ether contains the message α which originated with rate r at location `
from the state !(α, r).X(`), and that the continuation is subject to a probabilistic resolution.

[α, r, `′, X ′], ?(α, p).X(`)
(α,r)−−−→ [α, r, `′, X ′], (?(α, p).X(`) +p X(`))P

If the ether contains a message α then an agent that enables an induced action of that type may
progress to a state subject to a probabilistic resolution in which, with probability p, the continuation
X(`) is chosen, and with probability 1−p, the continuation ?(α, p).X(`) is chosen (the agent does not
“hear” to the message in the ether).

[α, r, `′, X ′], !(β, s).X(`)
(α,r)−−−→ [α, r, `′, X ′], !(β, s).X(`)P

If the ether contains a message of type α then an agent that enables a spontaneous message of
any type (including α) witnesses the ongoing action, enters a probabilistic state and awaits resolution.
This ensures that only one spontaneous action can be in progress at a time. Note that there is not
the possibility of an agent “sharing” the α action as would be possible in a language such as CSP or
PEPA.

[α, r, `,X ′], ?(β, p).X(`)
(α,r)−−−→ [α, r, `,X ′], ?(β, p).X(`)P β 6= α

Similarly, if the ether contains a message of type α then an agent that enables an induced message
of any type except α witnesses the ongoing action, enters a probabilistic state and awaits resolution.

E,X1(`)
(α,r)−−−→ E′, X ′1(`

′)P

E,X1(`) +X2(`)
(α,r)−−−→ E′, X ′1(`

′)P

E,X2(`)
(α,r)−−−→ E′, X ′2(`

′)P

E,X1(`) +X2(`)
(α,r)−−−→ E′, X ′2(`

′)P

Choice behaves as we would anticipate. We assume that within a choice both elements are in the
same location as they correspond to a single agent.

E1, X1(`1)
(α,r)−−−→ E′, X ′1(`

′
1)
P E2, X2(`2)

(α,r)−−−→ E′, X ′2(`
′
2)
P

(E1, X1(`1)) ‖ (E2, X2(`2))
(a,r)−−−→ E′, (X ′1(`

′
1) ‖ X ′2(`′2))P

Parallel agents may progress in parallel if and only if they agree on the spontaneous action to take
place, (α, r), and consequently update the ether in the same way.

The probabilistic resolutions are determined by a second transition relation −→P , defined as

follows. We assume that no spontaneous transitions,
(α,r)−−−→, are enabled.

[α, r, `′, X ′], (?(α, p).X(`) +p X(`))P


(α,p×u(α,`′,X′,`,X))−−−−−−−−−−−−−→P E0, X(`)

(α,1−(p×u(α,`′,X′,`,X)))−−−−−−−−−−−−−−−−→P E0, ?(α, p).X(`)

The only probabilistic states which genuinely have different possible outcomes are those which
resulted from an induced action. In this case there are two different resolutions according to whether
the induced action is “heard” or not. In either case the ether is emptied when the probabilistic
resolution is made. First, a choice is made whether to hear the message or not, but secondly, if

QUANTICOL 14 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

the message is heard, its impact is adjusted according whether it is listened to as governed by the
perception function. This is in keeping with the M2MAM framework [6].

For other states the probabilistic resolution will simply clear the ether and return the agent to an
active state again.

[α, r, `′, X ′], X(`)P
(α,1)−−−→P E0, X(`)

For parallel agents, they undergo probabilistic resolution independently and their probabilities are
multiplied.

E,X1(`1)
P (α,p)−−−→P E0, X

′
1(`
′
1) E,X2(`2)

P (α,q)−−−→P E0, X
′
2(`
′
2)

E, (X1(`1) ‖ X2(`2))
P (α,p×q)−−−−−→ (E0, X

′
1(`
′
1)) ‖ (E0, X

′
2(`
′
2))

4.3 Example

Here we present a PALOMA model of the bike-sharing system described in Section 3. Recall that
there are m bike stations in the city, and each one has a number of available bikes and slots. Therefore,
we represent the available bikes and slots in Station i (for i = 1, ...,m) by agents in the following two
states:

Slot(`i) = ?(return, 1).Bike(`i)

Bike(`i) = ?(borrow , 1).Slot(`i)

Both Slot(`i) and Bike(`i) are passive. They can only be induced to make a return (a bike is returned
to this station) or borrow (a bike is borrowed from this station) action, and when they do they switch
to each other.

We introduce a three-state agent to represent the bike station, which is defined as:

EmptyStation(`i) = ?(return, 1).NormalStation(`i)+!(SlotAvailable, σ).EmptyStation(`i)

NormalStation(`i) = ?(return, 1).FullStation(`i)+?(borrow , 1).EmptyStation(`i)

+!(SlotAvailable, σ).NormalStation(`i)+!(BikeAvailable, σ).NormalStation(`i)

FullStation(`i) = ?(borrow , 1).NormalStation(`i)+!(BikeAvailable, σ).FullStation(`i)

The EmptyStation(`i) state denotes that there are no available bikes in Station i, whereas the
FullStation(`i) state denotes that there are no available slots. When the bike station agent is in
the NormalStation state, it can broadcast both BikeAvailable and SlotAvailable messages at the rate
of σ. However, when it is in the EmptyStation state, it can only broadcast SlotAvailable messages.
Similarly, it can only broadcast BikeAvailable messages when it is in the FullStation state. Moreover,
an agent in the EmptyStation state can receive a return message and go back to the NormalStation
state. Similarly, an agent in the FullStation can go back to the NormalStation state by accepting a
borrow message. The agent in the NormalStation state can also act on return or borrow messages,
leading to the FullStation state or the EmptyStation state respectively.

QUANTICOL 15 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

The perception functions for the messages borrow and return are defined as follows:

u(borrow , `,X, `′, X ′) =



1

b` + δ
if (` = `′ ∧X = Bike)

|2− b`|+ 2− b`
4− 2× b` + δ

if (` = `′ ∧X = NormalStation)

1 if (` = `′ ∧X = FullStation)
0 otherwise

u(return, `,X, `′, X ′) =



1

s` + δ
if (` = `′ ∧X = Slot)

|2− s`|+ 2− s`
4− 2× s` + δ

if (` = `′ ∧X = NormalStation)

1 if (` = `′ ∧X = EmptyStation)
0 otherwise

where δ is a tiny positive real number to ensure that the denominator is never equal to 0. b` and
s` represent the number of agents in Bike and Slot states in location ` respectively, as explained in
Section 2 . The perception function of the borrow message can be explained in the following way:

• If the message is received by a Bike agent in the same location as the sender, it can be percieved
with probability 1/(b` + δ). This means that probabilistically only one bike is borrowed for each
message broadcast.

• If the message receiver is the NormalStation agent in the same location as the message sender,

it can be perceived with probability
|2− b`|+ 2− b`
4− 2× b` + δ

, which works as a guard to ensure the

message can only be perceived when there is only one available bike in the station.

• If the message receiver is the FullStation agent in the same location as the message sender, it
must be percieved.

• Otherwise, the message cannot be perceived by the receiving agent.

The perception function of return message is analogous.
The agents representing bike users have six states, which are:

Pedestrian(`i) = !(seekbi, t).SeekBike(`i) +
∑
j 6=i

!(walk ij , Qp(i, j)).Pedestrian(`j)

SeekBike(`i) = ?(BikeAvailable, 1).BorrowBike(`i) +
∑
j 6=i

!(seekbj , wij).SeekBike(`j)

BorrowBike(`i) = !(borrow , o).Biker(`i)

Biker(`i) = !(seeks,i r).SeekSlot(`i) +
∑
j 6=i

!(rideij , Qb(i, j)).Biker(`j)

SeekSlot(`i) = ?(SlotAvailable, 1).ReturnBike(`i) +
∑
j 6=i

!(seeksj , cij).SeekSlot(`j)

ReturnBike(`i) = !(return, o).Pedestrian(`i)

As can be seen from the definition, when the user agent is in the Pedestrian state, it travels from
location `i to location `j at the rate of QP(i, j). This spontaneous action does not have any corre-
sponding induced actions and so can be thought of as not emitting a message. It may also seek a bike
at the rate of t, and goes into the SeekBike state (the number of users in this state at location ` is
denoted sb`). The user agent in the SeekBike state can accept a BikeAvailable message and go to the

QUANTICOL 16 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

BorrowBike state. Alternatively, it can also move to other locations and seek an available bike in that
station with rate wij . The borrow bike action is fired at rate o, a message borrow is emitted, and the
user becomes a Biker at the same location. A user agent in the Biker state in location `i travels to
location `j at the rate of Qb(i, j). It may also seek a slot at the rate of r, and goes into the SeekSlot
state(the number of users in this state at location ` is denoted ss`). The user agent in the SeekSlot
state may be induced in a SlotAvailable action by a station agent and go to the ReturnBike state. The
return bike action is also fired at rate o. Meanwhile, a message return is emitted during the action,
and the user becomes a Pedestrian again after the transition.

The definition of the perception functions for messages BikeAvailable and SlotAvailable are given
as follows:

u(BikeAvailable, `,X, `′, X ′) =


1

sb` + δ
× b`
b` + s`

if (` = `′ ∧X = SeekBike)

0 otherwise

u(SlotAvailable, `,X, `′, X ′) =


1

ss` + δ
× s`
b` + s`

if (` = `′ ∧X = SeekSlot)

0 otherwise

where the terms 1
sb`+δ

and 1
ss`+δ

(sb` and ss` denote the number of agents in SeekBike and SeekSlot
states in location ` respectively) ensure that bikes are borrowed or returned probabilistically one by
one. Moreover, the terms b`

b`+s`
and s`

b`+s`
represent the incentive factor, which makes it less possible

for the users to percieve the messages from the stations with fewer available bikes or slots. Thus, they
are more likely to seek available bikes or slots in other stations.

Finally, the initial population of agents are given in the following definition:

. . . ‖ Pedestrain(`i)[NPi] ‖ Slot(`i)[NSi] ‖ Bike(`i)[NBi] ‖ Station(`i) ‖ . . .

We are able to analyse the model both as a discrete event simulation and through the mean field
ODEs with software developed during the QUANTICOL project. Figure 3 and 4 illustrates the
trajectories of number of available bikes in stations and number of problematic stations (empty and
full stations) in our simulation with and without the incentive factor respectively, in which NPi = 50,
NSi = 10, NBi = 30 for i = (0, ..., 9). It can be seen that the incentive factor makes a big difference
in reducing the number of problematic stations.

(a) The trajectories of number of available bikes in stations (b) The trajectories of number of problematic stations

Figure 3: Plots without the incentive factor

QUANTICOL 17 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

(a) The trajectories of number of available bikes in stations (b) The trajectories of number of problematic stations

Figure 4: Plots with the incentive factor

4.4 Discussion

We evaluate PALOMA against the features discussed in Section 2.
Automated Derivation of the Model. The language is supported by software tools to au-

tomatically derive both a discrete event simulation (as in the plots shown in Figures3 and 4, and
mean-field approximations as derived for M2MAM).

Agents+Environment view. The agents in the system are captured by agents in the process
algebra, whilst the environment is captured more implicitly in the locations, the perception functions
and counts of the number of agents in each possible state.

Global and Local view. The specification of each agent with a given location provides a mech-
anism to develop a representation of local behaviour, whilst the global behaviour is more emergent,
since it results from the evolution of the agents according to their local behaviours and the influence
of the perception functions.

Environment/Space Modeling and Awareness. The current version of the language is based
on a static notion of environment as the perception functions depend only on the current state of
the agents and locations which do not change during the execution of the model. However it would
be possible to add further dependence into the perception function, for example capturing a radius
of perception that changes over time. But this would be somewhat at odds with the design of the
language which is intended to be minimal for exploration of the particular issue of attribute defined
communication.

Bottom-up Design. As with all process algebras, it is natural to build a model by first defining
the capabilities of the individual agents and then specifying how they interact. Thus the logical
behaviour of the entities in the system is readily designed in a bottom-up style. But the communication
between agents is controlled by the perception function which may require a more global view of the
system.

Control over Abstraction Level. Of course the modeller has a choice of what to choose as the
agents within the system, or how finely to distinguish locations, but once this choice has been made
PALOMA does not currently support any automated approaches to defining more abstract views of
the system. This is an area for future investigation.

Modeling Adaptation and Goal-orientedness. The perception functions can be used to give
quite rich (global) state dependences on the behaviour of the agents, particularly in their response
to the spontaneous actions of other agents. This can be viewed as a form of adaptation. But it is
rather restricted and further mechanisms could be investigated in the future. There are no structures
within the language to capture goals. For this language it would be more appropriate to specify goals

QUANTICOL 18 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

S::=!(α, r).X | ?(α,w).X | !!(α, r).X | ??(α,w).X | S + S

X
def
= S D::=X | D ‖ D

P ::=a{D} | P BC
L
P W ::=[P](`) | W |bW

Table 2: Syntax of PEPA-S.

in terms of a companion logic and then check the capacity of an agent to satisfy its goals.
Support for Design and Analysis Techniques. Our simulation tool can parse PALOMA

models and run discrete event simulations. The corresponding mean-field model is automatically
generated in the form of Matlab scripts when the model is parsed, and can be run directly in Matlab.
Developing a front-end and graphical user interface for this tool is a priority for ongoing work.

5 PEPA-S

PEPA-S is an ongoing attempt to extend the stochastic process algebra PEPA [15] in a spatial context,
adopting the spatial interaction mechanism developed in [6] for Markovian agent models. The choice
of PEPA as the core language to describe agents is not a fundamental requirement: we believe similar
ideas for a spatial extension can be applied to other process algebras. PEPA-S is a population language:
we consider heterogeneous populations of indistinguishable agents. PEPA-S revolves around a few
central ideas:

• Processes are located in a discrete set of spatial locations. In each location we have a population
of interacting agents, so that the obtained class of models is a Patch PCTMC (see Deliverable
2.1).

• The spatial interactions are mediated via a broadcast-based communication. We also consider
a handshake communication between agents in different locations (unicast).

• Actions are partitioned into actives and passives. Active actions are standard stochastic events
happening locally (i.e. in a certain location) according to classical PEPA rules. However, active
actions can trigger a broadcast or a unicast message through space. The response to those
messages is carried out by passive actions.

• Passive actions respond to active messages with a certain probability, given by a so-called per-
ception function. This function depends on the type of actions involved and on the locations
of the sending agent (i.e. the location where the triggering active action happened), and of the
receiving agent. Essentially, all the information about the spatial connectivity is encoded in such
a function.

5.1 Language Features

The syntax of the language is given in Table 2. Sequential components, defined by X
def
= S, are

essentially simple automata (with a component name attached to each state) that can do four kinds
of actions:

• Active broadcast !(α, r). This is an active action, hence happening at a rate r following
standard PEPA rules. When executed, it triggers a broadcast.

• Passive broadcast actions ?(α,w). These respond to an active action happening in the same or
in a different location. w here is a weight which is used to probabilistically solve non-determinism
due to the choice operator between two or more passive actions that can respond to a broadcast
of α.

QUANTICOL 19 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

• Active unicast !!(α, r). These actions also behave like standard PEPA actions, with a rate r.

• Passive unicast ??(α,w). These respond to an active unicast in a different location in the
network. Only one passive unicast synchronises with an active unicast, defining a handshake
synchronisation. The weight w is used to solve probabilistically a competition between two or
more passive unicasts ready to reply to an active action.

Sequential agents (of the same agent class) are composed non-cooperatively in parallel (operator ‖). A
population D = X1 ‖ . . . is then wrapped by the group operator a{D}, borrowed from [13], assigning
it the name a. In specifying a population D, we use the shorthand Xi[n] to indicate n copies in parallel
of Xi: Xi ‖ . . . ‖ Xi.

Populations of agents are then synchronised with the classical PEPA cooperation operator BC
L

, to
define a population model P , which is then positioned in location v by the construct [P](`). Spatial
parallel composition W |bW then allows us to construct the spatial interaction network.

The syntax model is accompanied by another crucial piece of information, encoded in the perception
function u, which specifies the spatial structure of interactions. The perception function, as defined in
the current version of the language, takes four arguments, u = u(α, `, β, `′), and returns the probability
with which a passive action β responds to the active one α. It depends on the active action α that
triggers a broadcast in location ` and on the passive action β that responds to the active one in location
`′. The dependence on locations allows us to encode the spatial structure in a very flexible way. We
can model long range or short range interactions, allowing messages to propagate in the whole space
or just to neighbouring locations, according to some notion of proximity between nodes. Furthermore,
we do not require name matching, but adopt a more flexible key-hole interaction scheme, like in Blenx
[21].

5.2 Informal Semantics

In order to describe the population model, we represent the state of the system according to the
counting abstraction [16], introducing a vector of integers ~ξ which counts, for each location `, each
population a and each local state i of a the number of agents ξ`a,i present in the system.

The semantics is then given similarly to [22]. We construct the reduced model, replacing a popu-
lation `{D} with the reduced population a{X1 ‖ . . . ‖ Xk}, where X1, . . . , Xk are the different local
states of population a. Then, we define a structural operational semantics which constructs a LTS
with a single state, and many looping transitions, which encode all the possible behaviours of the
model. In fact, transitions are labelled with a rate function, depending on the population vector ~ξ,
and with an update vector ~ν giving the net change in each population due to the happening of the
transitions.

Each of these transitions is composed by first deriving a rule for the active action, and then
combining it with the rules of one (in case of unicast) or more (in case of broadcast) passive actions
responding to it. There are several semantic relations, taking into account the different layers of the
language and the different kind of spatial communications.

From this semantics, we can derive either a Population CTMC or a set of mean field equations. To
construct an operational semantics capable of dealing with mean field approximation of broadcast in a
consistent way, we encode the probabilistic response of passive actions due to the perception function
using random update vectors. Essentially, instead of considering all the possible combinations of
agents that respond and do not respond to an active message, we introduce random variables (one
for each agent state i of population a and location `), counting how many respond. The interesting
feature of this approach is that the mean field semantics is obtained by replacing the random variable
with its expected value.

QUANTICOL 20 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

5.3 Example

We consider the example of Section 2.3 and model it in PEPA-S. We recall that we have m locations
in the city, which we will call `1, . . . , `m. Each location has a bike station, with a certain number of
bike slots, which can be either free or occupied by a bike. Each bike slot is modelled by the following
two-state agent:

slot free
def
= !(return, kfast).slot with bike; slot with bike

def
= !(borrow,kfast).slot free

In the previous code, the return and borrow actions are active broadcast actions. However, they will
not induce any response by passive transitions (perception function identically zero). The rate kfast
is a very large number, avoiding that bike slots influence the speed at which users borrow and return
bikes. Users, instead, are modelled by the following three state agent:

pedestrian
def
= !!(moveP,kmp).soul + !(borrow,kB).biker;

biker
def
= !!(moveB,kmb).soul + !(return,kR).pedestrian;

soul
def
= ??(arrivalP,1).pedestrian +??(arrivalB,1).biker;

We see here how movement can be modeled in PEPA-S: processes do not actually move, but just enter
a quiescent state (soul) in a location and use the unicast to activate a soul agent in the destination
location. The movement rate is assumed to be constant and equal to kmp for pedestrians and kmb
for bikers. The perception function is constructed based on the information contained in two routing
matrices Qp and Qb. More specifically, Qp[i, j] is the probability that a pedestrian moves from location
`i to location `j , while Qb[i, j] specifies the same probability for a biker. Hence, we have the following
definition for the perception function of moveB:

u(moveB, `i, arrivalB, `j) = Qb[i, j], and zero for any passive β 6= arrivalB

and similarly for the pair moveP, arrivalP.
Then we construct two populations for each location: users and slots, as follows:

Pslot ::= slot{slot free[s] ‖ slot with bike[b]}
Puser ::= user{pedestrian[p] ‖ biker[k] ‖ soul[a]}

Hence we have s free slots and b slots with bikes, and similarly for users. We require that s + b = c,
the capacity of the station, and that p+ b+a = N , the total number of users in the system. Note that
most of the user population in a location will be made of souls: we need N in total in each location
to properly deal with the (unlikely) situation when everybody is in a single location. Of course, these
numbers may change from location to location, and specify the initial state of the model.

The population model in location `i is then

Wi::=[Pslot BC
{borrow,return}

Puser](`i),

giving rise to the network model
W1|b. . . |bWm

This example can be easily extended by introducing a truck agent that moves bikes from one
station to another one. In this case, however, some dependency of the perception function on the
population state of the network can be useful to model redistribution policies in which bikes are taken
from nearly full bike stations and brought to nearly empty ones.

Note that we did not use the broadcast in this example. This can however be helpful in other
circumstances, for instance to model propagation of information through a smart bike sharing system.
The actual utility of the complex broadcast communication mechanism in the context of CAS is
however still unclear and deserves further investigation.

QUANTICOL 21 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

5.4 Discussion

We evaluate PEPA-S against the features discussed in Section 2.

Automated Derivation of the Model. The language supports automatic derivation of Spatial
Population CTMC models and of their corresponding mean field approximations.

Agents+Environment view. Agents are modelled in a process algebra style. The notion of
environment in PEPA-S is essentially embedded into the perception function. The expressivity of this
choice is under evaluation.

Global and Local view. The specific introduction of a notion of agent and of a notion of population
at the syntactic level of the language may facilitate the separation between the local and the global
view.

Environment/Space Modeling and Awareness. The current description of the perception func-
tion assumes a static spatial structure, but it can be made in part dynamic by allowing it to depend
on the population vectors of the sending and receiving locations ` and `′. Space however is necessarily
discrete. Embedding of locations in a continuous space can be indirectly done through the perception
function. Space awareness can be partially embedded in the perception function, but the potential
specification of adaptive behaviour for individual agents in this framework is rather limited (it may
be encoded in the local state of agents, but this is highly inefficient).

Bottom-up Design. Compositionality of PEPA-S is somehow hindered by the specification of the
perception function, which takes a global view and requires global knowledge. There may be compo-
sitional ways of specifying this function, but this has to be further investigated.

Modeling Adaptation and Goal-orientedness. PEPA-S has not been designed with adaptation
specifically in mind, but rather as a middle-level language, to which we can compile CAS-SCEL
models. In fact, PEPA-S features an easy derivation of mean field equations, still allowing syntactic
manipulations to be performed to simplify the model. Adaptivity, though, can be partially encoded
in the perception function, provided it is made more flexible (e.g. by making it dependent on the
populations in each location and on the state of the passive agent).

Control over Abstraction Level. These are not features taken into account in the design of
PEPA-S.

Support for Design and Analysis Techniques. Consistency of mean field approximation for very
large populations should hold. There remains a scalability issue if the number of locations is large.
There is no tool support for PEPA-S at the moment.

6 Stochastic HYPE

Stochastic HYPE is a process algebra developed to model three distinct types of behaviour: instan-
taneous, stochastic, and continuous behaviour described by ODEs over the variables of the system.
Instantaneous behaviour happens when Boolean guards of events become true, and stochastic be-
haviour is captured in events that have exponential durations. Durations described by distributions
other than exponential can be achieved by drawing from the distribution and using a timer together
with an instantaneous event. Events can also reset the values of the system variables. The overall
behaviour of a HYPE model can be described by multiple trajectories, one for each variable of the
system. These trajectories are defined by smooth solutions to sets of ODEs interspersed with discon-
tinuities when the system switches to a different set of ODEs and jumps where variables are reset.
For additional details on HYPE, the reader is referred to [1, 11]. Stochastic HYPE is very expressive
and can model space both discretely or continuously.

QUANTICOL 22 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

Prefix with

influence

〈
a : (ι, r, I).E, σ

〉
a−→
〈
E, σ[ι 7→ (r, I)]

〉 (a ∈ E) Prefix with-

out influence

〈
a.E, σ

〉
a−→
〈
E, σ

〉 (a ∈ E)

Choice

〈
E, σ

〉
a−→
〈
E′, σ′

〉〈
E + F, σ

〉
a−→
〈
E′, σ′

〉 〈
F, σ

〉
a−→
〈
F ′, σ′

〉〈
E + F, σ

〉
a−→
〈
F ′, σ′

〉 Constant

〈
E, σ

〉
a−→
〈
E′, σ′

〉〈
A, σ

〉
a−→
〈
E′, σ′

〉 (A
def
= E)

Cooperation with-

out synchronisation

〈
E, σ

〉
a−→
〈
E′, σ′

〉〈
E BC

M
F, σ

〉
a−→
〈
E′ BC

M
F, σ′

〉(a 6∈M)

〈
F, σ

〉
a−→
〈
F ′, σ′

〉〈
E BC

M
F, σ

〉
a−→
〈
E BC

M
F ′, σ′

〉(a 6∈M)

Cooperation with

synchronisation

〈
E, σ

〉
a−→
〈
E′, τ

〉 〈
F, σ

〉
a−→
〈
F ′, τ ′

〉〈
E BC

M
F, σ

〉
a−→
〈
E′ BC

M
F ′,Γ(σ, τ, τ ′)

〉(a ∈M,Γ defined)

Figure 5: Operational semantics for stochastic HYPE

6.1 Language Features

Stochastic HYPE implements separation of concerns by describing controllers/sequencers separately
from subcomponents. Subcomponents capture the capabilities of the system without control and this
separation allows for influences on variables to be specified in the subcomponents which are then used
to derive the ODEs for the system. Well-defined HYPE subcomponents have the general definition

S (W)
def
=
∑n

j=1
aj :(ι, rj , Ij(W)).S (W) + init:(ι, r, I(W)).S (W)

where W ⊆ V = {V1, . . . , Vn} is the set of real variables that record the values relevant to the model.
Moreoever, each aj is distinct and different from init. Each aj is an instantaneous (aj ∈ Ed) or
stochastic (aj ∈ Es) event and has an event condition ec(a) = (act(a), restart(a)) from a set EC .
The function restart(a) is a reset which changes the values of V ∈ V. An activation condition for an
instantaneous event is a boolean formula over variables in V. For a stochastic event, an activation
condition is a function that describes an exponential distribution. Subcomponents contain influences
of the form (ι, r, I(W)) (from the set A) where ι ∈ IN is an influence name. Each well-defined
subcomponent has exactly one influence name appearing across all of its influences, which only appears
in that subcomponent. This name is associated with one of the model’s variables via the function iv .
The second and third components of an influence describe the strength of the influence and which
variables will contribute to the influence in the ODE.

A well-defined uncontrolled system has the general definition Σ = S1(W1) BC∗ . . . BC∗ Ss(Ws) where
each subcomponent appears exactly once. Subcomponents must synchronise on all shared events and
BC∗ is used to specify this. A controller is defined by the two-level grammar M ::= a.M | 0 | M +M
and Con ::= M | Con BC

L
Con with a ∈ E = Ed∪Es and with L ⊆ E . A controller contains no influences

since it controls and sequences events only. The well-defined controlled system is Σ BC∗ init.Con. The
first event to occur is init which has true as its activation condition, so it triggers immediately and has
the initial values as its resets. A well-defined model is a tuple (ConSys,V, IN , IT , E ,A, ec, iv ,EC , ID)
where ConSys is a well-defined controlled system.

6.2 Informal Semantics

Each subcomponent in a HYPE model defines an influence for a variable and multiple subcomponents
may influence a single variable. Each influence describes an additive component of the continuous
change of that variable as described by the ODE given below. Events determine for each subcomponent
the form of the influence. When an event happens and if a subcomponent can react to that event then

QUANTICOL 23 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

ec(setAngleTopRight
i
) = (target x i ≥ uxi ∧ target y i ≥ uyi,

angle′i = R2D(acos(target x i−uxi
dist(target x i,target yi,uxi,uyi)

))

ec(setAngleTopLeft
i
) = (target x i ≤ uxi ∧ target y i ≥ uyi,

angle′i = 90 +R2D(acos(target yi−uyi
dist(target x i,target yi,uxi,uyi)

))

ec(setAngleBottomLeft
i
) = (target x i ≤ uxi ∧ target y i ≤ uyi,

angle′i = 180 +R2D(acos(uxi−target x i
dist(target x i,target yi,uxi,uyi)

))

ec(setAngleBottomRight
i
) = (target x i ≥ uxi ∧ target y i ≤ uyi,

angle′i = 270 +R2D(acos(uyi−target yi
dist(target x i,target yi,uxi,uyi)

))

ec(startWalking
i
) = (true, speed′i = 90)

ec(arriveDesti) = (dist(dest xi, dest yi, uxi, uyi) ≤ 100, speed′i = 0)

Figure 6: Stochastic HYPE model: event conditions associated with walking

the influence that that subcomponent provides will change. Controllers specify the order in which the
events happen. This can be defined formally by mapping the model to a transition-driven stochastic
hybrid automaton (TDSHA) [2, 3]. These automata are a subset of piecewise deterministic Markov
processes [7]. First, an operational semantics specifies the qualititative behaviour of a model as a
labelled multitransition system which is then mapped to a TDSHA to express quantitative behaviour.

An operational state σ of the system maps each influence name ι to a pair (r, I(W)), giving rise
to a configuation

〈
ConSys, σ

〉
. The operational semantics gives a labelled multitransition system over

configurations (Figure 5). Two functions are used in the rules to modify the operational state. The
updating function σ[ι 7→ (r, I)] is defined in the obvious way and the change-detecting function Γ
ensuring that there are no conflicting updates. A model has the following behaviour.

Deterministic continuous behaviour Each 〈P, σ〉 in the labelled multitransition system becomes
a mode in the TDSHA with continuous behaviour specified by the following ODE

Pσ =
{dV
dt

=
∑{

rJI(W)K
∣∣ iv(ι) = V and σ(ι) = (r, I(W))

} ∣∣∣ V ∈ V}
Stochastic discrete behaviour A transition labelled with a stochastic event 〈P, σ〉 a−→〈P ′, σ′〉 is

mapped to a stochastic transition with a true guard, rate act(a) and reset restart(a). The
actual rate of transition takes into account the rates of all transitions with label a.

Instantaneous discrete behaviour An instantaneous transition 〈P, σ〉 a−→〈P ′, σ′〉 is mapped to an
instantaneous transition with the guard being the boolean formula Act (a) and the reset being
restart(a).

6.3 Example

Here we present a stochastic HYPE model of a bike-sharing system in a more realistic manner using
continuous space in contrast to the the one described in Section 2.3. Due to the use of continuous
space, the model is somewhat larger than the preceding models which treat space discretely and
therefore are more spatially abstract. We assume that the city can be represented by a l×w size map.
There are m bike stations distributed in the city with (sxi, syi) denoting the position of Station i (for
i = 1, ...,m). We use nsi and nbi to denote the current number of available slots and bikes in Station
i. Furthermore, we assume there are n bike users in the city. Users are also scattered in the city with
(uxi, uyi) denoting the current position of the ith user (for i = 1, ..., n).

A bike user starts a trip and picks a random position in the city as their destination at the rate γ
governed by an exponential distribution. We capture this dynamic by an event condition:

ec(StartTripi) = (γ, dest x ′i = uniform(0, l), dest y ′i = uniform(0, w)) i ∈ (1, . . . , n)

QUANTICOL 24 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

ec(pickStation jToStart
i
) = (isclosest(j, uxi, uyi), ssx

′
i = sxj ∧ ssy′i = syj ∧ b′ji = 1)

ec(pickStation jToEnd
i
) = (isclosest(j, dest x i, dest y i), esx

′
i = sxj ∧ esy′i = syj ∧ s′ji = 1)

ec(reserveSucceedi) = (nb1 ≥ b1i ∧ ns1 ≥ s1i ∧ ... ∧ nbm ≥ bmi ∧ nsm ≥ smi,
nb′1 = nb1 − b1i ∧ ns′1 = ns1 − s1i ∧ ... ∧ nb′m = nbm − bmi∧
ns′m = nsm − smi ∧ target x ′i = ssxi ∧ target y ′i = ssyi)

ec(reserveFailedi) = (nb1 < b1i ∨ ns1 < s1i ∨ ... ∨ nbm < bmi ∨ nsm < smi,

target x ′i = dest x i ∧ target y ′i = dest y i)

ec(startCycling
i
) = (true, speed′i = 200)

ec(arriveStartStationi) = (dist(ssxi, ssyi, uxi, uyi) ≤ 100, speed′i = 0 ∧ target x ′i = esxi∧
target y ′i = esyi ∧ ns′1 = ns1 + b1i ∧ ... ∧ ns′m = nsm + bmi)

ec(arriveEndStationi) = (dist(esxi, esyi, uxi, uyi) ≤ 100, speed′i = 0 ∧ target x ′i = dest x i∧
target y ′i = dest x i ∧ nb′1 = nb1 + s1i ∧ ... ∧ nb′m = nbm + smi)

ec(restarti) = (true, b1i = 0 ∧ s1i = 0 ∧ ... ∧ bmi = 0 ∧ smi = 0)

Figure 7: Stochastic HYPE model: event conditions associated with cycling

where uniform(x, y) is a function to generate a random number between x and y. We use (dest x i, dest y i)
to denote the trip destination for User i.

Once the trip destination has been decided, the user needs to choose their travelling pattern. More
specifically, we assume that if the distance between the current position and the destination is larger
than a specific value d, the user will choose to travel by bike. Otherwise, the user will choose to travel
by walking. This dynamic can be represented by the following event conditions:

ec(chooseByWalk
i
) = (dist(dest x i, dest y i, uxi, uyi) ≤ d, target x ′i = dest x i ∧ target y ′i = dest y i)

ec(chooseByBike
i
) = (dist(dest x i, dest y i, uxi, uyi) > d,)

where (target x i, target y i) represents the user’s current target position to move to.
If the user chooses to travel by walking, he will walk to the destination directly. This can be

captured by the events conditions in Figure 6. Here the events setAngleTopRight
i
, setAngleTopLeft

i
,

setAngleBottomLeft
i

and setAngleBottomRight
i

set the moving angle of the user directly towards the
target position according to which direction the target position is relative to the user. After setting
the moving angle, the user can start walking. Here, we assume that the walking speed is 90 meters
per minute. Once the user arrives at their destination, they will stop there for a while and then start
a new trip at the rate γ again. To allow the user to actually move, we need these subcomponents to
capture the user’s movement flows:

Xmovei
def
= init : (uxi, 1, cos(D2R(anglei))× speedi).Xmovei

Ymovei
def
= init : (uyi, 1, sin(D2R(anglei))× speedi).Ymovei

where D2R and R2D are functions to convert degree to radius and radius to degree respectively. As
can be seen from the above subcomponents, the user’s position change is associated with their current
speed and angle.

If the user chooses to travel by bike, we assume that the user intends to borrow a bike from the
nearest bike station and return the bike to the station closest to their destination. Once the user has
decided the start station from which to borrow a bike and the end station to return the bike, he will
try to reserve a bike in the start station and a slot in the end station. Then, if the reservation is made
successfully, the user will walk to the start station, borrow a bike there, cycle to the end station, return
the bike, and walk to the destination. Otherwise, the user will directly walk to the destination if the
reservation cannot be made. To capture this scenario, we first need the event conditions in Figure 7.

QUANTICOL 25 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

ConstartTripi

def
= StartTripi.Conpatterni

Conpatterni

def
= chooseByWalk

i
.Con facetoDesti + chooseByBike

i
.ConpickStartStationi

Con facetoDesti
def
= setAngleTopRight

i
.ConmovetoDesti + setAngleTopLeft

i
.ConmovetoDesti

+setAngleBottomRight
i
.ConmovetoDesti

+setAngleBottomLeft
i
.ConmovetoDesti

ConmovetoDesti
def
= startWalking

i
.ConarriveDesti

ConarriveDesti
def
= arriveDesti.restarti.ConstartTripi

ConpickStartStationi

def
= . . .+ pickStation jToStart

i
.ConpickEndStationi

+ . . . j ∈ (1, ...,m)

ConpickEndStationi

def
= . . .+ pickStation jToEnd

i
.Conreservei + . . . j ∈ (1, ...,m)

Conreservei
def
= reserveFailedi.Con facetoDesti + reserveSucceedi.Con facetoStartStationi

Con facetoStartStationi

def
= setAngleTopRight

i
.ConmovetoStartStationi

+setAngleTopLeft
i
.ConmovetoStartStationi

+setAngleBottomRight
i
.ConmovetoStartStationi

+setAngleBottomLeft
i
.ConmovetoStartStationi

ConmovetoStartStationi
def
= startWalking

i
.ConarriveatStartStationi

ConarriveatStartStationi
def
= arriveStartStationi.Con facetoEndStationi

Con facetoEndStationi

def
= setAngleTopRight

i
.ConmovetoEndStationi

+setAngleTopLeft
i
.ConmovetoEndStationi

+setAngleBottomRight
i
.ConmovetoEndStationi

+setAngleBottomLeft
i
.ConmovetoEndStationi

ConmovetoEndStationi
def
= startCycling

i
.ConarriveatEndStationi

ConarriveatEndStationi
def
= arriveEndStationi.Con facetoDesti

Con def
= ... ‖ ConstartTripi

‖ ... i ∈ (1, ..., n)

Figure 8: Stochastic HYPE model: controllers

In these event conditions, isclosest(j, x, y) is a function which returns true if Station j is the closest
station to the position (x, y). (ssxi, ssyi) is the position of the chosen start station whereas (esxi, esyi)
is the chosen end station for User i. bji and sji are two tag variables which are equal to 1 if User i
wants to reserve a bike or slot in Station j, otherwise they are set to 0. The event reserveSucceedi is
activated only if the available number of bikes in the start station and the available number of slots
in the end station are not zero (thus greater than the tag variable). If the reservation succeeds, the
target is set to the position of the start station. However, if the reservation fails, the target is set to
the position of the destination. We assume that the cycling speed is 200 meters per minute. When
the user arrives at the start station, the target position is set to the end station. Meanwhile, a bike
will be taken from the station, thus the number of available slots in that station will increase by one.
When the user arrives at the end station, the target position is set to the destination and the bike will
be returned to the station, thus the number of available bikes in that station will increase by one.

To ensure all the events occur in the right sequence, we need controllers to impose causal or
temporal constraints on the events. We first give the definition of the controller in the bike-sharing
model in Figure 8. These event controllers are used to ensure the flow of events illustrated in Figure 9.

We get the uncontrolled system by synchronizing the subcomponents in the system:

Sys def
= ...Xmovei BCinit Ymovei... i ∈ (1, ..., n)

Finally, the controlled system of the model is described by:

BikeSharingCtrl def
= Sys BC

∗
init.Con

QUANTICOL 26 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

StartTripi
chooseByWalk

i
chooseByBike

i

...setAngle
i
...

startWalking
i

arriveDesti

restarti

...pickStation jToStart
i
...

...pickStation jToEnd
i
...reserveFailedi

reserveSucceedi...setAngle
i
...

startWalking
i arriveStartStationi

...setAngle
i
......startCycling

i
...

...arriveEndStationi...

Figure 9: The flow chart of events in the bike-sharing model

In our simulation, we set the city size to 20000× 20000 with four bike stations located at positions
(5000,5000), (5000,15000), (15000,5000) and (15000,15000). There are 6 available bikes and 4 available
slots initially in each station. Due to memory issues, our model can be loaded and simulated with at
most 20 bike users. Figure 10a shows the moving trajectories of one user, and Figure 10b gives the
trajectory of number of problematic stations (station with no available bikes or slots) in our simulation.

(a) The moving trajectories of one user (b) The trajectory of number of problematic stations

Figure 10: Simulation results of the stochastic HYPE bike-sharing model

6.4 Discussion

We now consider the features of stochastic HYPE.
Automated Derivation of the Model. Stochastic HYPE has formal semantics from which a

TDSHA can be obtained. The SimHyA tool can simulate stochastic HYPE models using this TDSHA.
Agents+Environment view. The environment can be modelled as a collection of subcompo-

nents with appropriate controllers to sequence events such as the start and end of peak traffic periods.
Each individual can be expressed as a collection of subcomponents and controllers to describe the be-
haviour of that individual as events happen. The environment is accessible by multiple agents because
its characteristics are captured as global variables.

QUANTICOL 27 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

Global and Local view. Stochastic HYPE as it is defined here does not support definition of
populations, however there is an extension which provides a language for generating many individuals
of the same type [10]. Global variables can be used to constrain population behaviour, such as limits
on growth, and to obtain global performance measures.

Environment/Space Modeling and Awareness. Continuous space can be modelled by defin-
ing functions that capture characteristics of regions in space, and variables can be associated with
individuals to represent their current location in space, and describe their movement. Similarly, dis-
crete space can be modelled by defining a function to capture the characteristics of a location, and
each individual can have an associated variable for their current location. As yet, there is no technique
in stochastic HYPE for translating between these different representations of space. Space-awareness,
as in modelling communication within a limited range is supported by using a distance function as a
guard, hence only allowing some event to occur if the distance is small enough.

To characterise spatial characteristics changing over time, subcomponents can be defined for each
characteristic. However, neither stochastic HYPE nor SimHyA support partial differential equations
currently, so this is more difficult for continuous space.

Bottom-up Design. Stochastic HYPE is defined in a compositional manner and thus supports
this approach.

Control over Abstraction Level. As mentioned previously, the modeller has a choice in the
level of abstraction for a model. However, it would be useful to develop the theory of stochastic
HYPE so that a model with individual behaviour described by subcomponents can be transformed to
a mean-field model with population behaviour defined by subcomponents.

Modeling Adaptation and Goal-orientedness. Stochastic HYPE is very expressive, hence
adapation can be captured as functions or choice between different behaviours. It may also be possible
to express goals and behaviour leading towards goals in stochastic HYPE. Alternatively, appropriate
logics for hybrid systems can be considered as a way to reason about goals.

Support for Design and Analysis Techniques. Beyond the separation of capabilities and
controllers, and the extension for specifying populations, there is no support for this.

7 Conclusions and Roadmap

In this deliverable we have reported the progress made on the design of the linguistic primitives of
CAS-SCEL. These primitives, presented in the context of a set of design principles and interaction
patters specific to CASs, have been included in four process specification languages: StocS, PALOMA,
PEPA-S and Stochastic-HYPE. The explored process specification languages have been instrumental
for the study of different interaction patterns (such as broadcast communication or anonymous in-
teraction) that are crucial for the specification/verification and deployment of CASs. Moreover, the
four considered languages considered the specification of CASs from different point of views. To show
the impact of the proposed primitives on the specification of CAS, a bike sharing scenario, borrowed
from one the project case studies, has been used to assess usability of the different formalisms in CAS
framework.

StocS, thanks to the predicate based communication, is strongly related to the notions of anonymity
and dynamicity of CASs. Indeed, the StocS predicate-based communication allows components of
a system to send messages and requests to ensembles of components that are determined at exe-
cution time through the evaluation of a predicate, in a multicast fashion. Moreover, the compo-
nent knowledge-base provides the realisation of various adaptation patterns, by explicit separation of
adaptation data in the spirit of [5], and to model the components view on (and awareness of) the
environment. Both PALOMA and PEPA-S are based on the M2MAM framework [6], and use percep-
tion functions to represent the environment and its influence on the possible actions of agents. This
mechanism is reasonably compact and, as demonstrated, amenable to scalable analysis. However,
we are yet to fully explore whether its expressiveness is sufficient to capture all scenarios related to

QUANTICOL 28 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

our case studies. Moreover, it is anticipated that the specification of the perception functions could
become problematic when the behaviour of the environment is complex. PALOMA has been mainly
focused on investigating attribute-based communication which nevertheless supports efficient and scal-
able analysis. As such, it has limited expressiveness and only includes indirect interaction between
agents through spontaneous and induced actions. In contrast PEPA-S seeks to extend the existing
stochastic process algebra PEPA, and allows different patterns of interaction and includes constructs
for describing the evolution of the communication infrastructure in the modelled system. However,
with respect to the QUANTICOL case studies, there is a limitation that agents are static within a
single location and movement can only be mimicked by messages passed between locations instigating
the ”death” and ”birth” of agents in respective sites. PALOMA does not suffer from this limitation.

Stochastic HYPE is expressive enough to describe continuous space, as it provides the ability to
model any continuous quantity. The bike-sharing model illustrates how bike stations can be located
at coordinates in the plane and how user movement can be modelled using ODEs to describe change
over time. The model is larger than the other models and shows the additional complexity required to
capture continuous space. For some of the QUANTICOL case studies, a more abstract view of space
as discrete location may be more appropriate. The model decribes each user separately, and hence
scalable analysis techniques cannot be applied directly without model transformation. Stochastic
HYPE may be useful for the development of a method to transform continuous space models to
discrete space models because of its expressive power, and it could also be used for models where some
aspects of space is treated continuously and other aspects are treated discretely.

Relations with other WPs The work presented in this deliverable relates with the following work
packages:

WP1 Emergent Behaviour and Adaptivity. This WP aims at setting up a framework to detect and
control emergent behaviour of Collective Adaptive Systems (CAS). The techniques developed in
WP1 will be used to support the analysis of CAS-SCEL specifications.

WP2 Collective Adaptive Behaviour in Space. The spatial representations for modelling spatial
aspects of CAS considered in WP2 have influenced many of the primitives considered in this
deliverable. CAS-SCEL will include specific linguistic constructs to take spatiality and mobility
into account. The specification languages considered in this deliverable witness a first step
towards the integration of the models of WP2 in CAS-SCEL.

WP3 Logic and Scalable Verification. The logics and techniques developed in WP3 will be used to
specify and verify properties of CAS-SCEL specifications. Some of the techniques developed in
WP3 should be used not only to support the verification of CAS-SCEL programs, but also at
runtime to improve system adaptiveness. Indeed, an agent could use model-checking techniques,
performed on-the-fly to support the selection of possible alternative behaviours.

WP5 Model Validation and Tool Support. To support the analysis of CAS-SCEL programs, new
prototype software tools will be developed. These tools are crucial to assess the considered
linguistic primitives and to use the CAS-SCEL language to specify, program and analyse sig-
nificative case studies.

Work plan for the second reporting period. During the first reporting period we have mainly
concentrated on CAS-SCEL language design.

In the second period we plan to continue our work within Task 4.1: CAS-SCEL language de-
sign and to use the syntactic constructs considered in this deliverable to distill a single specifica-
tion/programming language. In the definition of our language we will also consider other approaches,
like for instance the one based on nature-inspired coordination mechanisms [23] [19], that guarantees

QUANTICOL 29 March 31, 2014

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

abstraction from identity, scalability, ability to plug-in/out new components without affecting the
behaviour of the system.

We will also start working on the implementation CAS-SCEL within Task 4.2: Programming col-
lective adaptive systems. The starting point of this work will be jRESP, the Java runtime environment
that can be used to execute and simulate SCEL programs. We will consider a porting of the code to
the Eclipse Modelling Framework (EMF).

The tool developed in Task 4.2 will be one of the first step towards the integration of CAS-SCEL
with the analysis techniques developed within WP1 and WP3. This integration will be pursued within
Task 4.3: Design workflow and analysis pathway and will lead to an integrated framework that will
enable usage of CAS-SCEL and of the related logics and tools by researchers who are not experts in
formal methods, verification procedures, and quantitative analysis techniques.

References

[1] L. Bortolussi, V. Galpin, and J. Hillston. HYPE with stochastic events. In Proceedings of the
Ninth Workshop on Quantitative Aspects of Programming Languages (QAPL 2011), EPTCS 57,
pages 120–133, Saarbrücken, 2011.

[2] L. Bortolussi and A. Policriti. Hybrid dynamics of stochastic programs. Theoretical Computer
Science, 411:2052–2077, 2010.

[3] L. Bortolussi and A. Policriti. (Hybrid) automata and (stochastic) programs: The hybrid au-
tomata lattice of a stochastic program. Journal of Logic and Computation, 23:761–798, 2013.

[4] Dario Bruneo, Marco Scarpa, Andrea Bobbio, Davide Cerotti, and Marco Gribaudo. Markovian
agent modeling swarm intelligence algorithms in wireless sensor networks. Performance Evalua-
tion, 69(3-4):135–149, March 2012. 00011.

[5] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and Andrea Vandin.
A conceptual framework for adaptation. In Juan de Lara and Andrea Zisman, editors, FASE,
volume 7212 of Lecture Notes in Computer Science, pages 240–254. Springer, 2012.

[6] Davide Cerotti, Marco Gribaudo, Andrea Bobbio, Carlos Miguel Tavares Calafate, and Pietro
Manzoni. A markovian agent model for fire propagation in outdoor environments. In Alessandro
Aldini, Marco Bernardo, Luciano Bononi, and Vittorio Cortellessa, editors, EPEW, volume 6342
of Lecture Notes in Computer Science, pages 131–146. Springer, 2010.

[7] M.H.A. Davis. Markov Models and Optimization. Chapman & Hall, 1993.

[8] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A formal approach to autonomic systems
programming: the SCEL Language. ACM Transactions on Autonomous and Adaptive Systems,
2014. To appear. Available as Technical Report from http://eprints.imtlucca.it/2117/.

[9] Rocco De Nicola, Gian Luigi Ferrari, Michele Loreti, and Rosario Pugliese. A language-based
approach to autonomic computing. In Bernhard Beckert, Ferruccio Damiani, Frank S. de Boer,
and Marcello M. Bonsangue, editors, FMCO, volume 7542 of Lecture Notes in Computer Science,
pages 25–48. Springer, 2011.

[10] C. Feng. Modelling opportunistic networks with HYPE. MSc dissertation, School of Informatics,
University of Edinburgh, 2012.

[11] V. Galpin, L. Bortolussi, and J. Hillston. Hype: Hybrid modelling by composition of flows.
Formal Aspects of Computing, 25(4):503–541, 2013.

QUANTICOL 30 March 31, 2014

http://eprints.imtlucca.it/2117/

CAS-SCEL Language Design (Revision: 1.0; March 31, 2014) March 31, 2014

[12] Vashti Galpin, Jane Hillston, and Federica Ciocchetta. A semi-quantitative equivalence for ab-
stracting from fast reactions. In Ion Petre and Erik P. de Vink, editors, CompMod, volume 67 of
EPTCS, pages 34–49, 2011.

[13] Richard A. Hayden and Jeremy T. Bradley. A fluid analysis framework for a marko-
vian process algebra. Theor. Comput. Sci., 411(22-24):2260–2297, 2010. bibtex:
PA:BradleyHaiden:2010:FluidFrameworkPEPA.

[14] Holger Hermanns and Joost-Pieter Katoen. The how and why of interactive markov chains. In
Frank S. de Boer, Marcello M. Bonsangue, Stefan Hallerstede, and Michael Leuschel, editors,
FMCO, volume 6286 of Lecture Notes in Computer Science, pages 311–337. Springer, 2009.

[15] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press,
1996. bibtex: PA:Hillston:1996:CompositionalPerformanceModeling.

[16] Jane Hillston. Fluid flow approximation of PEPA models. In Quantitative Evaluation of Systems,
2005. Second International Conference on the, pages 33–42, 2005. 00226.

[17] Diego Latella, Michele Loreti, Mieke Massink, and Valerio Senni. Stochastically timed predicate-
based communication primitives for autonomic computing. In N. Bertrand and L. Bortolussi, ed-
itors, Proceedings of 12th Quantitative Aspects of Programming Languages and Systems (QAPL),
Electronic Proceedings in Theoretical Computer Science, page To appear., 2014.

[18] Diego Latella, Michele Loreti, Mieke Massink, and Valerio Senni. Stochastically timed predicate-
based communication primitives for autonomic computing - full paper. Technical Report TR-
QC-02-2014, QUANTICOL Project, 2014. http://www.quanticol.eu/.

[19] Andrea Omicini and Mirko Viroli. Coordination models and languages: from parallel computing
to self-organisation. Knowledge Eng. Review, 26(1):53–59, 2011.

[20] K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Program., 25(2-3):285–327,
1995.

[21] A. Romanel, L. Dematte, and C. Priami. The beta workbench. Technical Report
TR-03-2007, Center for Computational and Systems Biology, Trento, 2007. bibtex:
SB:Priami:2007:BetaWorkbench.

[22] Mirco Tribastone, Stephen Gilmore, and Jane Hillston. Scalable differential analysis of process
algebra models. Software Engineering, IEEE Transactions on, 38(1):205–219, 2012. 00041.

[23] Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli. Spatial coordination of
pervasive services through chemical-inspired tuple spaces. ACM Transactions on Autonomous
and Adaptive Systems, 6(2):14:1–14:24, June 2011.

QUANTICOL 31 March 31, 2014

http://www.quanticol.eu/

	Introduction
	Patterns and Primitives for CAS
	Three Scenarios
	Design Principles for CAS-SCEL
	A Running Example

	StocS: A stochastic variant of SCEL
	Language Features
	Informal Semantics
	Example
	Discussion

	PALOMA
	Language Features
	Semantics
	Example
	Discussion

	PEPA-S
	Language Features
	Informal Semantics
	Example
	Discussion

	Stochastic HYPE
	Language Features
	Informal Semantics
	Example
	Discussion

	Conclusions and Roadmap

