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Executive summary

Space is important in the QUANTICOL project because the project case studies include
smart transport, and quantitative modelling of transport has inherent spatial aspects. This
deliverable presents a review of the literature about spatial modelling within and beyond
computer science, and a classification of the different approaches reviewed. The objective
of the classification is to make clear what approaches are available and how they differ
from each other. This will be used to guide future work on spatial approaches within the
project. Furthermore, the classification enables the identification of the approaches that
have been used in the initial work on case studies in the realm of smart transport.

This deliverable first identifies the aspects of non-spatial modelling that are important
in the context of the QUANTICOL project. Time can be modelled in a discrete or continu-
ous manner. States can be discrete, representing attributes of an individual. For example,
when considering bike sharing, inUse (busy), onStand (idle) or atWorkshop (under repair)
might be appropriate states for a bike. Alternatively, states can be continuous represent-
ing an attribute (for example, seat height). In the case of discrete states, it is possible
to perform aggregation by considering populations, namely how many individuals are in
each state, and to acquire an understanding of the overall behaviour of the population,
rather than of individuals. Mean-field techniques can be employed to transform a discrete
population approach to one that considers continuous populations that approximate the
discrete approach.

To this context, space is introduced. Space can be discrete and described by a graph
of locations. Depending on the structure of the graph and the parameters associated with
locations and movement between locations, discrete space can be classified as regular or
homogeneous. Space can be seen as continuous: as Euclidean space in one, two or three
dimensions. Space can also be considered abstractly as topological space, whether discrete
or continuous and this approach allows for reasoning about concepts such as adjacency
and neighbourhoods.

This deliverable describes the modelling techniques that are currently available for
the different combinations of time, state, aggregation and space, giving both a tabular
classification as well as high-level and formal descriptions of the techniques. For each rep-
resentation, examples are given of its use in different disciplines, including ecology, biology,
epidemiology and computer science. In particular, the modelling goals are considered for
these techniques, and compared with the goals of the QUANTICOL project. This deliv-
erable also has the aim of identifying disparate uses of terminology in various approaches.

Both current and future case studies relevant to the project are classified in terms
of how they use time, state, aggregation and space and finally conclusions are presented
taking into account the literature reviewed, what has been modelled and what the goals
of the project are for modelling of smart transport.

The preliminary guidelines arising from the review and classification are to focus on
patch models and associated techniques although continuous space models of individuals
may be important in certain cases. Items proposed for further research are understanding
and developing mean-field techniques, spatial and non-spatial moment closure methods
and hybrid spatial approaches. The document closes with a future work plan for Work
Package 2.
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1 Introduction

In the QUANTICOL project, we focus on the quantitative modelling of collective adaptive systems
(CAS), looking particularly at smart transport systems such as bus services and bicycle sharing sys-
tems. An important aspect of both of these systems is location in and movement through space, and
we wish to include this feature in our models to ensure that our modelling techniques allow for a
sufficient level of accuracy to achieve our modelling goals. An appropriate starting point is to under-
stand how space has been modelled both in the discipline of computer science and in other disciplines.
Additionally, modelling of the QUANTICOL case studies is already ongoing using existing modelling
techniques as the project is strongly driven by its domain of application and assessment of the way
space has been modelled in these examples gives further guidance for how to proceed.

This deliverable presents the results of our investigation into the mathematical modelling tech-
niques that have been used to represent space and their match to the objectives of the QUANTICOL
project. Our general approach focusses on the behaviour over time of groups of individual entities, and
understanding from the possible behaviour of these entities what the overall behaviour of populations
is, considering both stochastic interpretations and deterministic approximations of this time-varying
behaviour. To investigate the introduction of space into this approach, we have reviewed the literature
to understand the modelling techniques that consider individuals and their populations in space. To
clarify terminology, the terms modelling technique and modelling approach will be used to describe a
general mathematical method used to construct models, and the term model will be used to describe
a specific representation of a particular system using a modelling technique or approach. In this de-
liverable, we assume that the modelling approaches have associated analysis techniques: either in the
form of simulation or mathematical techniques that lead to an analytic result, but we do not describe
these techniques here.

This deliverable does not consider modelling languages such as process algebras as that is the
focus of Task 2.2, and process algebraic features for modelling space will be considered in the Internal
Report of Task 2.2 (due in month 33, December 2015). The deliverable also does not consider spatial
programming languages such as Proto [VBU13] and TOTA [MVZ05]. The features of these languages
will be considered later in this work package. Furthermore, this deliverable does not cover costs of
analysis, transformations, convergence results and abstractions of and between spatial representations
as these will be reported in Deliverable 2.3 (due in month 42, October 2016).

Hence this document reports on what representations are present in the modelling literature,
drawing from a number of disciplines, and developing a classification of the techniques involved.
These techniques will be described abstractly and concretely, through being related both to examples
in the literature, and to the smart transport case studies that are currently being investigated in the
QUANTICOL project. An aim of this document is understanding the goals of the existing techniques
so that they can be compared to the goals of the project and so that preliminary guidelines can be
provided. A secondary aim of the document is to identify disparate uses of terminology for the same
technique across different disciplines (or the use of the same terms for different techniques) to provide
clarification for the spatial modelling aspects of this project. Any review of this type has the potential
to be rather long, and hence a separate technical report has been written [GFH+14] for a discussion
of details that are not directly relevant for this higher-level overview document.

This document is organised as follows. First, a high-level classification of space is presented, and
some example modelling techniques discussed. After that there are three chapters, each relating to
a different approach to space modelling. In each of these chapters, the techniques are described,
examples are given of existing use and there is a discussion of how these approaches can be applied to
our smart transport case studies, based on the work already done with respect to these case studies and
looking forward to future work. Finally the document presents conclusions, preliminary guidelines,
the relationship of this deliverable to other parts of the project and a work plan.

In terms of authorship, Vashti Galpin has written the bulk of the document with others contributing
short pieces of text and descriptions of their modelling of various case studies.
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2 A classification of space and movement modelling techniques

This section provides a framework in which to understand the various choices that can be made in
terms of spatial modelling techniques. There exists a rich literature about these techniques and it is
necessary to understand this before making decisions relating to the spatial aspects of the languages
and their semantics in the QUANTICOL project.

We are interested in modelling the collective behaviour of many individuals using a stochastic
approach (based on Markov chains that are discrete time or continuous time1 and we use mean-field
techniques2 to obtain a fluid or deterministic approximation of their behaviour [Kur81]. We start
from information about how each individual changes state over time, and we are interested in how
this affects the overall behaviour of the system over time, either obtaining an exact stochastic analysis
of the system, or a deterministic approximation of its behaviour.

Our specific modelling goals are determined by the case studies in the QUANTICOL project which
are smart transport and smart grids. Choice of modelling technique should be informed by the sort
of questions for which answers are required. The requirements section in Deliverable 5.1 [TCG+14]
considers some of these questions and others will be revealed as the project continues and properties
for verification by spatial model-checking are considered. Furthermore, when existing models of case
studies are discussed in Sections 3.8, 4.4 and 5.2, the goal of each model is identified. We return to
consideration of this issue in the final section of this document.

2.1 Notation

To set the scene, some notation will be useful. For illustrative purposes in this document, we consider
two populations PA and PB. At each point in time, each individual in PA is in exactly one of the states
A1, . . . , An and each individual in PB is in exactly one of the states B1, . . . , Bm. We can consider the
populations in terms of individuals (we may need a naming convention to be able to refer to each
individual) or in aggregation by counting the number of individuals in each state. This is called
a state-based aggregation and it provides a view of the number of individuals in a population in a
particular state, for each population and each state allowed for that population. Thus, let NAi(t)
refer to the number of individuals in population PA that are in state Ai at time t and let NBj (t) refer
to the number of individuals in population PB that are in state Bj at time t. These will be called
subpopulations. The total number of individuals in the two populations at time t can be expressed as
NA(t) =

∑n
i=1NAi(t) and NB(t) =

∑m
j=1NBj (t) respectively. Clearly, these counts are in N (which

includes zero). Furthermore, if no births or deaths are assumed, and an individual must be in one of
the available states3, then NA(t1) = NA(t2) for all times t1 and t2 and the size of PA is a constant
NA; similarly the size of PB is NB.

To complete the notation required for populations, we use XAi(t) ∈ R≥0 to represent a non-
negative real-valued description of the population PA which in certain approaches is an approximation
to NAi(t) and similarly for XBi(t) ∈ R≥0 for PB.

2.2 Non-spatial modelling dimensions

Before space is considered, there are already a number of choices that lead to different approaches to
modelling dynamic systems in a quantified manner. We now consider the dimensions and the choices
on each dimension as informed by the prior research of members of the project into dynamic modelling
of systems [BHLM13]. For example, the time dimension considers how time is treated in different types
of Markov chains. There are other aspects of time such as non-determinism and causality, but these
are not a strong focus of our general modelling approach, and so are not included in the classification.

1See the Appendix of this document for a brief introduction to these concepts and population Markov chains.
2See the tutorial [BHLM13] and the references therein for more details of the mean-field approach.
3In some models, births and deaths can be included for a fixed size population by introducing a “dead” state. However,

this requires that there is a finite maximum population size.

QUANTICOL 4 Mar 31, 2014



An investigation of capturing spatial information (Revision: 1.0; Mar 31, 2014) Mar 31, 2014

Time discrete
Aggr none state
State discrete continuous discrete continuous

DTMC LMP population difference equations,
(discrete-time (labelled Markov DTMC ordinary differential
Markov chain) process) equations (ODEs)
[Nor98] [Pan09] [BHLM13] [BHLM13, MNS11]

Time continuous
Aggr none state
State discrete continuous discrete continuous

CTMC CTMP population population
(continuous-time (continuous-time CTMC ODEs
Markov chain) Markov process)
[Nor98] [DP03] [BHLM13, Kur81] [BHLM13, Kur81]

Figure 1: Classification of mathematical models in terms of time, aggregation and state

Time: Time is usually non-negative, strictly increasing and infinite, and can either be a non-negative
real or integer. In some models, a finite end-point may be used to delimit the period of interest.

discrete: In the context of this research, discrete time is used in those modelling approaches
where choices are probabilistic. At each clock tick (which could be associated with an
integer if useful for the specific model), each individual chooses probabilistically its next
state. For example, discrete time Markov chains (DTMCs) use this approach [KS76, Nor98].

continuous: Here, time is continuous and this is captured by the fact that actions such as
changing state have a duration associated with them. In the case of continuous time
Markov chains (CTMCs), stochasticity is introduced by having random durations that are
drawn from exponential distributions [Nor98].

State: States can be viewed as capturing a quality or attribute of an individual. As described above,
an individual is assumed to be in a single state at each point in time4.

discrete: Usually when the states associated with an individual are discrete, there are a finite
number of them. However, in the case of an attribute like year-of-birth, there may be a
countably infinite number of values.

continuous: A continuous-valued state can be interpreted as measurement of some quantity
associated with the individual. An example of this would be temperature or height.

Aggregation: As discussed previously, individuals can be considered separately, or the focus can be
on the number of individuals in each state. This is more relevant to discrete state approaches
than continuous state. In the continuous case, aggregation can be described by a function, or
discretisation can be applied to obtain frequency data.

4An individual could have more than one attribute, and then the individual’s state is multidimensional with a value
for each attribute. In this case, the individual’s state can be seen as a tuple of values.
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none: Behaviour of each individual is considered separately.

state-based : The behaviour of groups of individuals is considered by counting the number of
individuals in each state over time (giving a non-negative integer value), or by having
a non-negative real-valued approximation to this number. This approach appears under
a number of different names in the literature including population-based, state frequency
data, numerical vector form, and counting abstraction. The term occupancy measure is
used when counts are normalised by the population size.

These possibilities can be expressed in a table, which can then be populated with mathematical mod-
elling techniques from the literature. Figure 1 illustrates this and describes the modelling techniques
that fit each combination of each element of each dimension.

2.3 Time-based non-spatial modelling techniques

An important aspect of our prior research is the application of the mean-field technique where the
analysis of a population CTMC or DTMC can be approximated by an analysis using ordinary differ-
ential equations (ODEs) [Kur81, BHLM13]. As the number of states of a Markov chain increases (the
“state-space explosion” problem), the analysis of the Markov chain becomes intractable. Modelling a
large number of individuals can lead to a very large Markov chain. This can be mitigated by using a
population Markov chain where behaviour is considered at a population level rather than at an individ-
ual level. The choice of a population Markov chain means we are interested in how many individuals
are in each state i, given by NAi , and the states in the Markov chain have the form (NA1 , . . . , NAn).
However, for large systems this may still not be sufficient to obtain reasonable analysis times, and an
approximation using ODEs obtained from the population Markov chain can be used. This gives a sys-
tem of ODEs for the variables (XA1 , . . . , XAn). This population Markov chain considers non-negative
integer-valued population counts whereas the ODEs take a fluid approach and population quantities
are non-negative real values. Considering the modelling techniques in Figure 1 for both discrete time
and continuous time, the Markov chain obtained by considering many individuals (in the first column)
can be transformed to a smaller Markov chain (in the third column) which can then be approximated
by ODEs (in the fourth column).

This last transformation uses the mean-field approximation technique which comes originally from
physics, where it refers to the approach where the movement of an individual particle is considered
in the field generated by other particles rather than trying to solve the more complex problem of
many particles interacting [CL07, MP12]. In modelling of systems, it has come to mean an approach
where it is assumed that the number of individuals in a stochastic system becomes very large so that
the population-level behaviour of the system can be expressed as ODEs which provide an “average”
behaviour of the system. Results such as those proved by Kurtz [Kur81] demonstrate that under certain
conditions, convergence occurs, namely as the number of individuals tends to infinity, the difference
between the stochastic trajectories of the subpopulation sizes and the deterministic trajectories of
the subpopulation sizes tends to zero. Practically, in many cases, good approximations using the
ODE approach over the stochastic approach can be achieved at relatively low numbers of individuals
[TGH12] and there are error bounds on the approximations [DN08].

Markov processes (in the second column) do not fit into this work flow and seem different from
the other modelling techniques, as they are characterised by a continuous state space (which can also
be interpreted as any continuous aspect of a model, including space).

2.4 Introducing space

Space can be considered in different ways.

continuous: Here, space is represented by real values in the case of one-dimensional space, pairs of
real values in the two-dimensional case and triples of real values in the three-dimensional case.
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It is always (uncountably) infinite but may be bounded in extent. Continuous space used in this
way can be seen as an exact representation of actual physical space.

discrete: Approaches that use discrete space assume a number (usually finite) of distinct locations
where connectivity between locations is described by an adjacency relation. At each location,
there can be multiple individuals, although in some cases, such as cellular automata [Ila01], this
may be restricted to a single individual. A location may be an abstraction or aggregation of
actual space.

topological: This approach to space considers the relationships between points in space and contains
no notion of time. It can be applied to both discrete and continuous space. Topological spaces
consider space in an abstract manner using open sets from which concepts of continuity, adja-
cency and neighbourhoods are defined. Metric spaces have a notion of distance which is used to
define these concepts.

As before, we introduce notation for the remainder of this document. For the purposes of this
section, we only consider 2-dimensional space when we consider continuous space, either R × R or a
bounded contiguous subset of R×R. Since this provides a uncountably infinite set of points, the most
straightforward way to refer to each point is by its coordinates (x, y).

In the case of discrete space, we assume a finite (or at most countably infinite) set of points L with
some naming convention. There can be a relationship between points in 2-dimensional continuous
space and locations in discrete space. If there is a partition of continuous space into regions then each
location can represent a region in continuous space.

Discrete space also requires notions of adjacency and neighbourhood. In the general case, the set
of locations L can be taken as the vertices of a graph, and the connections between locations (the
adjacency relation) can be defined as edges in that graph. Then the edges of the graph EL are drawn
from the subsets of size two of the location set P2(L), so EL ⊆ P2(L). Each edge has the form {l1, l2},
and edges of the form {l, l} are permitted. For reasons we describe in Section 3, we have chosen to
use an undirected graph which is to be understood as allowing movement or interaction in at least
one direction between the two locations.

By adding restrictions to the general case, subclasses of discrete space can be obtained. For
example, regular discrete space modelling techniques assume that there is a regularity in defining the
neighbours of a location but not necessarily in parameters [DL94b, OS71]. In contrast, homogeneous
space techniques take a different approach and assume full connectivity between all regions (giving a
complete graph) and equality of parameters between locations and at locations [Che81]. Both of these
issues will be discussed in more detail and formality in the section on discrete space (Section 3).

We now address an issue of terminology. The term map will be used to represent a two-dimensional
continuous representation of space that is to scale, meaning that the ratio between distances is pre-
served. On the other hand, the terms location graph or simply graph will be used to denote a repre-
sentation that is not to scale but indicates the connections between locations. In between these two,
is the category of topological map which is

“a type of diagram that has been simplified so that only vital information remains and
unnecessary detail has been removed. These maps lack scale, and distance and direction
are subject to change and variation, but the relationship between points is maintained. A
good example is the tube map of the London Underground.” [Wik13b]

The distinction between a topological map and a graph is that although both represent relationships
between points, the topological map is a continuous deformation of the original map, and it also
is a two-dimensional representation of a graph. A graph is more abstract and has no specific two-
dimensional representation. Note that planarity (the lack of overlapping edges when embedded in the
plane) is not required for topological maps or graphs. Any topological map can be abstracted to a
graph of locations, hence defining discrete space.
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Time continuous
Aggr none state and/or space
State discrete continuous discrete continuous

Space
discrete

general multiple individuals TDSHA, patch CTMC patch ODEs
CTMC PDMP [CLBR09] [CLBR09]

[BP10, Dav93]
regular interacting particle foraging model foraging model

system (IPS) [MSH05] [MSH05]
[DL94b]

homo- bike sharing bike sharing
geneous [FG12] [FG12]

continuous molecular dynamics CTMP spatio-temporal partial differential
[CPB08] [DP03] point processes equations (PDES)
agents [SBG02] [HLBV94]

Figure 2: Classification of mathematical models in terms of time, aggregation, state and space

A table has been constructed to identify mathematical models for the different combinations of
time, aggregation, state and space (see Figure 2). Here, we have chosen to focus on continuous time
models; however there are discrete time models of various approaches, for example, some variants of
interacting particle systems (IPSs) use probabilities [DL94b].

All the models appearing in the table consider changing behaviour over time. Characteristics of
space may or may not change as time passes5. In the case where there are no changes, space can be
considered independently of time and represented as a topological space. When there are changes in
the characteristics of space over time, the characteristics of space at a specific point in time can be
considered topologically.

The next section considers each entry of the table in Figure 2 and illustrates the ideas using a
consistent diagrammatic framework.

2.5 Spatial modelling techniques

The techniques described in this section are mainly continuous time, although some have discrete time
analogues, as mentioned above.

Discrete space, no aggregation, discrete state: The techniques in this category consider space
to consist of a (finite) number of locations that have connections between them. The most straight-
forward way is to consider these models as graphs with the locations as nodes and the links as edges.
This type of model is illustrated in Figure 3(1). Here, and throughout this subsection, we assume
individuals from the two populations already defined. The first, PA consists of red and white tokens,
and has states A1 and A2, using our previously introduced notation. The second, PB consists of blue
and white tokens with states B1, B2 and B3. The current state of an individual is indicated on the

5An example of this would be off-peak road closures for the painting of road markings.
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(1)

A1

A1

B1

B3

A1

B2

B3B3
B3

A2

(2)

(3)

A1

A1
B1

B3

A1

B2

B3

B3

B3

A2

A1
B1

B3

A1

B2

B3

B3

A2

(4)

Figure 3: Discrete space: (1) no aggregation, discrete state; (2) no aggregation, continuous state; (3)
aggregation of state, possible aggregation of space, discrete state (4) aggregation of state, possible
aggregation of space, continuous state

top of the token. Note that the four diagrams in Figure 3 represent four single points in time and do
not show change over time (and similarly for subsequent diagrams). For two-dimensional and three-
dimensional space, the best visualisation method for change over time is video. For one-dimensional
space, a graph with two axes can be used.

Regular space models in this category have a regular pattern of locations [DL94a, DL94b]. For
example, the locations could be laid out in the rectangular grid, or a hexagonal tiling. The locations
that represent space can be placed at the nodes of the regular graphs or in the spaces (faces) created
by the regular graph as shown in Figure 4(1). Some models only allow one individual in each location,
such as interacting particle systems (IPSs) [DL94b] and cellular automata (CA) [Ila01], but others
may allow multiple individuals. There is no aggregation of individuals. In Section 3, regular space
will be formally defined.

Discrete space, no aggregation, continuous state: These techniques differ from those above
in the fact that the state is continuous. This is indicated by a solid token where the height indicates
the value of a single continuous state. This is an inherently continuous value rather than the notion
of approximation by continuous values described earlier in this section. This could be viewed as
a measurement such as strength of radio signal or length of battery life. In Figure 3(2), there is
an assumption of at most one individual per node, and two values associated with that individual.
Different colours have been used in the diagram to make it clear that the values are continuous.

The major difference between this category and the previous one when regular space is considered is
the fact that instead of having discrete states, there is one or more non-negative real values associated
with each individual as shown in Figure 4(1).

Discrete space, aggregation, discrete state: These techniques differ from those in the first
category above in the fact that there is aggregation [MP12]. This means that instead of each individual
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Figure 4: Regular discrete space: (1) no aggregation, discrete state; (2) no aggregation, continuous
state; (3) aggregation of state, possible aggregation of space, discrete state (4) aggregation of state,
possible aggregation of space, continuous state

being treated separately, individuals in the same state are considered as populations. This is illustrated
in Figure 3(3) by the fact that individual tokens are grouped into stacks at nodes in the network.
Figure 4(3) shows the regular space case where populations are aggregated at each location [EE04].

Discrete space, aggregation, continuous state: Here each region or point is associated with ap-
proximations to the discrete population approach mentioned in the previous item [MP12], as shown in
Figure 3(4). At each node, for each state in each population, there is a real number that approximates
the number of individuals in that state. This is illustrated in the graph by a column with a real-valued
height for each state in each population. Note that in Figure 3(4), the lowest node has a non-zero value
for blue tokens in state B3 although there were none in the CTMC model in Figure 3(3), illustrating
that approximation can occur. The case of regular space [LD96] is illustrated in Figure 4(4).

Continuous space, no aggregation, discrete state: These are approaches where each individ-
ual’s location and state are modelled separately from those of other individuals. An example of this
type of model is where the movement and interaction of each molecule is modelled individually in
molecular dynamics [BU10]. Agent-based models take a similar approach. Figure 5(1) illustrates this.
The continuous space is indicated by a bounded area and each individual is shown at its own location.
These models are typically computationally expensive to simulate.

Continuous space, no aggregation, continuous state: In contrast with the previous category,
the state is now continuous rather than discrete [DP03]. Since there is no aggregation, this approach
models individuals rather than populations. The continuous space is indicated by a bounded area and
each individual in shown at its own location. The continuous state is indicated by the varying heights
of the tokens, and in Figure 5(2), it is assumed that there is only one (non-spatial) measurement per
individual, although two different qualities may be measured.

QUANTICOL 10 Mar 31, 2014



An investigation of capturing spatial information (Revision: 1.0; Mar 31, 2014) Mar 31, 2014

(1)

A1

A2

A1

B2

B1

B3
B3

A1

(2)

(3)

A1

A2

A2

B1

B2

A1

B2

A2

B2 B3

A1

(4)

Figure 5: Continuous space: (1) no aggregation, discrete state; (2) no aggregation, continuous state;
(3) aggregation, discrete state; (4) aggregation, continuous state.

Continuous space, aggregation, discrete state: In these techniques, each point in space can be
filled by one or more individuals [SBG02]. Hence for each point in space, it is possible to aggregate
the number of individuals in each state. Figure 5(c) show a fairly sparse number of individuals but
much denser arrangements are also possible.

Continuous space, aggregation, continuous state: At each point in space, there is a real value
describing an approximation to the number of individuals at that point [OL01, CPB08]. In the case
of two-dimensional space, the population of each state can be represented in three-dimensions by
surfaces. Figure 5(d) illustrates a surface describing the number of individuals at each point for state
A1. In contrast to Figure 5(c), this figure illustrates a very dense situation.

As is the case with techniques that do not include space, presented in Figure 1, the techniques
using continuous state without aggregation (the second column of models in Figure 2) seem distinctly
different to the other approaches. The techniques that can be applied to models without space
described early in this document (approximation by ODEs of a population DTMC or CTMC) can be
applied to discrete space since the Markov chain involved is a population Markopv chain that takes
location into account. Furthermore, taking the hydrodynamic limit of IPS models provides PDEs
[DMP91]. This subsection has not considered movement which will be examined now.

2.6 Movement

In all of the models described in the previous section, there may be interaction between individuals
(even if this interaction is expressed at the population level). Opportunity for interaction is often
related to colocation or proximity (which requires some notion of neighbourhood or distance). Many
models capture movement of individuals explicitly and then use colocation or proximity to determine
the possibility of interaction, although there are some models that only use proximity without move-
ment such as IPSs and CA. In these two modelling techniques, space is regular and discrete and at
most one individual is present at each location.

Because of the importance of movement in the modelling of smart transport, we must consider
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the choices that can be made, and they are now discussed for the two different types of time-based
spatial modelling techniques, described in Section 2.4. However, in the case of continuous space, this
discussion is split into modelling techniques where there is aggregation and those where there is none.

2.6.1 Discrete space

Assuming an undirected graph of locations, the presence of an edge between two locations describes the
fact that movement or interaction along that edge is possible in at least one direction. The absence
of an edge can be interpreted as meaning that movement and interaction can never take place, in
either direction. As we will see in Section 3, parameters associated with an edge express (possibly in
a time-varying manner) the propensity for movement or interaction in either direction. If it is zero
at a particular time for a particular direction, it means that no active interaction or movement can
take place at that time point. Hence, the graph of locations provides a skeleton for describing what
movement or interaction is possible.

The adjacencies created in a location graph of regular space can capture where movement or
interaction may occur (possibly with some weighting to capture likelihood) or what the neighbourhood
of a location is.

2.6.2 Continuous space, no aggregation

In the case of continuous space where individuals are not aggregated, there are many different models
of movement through two-dimensional space, such as models of animal movement and models for ad
hoc and opportunistic networks [CBD02]. These are often random and capture the probability of
movement in a particular direction at a certain speed. An additional concern is to determine what
happens at the boundary of the space. This concern can be avoided by assuming the space is the
surface of a torus and hence has no boundaries – this is more common than assuming the surface of a
sphere. There are also models to describe the movement of a related group of individuals through the
space [CBD02]. Connectivity models on the other hand, describe interaction (for example, contact
duration and time between contacts) rather than location [KP07, CFB09, CMRM07]. Interaction can
be interpreted as dynamic graphs with the individuals as the nodes. Connectivity models are more
abstract than movement models.

2.6.3 Continuous space, aggregation

Here, movement is expressed through the form of the PDE. Diffusion-reaction PDEs are used since
they can express movement as diffusion and interaction as reactions [CPB08, HLBV94, OS71, Tur53].
The diffusion terms can capture drift which is caused by obstacles or external stimuli such as wind,
the likelihood of continuing in the same direction, the effect of the density of other individuals, and the
impact of environmental characteristics. The reaction term describes interactions between individuals.

2.7 Conclusion

Figure 2 provides a classification of different spatial models taking into account aspects of time,
aggregation and state. Movement models can be associated with particular aspects of space. This
section has outlined some basic ideas, and the next three sections consider three different approaches to
space. Two are time-based, namely discrete space and continuous space, and one is static, topological
space. Each section will provide further details about the different approaches to modelling space,
including a discussion of existing models and the areas in which they have been applied, and how
these models are related to the smart transport case studies considered in the project.
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3 Discrete space modelling techniques

We will focus here on the continuous time models, with pointers to the discrete time models where
appropriate. As mentioned in the previous section, we assume a set of locations L and an undirected
graph over locations (L, EL) with EL ⊆ P2(L). Each edge has the form {l1, l2}, and loops such as
{l, l} are allowed.

Locations in discrete space models can have two main sources, either they are essentially locations
on a map, such as bike stations or bus stops, or alternatively each location represents a region on a
two-dimensional map, and space is aggregated. The edges of the graph can be determined by various
factors. Adjacency of regions is an obvious choice, but there may be other context-specific elements
such as presence of connections between regions such as railway lines or similar.

If each location is used to represent a distinct region of continuous 2-dimensional space, a function
f : R × R → L can be defined with the requirement that f−1(l1) ∩ f−1(l2) = ∅ for locations l1 6= l2,
namely that regions are disjoint. Depending on the context, the union of f−1(l) for all l may be the
whole continuous space under consideration so f defines a partition of the space, or this union may
be a subset of the continuous space, only representing regions of interest. In some cases, where not all
of continuous space is of interest, a single location can be used to represent the uninteresting regions,
thus ensuring a partition.

A modelling technique with discrete space will have parameters that depend on locations, or links
between locations. We can consider two groups of parameters; those that are associated with locations,
namely with vertices of the graph and those that are associated with interaction or movement, namely
the edges of the graph, and we define two functions to describe these parameter sets as follows

• λ(l) for l ∈ L, and

• η(l1, l2) and η(l2, l1) for {l1, l2} ∈ EL.

The range of these functions will remain abstract for the purposes of this discussion. Note that
although the edges of the graph are not directed, the function η is sensitive to direction. We have
chosen to use undirected graphs to give a basic skeleton to possible movement and interaction between
locations, and to use the parameters to capture the directionality of that movement or interaction.
Movement is obviously directional. Interaction can be undirected when considering an abstract view
of effect or communication. Alternatively, it can be directed if one party is the sender and the other
the recipient. This could be synchronous when the sending and receipt happen simultaneously, or
asynchronous when the receipt happens later. Our choice of an undirected graph allows these details
to be expressed in parameters. This separation of concerns is also useful when different subpopulations
have different forms of interaction. In the rest of this document, the term transfer will be used to
refer to both movement and interaction.

A topic whose exploration is beyond the scope of the current document but should be mentioned
is that of how to divide a map in regions. A simple approach is to base it on a tiling of the plane using
triangles, quadrilaterals or hexagons. More complex approaches involve taking local information into
account and creating irregular patches. This is a topic for further research within QUANTICOL.

The discrete space approach as described above is very general as it allows arbitrary graphs over
locations, as well as heterogeneity for parameters. In the literature there are modelling techniques
that are defined for specific graph subclasses and we now identify two important spatial subclasses:
spatially homogeneous and regular.

3.1 Spatial homogeneity

To be able to discuss formally aspects of discrete space, we develop the following definitions, leading
to a definition of spatial homogeneity (a term which is used in the literature but not formally defined),
by considering the location-related parameters. A spatial model is
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• location homogeneous if λ(li) = λ(lj) for all locations li, lj ∈ L.

• transfer homogeneous if η(li, lj) = η(lj , li) = η(li′ , lj′) = η(lj′ , li′) for all edges {li, lj}, {li′ , lj′} ∈
EL.

• (spatially) parameter homogeneous if it is both location and transfer homogeneous.

• spatially homogeneous6 if it is parameter homogeneous, and its location graph is complete7.
Regular connections between locations which do not give total connectivity are discussed in the
next section on regular space.

Models with spatial homogeneity have a symmetry that can allow for analyses that are not possible
for more complex models. Examples are the bike sharing system considered in [FG12] where the metrics
of interest are the number of empty and full bike stations.

Spatial inhomogeneity can be introduced in two ways: the first involves connectivity where equal
accessibility is no longer assumed, and the second where all locations are still accessible from all
other locations, but parameters vary between locations. These are not necessarily distinct concepts.
Consider the case where there is a parameter ρi,j ∈ η(li, lj) which describes the rate of movement from
location i to location j. If ρi,j is the same for all i and j and no other parameters vary by location
then the model is spatially homogeneous. However, if ρi,j can vary and possibly be zero then not only
does a specific parameter vary by location but additionally, equal accessibility no longer holds (either
because on average it takes longer depending on the rate, or if the rate is zero there is no accessibility).
However, if ρi,j is constant for all i and j but other parameters vary by locations, then the model is
spatially inhomogeneous.

3.2 Spatial regularity

The category of regular discrete space covers those spatially inhomogeneous models where the organ-
isation of space is regular (rather than an arbitrary graph where each vertex may have an arbitrary
number of edges) but parameters can vary for each location in space.

In contrast to spatial homogeneity, regularity of space is more difficult to define formally when
starting from a graph, although it is very straightforward to identify visually [OS71]. There are three
possible approaches to describing regularity in two dimensions and these are discussed in more detail
in the associated technical report [GFH+14].

1. A lattice, grid or mesh graph is defined as “a graph whose drawing, embedded in some Euclidean
space Rn, forms a regular tiling” [Wik13a]. Since we focus on two-dimensional space, we only
consider planar graphs, and we obtain those graphs obtained from regular tilings by equilateral
triangles, squares and regular hexagons.

2. Another approach to specifying graphs of regular space is to specify how many edges each face8

of the graph has and what the degree of the vertices are. For example, a regular location graph
with triangular faces is a planar graph in which each face has three edges and each vertex has
degree six.

3. Finally, a graph with regular structure can be constructed by identifying points in Z × Z or
R× R, and adding links between these points.

There are other divisions of two-dimensional space that can be viewed as regular such as that provided
by a dartboard but we will not attempt that level of generality for discrete space beyond saying that

6This is a different notion to the graph theoretic definition of homogeneous graph which is a condition on isomorphic
subgraphs [Gar76] and to homogeneous Markov graphs which are a specific class of random graphs [FS86].

7A complete undirected graph has an edge {l, l′} between each pair of vertices l and l′.
8In a planar graph, a face is a region bounded by edges.
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regular space should have the property that at each location (except possibly at boundary locations)
there is a uniform way to determine the neighbours. However, we exclude from this definition n-hop
neighbours in an arbitrary graph (see definition of n-hop in the next subsection).

One-dimensional regular space can be represented simply as a undirected path. We do not tackle
the definition of three-dimensional regular space.

Note that the complete graph requirement for spatial homogeneity means that a location graph
cannot be both regular and homogeneous9. However, a spatially regular location graph can be param-
eter homogeneous. We will use the term irregular space whenever the usage of space is not regular or
homogeneous. To distinguish irregularity from regularity, we can consider the pattern of connectivity
between neighbours and this is discussed in the next subsection.

3.3 Neighbours and neighbourhoods

In an undirected graph of locations representing discrete space, the links between locations are used
to define neighbours. Given a location l, its immediate neighbours are those vertices l′ such that {l, l′}
is an edge in the graph. Its n-hop neighbours are those that can be reached through a path in the
location graph of at most n steps (but excluding the location l itself). In the case of a regular grid
graph, the immediate neighbours (west, north, east and south) are referred to as the Von Neumann
neighbourhood. The larger neighbourhood that includes the northwest, northeast, southeast and
southwest points as well as the immediate neighbourhood is known as the Moore neighbourhood.
Both types of neighbourhoods can be extended to n-hop neighbours and also applied to hexagonal
and triangular regular location graphs.

This is a purely spatial approach to defining neighbourhoods. However, in some cases, it can be the
entity or process itself that defines its neighbourhood depending on its capability. Other approaches
use a (perception) function that determines the neighbours of an individual by specifying the other
individuals with which it can interact.

To distinguish irregular location graphs from regular location graphs, one can say that if it is
possible to define the 1-hop neighbours of a location in a regular fashion except at boundaries, then
this will be considered a regular discrete space model even if the parameters can vary by location. To
make this meaningful, it is necessary to exclude the “regular” notion of 1-hop neighbours in a general
graph structure from this definition of regularity. An example of this is given in the approach taken
to modelling fluid limits for stochastic mobile networks [TT13]).

3.4 Boundary conditions

An issue for discrete space (and continuous space) is determining what happens at the boundaries
of the space. One approach is to ensure there are none by working with infinite structures such as
infinite graphs, or alternatively boundaryless structures such as tori. A rectangular region can be
transformed into a torus by joining the top and bottom edges (to form a cyclinder) and then joining
the left and right ends (by curving the tube). Other approaches work with boundaries and either
choose to keep individuals inside the region (by reflection or other techniques) or to treat boundary
locations as sources and/or sinks.

Furthermore, when solving ODEs, there may be boundary conditions that constrain the ODEs by
specifying the values that must occur in boundary regions [AMR95]. The conditions could constrain
the value of the solution (Dirichlet, first-type) or the value of the derivative (Neumann, second-type).
Cauchy boundary conditions provide a curve or surface that constrains both solution and derivative.

9The complete graph with three vertices is regular and can be spatially homogeneous. However, since we are consid-
ering tilings/graphs with multiple faces, this graph is not included in our definitions.
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3.5 Discrete space without state-based aggregation

We now consider the different modelling techniques that have been applied to discrete space starting
with those that do not involve aggregation. When there is no aggregation and state is discrete, the
technique models individuals and can be seen as an agent-based system where space is discrete. Hence
each individual has some state and is located at exactly one location. Multiple individuals can be
located at a single location. The movement of individuals between locations can be determined by a
rate in the case of continuous time. To describe these in their most general form, we assume that each
individual I (where I is a unique name for the individual) has associated time-based information:

• loc(I, t) ∈ L which is its location at time t

• state(I, t) = Ai which is its state at time t

Moreover, there are rules that describe how an individual can change location or change state. Since
this is a continuous time model, these rules may specify rate constants (each rate defining an ex-
ponential distribution) to describe how long it takes for the changes to occur, or the rates may be
functional rates (but still defining an exponential distribution) that take into account the presence of
others at that location, the characteristics of the location or even the current time (thus introducing
time inhomogeneity). The behaviour of the agents in this modelling technique is thus described as
they individually change state and/or location. Assuming a fixed population size, we can model this
system as a CTMC, where each state in the CTMC is a tuple consisting of information about each
individual in the system. If we assume N individuals then a state has the following form(

(loc(I1, t), state(I1, t)), . . . , (loc(IN , t), state(IN , t))
)

There are (L×n)N states in this Markov chain if there are L locations and n states and if it is possible
for all individuals to be in all possible combinations of location and state.

Simulation suits this type of model, and techniques for simulating systems where behaviour is based
on functional exponential rates are well understood [Gil97]. Typically in the case of general discrete
space, movement is assumed to be single-hop so that movement is only possible to an immediate
neighbour. In regular space, movement is often possible to an n-hop neighbourhood, and in spatially
homogeneous models, movement is possible to any other location as a result of the completeness of
the location graph.

Next, considering discrete space modelling techniques without aggregation where the state is con-
tinuous, instead of having a rule describing what the next state is, there needs to be a rule describing
how this continuous value changes over time. A good candidate for this type of rule is an ODE.
These techniques are hybrid in that they exhibit both continuous and stochastic behaviour. Addi-
tionally, they may also have instantaneous behaviour. Transition-driven stochastic hybrid automata
(TDSHAs) [BP10] and piecewise deterministic Markov chains (PDMPs) [Dav93] are suitable modelling
techniques.

3.6 Discrete space with state-based aggregation

In the two approaches that are described next, aggregation of state occurs. It is assumed that we have
many individuals to whom the same set of rules apply with the same parameters, and we choose to
view them as a population, PA and to reason about them as a population. To extend the notation
introduced earlier, assume we have a fixed number of locations, l1, . . . , lL. We can now consider the

counts of subpopulations at each location. So for PA, we have a value N
(k)
Ai

which is the number of
individuals at location k in state i. Additionally

NAi =

L∑
k=1

N
(k)
Ai

and N
(k)
A =

n∑
i=1

N
(k)
Ai

and NA =

n∑
i=1

NAi =

L∑
k=1

N
(k)
A
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We can create a continuous time Markov chain smaller than that of the previous section consisting of
at most (NA + 1)L×n states where each state has the form(

N
(1)
A1
, . . . , N

(1)
An
, . . . , N

(k)
A1
, . . . , N

(k)
An
, . . . , N

(L)
A1
, . . . , N

(L)
An

)
.

This provides a discrete aggregated representation of space where for each location, we know how many
individuals are in each state without knowing exactly which individual at that location is in which
state. As in the case without space, this is a population CTMC. This model is amenable to state-based
analysis techniques (assuming a small enough state space) and stochastic simulation. There appears
to be no real difference in the size of the Markov chain when using regular space in this technique. In
the case of spatial homogeneity, the fact that parameters are identical may make the model amenable
to an analytic approach, rather than requiring simulation [FG12].

In the continuous state variant of this technique, the notation X
(k)
Ai

is used for the real value
that describes the quantity of individuals in state i at location k. Since this can be a non-integer

value, it is an approximation to the actual count N
(k)
Ai

. Since the subpopulation sizes are treated as
continuous values, a standard modelling technique is to express the change in this quantity in terms of
a population ODE which tracks the changes in subpopulation size over time. There are L×n variables
in total; one for each combination of state and location. This ODE often has the following form

dX
(k)
Ai

dt
= fi,k

(
X

(k)
A1
, . . . , X

(k)
An

)
+

L∑
j=1,j 6=k

(
gi,k,j

(
X

(k)
A1
, . . . , X

(k)
An
, X

(j)
A1
, . . . , X

(j)
An

)
− hi,k,j

(
X

(k)
A1
, . . . , X

(k)
An
, X

(j)
A1
, . . . , X

(j)
An

))
where fi,k captures the local behaviour which only depends on the subpopulation sizes locally, gi,k,j
describes the inflow of population from location j to location k, hi,k,j describes the outflow of popula-
tion from location k to location j, and these flows depend only on the subpopulation sizes in location
k and location j. This is a time-homogeneous ODE since change over time is only dependent on
subpopulation sizes (that are dependent on time) rather on time directly.

For both the general and regular space cases and assuming only movement/interaction between
1-hop neighbours, then a term X

(j)
Ai

should only appear in the right hand side of the ODE if {lk, lj} is
an edge in the location graph. A spatially homogeneous model would require terms from all locations.

The modelling techniques in the categories of discrete state (with or without aggregation) and
continuous state with aggregation (these are the categories in the first, third and fourth columns
for general discrete space in Figure 2) are very similar to those in the same categories (and the
same columns) in Figure 1. The discrete state approaches without aggregation (first column) are
characterised by CTMCs, discrete state approaches with aggregation (third column) by population
CTMCs which abstract from individuals, and continuous state approaches (fourth column) by ODEs.
This similarity is not surprising, as in the general case of discrete space, location is essentially another
attribute and hence the same techniques apply. Similarly to before, the technique for continuous
state modelling without aggregation (second column) is out of step with the other techniques since it
requires a hybrid approach when discrete space is introduced.

Introducing locations while keeping the population size fixed can result in a decrease in accuracy
of the approximations as now the number of variables (and ODEs) has increased by a factor of L and
hence each ODE refers to a smaller number of individuals thus leading to population fragmentation
and less justification for applying mean-field techniques at a location.

3.7 Examples of existing use

This section reviews the literature of modelling with discrete space techniques, considering different
approaches in different disciplines. It is selective and illustrative rather than exhaustive.
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Before going further, we diverge into a discussion of terminology as it is not consistent between
different disciplines or even within disciplines. Morozov and Poggiale [MP12] identify five different
uses of the term “mean-field” in ecology. Four of these usages explicitly include the use of space and
hence differ from the meaning used in this document (as presented in Section 2.3) which does not
include any spatial aspects. Another confusing term is “patch models”. Durrett and Levin [DL94a]
describe a patch model (Chesson [Che81]) as one in which all locations are connected to each other.
In later papers, the terminology refers to discrete space models with arbitrary graphs, and this is
the sense in which we will use “patch”. Hence, both the discrete and continuous population models
defined over general discrete space in this section are patch models.

3.7.1 Ecology

Space plays an crucial role in ecological models but the modelling goals are often qualitative (such as
persistence, coexistence, stationarity, oscillatory behaviour, chaos or multistability [MP12]) or quan-
titative at the global level (proportion of sites occupied, for example). Hence, there is a focus on
global behaviour. Berec [Ber02] classifies spatial models according to their time, space and population
dimensions. This last dimension differs from our classification, as it only considers aggregation.

discrete population, continuous time: In interacting particle systems, behaviour is determined
by a set of rules. These systems use a regular discrete space approach often with parameter
homogeneity and an assumption of at most a single individual at each location [DL94b].

continuous population, continuous time: Reaction-dispersal networks describe change over time
by a system of ODEs over species in locations. These are also called metapopulation models
[Lev69] and patch models [Lev74, Tak96] and they are the same as patch ODE models in our
terminology. The ODEs used in these models often focus on the probability of each patch being in
one of a number of states (such as uninhabitable, habitable but unoccupied, occupied) [XFAS06]
so as to determine the proportion of occupied patches and to identify equilibria. Colonisation
rates can reflect distance between patches, so these models are not often transfer homogeneous.
In hierarchical patch models, different spatial and time scales are taken into account [WL95].

discrete population, discrete time: These are regular discrete space individual-based models where
the behaviour of an individual is given by a list of rules which are applied at each time tick.
Probabilistic cellular automata fall into this class as do interacting particle systems which use
probabilities rather than rates [DL94b].

continuous population, discrete time: Coupled-map lattices are a type of discrete time equation
where coupling terms capture the effect of neighbours. They can be defined by difference equa-
tions [HCM91, Kan98]. They use regular space and continuous subpopulation sizes.

We now consider some relevant references in detail. Durrett and Levin [DL94a] compare a non-
spatial mean-field model, a PDE model that uses continuous space, a spatially homogeneous model by
Chesson [Che81] and a grid based IPS model. The authors identify different scenarios in which there
are different outcomes from the models due to stochastic or spatial features. This illustrates that the
choice of model is important and can affect the global results.

Morozov and Poggiale [MP12] start with a discrete space, discrete aggregation model (such as a
patch CTMC) and consider the various ways to obtain mean-field models. The first four are essentially
moment closure models that provide mean-field models of global subpopulation sizes by introducing
spatial terms into the ODEs, namely spatial moment closure [MSH05], pairwise approximation ap-
proach [WKB07], modified mean-field technique [PRL11] and scale transition theory [Che12]. The
fifth technique considers the structure of the model and differences in dispersal rates [APS12].

As can be seen, there are multiple approaches to mean-field models for patch-based models in
ecology. Most consider global outcomes and qualitative assessment with few focussing on local details.
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3.7.2 Biology

Bittig and Urmacher [BU10] identify five distinct methods for spatial modelling in cell biology that
offer different granularities in their approximation of physical reality. Two of these are continuous
space approaches and will be discussed in the next section.

compartments: In this model, space is divided into compartments which may be contained in other
compartments, giving nesting of space, although adjacency is also used. Compartments represent
the physical reality of cells. Within compartments, a non-spatial approach is used and transfer
rates are defined between compartments. This technique is an irregular discrete space patch-
based population CTMC approach or ODE approach, A spatial moment approximation using
the log-normal distributions has been applied in this context [MMRL02].

discrete space, lattice: The size of the lattice is chosen to reflect molecule distance and size, and at
most one molecule can occupy a lattice block, requiring a way in which to deal with collisions.
This is similar to cellular automata [Ila01] and the cellular Potts model [GG92, CHK+05] based
on the Ising model [Bru67] where a potential energy function is used to determine updates.

discrete space, subvolumes: Here each block in the lattice can contain multiple molecules. If
individual molecules are modelled then this is a regular discrete space approach without state-
based aggregation. If aggregation is used, then it is a regular patch-based population model.
Subvolume approaches use the Reaction Diffusion Master Equation (RDME) [GMWM76, Isa08].

Pattern formation and stability is also important in biology. Turing’s paper gave an initial insight
into this process [Tur53] and later work has considered this further [OS71] both in terms of regular
discrete space models that describe cells in a matrix and partial differential equations.

3.7.3 Epidemiology

Riley [Ril07] identifies four distinct approaches to disease spread modelling. In patch-based trans-
mission, individuals within a patch have the same risk of infection determined by the current infection
rate over all patches, together with distance-based likelihood of infection from other patches [vdD08].
Distance transmission models have pairwise transmission and the risk is determined by distance
between pairs. Multigroup transmission considers households and other groups with group mem-
bership ensuring a higher risk of infection whereas network transmission models consider individ-
uals and their interactions. Many of these techniques assume that individuals do not move between
patches, and that the disease spreads within patches and between patches.

Patch-based or metapopulation models10 are used extensively in modelling of epidemics both
generally [AP02, AvdD03, vdD08, ADH+05, Mol77] and for various specific diseases such as rabies
[Mur03, Chapter 13] and measles [BG95, Gre92]. These models often focus on the basic reproduction
number, R0, which describes the average number of infecteds each infected generates.

Regular discrete space has been used to study the effect of vaccination of disease spread [RA97]
and the investigation of pairwise approximation techniques [LD96]. Cholera models can include water-
borne transmission as well as human contact [BCG+09, GMB+12, MBR+12].

Arrigoni and Pugliese [AP02] investigate patch models when both the number of patches and the
number of individuals increase, providing PDEs, where the nth PDE describes the change in the
number of patches with n infecteds. Hence, a discrete space model can be made more fluid without
moving to continuous space.

10The basic epidemiological model is called the compartment model [Bra08] which consists of a single population where
each individual has a state (susceptible, infected, recovered, immune, for example). It has no spatial aspects. This should
not be confused with compartment models in biology which are patch-based models.
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3.7.4 Other

Chaintreau et al [CLBR09] develop a mean-field model of movement and data ageing using real data
collected from cabs in the San Francisco Bay area. The model is expressed as a PDE (due to two
variables, time and age of data), but the spatial aspect is treated discretely. This research provides
some ideas for parameterisation when detailed GPS data is available.

Propagation of forest fires is investigated in the context of Multi-class Multi-type Markovian Agent
Model (M2MAM) [CGB+10]. The approach models individual agents in discrete space which may be
regular and from this, a patch ODE model is derived.

Other domains in which irregular discrete space models have been developed by QUANTICOL
project members include emergency egress, swarm robotics, delay tolerant networking and crowd
movement. The modelling of emergency egress from a multi-story building included human factors
characteristics of average speed of walking, size of doors and corridors and is irregular discrete space
[MLB+12]. The robotics case study consists of a swarm of robots that have to collectively identify a
shortest path [MBL+13]. ZebraNet is an delay-tolerant network for data collection. From a model of
individual zebra movement in continuous space, a general discrete space model is developed based on
ODEs [Fen14]. Investigation of emergence (in the mathematical sense) of spontaneous drinking parties
in Spanish cities [RG03] shows that the introduction of small variations that break symmetry, both in
space and in the degree of connectivity between locations, can lead to new behaviour [BLM13].

3.8 Application to smart transport case studies

In the QUANTICOL project, discrete space has been considered when modelling various case studies.
Each case study will be given a short name (based on the process algebra or formalism in which
they were developed or the site name where they were developed). These names will then be used in
classifying the case studies spatially in the final section of this document (see Table 6 on page 28). All
the models are continuous time models except for one.

3.8.1 Bus models

PEPA bus: This is an irregular discrete space model where buses can be treated individually
or aggregated. The state of a bus is its current location. A bus route consists of a number
of contiguous locations, each representing a portion of the city. To travel a route, a bus must
interact with an agent representing each location. The number of agents for a location limit how
many buses can be in it, and if no agent is available for a location, any bus wishing to traverse
it must wait. Parameters are associated with the location agents and the model is location
inhomogeneous. The goal of the model is to assess the impact of contention for physical space
on the quality of service.

HYPE bus: This is a model of individual buses travelling through different regions of a city where
the time that a bus spends in a region is determined by the length of the route as well as
modifiers that speed up or slow down the bus. It is a irregular discrete space model that
is location inhomogeneous. Buses are not allowed to proceed to the next region if they are
ahead of schedule. The model is extended to determine how many buses should be scheduled
in a period to ensure a regular bus service under different modifiers such as those representing
peak traffic where speeds are slower and night traffic when speeds are faster.

CTMC route: This is a regular discrete one-dimensional space model of individual bus movement
along a route. Each stage on the route has different parameters and hence the model is transfer
inhomogeneous. A goal of the model is to assess how changes in speed by the driver impact
quality of service. The model raises issues of time-inhomogeneity because the parameters
could vary with time of day. An extension of this model may include height above sea level to
enable modelling of hybrid buses (those that use both hydrocarbon fuels and electricity) and
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each stop could have an associated elevation that would determine parameters. This model
is concerned with the regularity of a frequent bus service and hence spatial aspects can be
abstracted. When modelling a less frequent bus service, a more fine-grained idea of space may
be necessary and this is discussed in the section on continuous space.

3.8.2 Bike sharing models

Bike sharing has been a popular case study for the application of our existing and new formalisms,
and hence there are multiple examples in this category. The models differ in their focus.

StocS bike [BFN+14]: This is an irregular discrete space model where neighbourhoods can
be based on a distance or user-preference function as well as adjacency. Bikes are aggregated
(discretely) and users are treated individually with two states: on foot or using a bike. Locations
are collections of bike stations (giving aggregation of space) and for each location there is a count
of the number of available bikes and available slots for returns. Parameters associated with the
edges of the location graph can differ as they reflect distance, giving transfer inhomogeneity
and are used to determine which stations individuals will use. The goal of the model is to see the
effect of a local rebalancing mechanism on global performance of service delivery. This model
has been expressed in different process algebra approaches, specifically PEPA-S, PALOMA and
stochastic HYPE, and are described in Deliverable 4.1 [BFN+14].

PALOMA bike: There are two PALOMA models of bike sharing that have been developed. One
is mentioned above and the second is now described. A set of locations is specified as in the
Multi-class Multi-type Markovian Agent Model (M2MAM) [CGB+10]. A perception function is
used that does not give a regular pattern of neighbours, therefore it is an irregular discrete
space model. Each bike station is a distinct location and bikes are aggregated by location (with
a distinct abstract location representing that a bike is in use and not at a particular station).
The level of occupancy of the vehicle responsible for redistributing bikes is also a variable in the
model. The goal of the model is to understand user dissatisfaction (when they are unable to
take a bike or return a bike) across different redistribution policies. The model is amenable to
both a discrete aggregated state and a continuous aggregated state interpretation.

PEPA-S bike: This model is similar to the PALOMA one, since it is based on a spatial extension
of PEPA integrating ideas from Markovian Agents (M2MAM) [CGB+10]. It uses a perception
function to encode a probability routing matrix, so it uses irregular discrete space. Each
location corresponds to a bike station. There are two classes of agents: bike racks (with states
full and empty) and users (with states pedestrian and biker). Users in both states move between
locations as determined by the perception function. A truck can be modelled to capture redis-
tribution of bikes. Dependency of the perception function on populations in each location can
be exploited to define redistribution policies. The goal is to minimise user dissatisfaction.

HYPE1 bike: This is an irregular discrete space model based on a complete graph. Bikes are
treated individually, and can either be at a specific station or in transit between two specific
stations. The model has transfer inhomogeneity because the rate between stations reflects the
distance between them. Additionally the rate for taking bikes from a station is specific to that
station, hence it also has location inhomogeneity. The model also considers redistribution
of bikes by a vehicle. The goal of the model is to consider how many stations are full or empty
and how rebalancing can help reduce these numbers.

Bio-PEPA bike: In this model, regular space based on a grid is used, and an additional abstract
location for when a bike is in use is required, meaning that this is an irregular discrete space
model. The focus is user preferences for stations and how long adjustment of this preference
takes when a preferred station cannot supply a bike, and is influenced by the foraging model
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of [MSH05]. Users are aggregated, and each location in the grid represents a number of bike
stations with similar characteristics. Parameter homogeneity is not required hence the model
may have transfer inhomogeneity and location inhomogeneity.

StoKlaim bike: This model has a grid representation of space but also an abstract location to rep-
resent when bikes are in use (the same as in the Bio-PEPA model above), hence it is not regular
space. It is parameter inhomogeneous because movement is determined by a non-uniform
probability distribution. It models bikes and users individually, and includes redistribution. The
goal of this model is to investigate the effect of unbalanced redistribution of bikes.

CTMC bike: This model takes a queueing theory approach and models stations as servers. Bikes are
aggregated at and between pairs of stations. All bike stations are connected giving a complete
graph of locations. Only some stations are treated explicitly, and the transfer and location
parameters for these are inhomogeneous. There are exogenous arrivals at each station which
represent the effect of the other stations. The structure of the model has been determined
in part by the real data that is available. Due to the parameter inhomogeneity, it is an
irregular discrete space model. The goal here is to build a realistic model using the data
that is available for a specific bike sharing scheme.

EPFL1 bike [FG12]: Bike sharing has been modelled with homogeneous discrete space in a
continuous time setting. The goal is to understand the proportion of problematic stations (full
or empty) for a fixed total number of bikes and the number of slots at each station. The
model has parameter homogeneity and this regularity of parameters enables the model to be
interpreted as a M/M/1/K queue where K is the station capacity and using a parametric curve
it is possible to determine the optimal fleet size. The model is further extended to a grid where
a local search may be necessary to find a station with a slot for a return, or there is a choice of
two neighbours for return. In this case, analytical solutions are not possible. Redistribution of
bikes is also investigated.

EPFL2 bike [FGM12]: A different approach is taken to spatial inhomogeneity in [FGM12] where
there are clusters of locations with the same parameters and mean-field limits are obtained for
two models. One model only allows arrival at non-empty stations and returns at non-full stations.

DTMC bike [LLM13]: This model is a discrete time, homogeneous discrete space revisitation
of the system presented in [FG12]. The model is a DTMC population model consisting of bike
stations which have slots for bikes, and this number is fixed across all stations. In every time
step, each station has the same probability that a user retrieves a bike. The probability that
a bike is returned to a station depends on the number of bikes that are in circulation (i.e. not
parked). As in [FG12], one goal is to study problematic stations (full or empty) and the analysis
has been performed using the FlyFast on-the-fly fast mean-field model checker [MBC+14]; both
global aspects of the system as well as properties of an individual station have been analyzed.
Results are compatible with those in [FG12].

4 Continuous space modelling techniques

Continuous space is more straightforward to define than discrete space. We focus on two-dimensional
space; however, both one- and three-dimensional space may be useful for modelling transport. Con-
tinuous space can either be the Euclidean plane extending infinitely in all directions or it can be a
bounded connected (contiguous) subset of this plane. Points in the plane can be referred to by their
coordinates (x, y) ∈ R× R. As with discrete space, we can consider two cases.
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4.1 Continuous space without state-based aggregation

In these models, we consider identifiable individuals. If I is an individual, then it has associated
information, similar to the discrete state case.

• loc(I, t) ∈ R× R which is its location at time t

• state(I, t) = Ai which is its state at time t

There are rules which describe how the individual changes state that may take into account the
individual’s current location, and rules that describe an individual’s movement through space which
may take into account the individual’s state. In the networking literature, there are a number of
movement models and these will be discussed later in this section. As with discrete space, the rates
for state change can be functional and exponential. Unlike with discrete space, it is not useful to
construct a Markov chain whose states are obtained from the locations and states of each individual.

In the case that the state is continuous, then

• state(I, t) = Y which is a continuous variable representing its state at time t.

As with the discrete space case, some way is required that describes the change of state over time,
and an ODE can be used for this. Some models require both discrete and continuous non-aggregated
states and this requires a hybrid solution.

A different approach to modelling continuous state with continuous time is that of continuous
time Markov processes (CTMP) [DP03]. A CTMP is a tuple (S,Σ, R, L) where (S,Σ) forms a specific
type of topological manifold and R : S × Σ → R≥0 is a rate function which is measurable in its first
coordinate and a measure on its second coordinate. L is a state labelling function. Applying this in
the context of space, the manifold is (R × R,Σ) where Σ consists of the open sets of R × R, hence
defining a σ-algebra. A notion of path through this space can be defined describing the behaviour of an
individual. Furthermore, if there are additional continuous quantities associated with the individual
then additional dimensions of R can be used.

4.2 Continuous space with state-based aggregation

When individuals are aggregated, there is no need to keep track of them individually and densities
become more important. In spatio-temporal point processes11, each point in space (x, y) has an
associated integral count for a state in a population at a specific point in time t. We can denote this
as NAi((x, y), t) and its behaviour is described by a function λ((x, y), t). In general, λ can depend on
all preceding events, but in the case of a Poisson process, it only depends on (x, y) and t [SBG02].

For continuous aggregation of populations, we consider the classical model of continuous space,
partial differential equations. For populations described by XAi((x, y), t), the general form is

Fi
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x, y, t,XA1 , . . . , XAn ,
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,
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,
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∂xy
,
∂2XAi

∂y2
)

= 0

if we assume that we are interested in second order partial derivatives over space only for the population
XAi((x, y), t). Note that writing the PDE in this form simply allows it to be described as a function
over all the derivatives of interest rather than as a single partial derivative being equal to a function of
other derivatives. There are various techniques for solving PDES, many of which involve discretising
the area into a mesh [SSML03].

4.3 Examples of existing use

PDEs of reaction-diffusion type are very well understood in many disciplines, such as ecology [OL01],
biology [Mur02], and chemistry [Van07]. We focus on a few articles to illustrate the techniques used.

11In contrast to spatio-temporal point processes, spatial point processes describe distributions in space, and do not
include a notion of change over time [BBS07] and hence are unsuitable for our purposes.
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4.3.1 Ecology

Spatio-temporal point processes have been used to model plant growth and dispersal [BP97, BP99].
The local density of a point is defined in terms of a competition kernel. Integro-differential moment
equations using moment closure describe behaviour over time and involve average density, competition
kernel and spatial autocovariance that measures association between two points.

Holmes et al [HLBV94] review the use of PDEs in ecological applications. In the least spatially
heterogeneous case, the PDE expressing interaction and Brownian random motion where movement
rate is independent of time and space, is defined as follows

∂XAi((x, y), t)

∂t
= D

(
∂2XAi

∂x2
+
∂2XAi

∂y2

)
+ fi(XA1 , . . . , XAn) = D4XAi + fi(XA1 , . . . , XAn)

where D is the diffusion constant and4f is the Laplacian of a function f . The functions fi capture the
interaction of the various populations at a specific point and time. A more general reaction-diffusion
PDE has the form

∂XAi

∂t
=

∂

∂x

(
D(XAi , (x, y))

∂XAi

∂x

)
+

∂

∂y

(
D(XAi , (x, y))

∂XAi

∂y

)
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In this equation, the function D only depends on XAi and (x, y) but a function that also depends on
XA1 , . . . , XAn could be used, thus including effects from other subpopulations.

4.3.2 Biology

Bittig and Uhrmacher [BU10] describe two continuous space approaches for cellular modelling.

particle space: In the case of molecular dynamics each particle is modelled individually and move-
ment is done by rules, leading to some form of random walk. These models can be made more
efficient by assuming that each particle is only affected by nearby events, so that the effect of
other events can be excluded from consideration.

gradients/PDEs: These have been discussed above. Often in biomolecular modelling, only simple
diffusion is required. The link between these models and those based on discrete regular space
is an area of ongoing research.

Fange et al [FBSE10] describe techniques for spatially heterogeneous kinetics as microscopic when each
individual particle is considered in terms of its position (continuous space), as mesoscopic when the
Reaction Diffusion Master Equation (RDME) is used (discrete space) and as macroscopic when using
PDEs (continuous space). The relationship between the RDME and PDEs can be established by means
of a moment closure procedure, rather than a more rigorous limiting procedure in the sense of Kurtz
[Kur81]. PDEs can also be obtained by taking the hydrodynamic limit of IPSs [DMP91]. Chemical
reactions have also been modelled as PDEs in a series of papers [AT80, Kot86, Blo91, Blo93, Blo96].
In these models, local reactions model only birth and death, and there are no interactions between
different types of agents. Random walks on regular space models involving individuals have been
surveyed in [CPB08] and [OH02]. Starting from continuous space or regular discrete space, movement
is described by PDEs in the limit. Restrictions on the walk give rise to different behaviours.

4.3.3 Epidemiology

Kendall [Ken65] proposed the first spatial epidemic model based on the Kermack-McKendrick non-
spatial compartment model. A general discussion of PDEs in epidemiological modelling can be found
in [Wu08] and specific examples in [LZ09, MZ08, MM91]. An aspect of interest in spatial disease
modelling is generation of waves or fronts as disease moves through the population which is distributed
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in space. Murray describes a two-dimensional continuous space model that takes into account local
fox densities and carrying capacities of an outbreak of rabies in the south of England and extends it to
consider both natural immunity of foxes to rabies and size of breaks to curb the spread of the disease
[Mur03]. A slightly different approach is taken in [BCG+09] where PDEs have diffusion terms that
take into account the concentration of the cholera in the water.

4.3.4 Networking

There is a substantial amount of work on mobility models, both at the analytical level and ex-
perimentally through traces [CBD02]. Owing to its analytical tractability, the random walk (RW)
model has been extensively studied in networking research. Unbiased RWs are proposed in [AHL96]
and [ALLC00] to study movements across cellular networks, and to study routing protocols [IM06,
GV06] and performance characteristics in ad hoc networks [GMPS04]. Direction based on an individ-
ual’s state is a feature of a discrete time Markovian model developed for the comparison of update
strategies in cellular networks [BNKS94]. RW is also used in [DT05] as the basic mobility model
to obtain a deterministic reaction-diffusion type equation for information propagation in ad hoc net-
works, without considering it as a limit of a stochastic model. In [GL07], the PDEs interpreted as the
deterministic limit of node concentrations, by appealing to the strong law of large numbers.

4.4 Application to smart transport case studies

To date the examples considered within the QUANTICOL project, as described in the previous sec-
tions, have focussed on discrete space except for the stochastic HYPE model of bike sharing (HYPE2
bike) that uses continuous space, and a possible continuous space extension to the StocS bike sharing
model (StocS bike extension). In the stochastic HYPE model of bike sharing (which is presented in
Deliverable 4.1 [BFN+14]), space is a bounded continuous region. Users have an initial (x, y) location
and choose a random location to move to. If the distance to the location is sufficiently large, they will
decide to go by bike rather than walk. In each case, their speed and time taken is determined by the
actual distance between points and their method of travel.

We can also consider the data we are working with. The location-at-time data we have obtained
from Lothian buses is spatially continuous, in that the data gathered from each bus at regular intervals
can be translated to 2-dimensional map coordinates (and then projected onto a 1-dimensional repre-
sentation of route). Since this is not aggregated data, but data for individual buses, an appropriate
spatial approach would be an agent-based system which simulates the movement of each bus.

The data is discrete time as it is not reported continuously and there are different approaches
to developing a continuous time, discrete space model. In the first, the 2-dimensional data can be
projected onto a 1-dimensional route map, stops are identified and then fine division of the distance
between stops is used to determine from the non-stop data how much time is spent in each division,
and then a realistic model of bus movement can be derived [YGW+13]. This is a very fine-grained
approach. In the second approach, which is coarser, the area of interest is divided into patches, and
the GPS data is analysed to determine rates of movements from one patch to another. This can
be done in a regular way, whether the area of interest is divided up into same sized patches, giving
a regular discrete space model, or alternatively using geographical information, such as locations of
traffic lights or bus stops to give a irregular discrete space model. See Deliverable 5.1 [TCG+14] for
further details.

5 Topological space models

Topological, distance, and closure spaces are suitable as the foundations of a simple, general mathemat-
ical theory for representing and reasoning about various kinds of spatial models, Space is represented
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as a set of points equipped with some additional structure. Functions that operate on space, or spa-
tially distributed entities (for example, the dynamics of a system) are constrained to preserve the
structure. For a technical introduction to the subject, the report [CLM14] is available; furthermore,
a brief account of spatial logics, can be found in Deliverable D3.1 [MBC+14].

Topological spaces. Topological spaces are best suited to represent continuous space. A topological
space is a set X equipped with a set of subsets of X, called open sets, which are closed under union
and finite intersection. Open sets play the role of constraints to functions, ensuring that continuity
is well-defined. For example, a function representing movement of entities in continuous space must
be “smooth” with respect to the open sets, ensuring that no discontinuous “jump” is possible. An
example is the Euclidean plane R2 where the open sets are generated by union and finite intersection
of open balls, namely “circles without borders”.

Closure spaces. Closure spaces are better suited than topological spaces to model discrete spatial
structures. A closure space is a set X equipped with a closure operator subject to some axioms. The
idea of a closure operator is to add to a set the “least possible enlargement” of it. Closure operators
have been studied and applied in the context of computer graphics and image processing. A closure
operator can be derived from the open sets of a topological space, making topological spaces a subclass
of closure spaces. Closure spaces are also induced by regular grids, and more generally, by graphs.

Metric and distance spaces. Metric spaces have a binary, symmetric distance operator obeying
the triangular inequality. Distance spaces relax any or all of these constraints. Distance spaces and
their variants can be used to describe physical distances and they can be generalised so that costs can
be associated with pairs of points in the space. This aspect is orthogonal to the fact that a model
may use continuous or discrete space. A classical example of a metric space is the Euclidean plane
equipped with the Euclidean distance. When dealing with distances, one may sometimes resort to
pseudo-metrics where two different points may have null distance.

The abstract spaces that we introduced have in common a remarkable definitional simplicity. Never-
theless, the basic axioms result in a rich theory, finding applications in several, apparently unrelated
domains.

5.1 Examples of existing use

Topological and metric spaces are widely known and used throughout mathematics, physics, engi-
neering, and computer science. As is typical with abstractions, it is not obvious to point at specific
applications, since the abstractions are mostly used to ease the development of general mathematical
theories which are then instantiated to concrete examples. Relating to the QUANTICOL project,
topology and distance are used to provide models of spatial logics. Spatial logics are used to describe
properties of space [APHvB07] and selected topics have been summarised in the technical report
[CLM14], and in Deliverable D3.1 [MBC+14]. The advantage of using abstract spaces as models of
a logic is the ability to give a uniform definition of logical operators, that encompasses a wide range
of cases; for example, one may define a logic that describes equally well objects moving in planes,
three-dimensional spaces, space-time, discrete regular grids and arbitrary graphs. Moreover, one is
able to separate concerns with respect to the features of a logical language. In particular, the notion
of distance is orthogonal to that of continuous movement and therefore, one may adopt models that
can be viewed both as metric and as topological spaces. By adhering to the existing mathematical
tradition, we expect to be able to reuse such knowledge, in order to provide a general verification
framework for the QUANTICOL case studies, without reinventing theory.
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5.2 Application to smart transport case studies

In the smart transport case studies it is fundamental to take into account a map providing information
on how movement of entities in space is constrained. A map may be described topologically and
metrically. Topologically, the various interesting regions of a map (streets, parking lots, rivers, etc.)
may be described as predicates over the points of a topological space (or a closure space, in the discrete
case). Principles of continuity of change (that exist even in the discrete case) permit one to derive
interesting conclusions about given configurations of a model, for example, reachability of a parking
lot from relevant points of interest. Typically, we expect that models in the smart transport case
studies are discrete. In some cases, when considering the graph obtained from a map or topological
map of bus and bike stations of a town, space is discrete. In some other cases, discreteness merely
comes as an approximation of continuity. As a simple example, consider smart-lock applications in
bike sharing. By using a digitally enhanced lock, customers may leave a bike at arbitrary (continuous)
coordinates on the map.

Furthermore, continuity may allow reasoning about spatial abstraction in the sense that a complex
map may be continuously transformed to a less complex one that still provides important information
about the ability to find a path from one point to another. This may allow for the construction of a
topological map from a map, as described in Section 2.

Distances may be added on top of this basic framework, with different meanings. One may consider
just physical distance between points. More generally, a distance may represent a cost. For example,
in the bike sharing scenario, it is relevant to know whether a point of interest is on top of a hill;
the cost of moving a bike may be different for different stations, even though the physical distance
is the same. In a bus network, urban and extra-urban rides may have different costs. Another
example of a distance is the time needed to move between points, which may be only loosely related to
physical distance (consider for example, road traffic and peak hours). Costs may be combined when
considering integrated bus and bike sharing scenarios, giving rise to complex use cases that require
some abstraction to be treated satisfactorily. We expect that abstract modelling of space will allow
us to extrapolate the interesting common features among the variety of cases that we depicted, and
to be able to derive a reasoning and automated verification framework that is suitable to derive useful
predictions in the smart transport case studies.

6 Conclusion

6.1 The classification revisited

We can now apply the classification to the QUANTICOL case studies and this is shown in Figure 6.
As can be seen, there is a fair distribution across the table. As mentioned previously, the techniques
that fall into column two differ from the usual approaches that have been taken in prior research by
the members of this project, as it involves considering individuals and continuous quantities. We now
consider what could fill the empty positions in the table.

Discrete homogeneous space, no aggregation: An extension of the CTMC route model could
see quantities such as power consumption associated with individual buses which would fit into
this category. If individual buses also have a discrete state (for example, whether they are on
time or not), then this could result in a continuous time, homogeneous space model without
state aggregation where there are both discrete state and continuous state variables. This would
be a hybrid model.

Discrete space, continuous state, no aggregation: Similarly to the case above, one could extend
any of the models under discrete state to include some continuous value, and this extension would
be a hybrid model.
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Time continuous or discrete
Aggr none state and/or space
State discrete continuous discrete continuous

Space
discrete

general PEPA bus PEPA bus
HYPE bus PALOMA bike

HYPE1 bike EPFL2 bike
StoKlaim bike StocS bike

PEPA-S bike
Bio-PEPA bike

CTMC bike

regular CTMC route EPFL1 bike

homo- EPFL1 bike
geneous DTMC bike

continuous HYPE2 bike
StocS bike
extension

Figure 6: Classification of QUANTICOL case studies in terms of time, aggregation, state and space

Continuous space, no aggregation: Only one slot is filled; however, as the project progresses, we
may find that there are some models without aggregation for which continuous space is important
for reasons of accuracy.

Continuous space, continuous-state aggregation: It is unclear whether PDEs will play a role
in this project, as it seems unlikely that the kind of diffusion and dispersal represented by this
technique has a role in modelling smart transport, unless we model passenger movement both
on and off buses.

Looking at Figure 6, the focus has been on individual models with discrete space (with continuous or
discrete time), and population models with discrete space, both discrete and continuous populations.
This suggests that these techniques are the appropriate techniques for modelling smart transport, and
that we should not be trying to construct models in other categories just because space modelling
techniques exist for these categories. However, our choice of modelling techniques must also be deter-
mined by our modelling goals and the questions we wish to answer through modelling. At this stage
of the project, we have a partial list of these goals or these questions. Hence, choice of modelling
technique (within reasonable bounds) may evolve as the project proceeds.

6.2 Conclusions

The following points summarise the main conclusions about the mathematical techniques for spatial
modelling that have been obtained from the literature and relating to the QUANTICOL case studies.

• The techniques in the literature seem to use well-understood theory of difference and differential
equations, in particular, those differential equations that are easy to solve numerically. For the
smart transport case studies in QUANTICOL, we may need to use more complex ODEs.
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• There are various techniques in ecological and epidemiological modelling for constructing mean-
field patch models and these may be appropriate or it may be possible to modify these approaches
to model smart transport. A general issue with patch models is that the number of individuals
per state per patch may become too low to obtain reasonable approximations.

• Meanfield techniques in ecological and epidemiological modelling focus on global behaviour rather
than local behaviour. This may be appropriate for some QUANTICOL models such as global
proportion of empty and full bike stations but less appropriate if there is a need to understand
what is happening more locally, or to understand causality within the system.

• Techniques in ecological and epidemiological modelling for obtaining mean-field models often
use particular features of the modelling scenario to construct useful approximations and aggre-
gations, and it is unclear at this stage whether the QUANTICOL case studies have these type
of properties, or whether new approaches will need be developed. A particular example of this
is differing rates between and within patches.

• The methods for state aggregation in continuous space do not appear to match with the objec-
tives of the QUANTICOL project. PDEs capture continuous aggregation in continuous space,
and it is not clear whether this type of smooth approach can be applied to smart transport case
studies. Spatio-temporal point processes are analysed in terms of ODEs for average density and
average covariance which are both global measures and hence may not be appropriate for our
case studies.

• Most techniques in the literature are time homogeneous, in the sense that subpopulation sizes
at later time points depend on subpopulation sizes at earlier time points but they do not depend
on time itself.

• Time inhomogeneity of space (space varying over time) does not appear to feature in the mathe-
matical space modelling literature. In bus modelling, it seems likely that we will want to describe
space as having different qualities depending on the time of day. There are techniques that allow
one to avoid the construction of such models. This issue has also been identified as a challenge
for bike modelling in Deliverable 5.1 [TCG+14].

• Whether working stochastically or deterministically, there appears to be very little literature
that allows one to reason generally about the time and space dependencies of a model. This has
implications for numerical solution of these ODEs and it may be important to understand our
models and modelling techniques in terms of this dependence.

• The literature on spatial modelling does not consider hybrid modelling where both discrete and
continuous approaches are used. Hybrid approaches may be appropriate when subpopulation
sizes are not sufficient for a mean-field approach. Hybrid treatment of space could be important
to understand local details and hybrid treatment of populations could be important to ensure
that relevant stochasticity is not lost.

To conclude, discrete space modelling techniques have been used for the majority of QUANTICOL
smart transport case studies to date and spatial heterogeneity is a core feature of these case studies.
For bus modelling, individual models may be most important, and here some continuous space models
may be necessary for accuracy of representation. For bike sharing models, patch-based discrete and
continuous populations seem most relevant.

Preliminary guidelines: We suggest that patch models seem most suitable for QUANTICOL al-
though there may be a role for individual-based continuous space models, as well as transformation
from continuous space models to discrete space models. Hence we propose further investigation of
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mean-field models to understand which techniques are useful and also to possibly develop new ap-
proaches, consideration of spatial moment closure techniques for both global and local measures, and
exploration of hybrid approaches for space modelling.

Relationships with other deliverables and work packages:

WP1 Emergent Behaviour and Adaptivity: The work in Work Package 1 on multiscale modelling
[BGH+14] may be relevant for spatial modelling as we may wish to model at different spatial
scales and the work on temporal scales may also be applicable. This may be particularly impor-
tant when rates within patches operate on a different timescale to those between patches. Task
1.3 looks at language and analysis techniques and space has a role to play in this task as well.
Furthermore, mean-field techniques are important when working with patch models.

WP3 Logic and Scalable Verification: Work Package 3 includes spatial logics for model checking tech-
niques that will exploit mean-field approximation, and hence Deliverable 2.1 is relevant because
it contributes to finding suitable spatial representations.

WP4 Language and Design Methodology: Deliverable 2.1 may indirectly influence Work Package 4
as it will be used to determine process algebraic features that will be described in the internal
report of Task 2.2 that will then become part of the CAS-SCEL language.

WP5 Model Validation and Tool Support: Deliverable 2.1 influences WP5 as it provides guidelines
for spatial modelling, and it is also influenced by the requirements identified for the case studies
in the project [TCG+14].

Work plan for the second reporting period: The DOW describes three tasks in Work Package 2.

T2.1 Scalable representations of space (started, ends month 42)

T2.2 Stochastic process algebras for spatial aspects (starts month 25, ends month 48)

T2.3 Parameter and model fitting from spatial data (starts month 19, ends month 36)

The second phase of Task 2.1 will now begin and this involves preparing the internal report titled
“A unified view of spatial representation and analysis techniques”. In this phase, the ways in which
the different spatial modelling techniques can be analysed will be investigated further, providing an
understanding of the costs of various methods, and allowing for appropriate choices for modelling the
QUANTICOL case studies. Additionally the items proposed above will be investigated.

Task 2.3 starts in October 2014 and will consider parameterisation of space for spatial models.
Deliverable 2.1 and its associated technical report will provide a starting point for this research, as a
number of papers referenced consider parameterisation. Deliverable 2.2 will document this task and
is due in month 36 (end of March 2016) at the end of the task.

Looking further forward, Task 2.2 will start in April 2015, and its internal report is due in month
30 (end of September 2015). This report will be an investigation of space modelling in stochastic
process algebras.
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[BBS07] A. Baddeley, I. Bárány, and R. Schneider. Spatial point processes and their applications. Stochastic
Geometry: Lectures given at the CIME Summer School 2004, page 175, 2007.

[BCG+09] E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe, and A. Rinaldo. On spatially explicit
models of cholera epidemics. Journal of The Royal Society Interface, 7(43):321–333, 2009.

[Ber02] L. Berec. Techniques of spatially explicit individual-based models: construction, simulation, and
mean-field analysis. Ecological Modelling, 150(1):5581, 2002.

[BFN+14] L. Bortolussi, C. Feng, R. De Nicola, J. Hillston, V. Galpin, D. Latella, M. Loreti, M. Massink,
and V. Senni. CAS-SCEL language design. QUANTICOL Deliverable 4.1, March 2014.

[BG95] B. Bolker and B. Grenfell. Space, persistence and dynamics of measles epidemics. Philosophical
Transactions of the Royal Society of London. Series B: Biological Sciences, 348(1325):309–320,
1995.

[BGH+14] L. Bortolussi, N. Gast, J. Hillston, R. Pas̆kauskas, and M. Tribastone. Multiscale modelling
informed by smart grids. QUANTICOL Deliverable 1.1, March 2014.

[BHLM13] L. Bortolussi, J. Hillston, D. Latella, and M. Massink. Continuous approximation of collective
systems behaviour: a tutorial. Performance Evaluation, 70(5):317–349, 2013.

[BKHW05] C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. Comparative branching-time semantics for
markov chains. Information and Computation, 200(2):149–214, 2005.

[BLM13] L. Bortolussi, D. Latella, and M. Massink. Stochastic process algebra and stability analysis of
collective systems. In R. De Nicola and C. Julien, editors, 15th International Conference on
Coordination Models and Languages (COORDINATION 2013), LNCS 7890, pages 1–15. Springer,
2013.

[Blo91] D. Blount. Comparison of stochastic and deterministic models of a linear chemical reaction with
diffusion. The Annals of Probability, 19(4):1440–1462, 1991.

[Blo93] D. Blount. Limit theorems for a sequence of nonlinear reaction-diffusion systems. Stochastic
Processes and their Applications, 45(2):193–207, 1993.

[Blo96] D. Blount. Diffusion limits for a nonlinear density dependent space-time population model. The
Annals of Probability, 24(2):639–659, 1996.

QUANTICOL 31 Mar 31, 2014



An investigation of capturing spatial information (Revision: 1.0; Mar 31, 2014) Mar 31, 2014

[BNKS94] A. Bar-Noy, I. Kessler, and M. Sidi. Mobile users: To update or not to update? In INFOCOM
1994, pages 570–576, 1994.

[BP97] B. Bolker and S.W. Pacala. Using moment equations to understand stochastically driven spatial
pattern formation in ecological systems. Theoretical population biology, 52(3):179–197, 1997.

[BP99] B.M. Bolker and S.W. Pacala. Spatial moment equations for plant competition: Understanding
spatial strategies and the advantages of short dispersal. The American Naturalist, 153(6):575–602,
1999.

[BP10] L. Bortolussi and A. Policriti. Hybrid dynamics of stochastic programs. Theoretical Computer
Science, 411:2052–2077, 2010.

[Bra08] F. Brauer. Compartmental models in epidemiology. In L.J.S. Allen, F. Brauer, P. van den Driessche,
and J. Wu, editors, Mathematical Epidemiology, pages 19–80. Springer, 2008.

[Bru67] S.G. Brush. History of the Lenz-Ising model. Reviews of Modern Physics, 39(4):883, 1967.

[BU10] A.T. Bittig and A.M. Uhrmacher. Spatial modeling in cell biology at multiple levels. In Winter
Simulation Conference (WSC 2010), pages 608–619. IEEE, 2010.

[CBD02] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc network research.
Wireless Communications and Mobile Computing, 2(5):483–502, 2002.

[CFB09] H. Conceicao, M. Ferreira, and J. Barros. A cautionary view of mobility and connectivity modeling
in vehicular ad-hoc networks. In IEEE 69th Vehicular Technology Conference (VTC 2009), pages
1–5. IEEE, 2009.

[CGB+10] D. Cerotti, M. Gribaudo, A. Bobbio, C.T. Calafate, and P. Manzoni. A Markovian agent model
for fire propagation in outdoor environments. In Seventh European Performance Engineering
Workshop (EPEW 2010), LNCS 6342, pages 131–146. Springer, 2010.

[Che81] P.L. Chesson. Models for spatially distributed populations: the effect of within-patch variability.
Theoretical Population Biology, 19(3):288–325, 1981.

[Che12] P. Chesson. Scale transition theory: its aims, motivations and predictions. Ecological Complexity,
10:52–68, 2012.

[CHK+05] R. Chaturvedi, C. Huang, B. Kazmierczak, T. Schneider, J.A. Izaguirre, T. Glimm, H.G.E.
Hentschel, J.A. Glazier, S.A. Newman, and M.S. Alber. On multiscale approaches to three-
dimensional modelling of morphogenesis. Journal of the Royal Society Interface, 2(3):237–253,
2005.

[CL07] P.M. Chaikin and T.C. Lubensky. Principles of Condensed Matter Physics. Cambridge University
Press, 4th edition, 2007.

[CLBR09] A. Chaintreau, J.-Y. Le Boudec, and N. Ristanovic. The age of gossip: spatial mean field regime.
In Eleventh International Joint Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS/Performance 2009), pages 109–120. ACM, 2009.

[CLM14] V. Ciancia, D. Latella, and M. Massink. Logics of space and time. Technical Report TR-QC-01-
2014, QUANTICOL, 2014.

[CMRM07] R. Calegari, M. Musolesi, F. Raimondi, and C. Mascolo. CTG: a connectivity trace generator
for testing the performance of opportunistic mobile systems. In 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 415–424. ACM, 2007.

[CPB08] E.A Codling, M.J Plank, and S. Benhamou. Random walk models in biology. Journal of the Royal
Society Interface, 5(25):813–834, 2008.

[Dav93] M.H.A. Davis. Markov Models and Optimization. Chapman & Hall, 1993.

[DL94a] R. Durrett and S. Levin. The importance of being discrete (and spatial). Theoretical Population
Biology, 46(3):363–394, 1994.

[DL94b] R. Durrett and S.A. Levin. Stochastic spatial models: a user’s guide to ecological applications.
Philosophical Transactions of the Royal Society B: Biological Sciences, 343(1305):329–350, 1994.

QUANTICOL 32 Mar 31, 2014



An investigation of capturing spatial information (Revision: 1.0; Mar 31, 2014) Mar 31, 2014

[DMP91] A. De Masi and E. Presutti. Mathematical methods for hydrodynamic limits. Lecture Notes in
Mathematics. Springer-Verlag, 1991.

[DN08] R.W.R. Darling and J.R. Norris. Differential equation approximations for Markov chains. Proba-
bility surveys, 5:37–79, 2008.

[DP03] J. Desharnais and P. Panangaden. Continuous stochastic logic characterizes bisimulation of
continuous-time markov processes. The Journal of Logic and Algebraic Programming, 56(1-2):99–
115, 2003.

[DT05] M. Durvy and P. Thiran. Reaction-diffusion based transmission patterns for ad hoc networks. In
INFOCOM 2005, volume 3, pages 2195–2205, 2005.

[EE04] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical systems into spatial
domains of opposite phases. Systems Biology, 1(2):230–236, 2004.
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Appendix: Discrete and continuous time Markov chains

This section briefly introduces these concepts, as they would be used in stochastic modelling both with-
out aggregation of state and with aggregation of state (population-based Markov chains) [BKHW05,
BHLM13].

Definition 1. A discrete time Markov chain (DTMC) is a tuple MD = (S,P) where

• S is a finite set of states, and

• P : S × S → [0, 1] is a probability matrix satisfying
∑

S′∈S P(S, S′) = 1 for all S ∈ S.

A DTMC is time-abstract [BKHW05] in the sense that time is viewed as a sequence of discrete steps
or clock ticks. It describes behaviour as follows: if an entity or individual is currently in state S ∈ S
then the probability of the entity being in state S′ at the next time step is defined by P(S, S′). Under
certain conditions, the steady state of the DTMC can be determined and this describes when the
DTMC is at equilibrium and gives the (unchanging) probability of being in any of the states of S. By
contrast, transient state probabilities can be determined at each point in time before steady state is
achieved.

Definition 2. A continuous time Markov chain (CTMC) is a tuple MC = (S,R) where

• S is a finite set of states, and

• R : S × S → R≥0 is a rate matrix.

CTMCs are time-aware [BKHW05] since they use continuous time. If an entity is currently in state
S, then R(S, S′) is a non-negative number that defines an exponential distribution from which the
duration of the time taken to transition from state S to state S′ can be drawn. As with DTMCs and
under certain conditions, transient and steady state probabilities can be calculated which describe the
probability of being in each state at a particular time t or in the long run, respectively.

Let E(S) =
∑

S′∈S R(S, S′) be the exit rate of state S′. Then the embedded DTMC of a CTMC
has entries in its probability matrix of the form P(S, S′) = R(S, S′)/E(S) if E(S) > 0 and P(S, S′) = 0
otherwise. DTMCs and CTMCs can be state-labelled (usually with propositions) or transition-labelled
(usually with actions). The research in QUANTICOL focusses on transition-labelled Markov chains.
We next consider population Markov chains, both discrete time and continuous time. Instead of
considering an entity with states, we now consider a vector of counts X that describes how many
entities are in each state; thus it is a population view rather than an individual view.

QUANTICOL 36 Mar 31, 2014

http://en.wikipedia.org/wiki/Topological_map
http://en.wikipedia.org/wiki/Topological_map


An investigation of capturing spatial information (Revision: 1.0; Mar 31, 2014) Mar 31, 2014

Definition 3. A population discrete time Markov chain (PDTMC) is a tuple XD = (X,D, T ) where

• X = (X1, . . . , Xn) is a vector of variables

• D is a countable set of states defined as D = D1 × . . . × Dn where each Di ⊆ N represents the
domain of Xi

• T = {τ1, . . . τm} is the set of transitions of the form τj = (v, p) where

– v = (v1, . . . , vn) ∈ Nn is the state change or update vector where vi describes the change
in number of units of Xi caused by transition τj

– p : D → R≥0 is the probability function of transition τj that defines a sub-probability
distribution, namely

∑
τ∈T pτ (d) ≤ 1 for all d ∈ D, such that p(d) = 0 whenever d+v 6∈ D

Definition 4. A population continuous time Markov chain (PCTMC) is a tuple XC = (X,D, T )
where

• X and D are defined as in the previous definition,

• T = {τ1, . . . τm} is the set of transitions of the form τj = (v, r) where

– v is defined as in the previous definition,

– r : D → R≥0 is the rate function of transition τj with r(d) = 0 whenever d + v 6∈ D.

In both types of population Markov chain, the associated Markov chain can be obtained. In both
cases, D is the state space S. For the population DTMC, the probability matrix of its associated
DTMC is defined as

P(d,d′) =
∑

τ∈T ,vτ=d′−d
pτ (d) whenever d 6= d′

and since probability functions define sub-probabilities then the rest of the probability mass must be
accounted for by defining

P(d,d) = 1 −
∑

τ∈T ,vτ 6=0

pτ (d).

For the population CTMC, the rate matrix of its associated CTMC is

R(d,d′) =
∑

τ∈T ,vτ=d′−d
rτ (d) whenever d 6= d′

and if the summation is empty, then R(d,d′) = 0.
As the size of the population increases, it has been shown [Kur81] under specific conditions that

cover a large range of models that the behaviour of an (appropriately normalised) population CTMC
at time t is very close to the solution of a set of ODEs, expressed in the form X(t) = (X1(t), . . . , Xn(t))
defining a trajectory over time. The ODEs can be expressed in terms of a single vector ODE as

Ẋ =
dX

dt
= f(X).
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