B Ref. Ares(2012)548450 - 03/05/2012

Project DEPLOY Grant
Agreement 214158
“Industrial deployment of advanced system engineering methods for high
productivity and dependability”

DEPLOY Deliverable D52

D15.5 Final Dissemination/Exploitation Report
Thierry Lecomte (ClearSy)
Alexander Romanovsky (Newcastle)

Michael Butler (Southampton)
Elena Troubitsyna (Aabo Akademi)

Public Document

April 30,2012

http://www.deploy-project.eu

Contents

R TaN o Te [N ot 4T o] o PO U TSP TP PROTPPTPI 3
2 MainAchievements in Dissemination and EXploitationccccvvviiieiiiii e, 3
2.1 DEPLOY INTErest GroUp (DIG)uuuuiiiiiiiieeeeeeeieiiiitiee et e e e e e e e eeectttrereeeeeaeeeessasnssssasseaaaasssesssnnsenns 3
2.2 DEPLOY ASSOCIAES ..evviiiiiiiiiiiiiiiiiitit ettt e et e e e s 4
2.3 EVENES ettt e e e e et e e e e e rrree 5
2.4 Electronic DiSSEMINATION ...c..uiiiiiieeieeestee ettt ettt e e st et e e s e e s b e s sabe e e sabeesnreeesareean 7
2.5 Collaboration with ICT SSAI&E ProjECLS ..ccccciiiiiiiiieeee ettt e e e e e e e e e eirrrre e e e e e e e e e e s eannennes 16
Appendix A. Reports from the DEPLOY ASSOCIATESuuuiiiiiiieeieeeiiiiiiieieeeeeeeeeescciirrrreeeee e e e e e e e esnannnes 17

Appendix B. Full Programme of the Federated EVENt.........cccoooiiiiiiiiiiiiieeeee et 60

1 Introduction

This document reports the project achievements in dissemination and
exploitation. It is updated every year, completed with progress made, and
delivered at month Mi2 (D14), M24 (D27), M36 (D37), and M48 (D52). This
particular document is the final (M48) report.

2 MainAchievements in Dissemination and Exploitation

This chapter presents DEPLOY fourth year dissemination and exploitation
achievements.

2.1 DEPLOY Interest Group (DIG)

The DEPLOY Interest Group (DIG) is a community that has been of a paramount
importance for the project, as its members have specifically declared their
interest and support. Hence the overall dissemination/exploitation activity has
been centred around the DEPLOY Interest Group, gathering companies,
universities, and individuals interested in the Rodin platform. The DIG has had a
privileged access to information, such as bi- annual newsletter, dedicated hands-
on sessions, etc.

DIG members may:

* join the group. A simple (electronic) letter of intent is sufficient. Joining the
DIG is free of charge;

* provide feedback on the platform and related plug-ins, by using the platform
and sharing experience and expectation;

* provide complementary case studies and examples covering similar or new
application domains;

* attend dedicated trainings and hands-on sessions, organized specifically for
the DIG upon request.

Special attention was given to the DIG members: dedicated means were allocated
to help the DIG members to get educated and experienced with the Rodin tools.

To increase membership in the DIG, our strategy has been threefold:

* invite Rodin project followers to join the DIG,

* send personal invitations to join,

* promote the DIG at each dissemination event.

This has been coordinated with the organization of industrial days, local actions of
partners, etc., when possible. Communication has been ensured by a dedicated
mailing list, a newsletter, and industry days. DIG members have been personally
invited to all our dissemination events.

In order to populate the DIG with relevant users, we have initiated a survey (“We
need to know who you are !”) where people have the opportunity to register to the
DIG and to the newsletter as well. More than 200 answers have been collected by
the end of the project, indicating that the typical user is from academia, working
on Windows and doing research with Rodin.

Current DEPLOY Interest Group members is composed of 67 members.

2.2 DEPLOY Associates

The DEPLOY Associates (DAs) is a group created late 2009, gathering privileged
industrial experimenters of the DEPLOY tools and methodology. The main goal of
this group has been to ensure a broad dissemination of the results of the project
(tools, methodology, documents, etc.) by:

. experimenting with new case-studies, possibly from domains not yet
addressed by the DEPLOY project

. ensuring that adequate training is delivered to the DA personnel in charge
of the case-study, in order to obtain comparable results among DAs

. collecting feedback (metrics, models, conclusions, etc.) from DA, in order
to improve project deliverables and to demonstrate the extent to which they are
applicable to industry.

The DEPLOY Associates have received specific and dedicated help from the
DEPLOY project (training, consultancy, etc.).

Three DEPLOY Associates were been selected and invited to work with the project:

Automacao E Systémas — Sao Paulo (Brazil)

AeS is a SME specialized in the design and development of embedded systems.
Outside the project, AeS and ClearSy are collaborating on the deployment of
platform screen-door control/command systems in the metro of Sao Paulo. AeS
has investigated the use of Rodin for safety-critical systems through a number of
case studies:

. a methodological WRSPM approach to a B formalization in an industrial
setting;

. LADDER to B;

. using the B formal method in the process of traditional software
development for critical systems;

. a UML-based method for Event-B refinement;

. changing the way to vital verification.

Critical Software Technologies — Southampton (U.K.)

CST, part of the Critical Software Group, is specialized in the development,
verification and validation of software. As a DEPLOY Associate, CST applied the
Rodin tools and methods for the verification and validation of avionics and satellite
software. Following an on-site training delivered by Southampton in 2010, CST
performed the requirements analysis phase through an integrated flight secondary
display case study.

XMOS ltd - Bristol (U.K.)

XMOS is a “fabless” semiconductor company that develops multi-core, multi-
threaded processors targeted at embedded systems markets. Some concepts
found in XMOS technology are part of the transputer technology developed by that
company in the 1980s. XMOS processor technology is general-purpose and has
therefore been exploited in a range of different markets, including audio, display,
communications, robotics and amateur innovation. Event-B and Rodin based
techniques have been applied for Instruction Set Architecture (ISA) analysis, by
constructing a formal model of the ISA of the XCore microprocessor.

ﬁlppgridix A provides a comprehensive report on the activities and achievements of
€ DAs.

2.3 Events

DEPLOY results were presented at several occasions, listed in the table below.

July 15t - 16th 2011 Bangalore (India). Workshop Refinement Based Development of
Software Systems using Event-B

September 122d — 15t 2011 Newcastle (UK). 11th International Workshop on Automated
Verification of Critical Systems (AVoCS)

September 221d2011. Naples (Italy). Conference SAFECOMP-2011

September 28t — 2gth 2011 Brussels (Belgium). Conference "Internet of Services 2011:
Collaboration meeting for FP7 projects"

September 29th— 30th 2011 Geneva (Switzerland).

SERENE 2011: 3rd International Workshop on Software Engineering for Resilient Systems
ICFEM 2011: 13th International Conference on Formal Engineering Methods
26th—28th October 2011, Durham, United Kingdom

November 28t 2011 Tokyo (Japan). 56th GRACE Seminar on Advanced Software Science
and Engineering

February 7th — gth 2012Bristol (UK). 20th Safety-critical Systems Symposium
February 27t — March 15t 2012 Fontainebleau (France). DEPLOY Federated Event

Below we provide more information for the most important ones.

Workshop Refinement Based of Software Systems using Event- B
(Bangalore, 15-16 July 2011)
Members of the DEPLOY Project made a major contribution to this workshop in

5

Bangalore with the main speakers being Michael Butler and Colin Snook from
the University of Southampton. This workshop provided an intensive
introduction to Event-B and the Rodin platform. It covered modelling, refinement
and proof in Event-B and UML-B. Other speakers were S. Ramesh and Manoranjan
Satpathy from General Motors R&D Bangalore. Several representatives from
Indian industry attended including GM, nuclear and space industries as well as
several Indian Universities. The workshop was organised jointly by IISC Bangalore
(Deepak D'Souza) and GM R&D (P. Sampath, M. Sathpathy and S. Ramesh).

AVoCS 2011 (Newcastle, 12-14 September, 2011)

11th International Workshop on Automated Verification of Critical Systems was
organized with the help of DEPLOY and co-chaired by DEPLOY members from
Newcastle and Dusseldorf. The PC included many project members, the topics of
the workshop were directly related to the topics of the project
(http://conferences.ncl.ac.uk/AVoCS2011/). Seven papers from DEPLOY were
accepted and presented. The proceedings of this event are submitted to the EC as
project deliverable D51.

DEPLOY Federated Event (Fontainebleau, France, 27 February — 1 March
2012)

The DEPLOY Federated event, hosted by IUT Sénart-Fontainebleau with the help
of the LACL laboratory, took place in the south of Paris. It was the occasion to
demonstrate a complete picture of the current status of the Rodin platform, the
on-going research and industrial use, inside and outside the DEPLOY project. This
was the final dissemination event of DEPLOY. On each day of this event we had
about 74-78 participants.

The first day was devoted to tutorials on various Rodin plugins and their use, and
covered the following topics: the theory plugin, integration of external provers and
solvers in Rodin, customisation of proof tactics, adding plugins into ProB. The
morning consisted of presentations on each of these topics, while the afternoon

6

consisted of several hands-on small group master-class sessions in parallel.

The second and third days were devoted to workshop-style talks on experiences
with Rodin usage and on new plug-ins for Rodin. There were 30 presentations
from the DEPLOY partners and outside of DEPLOY. There was plenty of lively
interaction between participants during and between the talks. This has been a
successful event that demonstrated that the community is active and growing.

The fourth day, the Industry Day, was devoted to reporting on DEPLOY
achievements and to discussing the industrial use of Rodin and Event-B. We had
talks from the deployment partners, the three DAs, 2 talks from ClearSy and
Systerel about their use of Rodin in industrial projects outside DEPLOY, more
presentations from DEPLOY about the project objectives and outcomes and on
evidence, and about a new company Formal Minds recently created in Dusseldorf.

The full programme of the DEPLOY Federated Event is included as an appendix

(Appendix B) to this report. The Rodin workshop proceedings and Industry Day

slides are available online:
http://wiki.event-b.org/index.php/Rodin_Workshop_2012
http://www.bmethod.com/php/federated-event-2012-en.php

2012 Safety Critical Systems Symposium (Bristol, UK, 7-9 February 2012)
DEPLOY provided an exhibition stand on the Rodin tools at the 2012 Safety
Critical Systems Symposium. Delegates were provided with a memory stick
containing an installation of Rodin along with tutorial material. There was strong
interest in Rodin from industrialists working on the safety-critical domain.

The following event is planned after DEPLOY: Michael Butler will be teaching at
the 2012 Marktoberdorf Summer School on Engineering Dependable Software
Systems: http://asimod.in.tum.de/ The lectures will be on "Abstraction,
Refinement and Decomposition for Systems Engineering”". The lectures will
address the key role played by formal modelling and verification in systems
engineering. The lectures will use the Event-B formal modelling language and the
associated Rodin toolset for Event-B.

2.4 Electronic Dissemination

All materials related to DEPLOY and the Rodin platform are made electronically
available:

. Platform and plug-ins source code

. Project deliverables, papers, and manuals
. Teaching material

. Models (including case-study description)

Websites. These are the websites are related to the DEPLOY project:

the official project site, hosted by ClearSy and reachable at

http://www.deploy- project.eu. It contains useful information about the

project, its objectives. This site nicely integrates three other websites,

hosted by Southampton University

* the DEPLOY repository (http://deploy-eprints.ecs.soton.ac.uk/),
containing all the project deliverables, publications, tutorials, models, etc.
External stakeholders are invited to contribute to the DEPLOY repository.

e the Event B site (http://www.event-b.org/) gathering information on the
Rodin platform and its plugins.

e The wiki website (http://wiki.event-b.org), providing documentation for
users and developers of the Rodin toolset.

* the developer site, hosted by sourceforge and reachable at http://rodin-b-
sharp.sourceforge.net/.

* Arepository of evidence for adopting FMs in industry

(http://www.fmg4industry.org) has been developed in the project for

providing answers to recurring concerns of companies wanting to investigate

the usage of formal methods. It initially included the evidence collected in

DEPLOY.

Publications. The following articles (the publication list is on the website) having
been published in 2011-12 and are available on the publications website:

1. Ponsard, Christophe and Deprez, Jean-Christophe and Delandtsheer, Renaud
(2012) Is my Formal Method Tool Ready for the Industry? In: AVOCS 2011, 12-14
September 2011, Newcastle, UK.

2. Dinca, Ionut and Ipate, Florentin and Mierla, Laurentiu and Stefanescu, Alin
(2012) Learn and Test for Event-B - a Rodin Plugin. In: ABZ'12 Conference,
June 19-21, 2012, Pisa, Italy. (In Press)

3. Diaconescu, Denisa and Leustean, Ioana and Petre, Luigia and Sere, Kaisa and
Stefanescu, Gheorghe (2012) Refinement-Preserving Translation from Event-B to
Register-Voice Interactive Systems. In: oth International Conference on
Integrated Formal Methods (iFM'12), June 19-21, 2012, Pisa. (In Press)

4. Edmunds, Andrew and Rezazadeh, Abdolbaghi and Butler, Michael (2012)
Formal modelling for Ada implementations: Tasking Event-B. In: Ada-Europe
2012: 17th International Conference on Reliable Software Technologies, Stockholm.
(In Press).

5. Deprez, Jean-Christophe and Ponsard, Christophe (2012) An Collaborative FAQ
Approach for Collecting Evidence on Formal Method Industrial Usage. In:
DEPLOY Federated Event (Industry Day).

6. Ponsard, Christophe and Flamand, Jacques and Deprez, Jean-Christophe (2012)
Assessment of the Evolution of the Rodin Open Source platform. In: Rodin User
and Developer Workshop 2012, 28-28 February 2012, Fontainebleau.

7. Ipate, Florentin and Dinca, Ionut and Stefanescu, Alin (2012) Model learning
and test generation using cover automata. IEEE Transactions on Software

8

Engineering . (Submitted)

8. Hayes, Ian J. and Burns, Alan and Dongol, Brijesh and Jones, Cliff B. (2012)
Comparing Models of Nondeterministic Expression Evaluation. The Computer
Journal, (Submitted)

9. Hayes, Ian J. and Jones, Cliff B. and Colvin, Robert J. (2012) Refining rely-
guarantee thinking. Formal Aspects of Computing, (Submitted)

10. Iliasov, Alexei (2012) Augmenting formal development with use case
reasoning. In: Proc. of the 17th International Conference on Reliable Software
Technologies (Ada-Europe 2012). Stockholm, Sweden. June 11- 15, 2012. Springer.

11. Dinca, Ionut (2011) Multi-Objective Test Suite Optimization for Event-B
Models. In: ICIEIS'11, Springer CCIS Series vol. 251 , 11-14 November 2011,
Malaysia.

12. Lopatkin, Ilya and Iliasov, Alexei and Romanovsky, Alexander and Prokhorova,
Yuliya and Troubitsyna, Elena (2011) Patterns for Representing FMEA in Formal
Specification of Control Systems. In: The 13t IEEE International High Assurance
Systems Engineering Symposium, Boca Raton, FL, November 10-12, 2011, Boca
Raton, USA.

13. Varpaaniemi, Kimmo (2011) DEPLOY Work Package 3 Software Requirements
Document for a Distributed System for Attitude and Orbit Control for a Single
Spacecraft (DEP-RP-SSF-R-006, Issue 1.3). Documentation. Space Systems
Finland Ltd. (Unpublished)

14. Bryans, Jeremy W. (2011) Developing a Consensus Algorithm Using Stepwise
Refinement. Proceedings of the 13th international conference on Formal methods
and software engineering, LNCS (6991). pp. 553-568.

15. Bendisposto, Jens and Jones, Cliff and Leuschel, Michael and Romanovsky,
Alexander (2011) Proceedings of the 11th workshop on Automated Verification of
Critical Systems. Newcastle University.

16. Edmunds, Andrew and Rezazadeh, Abdolbaghi and Butler, Michael (2011) From
Event-B Models to Code: Sensing, Actuating, and the Environment. In: SBMF2011,
Sept 2011, Sao Paulo, Brazil.

17. Hayes, Ian J. and Burns, Alan and Dongol, Brijesh and Jones, Cliff B. (2011)
Comparing Models of Nondeterministic Expression Evaluation. Technical Report.
School of Computing Science, University of Newcastle.

18. Tarasyuk, Anton and Troubitsyna, Elena and Laibinis, Linas (2011) Quantitative
Verification of System Safety in Event-B. In: SERENE 2011 Lecture Notes in
Computer Science 6968, Springer, 2011.

19. Deprez, Jean-Christophe and Ponsard, Christophe and Fitzgerald, John S.
(2011) A FAQ Approach for Collecting Evidence on Formal Method Industrial
Usage. In: FM2011 / Industry Day, 20-24 June 2011, Limerick (Ireland).

20. Ponsard, Christophe and Deprez, Jean-Christophe (2011) Collaborative
Building of an Open Evidence Repository to Drive the Adoption of Formal
Engineering Methods. In: FM2011, 20-24 June 2011, Limerick (Ireland).

21. Bostrom, Pontus and Degerlund, Fredrik and Sere, Kaisa and Waldén,
Marina (2011) Concurrent Scheduling of Event-B Models. In: 15th International
Refinement Workshop (associated with Formal Methods 2011), 20th June 2011,
Limerick, Ireland.

22. Ponsard, Christophe and Devroey, Xavier (2011) Generating High-Level Event-
B System Models from KAOS Requirements Models. In: InforSID 2011, 24-26
May 2011, Lille (France).

23. Bryans, Jeremy W. and Fitzgerald, John S. and McCutcheon, Tom (2011)
Refinement-based techniques in the analysis of information flow policies for
dynamic virtual organisations. In: PRO-VE 2011 - 12th IFIP Working Conference
on VIRTUAL ENTERPRISES, 17-19 October, Sao Paulo, Brazil. (Submitted)

24. Stefanescu, Alin and Ipate, Florentin and Lefticaru, Raluca and Tudose,
Cristina (2011) Towards Search-based Testing for Event-B Models. In: 4th
International Workshop on Search-Based Software Testing, 21 Mar 2011, Berlin.

25. Edmunds, Andrew and Butler, Michael (2011) Tasking Event-B: An Extension
to Event-B for Generating Concurrent Code. In: PLACES 2011. (In Press)

26. Edmunds, Andrew and Butler, Michael (2011) Tasking Event-B: An Extension
to Event-B for Generating Concurrent Code. In: PLACES 2011.

27. Fathabadi, Asieh Salehi and Rezazadeh, Abdolbaghi and Butler, Michael
(2011) Applying Atomicity and Model Decomposition to a Space Craft System in
Event-B. In: Third NASA FORMAL METHODS SYMPOSIUM. (In Press)

28. Silva, Renato and Pascal, Carine and Hoang, Thai Son and Butler, Michael
(2011) Decomposition Tool for Event-B. Software: Practice and Experience, 41 (2).
pp- 199-208.

29. Dinca, Ionut and Stefanescu, Alin and Ipate, Florentin and Lefticaru, Raluca
and Tudose, Cristina (2011) Test Data Generation for Event-B Models using
Genetic Algorithms. In: 2nd International Conference on Software Engineering
and Computer Systems (ICSECS'11), June 27-29, 2011, Malaysia.

30. Grotsev, Denis and Iliasov, Alexei and Romanovsky, Alexander (2011) Formal
Stepwise Development of Scalable and Reliable Multiagent Systems. In:
Dependability and Computer Engineering: Concepts for Software-Intensive
Systems. IGI Global. ISBN ISBN13: 9781609607470

31. Iliasov, Alexei (2011) Generation of certifiably correct programs from formal
models. In: 1st Int. Workshop on Software Certification. At the 22nd Int.
Symposium on Software Reliability Engineering (ISSRE 2011), November 30,
2011, Hiroshima, Japan.

32. Iliasov, Alexei (2011) Use case scenarios as verification conditions: Event-
B/Flow approach. In: Software Engineering for Resilient Systems, Proc. of 3rd
International Workshop. September 29-30, 2011 Geneva, Switzerland. LNCS
(6968). Springer, pp. 9-23. ISBN 978-3-642-24123-9

33. Iliasov, Alexei and Laibinis, Linas and Troubitsyna, Elena and Romanovsky,
Alexander (2011) Correct-by-Construction Development of Fault Tolerant Systems
(Tutorial at FM 2011). [Teaching Resource]

10

34. Iliasov, Alexei and Laibinis, Linas and Troubitsyna, Elena and Romanovsky,
Alexander (2011) Formal Derivation of a Distributed Program in Event B. In: Proc
of ICFEM 2011: 13th International Conference on Formal Engineering Methods.
26th—28th October 2011, Durham, United Kingdom. Springer.

35. Iliasov, Alexei and Romanovsky, Alexander (2011) Scaling Event-B to
industrial applications: the role of formal design decomposition (Industry Paper).
In: 22nd IEEE International Symposium on Software Reliability Engineering, Nov
29 - Dec 2, 2011, Hiroshima, Japan.

36. Jastram, Michael (2011) ProR - Eine Softwareplattform fur Requirements
Engineering. Softwaretechnik-Trends, 31 (1).

37. Jastram, Michael and Graf, Andreas (2011) Requirement Traceability in
Topcased with the Requirements Interchange Format (RIF/ReqlIF). In: FIRST
TOPCASED DAYS TOULOUSE 2011, 2 Feb - 4 Feb 2011, Toulouse, France.

38. Jastram, Michael and Graf, Andreas (2011) Requirements Modeling
Framework. Eclipse Magazin, 6.11 .

39. Jastram, Michael and Graf, Andreas (2011) Requirements, Traceability and
DSLs in Eclipse with the Requirements Interchange Format (RIF/ReqlIF).
Dagstuhl-Workshop MBEES: Model-Based Development of Embedded Systems.
fortiss GmbH, Miinchen, Germany.

40. Jones, Cliff B. and Pierce, Ken G. (2011) Elucidating concurrent algorithms via
layers of abstraction and reification. Formal Aspects of Computing, 23 (3). pp.
289-306.

41. Laibinis, Linas and Troubitsyna, Elena and Iliasov, Alexei and Romanovsky,
Alexander (2011) Formal Approach to Ensuring Interoperability of Mobile Agents.
In: Handbook of Research on Mobile Software Engineering: Design
Implementation and Emergent Applications. IGI Global. ISBN ISBN13:
9781615206551

42. Lopatkin, Ilya and Iliasov, Alexei and Romanovsky, Alexander (2011)
Rigorous Development of Dependable Systems using Fault Tolerance Views. In:
The 22nd annual International Symposium on Software Reliability Engineering
(ISSRE 2011), Nov 29 - Dec 2, 2011, Hiroshima, Japan.

43. Mazzara, Manuel (2011) On Methods for the Formal Specification of Fault
Tolerant Systems. In: DEPEND 2011.

44. Mazzara, Manuel and Dragoni, Nicola and Zhou, Mu (2011) Dependable
Workflow Reconfiguration in WS-BPEL. In: NODES 2011.

45. Mazzara, Manuel and Marraffa, Antonio and Biselli, Luca and Chiarabini, Luca
(2011) Polidoxa: a Sinergic Approach of a Social Network and a Search Engine to
Offer Trustworthy News. In: INTRUSO 2011.

46. Schmalz, Matthias (2011) Term Rewriting in Logics of Partial Functions.
Proceedings of ICFEM 2011 . (In Press)

47. Su, Wen and Abrial, Jean-Raymond and Huang, Runlei and Zhu, Huibiao
(2011) From Requirements to Development: Methodology and Example. In:
ICFEM 2011, Durham, UK. (In Press)

11

48. Tarasyuk, Anton and Troubitsyna, Elena and Laibinis, Linas (2011) Quantitative
Reasoning about Dependability in Event-B: Probabilistic Model Checking
Approach. In: Dependability and Computer Engineering: Concepts for Software-
Intensive Systems. IGI GLobal.

49. Yeganefard, Sanaz and Butler, Michael (2011) Structuring functional
requirements of control systems to facilitate refinement-based formalisation. In
special issue: Automated Verification of Critical Systems 2011, Electronic
Communications of the EASST, 46.

50. Prokhorova, Yuliya, Laibinis, Linas, Troubitsyna, Elena, Varpaaniemi, Kimmo,
Latvala, Timo (2011). Derivation and Formal Verification of a Mode Logic for
Layered Control Systems. In: Tran Dan Thu, Karl Leung (Eds.), Proceedings of the
18th Asia-Pacific Software Engineering Conference (APSEC 2011), 49-56, IEEE
Conference Publishing Services (CPS), December 2011.

51. Tarasyuk, Anton, Troubitsyna, Elena and Laibinis, Linas (2012). Formal
Modelling and Verification of Service-Oriented Systems in Probabilistic Event-B. In
Proc. of International Conference on Integrated Formal Methods, IFM 2012,
Lecture Notes for Computer Science, Springer, June 2012.

52.Pereverzeva, Inna, Troubitsyna, Elena and Laibinis, Linas (2012). Formal Goal-
Oriented Development of Resilient MAS in Event-B. In Proc. of Ada-Europe 2012 --
17th International Conference on Reliable Software Technologies. Lecture Notes in
Computer Science, Springer, June 2012.

53.Pereverzeva, Inna, Troubitsyna, Elena and Laibinis, Linas (2012). Formal
Development of Critical Multi-Agent Systems: A Refinement Approach. In Proc. of
European Dependable Computing Conference, May 2012. IEEE Computer Press.

54. Yeganefard, Sanaz and Butler, Michael (2012) Control systems: phenomena and
structuring functional requirement documents. In 17th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS 2012). Paris,
FR, 18 - 20 July 2012.

55. Iliasov, Alexei and Troubitsyna, Elena and Laibinis, Linas and Romanovsky,
Alexander and Varpaaniemi, Kimmo and Ilic, Dubravka and Latvala, Timo (2012)
Developing Mode-Rich Satellite Software by Refinement in Event-B. Science of
Computer Programming. Accepted. In press.

The DEPLOY repository. The DEPLOY repository is composed of several
subject areas (event-B language, industrial deployment, methodology, tool
developments, and training). A snapshot of the resources currently available is
given below:

12

e Deploy Subject Areas (281)
o Event-B (125)

Event-B Examples (53)
Event-B Theory (22)

o Industrial Deployment (81)

Automotive (1)
Business (15)

Other (9)

Pervasive telecoms (1)
Space (31)
Transportation (7)

o Methodology (159)
= Composition and reuse (36)

Other (11)

Proof and model checking (15)
Real-time systems (6)
Refinement (33)

Requirements and evolution (23)
Resilience (33)

Security (1)

o Tool developments (92)
s Code generation (7)

Model checking (12)
Model construction (16)
Other (8)

Provers (11)

Rodin platform (6)
Rodin plug-ins (19)

o Training (46)

Metrics. Statistics are collected in the project to evaluate Rodin platform and the
DEPLOY project’s popularity. The measurement of DEPLOY websites hits from
foreign IP addresses will provide an estimate of the awareness and the interest
concerning DEPLOY in both the industry and academic worlds. Reverse links are
used to improve our Google score, thus improving our visibility on the Net.

DEPLOY websites statistics (number of monthly unique visits) are given below

Event-B (28)
Rodin plug-ins (3)
Rodin tool (10)

(for the 48 months of the project):

01 02 03 04 05 06 0708 09 10 11 12

Publications ‘62 ‘383
Event-B.org ‘38 ‘144
iki Event-B.org ‘ o‘

Deploy-project.eu 2586 4741

‘359 ‘410 ‘411 ‘364 ‘N/A ‘N/A ‘N/A ‘N/A ‘N/A ‘N/A
477 600 486 1488 488 489 554 586 (654 373
0‘12 ‘ 1#10 ‘146 ‘384 ‘722 ‘540 ‘927 ‘1483 ‘827
5936 6365 (7741 [7770 [8618 5988 3164 3561 4338 4262

13

1314 1516 1718 19 20 21 22 23 24

Publications ‘1592 ‘803 ‘940 ‘871 ‘827 ‘748 ‘826 ‘852 ‘1010 ‘1117 ‘1059 ‘919
Event-B.org ‘756 ‘763 ‘1102 ‘839 ‘795 ‘750 ‘887 ‘631 ‘765 ‘939 ‘968 ‘850
iki Event-B.org ‘1326 ‘1470 ‘1979 ‘1577 ‘1543 ‘1198 ‘1565 ‘1340 ‘1609 ‘1728 ‘1702 ‘1654

Deploy-project.eu 4698 14375 4703 4012 4436 4733 5474 [4493 5240 6492 6576 6078

25 26 27 28 29 30 31 32 33 34 35 36

Publications ‘1007 ‘863 ‘922 ‘496 ‘320 ‘636 ‘743 ‘638 ‘869 ‘1038 ‘1164 ‘938
Event-B.org ‘907 ‘955 ‘1188 ‘891 ‘1005 ‘897 ‘1019 ‘912 ‘1029 ‘1112 ‘1015 ‘904
Wiki Event-B.org ‘1652 ‘1540 ‘1865 ‘1483 ‘1666 ‘1502 ‘1483 ‘1525 ‘1936 ‘2131 ‘2083 ‘1837

Deploy-project.eu ‘9955 ‘8649 ‘10547 ‘10948‘10087‘10729 ‘14240 ‘11484 ‘13958 ‘11302 ‘10693 ‘11358

7383940 4142 43 44 45 46 47 48

Publications \1123 \1234 \840 \575 \609 \511 \539 \537 \707 \793 \727 \651
Event-B.org ‘1136 ‘1428 ‘1378 ‘1176 ‘980 ‘806 ‘768 ‘770 ‘1038 ‘1281 ‘1142 ‘1070
Wiki Event-B.org 2321|2656 4212 5499 3717 2102 2709 1923 [2521 12797 [2775 [2576

Deploy-project.eu 11812 13598 [14683(32770[3700 1284682888 36516 2975641661 (61776 48674

Sourceforge statistics (number of downloads for all files, since the beginning of
the Rodin platform) are listed below:

DOWNLOADS

756 740

Jale range

TOP COUNTRY *

United Kingdom

oaders

TOPOS*

Other

nioagers

Sourceforge is not providing any more detailed statistics. So it is not possible to
distinguish operating systems and files (platform, plugins).

Platform exploitation. A company, called Rodin Tools Ltd
(http://www.rodintools.org), has been created recently as a Not for Profit Company
taking over responsibility for the Rodin toolset at the end of DEPLOY. The
Company consists of:

* a Strategy Committee of external advisers to look at the development
strategy,

e a Platform Development and Maintenance partner to carry out the wishes
14

of the Strategy Committee and Company members and

* aCoordination partner to manage the Company, run workshops and
training etc.

A dedicated workshop was organized in February 2012, during the DEPLOY
Federated Event, aimed at provided support to external developers. A one-day
tutorial was set up at that occasion.

Newsletter. DEPLOY publishes a newsletter every 6 months, providing a clear
view on:

* what is going on in the project,

e what its current status is, and

* what are the next steps.

All WPs are contributing to the newsletter, which is sent to persons having
registered on the website (200 so far). All issues are archived on the website and
can be downloaded anonymously.

Project brochure. A leaflet, presenting the project, was created at the beginning
of the project and has by now been distributed at many conferences attended by
DEPLQY partners.

Training materials. In relation with WP10 Technology Transfer, teaching
material including;:

e tutorials,

* large examples, entirely loaded on the platform, accompanied by
extensive explanations are available to the community, targeting
practitioners (engineers, etc.), teachers, researchers, etc. through the
DEPLOY publications website.

New resources made available during 2011 are:
. Varpaaniemi, Kimmo (2011) Event-B Projects DSAOCSSv0o02 and
DSAOCSSVo03 with Special Files for ProB Classic. [Rodin Archive]
. Iliasov, Alexei and Laibinis, Linas and Troubitsyna, Elena and
Romanovsky, Alexander (2011) Correct-by-Construction Development of
Fault Tolerant Systems (Tutorial at FM 2011). [Teaching Resource]

The Rodin User’s Handbook (http://handbook.event-b.org) has been released in
addition to the Event-B wiki (http://wiki.event-b.org). The story behind this book
is as follows. The executive team of the DEPLOY project recognized the importance
of good documentation of the tools for succeeding is reaching a wider audience. In
a meeting at ETH in 2010, the team established, amongst other things, that “it is
clear that the current documentation would not provide sufficient guidance, say, for
an engineer in an automotive company to start using the tools without significant
support”. It then commissioned the creation of better Rodin documentation. This
handbook is the result of this effort.

15

2.5 Collaboration with ICT SSAI&E projects

DEPLOY sets up co-operation activities with other ICT projects under the
WP2007/2008 objective “Service and Software Architectures, Infrastructure and
Engineering”, in order to exploit synergies between other projects and to increase
the impact of the ICT initiative.

This topic is covered by the “Collaboration Plan” deliverable — see deliverable D50.

16

Appendix A. Reports from the DEPLOY Associates

This Appendix includes three chapters written for the Springer book to be
published at the end of the project (Industrial deployment of system engineering
methods providing high dependability and productivity. A. Romanovsky, M.
Thomas (Eds). Springer. 2012).

These three chapters provide a comprehensive description of the work carried out
by the DAs.

17

Chapter 7
Formal Methods as an Improvement Tool

Aryldo G Russo Jr

Abstract This chapter describes the work of AeS in the context of DEPLOY As-
sociate program. Besides the progress of the pilot project, the development of a
specification of a simple railway system called ’dead man control”, we also present
some parallel developments, some theoretical, some practical of the use of formal
methods in industry, focusing on some important points, such as: requirements val-
idation, productivity and dependability

7.1 History

AeS Group is a Brazilian company, created in 1991. At that time it was working in
the building automation field. In 1998, AeS became involved in the railway field,
when the first Brazilian General Door Control System (GDC) for Rolling stock
doors was developed. The aim of this equipment was to be an interface between
train requests (operator request, signalling requests, etc.) and the door system itself.
This system was safety critical, as the major operation of this equipment was to
send an open command to the doors in each cabin. From that time, several different
safety critical or safety related systems were developed by AeS, such as, ”’dead man
control”, parts of brake system, speed limit control, etc.

Due to the advances in technology, many safety functions that were handled by
hardware are now the responsibility of embedded software. Some standards can be
followed to increase the equipment safety level. One of the most widely used is IEC
61508 [2]. This standard presents four levels of safety (higher level, higher safety),
the so called Safety Integrity Levels - SIL, and above level 2, the use of formal meth-
ods is required or suggested to achieve a certain level of completeness, robustness,
and safety, that grows as the level grows. The goal of using formal methods is to

Aryldo G Russo Jr
AeS Group, R Domingos Barbieri 298 Brazil, e-mail: agr jeaes.com.br

101

102 Aryldo G Russo Jr

produce an unambiguous and consistent specification that is as complete, error-free
and with as few contradictions as possible, and which is simple to verify.

In 2006, AeS began studying Formal Methods to decide which method to use,
where to apply, how to apply, etc. later on, AeS became part of the DEPLOY project
as a DEPLOY Associate. This chapter tells the story of AeS’s participation in this
project using case studies to present what was done during these years and what was
learnt.

7.2 Context

Before going through the studies, a brief description of the AeS structure, projects,
team, etc. is needed to introduce a context of our applications.

e Our Research and Development team is composed, basically, from 10 engineers,
none of them with a formal method background, and one R&D manager (an
engineer with some formal background)

e During the time of the DEPLOY project the team received a whole week training
covering the Rodin environment, refinement and UML-B.

e as AeS is inserted in the railway domain, several standards need to be followed,
some of them related to safety, such as EN 50128 and IEC 61508. These stan-
dards recommend the use of formal methods for application that requires higher
levels of safety (SIL3 and SIL4)

7.3 Case studies

This section presents a chronological description of AeS’s case studies, trying to
show what was the problem, what we have applied and what were the results. One
important point is that in none of our case studies did we use formal methods (or
formal methodologies) from the beginning to the end of the development process.
We only applied them precisely at the point we thought they would be more effec-
tive, avoiding extra costs and efforts. Nevertheless, we think that at some time in
the future a completely formal development process might be used and evaluated
in comparison with the traditional approach. This will be our final case study but,
unfortunately it was not finished at the time of writing this chapter.

7 Formal Methods as an Improvement Tool 103

7.3.1 Early 2007 - The B Method and railway domain - breaking
the wall

During our search of formal methods (that began in 2006), we discovered out that
the B method had gain acceptance in the railway domain. At that time the reason
for that was not important, and we decided to follow this flow. Of course, only
theoretical publications could be found about the subject and no introductory guide
was available. Digging deeper, we discovered that, at the beginning of 2007, in
Besancon, France, a conference about B would occur. From the industry point of
view, conferences are the place where you go to learn how to use tools, techniques,
methods, etc. so, that would be the right place to start.

It was, indeed, but not in the traditional way. This conference was our first contact
with the real world of academic development. It was also, our first contact with
people committed to using the B/Event-B methods. It was the first contact with the
Rodin tool. It was this conference that led to us becoming a DEPLOY associate
partner, and to be using successfully formal methods in our applications.

7.3.2 Early 2008 - requirements verification

In our first attempts to use formal methods, we tried to apply them from the begin-
ning of the development process, by converting the natural language specification
into a formal one. We could not find a tool that would help us to do it manually,
but studying the formalization process and the notion of abstraction and refinement
helped to change the way of thinking and to improve the understanding of the spec-
ification.

As aresult of this first small attempt, I can report two small (in terms of size) but
important achievements:

e we found natural language specification inconsistencies: we formalized a small
portion of a door system specification, and, at that point our objective was to
formalize exactly what was written in that specification. In doing that we reached
a point where the formal abstractions could not be proved, and analysing the
cause we found contradictory information imported from the natural language
specification.

e we found that information was missing from the natural language specification:
we tried to formalize the existing specification of our pilot project. A small sys-
tem that should stop the train movement in case of human problems with the
operator. this was a single sheet only specification, and as in the former case, we
formalized exactly what we had and we discovered that there were a lot of miss-
ing information. This led us to create several assumptions that had to be validated
with the customer specialist to be able to finish the specification.

At the end, in both attempts, we realized that we could use formalization as a tool
to verify and correct customers’ specifications.

104 Aryldo G Russo Jr

7.3.3 2009 - tool comparison

In order to verify how the current tools can be modified to reflect the industrial
needs, I prepared a brief comparison of some existing tools. I have restricted this
comparison to some tools that I knew better and that have been used in my appli-
cation field, that is, railways applications. Those tools are: Atelier B, Rodin and
SCADE. This study was performed 3 years ago, so differences may be found if it
were performed again.

7.3.3.1 Methodology

The ”Oracle” I used to determine the classification of each tool in each category
was my personal feeling since a more detailed research was not performed so far,
but even so, in the last 3 years I could collect some comments from people I have
been training, so I hope it may be helpful.

It is also prudent to state the maturity differences among these tools. While
SCADE and Atelier B have been in the market for a long time, Rodin was about
to be released in its first official version (version 1.0) which means that the first two
have already received much feedback from their industrial users helping them to
change the directions when users were not satisfied (in the Atelier B case, after a
lot of complaints about the user interface, the developers completely changed the
GUI), while the last one had no time yet to receive or to implement completely such
feedbacks.

The comparison methodology was based on three aspects, as follows:

e capability: how these tools can satisfy project constraints

o usability: the difficulty the user faces when trying to use the tool

e adaptation to the current development process : I mean, how well the tool fits in
the process without causing too many changes to the way it was performed so far

To make a classification of these aspects I used a simple ranking method, as
follows:

e [- Very difficult
e 2 - Medium
e 3-Easy

I present the results in Table 7.1.

7.3.3.2 Chart comparison

To justify those results I can say that:

o Atelier B

7 Formal Methods as an Improvement Tool 105

Aspect |capability |usability|adaptation |Results
Atelier B 2 1 2 5
Rodin 2 2 1 5
SCADE 2 3 3 8

Table 7.1 Comparsion table

— the capability to solve the project constraints is not so bad, but you do need to
know a lot of the formal language and constructs to be able to have easy proof
obligations.

— although, the version 4 of Atelier B supplies much better usability, all com-
ments | have so far are based on the previous version where the lack of a good
User Interface made its usage painful.

— since it supports development from the specification to the code it can be
considered as a good tool for that purpose, but as the interactions during the
middle phases (refinements) are some times, painful, it can not receive the
higher grade.

e Rodin

— asitis not so different from Atelier B, similar results are seen. The capability
to solve the project constraints is not so bad, but you do need to know a lot of
the formal language and constructs to be able to have easy proof obligations.

— the way that Rodin was constructed is a great help to an inexperienced per-
son, as you just need to fill in some fields to have a basic specification, but a
lack of text editor that could help more experienced person and speed up the
specification process lowers its classification.

— as, at the time of this evaluation, there were no possibilities of decomposi-
tion, and the ability to help only in the system specification phase, turn it in a
difficult tool to be used in the current process. These features have now been
added.

e SCADE

— because SCADE is based on a different concept, where formal methods are
behind the scenes, it has a great capability to deal with project constraints, but
you still need some formal background to construct correct models.

— as it was built from the very beginning to be an industrial tool, its usability
is its strongest point, with a good interface and a lot of fancy features that
captivate the user. A lot of things can be done based on templates and patterns,
which is a great help.

— besides the capability to go from the specification to the code, it has also
some other complementary tools that help you in important auxiliary tasks in
the project, such as requirement management, traceability, etc.

106 Aryldo G Russo Jr

7.3.4 Late 2009 - writing a formal specification - user point of view

B [1] is a formal method that allows us to produce proof obligations that demon-
strate correctness of the design and the refinement. Nevertheless, there is no stan-
dard mechanism for mapping requirements to formal specifications. To overcome
this issue, different solutions have been proposed by researchers. In [2], the authors
have presented a traceability between KAOS requirements and B. Some authors are
investigating the use of the Problem Frames approach [3] as a possible response.
A mixed solution using natural language and UML-B has been proposed by [4].
However, these approaches use non-standard artefacts for requirement specifica-
tions, which we consider a disencentive for convincing designers to adopt formal
methods since they must spend time to learn them.

Use cases [5] can be considered as the de-facto industry standard for require-
ment specifications. They provide a good way to capture how the end user interacts
with the system by detailing scenario-driven threads. A typical use case describes
a user-valued transaction in a sequence of steps expressed in a natural language,
which makes use cases readable for most end-users. In [6] the author has presented
an approach for building B specifications from use-case models. This approach is
similar to ours, but his project has focused on bringing the object-oriented paradigm
(including UML diagrams) to formal methods. His method also maps each use case
as a unique B operation, which we believe is not correct since each use case can
have many transactions according to Jacobson [7].

Another relevant point about uses cases is the possibility to derive test cases. A
recent and important development model is the so-called Test Driven Development|[8],
where the input information used to generate the source code is the test cases, in-
stead of use case scenarios or other traditional requirement documentation.

We have tried an approach for starting B specifications from use and test cases.
Use cases transaction identification can be used as a guideline for defining B oper-
ations, including the pre- and post-conditions. In the same way, test cases can help
with the definition of global invariants and constraints.

7.3.4.1 Mapping Use Cases to B

The aim of this approach is to support the earlier phases in the proposed devel-
opment process. Until now, formal methods are commonly only introduced in the
design phase where the requirements are already well defined, but this is not the
case on industrial projects.

The method proposed here would be useful to be used during early phases, to
help in both directions:

e to the top, helping the requirements elicitation (what might be combined with
other techniques and methods, like Jackson’s Problem Frames)

e to the bottom, helping the creation of the first abstract formal model, in the sense
that it can support the first definitions.

7 Formal Methods as an Improvement Tool 107

For mapping use cases to traditional B specifications we propose that use case
scenario sentences must be written using a controlled natural language (CNL) de-
scribed according our use case transaction definition, which is based on Ochodek’s
transaction model [9].

Definition 1. A transaction is a shortest sequence of actor’s and system actions,
which starts from the actor’s request and finishes with the system response. The
system validation and system executive actions must also occur within the starting
and ending action. The pattern for a transaction written as a sequence of four steps
in a scenario:

n. An actor’s request action (U).

n+1. A system data validation action (SV).

n+2. A system executive action (e.g. system state change action) (SE).
n+3. A system response action (SR).

We have also decided to define the grammar using subject-verb-object (SVO)
sentences because they are good at telling the sequence of events. We have mapped
the use case actor as subject, a set of actions predicate synonyms (for example val-
idate, verify etc. would be grouped together) as verb and the rest of the sentence as
object.

7.3.4.2 Results

We used an approach for mapping requirements to B (Event-B) models through use
and test cases in a pragmatic way. We were not interested (at this moment) in the
automatic translation of use cases for formal specifications since there are many
natural language ambiguity problems. The intention was to take the use cases as a
guideline for starting B specifications.

We also studied other approaches like Problem Frames and KAOS. The intention
was to facilitate as much as we could the beginning of the development process
where formal methods are supposed to be used.

This was only an attempt to find how well formal methods could fit in an UML
development process and a lot of further work will be required before it is a mature
process.

7.3.5 Early 2010 - A Methodological Approach to a B
Formalization

Developing a formal specification of a system from the informal functional require-
ments of a customer remains an open issue in the software engineering world. Good
requirements, in the sense of well written and easy to understand, are essential[3]
but not sufficient for achieving this goal.

108 Aryldo G Russo Jr

We propose a framework to structure and organize such requirements, resulting
in a requirements specification document. This pseudo-model facilitates the devel-
opment of a formal abstract model of the system functionality using the B method.

In this work, requirements elicitation is done without feedback from the cus-
tomer, for two reasons. First, requirements elicitation often produces inconsistencies
and redundancies, and one needs to produce a formal representation that presents the
requirements to the customer, beyond any doubt; so, we will consider the customer
feedback once we have the model constructed and the inconsistencies and lack of
information are clearly pointed out and proved. Second, this work is part of a larger
project to develop a method for systematically organizing the requirements of a sys-
tem having only as input natural language documents. As a side effect of this work,
the formal model could help the customer to rewrite the natural language document
to resolve such inconsistencies and redundancies in future projects with similar re-
quirements.

To reduce the gap between the requirements and the formal model of the system
and to clarify traceability, it is helpful to use an intermediate representation such as
use cases, Problem Frames [3], or KAOS [10]. This work employs an adaptation of
the WRSPM approach [14], a reference model that can be adapted without requir-
ing a whole new language to represent the requirements (as opposed to KAOS or
Problem Frames). It is the base of the method explored in this work.

In order to achieve a model that we can verify and validate, that points out doubt-
less inconsistencies, redundancies and lack of information, the B method is applied
over the specification from WRSPM. Once a formal model is constructed, one can
use animation tools like ProB [13] to show this to the customer, which would be
much easier to understand than mathematical proof obligations. It is also in this
process that we can verify the advantages of the methodology and identify the main
complications of developing an abstract formal model using the horizontal refine-
ments approach, which may suggest directions for future work.

7.3.5.1 The Methodology

The method we propose to generate the WRSPM-based model consists in taking
the customer requirements (expressed in natural language) one by one. This way we
incrementally produce the specification S in terms of phenomena, invariants and
operations. We break requirements into W, R, and establish traceability relating the
labels of the atomic requirements with the labels of the invariants and operations
manually (in the future, with the development of tools, this should be done automat-
ically).

In Figure 7.1 we have a flowchart illustrating the process step-by-step. We take
each requirement (already decomposed into an atomic requirement) and firstly iden-
tify all the phenomena. Then, for each phenomena that has been identified for the
first time we define first invariants regarding to its type and next the invariants and
operations relevant to its state. Once all phenomena of that single requirement are
identified and (the new ones) typed and invariant/operation related, we break the

7 Formal Methods as an Improvement Tool 109

Take a requirement REQ

Identify all phenomena

Is phenomena
already defined?

Define phenomena

Yes
Type phenomena

Provide operations and
invariants

Break REQ down into W, R
Provide traceability

Fig. 7.1 Flowchart illustrating the processing of requirements.

text of the requirement into information of the environment (W) and constraints of
the system (R). The last step is to provide the traceability, making the links between
the labels of the atomic requirements and the elements of the WRSPM specification.

In order to model a complete system this way, we need to decide on a formal
language that is rich enough to express the formal artefacts and phenomena.

Once all requirements are thus modelled, we have a complete abstract formal
representation of the system (using e.g. the B method). This is the starting point of
a series of refinements, the last one resulting in P (in some programming language),
to be executed in some execution environment M. In the process, dependency links
shall be maintained between all artefacts to guarantee traceability. Upon completion
of these steps, we have a correct and complete implementation of the system (since
the requirements are also correct and complete).

7.3.5.2 Horizontal refinements

Some systems are too large and complex to have their formal modelling (the abstract
model) done in just one step, and must have it done in successive steps. That is where
enters the idea of horizontal refinements (or superposition).

The idea consists in starting with an abstract model that only considers part of the
requirements, and introducing new requirements through successive refinements,
adding new variables, strengthening pre-conditions, adding invariants, actions or
operations.

110 Aryldo G Russo Jr

The person doing the modelling process has to explore the requirements docu-
ment (in the methodology presented in this paper, the WRSPM model) and gradually
take from it the elements to be formalized, taking care to correctly define the archi-
tecture that supports the incremental addition of information and to define a good
order to add this requirements, so abstraction disparities are not faced (like a very
concrete requirement being added in a highly abstract level). Another issue is to
guarantee completeness with the previous model (WRSPM): the horizontal refine-
ments process must last until all the requirements and definitions have been taken
into account, and only when this is complete, can the designer start the process of
vertical refinements, pushing the model into more concrete levels through design
decisions until a level concrete enough to generate code is reached.

7.3.5.3 Lessons learned

Once we had added what we considered enough to the abstract model (to be further
expanded with the horizontal refinements), this model was analysed using the ani-
mations tool ProB [13], which provides features like model checking and execution
step-by-step to achieve some state though the operations of the specification. This
allowed us to explore the B specification, checking for errors and identifying incon-
sistencies and lack of information - undefined states of the variables were reached
since the customer’s requirements did not say what to do in certain conditions. It
would also be possible to show the customer the result of the project so far, using
ProB to demonstrate examples of the model execution.

The next stage would be to refine horizontally the abstract model of the system,
since we only considered part of the requirements in the process of construction of
the model, so the new requirements must be introduced through refinements. That
was the point where we had big conceptual problems.

To model the architecture and the communication and complexity decomposition
with the B Method, the clause INCLUDES is necessary, and this clause cannot be
used to include a refinement, which means, in a practical example: The machine Sys-
tem of the abstract model cannot include the refinement CGP_r, that cannot include
the refinement Opening_r, and so on. In addition, one cannot add a new operation
though refinements: it is necessary to go back to the abstract model, define the whole
signature of the operation (with the variables to be received and returned) and so do
the refinement step. To have the abstract model able to be horizontally refined one
would have to do an analysis through all the requirements to define at least the
signature of all the operations that are going to be performed in all the machines.
Therefore, so that we could apply horizontal refinements, we decided to use another
approach to build the model and do the refinements, using the Event-B [12] formal
methodology and its extensions that enables the decomposition [11] process.

In Event-B we are allowed to add events (analogous to operations in B) through
refinements, so we can indeed expand the model. The key point to the horizontal
refinements in Event-B is, however, the decomposition. There is no INCLUDES
abstraction, there is no communication between different machines, but one can

7 Formal Methods as an Improvement Tool 111

introduce it through decompositions, based on the concepts of shared events (the
same event is shared by independent machines, which models the architecture com-
munication between different components) and shared variables (the same variable
is shared by independent machines, which models complexity division inside the
same component).

Using these features we will be able to model the architecture communication
(through shared events) between the CGP and the environment, and to model the
complexity division (through shared variables) between the CGP and its nested com-
ponents. Once the decomposition is done we can independently refine the decom-
posed machines, getting a more expanded model and doing more decompositions if
necessary.

7.3.6 Early 2011 a changed approach to safety verification

In this example, we present the architecture and approach of a graphical tool pro-
totype based on formal methods to validate track topologies and train movement
conditions. This tool is Eclipse-based and compatible with the Rodin platform. Its
main features are summed up as the graphical simulation of railways specifications
and the train movement properties validation. The tool is called VeRaSiS, and uses
Event-B to formalize, prove and verify the generated properties.

In the context of safety critical applications, where failures in the system can po-
tentially lead to life threatening issues or huge financial losses, like in nuclear, med-
ical, or railway domains, some properties need to be exhaustively verified in order
to guarantee a minimum level of confidence in the system. Exhaustive verification
aims at ensuring that the system will not allow dangerous situations or, if such situ-
ations happen, that it will activate the right protections to avoid their propagation. In
the railway domain, one of the most important safety critical systems applications
is the signalling system which is in charge of, among other tasks, dictating the train
movement in a specific direction and secured condition. In order to guarantee these
conditions, the track topology and the movement conditions are usually manually-
translated into a set of properties that are verified and validated through the expert
eyes of the validator. This process chain is not sufficiently reliable to guarantee that
errors will not creep into the writing process, errors and/or inconsistencies that are
very difficult to pinpoint during the validation phase. Nowadays, the superior ef-
fectiveness of formal methods over manual validation in ensuring safety in critical
systems has been clearly demonstrated. Yet, despite the plethora of research and
tools developed to facilitate the use of formal methods, mainstream developers still
have a certain reluctance to use those methods. In order to help those developers
overcome such a resistance, we developed VeRaSiS.

In the mid-80s, Siemens Transportation Systems (STS), formerly called Matra
Transport International, was the first company to lead a subway line automation
project. Automation was a difficult concept because of the safety implications. Un-
til then, the usual development process was not considered secure enough to cope

112 Aryldo G Russo Jr

with the paramount issue of the subway passengers’ safety. The need to increase the
confidence in the development process led to the use of formal methods. The line 14
of the Paris Metro is one of the most exemplary outgrowth of this project. Currently,
the line deals with more than 45 000 passenger per day 5 and since, several auto-
matic rail lines have been built. Nowadays, STS and some other companies have
become experts at using formal methods in railway requirements. However, the ar-
duousness to master the use of these methods by mainstream software developers is
still a problem. The use of formal methods in the railway domain depends mainly
on the requirements type. This focuses on the train movement. More exactly, it takes
a close look at the Boolean equation validation issue.

7.3.6.1 The Boolean equations validation problem

Boolean equations or Boolean logic is a logical calculus of truth values. It has many
applications in electronics, computer hardware, and is the basis of all modern digital
electronics. In the rail domain, Boolean equations are used to define safety proper-
ties, such as the constraints that define the safe movement of a train from one lo-
cation to another. A set of Boolean equations (called Boolean Equation Library -
BEL) has to be generated for all paths in the model designed.

In industrial projects, those equations are generated manually and validated ei-
ther manually or with formal tools. Besides the time spent to construct and validate
these equations, sometimes errors or inconsistencies can still remain after the man-
ual validation has been done, a probability which can, at worst, lead to accidents or,
at best, if detected on time (that is, during the test phase), force developers to rework
the equations from scratch.

7.3.6.2 Using Formal methods to validate Boolean equations

A preliminary analysis has been done using a confidential real case provided by a
Brazilian transportation company in order, firstly, to test the efficient use of formal
methods, and secondly, to convince companies to change from manual to formal
validation. This study aimed to revalidate a specification which was already val-
idated manually. First, the example was translated into a classical B machine. A
parser that converts the Boolean equations to B [5] notation has been developed in
order to automatise the translation. This machine has been run in ProB and, it gave a
counterexample showing a small error which was not detected in the first validation,
two speed limits could be selected, non deterministically, at the same time. This case
study has been taken at random, which means that probably there are other examples
that contain errors and that were validated manually. This study has, firstly, shown
companies the need to replace the manual validation by a formal validation, and sec-
ondly, revealed the necessity of developing a formal tool to automate the validation
of Boolean equations from a graphical model.

7 Formal Methods as an Improvement Tool 113

7.3.6.3 The VeRaSiS plug-in

The VeRaSiS plug-in is a tool for validating the movement of trains in a railway
system. It is Eclipse-based and is built for extensibility. The VeRaSiS plug-in pro-
vides three main features: firstly, a graphical simulation of use cases, secondly, a
fully automatic Boolean equations generation, and finally validation of the Boolean
equations. The VeRaSiS plug-in comes up with a graphical interface allowing users
to design railways systems. The BEL is automatically generated. After this, a for-
mal tool is used to validate it. Error messages are translated into straightforward
messages in order to shield users from the formal language. Even so, to be able
to be used in an industrial environment, a minimum understanding of formalism is
needed.

7.3.6.4 Results

We have presented a new formal tool to model railway specifications and validate
trains movement properties. This Eclipse plug-in is designed for industrial needs
and developed in order to meet the requirement that mainstream users can develop
formal railway models while remaining as far as possible from difficult formal spec-
ifications. The VeRaSiS plug-in replaces the traditional Boolean equations valida-
tion process which is not strong enough to guarantee the safety level required as
stated before. This project has proved the VeRaSiS concept in a case study based
on an industrial specification. The study has two important conclusions. Firstly, the
fact that we have to optimize the algorithm for generating the BEL from the graph-
ical model and the translation template from BEL to Event-B. Secondly, the need
for further work: normally the translation in one to one, as one BEL becomes one
event, however as the complexity grows, introducing new kinds of BEL, this rule
might not be valid anymore, which implies that there are further studies that need to
be done. We also need to generate a set of rules for each kind of BELs that need to
be created in a real project, as in the case study we selected only one (or two) kinds
of BEL, so that we could validate the concept, but all the required equations have to
be generated in an operational model. Additional case studies would certainly find
other limitations of the VeRaSiS concepts. Our primary goal is to have a full first
version of the VeRaSiS plugin in order to prove its functionality.

7.4 Conclusions

Some words should be said about the introduction of FM in the development pro-
cess, mainly, in small companies (as in big ones, it seems to get easy as you could
just hire some specialists and put them to work together with the development team).
Until now, even after some training, we did not find a good way to change com-
pletely our development process. We do have some trained people that are able to

114 Aryldo G Russo Jr

understand and use, with some restrictions, Event-B and Rodin. But, it takes a lot of
time to get rid of the traditional approach and establish a new one (especially when
all products are already under development).

To overcome this problem, we have introduced formal methods gradually, in
points where (we thought) it would be of some help to improve the product quality
and dependability. In a perfect world, the approach of parallel development (FM and
traditional) would be ideal to convince people of its power.

Using formal methods informally does really help in changing the way of think-
ing, meaning that, even if not all the process is formalized, the minds involved in
the development are following a refinement process.

So far we use formal methods in different ways, like:

1. Verify gaps and mistakes in the natural language requirements. We model the
specified system (only the abstract model) and use it to reveal inconsistencies in
the natural language specification. Requirement traceability is a real problem in
big industrial projects as the main task of the management team is to show that
what was developed satisfies what was required. We have not found a way to
do that at this point (although we are closely following the ProR project which
may solve this problem)

2. We have specified the door system using different approaches (B, Event-B,
UML-B, etc.). It is a distributed system and different parts of the ”standard”
system might be used in different customer projects - it is a sort of product line.
‘We have not found any way to re-use parts of the specification, only to reuse the
whole specification making any necessary modifications. Even with the Rodin
decomposition tool, it is not clear that we would be able to re-use parts of the
specification.

3. We think that the use of formal methods increases dependability of the system,
though we lack strong evidence for that. As we cannot yet generate code di-
rectly from the formal design, it is possible that errors that were avoided in the
specification and design steps might nevertheless be introduced in the manual
coding. Formalising the system helps a lot in getting a deeper understanding of
it; as a result we believe that some errors are avoided.

One point that was not yet possible to support by measurement, but I can say for
sure (based on my professional feelings), is that the adaption of formal methods,
and more precisely, the formal thinking has helped us a lot in structuring the devel-
opment process even if the application of formal languages was not fully achieved.
This helped us to increase the quality of the final product and to drastically decrease
the time dedicated to final tests.

References

1. Abrial, JR.: The B-book: assigning programs to meanings. Cambridge University Press,
New York, NY, USA (1996)

7 Formal Methods as an Improvement Tool 115

11.

12.

13.
14.

Ponsard, C., Dieul, E.: From requirements models to formal specifications in B. ReMo2V
CEUR Workshop Proceedings 241 (2006)

Jackson, M.: Problem Frames: analyzing and structuring software development problems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001)

Jastram, M., Leuschel, M., Bendisposto, J., Jr, A.R.: Mapping requirements to b models.
DEPLQY Deliverable - Unpublished manuscript (2009)

Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley Professional (June 1992)

Ledang, H. Automated Software Engineering Conference

Jacobson, L.: Object-oriented development in an industrial environment. In: OOPSLA ’87:
Conference proceedings on Object-oriented programming systems, languages and applica-
tions, New York, NY, USA, ACM (1987) 183-191

Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (2002)

Ochodek, M., Nawrocki, J.: Automatic transactions identification in use cases. (2008) 55-68

. Darimont, R. and van Lamsweerde, A.: Formal refinement patterns for goal-driven require-

ments elaboration. In: Proceedings of the 4th ACM SIGSOFT symposium on Foundations,
1996.

Butler, M. and Hallerstede, S.: The Rodin Formal Modelling Tool. http://
deploy—-eprints.ecs.soton.ac.uk/4/1/eventb.pdf

J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
Press, May 2010.

ProB. Animator and model checker, February 2012.

Gunter, C. and Gunter, E. and Jackson, M. and Zave, P. A Reference Model for Requirements
and Specifications. IEEE SOFTWARE, 41, 2000.

Chapter 8

Critical Software Technologies experience with
Formal Methods

Alex Hill, Jose Reis,Paulo Carvalho

Abstract Critical Software Technologies(CSWT) participated in the DEPLOY project
as an Associate and the chosen case study was the Integrated Secondary Flight Dis-
play (ISFD) used onboard commercial and military aircraft. The chosen case study
was used to explore and learn both Event-B method and the toolset Rodin. This
chapter relates the experience of CSWT with Event-B in the context of DEPLOY,
describing the advantages of the formal method for the domain safety and mission
critical systems and lessons learned. The conclusions achieved show that Event-
B has great potential in the safety and mission critical systems domain. The per-
formance of the verification and validation process defined in DO-178 and ECSS
standards may also be improved if the formal method is adopted to verify the con-
sistency and completeness of requirements. The formalisation of system properties
early in the lifecycle and the formal analysis of those properties through controlled
experiments are seen as the right route to reduce costs.

8.1 Domain description

Critical Software Technologies (CSWT) has always been involved in the domain
of safety and mission critical systems development. The company’s role has been
not confined only to the actual design of safety critical systems but has included the
verification and validation of high integrity systems developed by external suppliers.

The domain of safety and mission critical systems development applicable to
CSWT can be characterised by having in general very well defined processes that :

e identify the planning, development, verification and validation, configuration
management and quality assurance activities required to produce a system

Jose Reis
Critical Software Technologies Ltd,2 Venture Road,Southampton Science Park, Chilworth,
Southampton - SO16 7NP,United Kingdom e-mail: jreis@critical-software.co.uk

117

118 Alex Hill, Jose Reis,Paulo Carvalho

o identify the evidence required to demonstrate that specific activities have been
conducted. For instance DO-178B defines the level of coverage required in Veri-
fication and Validation Activities depending on the criticality of the software

e define what activities are required for each criticality level

Examples of standards which are used in aerospace and defence are DO-178B,
ECSS-E40 and DEF-STAN 56. Each standard has specific clauses that in general
impact on the quality of the outputs, cost and schedule of the project. Taking DO-
178 for example, the standard identifies specific criticality levels for the software.
Level-A is the most critical level and E the lowest one. Anomalous behaviour within
a system classified as Level-A would most likely result in a catastrophic event e.g.
the loss of an aircraft whereas anomalous behaviour within a system classified as
Level-C would result "only’ in a major failure condition of the aircraft e.g. requiring
the pilot to take manual action. Anomalous behaviour within a system classified as
Level-E would not have any significant effect on the aircraft’s operation or pilot’s
workload. The degree of testing coverage will vary depending on the criticality of
the software in these terms. Avionics software classified as Level A requires 100%
MC/DC (Modified Condition/Decision coverage) - which means that every entry
and exit point in the program has been invoked at least once, every decision has
taken all possible outcomes and each condition in a decision has been shown to
independently affect that decision’s outcome. Avionics software classified as Level
C requires 100% statement coverage, which means that every statement in the pro-
gram has been exercised. In terms of costs the following table illustrates the delta
cost and schedule of DO-178 per criticality level:

Table 8.1 Delta cost and schedule of DO-178 per criticality level [2]

Level E Level D Level C Level B Level A

Baseline Level E+5% Level D+20% Level C+15% Level B+5%

Whilst the existing standards provide a very good reference, which among other
things reduces the need to constantly ’reinvent the wheel’, they do not address all
the practical problems faced by industry:

1. Heterogeneous development environments use a variety of tools; where most
are not integrated. One of the downsides of having an heterogeneous devel-
opment environment is that the effort required to propagate a change up and
down the documentation hierarchy can be high and cost the project a significant
amount of money. It is also very error prone, because it is very difficult to guar-
antee the consistency between different levels of specification or abstraction

2. Requirements ambiguity is an issue that ultimately impacts on the cost of a
programme. In practice requirements are specified and reviewed using various
methodologies as per the applicable standards, but specifications are produced
containing requirements which are not testable, or which are ambiguous or in-
complete.

8 Critical Software Technologies experience with Formal Methods 119

3. Late detection of major design issues follows from the previous two issues.
Effectively, systems engineering programmes are constrained by commercial
pressures which lead to rushing of specifications generated at early stages of the
lifecycle and then reviews of those specifications are conducted under similar
levels of pressure. The end result is the identification of major problems during
the test campaign; problems which cannot be solved by simply making a change
in the software code. The problem often goes all the way back to the poor quality
of the requirements specification.

8.2 Case study overview

The ISFD chosen by CSWT for this case study is used to provide attitude, air and
navigation information in the event of a primary display failure, supporting pilots
decisions in terms of:

Determining the correct aircraft attitude, and exact altitude and airspeed.
Determining the correct glide slope approach and localiser angles in relation to
the runway

e Determining whether there is a fault in the ISFD unit

From one single display pilots obtain the following data: Pitch ladder, Indicated
Airspeed, Altitude, Vertical speed ascending/descending, Side Slip, Status and fault
data. The level of criticality associated with the software running within the ISFD
unit is level-B.

8.2.1 Project Team Structure

The team working in the project was structured as follows:

/ CSWT Team \

e . Project/Technical
FM Research Hea P Manager

V v

FM Research

Specialist Project Engineer

Fig. 8.1 Team composition

The CSWT team had no previous experience with Event-B or Rodin, and so
the team went through four training sessions provided by Southampton University.

These were half day sessions followed by workshops with Southampton University
reviewing the models produced by CSWT and to provide further training on specific
topics such as model decomposition. The training sessions proved to be very useful
and demonstrated with practical examples that the methodology is not theoretical.

8.2.2 Modelling experience

The starting points for the work were two specifications developed externally: the
High Level Design Specification and a Product Description Specification.

The approach adopted was split into several phases, each one effectively a suc-
cession of iterations between requirements and the Event-B model:

e Phasel

— Included the generation of a requirements document from scratch using exist-
ing knowledge of the system

— Allowed experimentation with the RODIN tool and the creation of some very
basic models

e Phase II

— Requirements specified in the previous phase were re-factored
— Generated new Event-B model covering System Power On/Off Events and
Attitude Alignment events

e Phase III

— Refactored requirements to cover Display properties and relationship between
segments and the display

e Phase IV

— Created abstract model covering :
Display Modes, Segments, Display Data Values and Status sets
Events to address updates on values
Created first refinement to address range checking and attitude alignment

The first phases did not follow a consistent methodology because the input spec-
ification was not structured to a suitable level in as much as the specifications mixed
logical aspects of the design with physical aspects. The first method used consisted
of modelling the system using a UML class diagram as shown in the figure below:

The class diagram proved to be quite useful when reasoning about the main sets
in the model and the relationship between sets. The UML class diagram enabled the
identification of the sets in the Event-B model. Further experience in other projects
confirmed that this step is quite valuable as a precursor to the modelling work in
Event-B. UML class diagrams facilitate the analysis of the system and the transla-
tion from a natural language specification to an intermediate model that can easily
be translated into sets and relationships in the Event-B model.

Display

Display Segment

1

Fig. 8.2 Example class diagram used

An extract of the context model created is provided hereafter:

CONTEXT deployISFDV01_CO1
SETS

MODE
SEGMENT
VALUE
STATUS

CONSTANTS

Nominal

IBIT

ILS

PitchLadder
RollScalePointer

AXIOMS

axm01: partition(MODE,{Nominal},{IBIT},{ILS})
axm02: partition(STATUS,{ON},{OFF})
axm03: SEGMENT = {PitchLadder, RollScalePointer,BaroCorrection, Airspeed, Altitude, VerticalSpeedAsc}
axm04 : Segment_mode € SEGMENT < MODE
axm05: Segment_mode = {(PitchLadder — Nominal),(RollScalePointer —
Nominal), (AircraftSymbol — Nominal), (Airspeed — Nominal), (Altitude —
Nominal), (VerticalSpeedAsc — Nominal), (VerticalSpeedDesc — Nominal), (SideSlip —
Nominal), (Knob — Nominal), (PitchLadder — ILS), (RollScalePointer — ILS), (AircraftSymbol —

ILS)}

The following extract provides examples of some invariants modelled :

INVARIANTS

inv0l: current_-mode € MODE

inv02: active_segments C SEGMENT

inv03: segment_value € SEGMENT — VALUE
inv04: system_status € STATUS

inv05: aircraft_speed € N

inv06: f_attitude_init € FLAGS

inv07: alignment_button € STATUS

inv05: f_reference_system_correction € FLAGS
inv07: yaw€Z

inv10: normal_acceleration € 7
invil: lateral_acceleration € 7
inv12: baro_unit € BARO_UNIT
invi14: f_baro_set € FLAGS

The following extract provides examples of some events were modelled:

EVENTS
Event changeSpeed =
begin
actO01l: aircraft_speed :€ N
end

Event SystemPowerOn =

when

guardOl: system_status = OFF
guard02: aircraft_speed < 1
then

actO1: system_status := ON
act02: current_mode := Nominal
end

Event ArtitudeAlignment =

when

grd02: pitch < 50

grd03: yaw < 50

grd04: roll <50

grd05: lateral_acceleration < 32

grd06 : normal_acceleration < 125

grd07 : normal_acceleration > 75

grd08: system_status = ON

grd09: current_mode = Nominal \V current_mode = ILS
then

act3: f_attitude_alignment := TRUE
end

Event PressAlignmentButton =

when

guardl: system_status = ON
guard2: alignment_button = ON
then

actionl: f_reference_system_correction := YES
end

Some of the difficult decisions included how to refine the model and how to de-
compose it. CSWT’s experience showed that it is easy to capture too many elements
in the first level of abstraction in the Event-B model and that the consequence is for
proofs to be more difficult to generate and for the model to become more complex. A
cookbook developed previously by Southampton University Electronics and Com-
puter Science group [3] aiming at developing a systematic process for modelling
and refining a control problem system by distinguishing environment, controller and
command phenomena, proved to be a valuable method of separating concerns and

8 Critical Software Technologies experience with Formal Methods 123

dividing the problem into smaller problems susceptible to a structured approach.
The cookbook [3] identifies a pattern which helps separating the controller from
monitoring and operator actions. Using this pattern the Event-B model identified
events related with the monitoring of sensors values, the outcome of a set of values
in the display unit, leaving at very abstract level sensors. Events related with oper-
ator actions such as changing display mode were also captured. Each of the three
main types of events, i.e. monitoring of values, actions resulting from certain condi-
tions and operator actions were refined vertically. Despite the number of refinements
in this case study being limited, the experience of CSWT shows the cookbook [3]
is a valuable resource in simplifying the refinement process. The cookbook applies
mainly to control systems but it can be tailored to other types of systems, for in-
stance in the context of the case study the concept of controller does not apply.

The case study developed in the context of DEPLOY provided a good basis to
understand how Event-B can help strengthen requirements. The proof generation
mechanism flags up when there is a problem with the requirements, and the model
checker confirms that the model has been constructed correctly. Future work is be-
ing conducted to further explore the usage of Event-B to develop Cyber-physical
systems! [1] and to formally verify properties of COTS-based solutions.

8.2.3 Summary of results

CSWT’s investment in this project was sufficient to allow the drawing of con-
clusions on the potential of the Event-B method: in particular, in the context of
safety and mission critical systems engineering. Prior to this activity CSWT had not
worked with formal methods but known successful applications of formal methods
on real cases such as the Paris metro, A380 avionics and the UK National Air Traffic
Services (NATS) - Interim Future Area Control Tool Support (FACTS) set high ex-
pectations. CSWT investment was carefully controlled and the model produced was
relatively simple as shown in table 8.2. Notwithstanding this, the results achieved
were encouraging and CSWT is already working on two additional projects where
the Event-B method is being used.

Table 8.2 Event-B Model Metrics

Metric Value

Number of Axioms

Number of Events 13
Number of Invariants 14
Number of refinements

! Cyber-physical systems are integrations of computing and physical mechanisms engineered to
provide physical services including transportation, energy distribution, manufacturing, medical
care and management of critical infrastructure

124 Alex Hill, Jose Reis,Paulo Carvalho

The experience of CSWT with formal methods showed that there are two main

advantages to be gained:

Requirements strengthening : RODIN and the automatic proof generation mech-
anism highlight when there is a problem with the system requirements. Thinking
about the problem in terms of sets and invariants pushes the system engineer to
further think about the problem and the solution and to come up with a more
complete set of requirements that can be verified using proof generation.
Traceability between refinements : RODIN and the refinement mechanism facil-
itate a breakdown of the system and guarantee the consistency and traceability
between different levels of refinement. The fact that traceability between refine-
ments is ensured by the tool is key to managing large scale models

There are still a number of characteristics that are important for CSWT which

have potential and which may be improved:

Traceability between requirements and formal model: traceability between re-
quirements specified in a natural language and the formal model (static and
dynamic models) is done manually, CSWT believes this should be automated.
There are several tools which provide mechanisms to ensure requirements spec-
ified in tool A are synchronised with design models specified in tool B, and any
changes in the requirements are flowed down to the design model.

Test case generation from formal model: The generation of test cases from a
formal model would be quite useful in confirming the correctness of the model
and facilitating system level verification. Further work is already being done in
the context of another FP7 project (see ADVANCE website [1]).

Team-based formal development : the parallelisation of activities in a design
model is required to enable efficient usage of project resources and to meet strin-
gent programme timescales. For instance if a classical approach is adopted the
system will be broken down into smaller parts and each part will be allocated to
different teams. Each team can then work on its allocated part and various syn-
chronisations points can be defined to better assure the interfaces between the
various system parts. CSWT sees refinement and decomposition as essential fea-
tures to facilitate team working, but several levels of refinement may be required
before specific sections of the formal model can be allocated to different team
members. From a process perspective it is important to understand how to refine
models to enable a quick transition to an environment where engineers can work
concurrently on models. The toolset has to support the process, therefore it is
also important that the toolset enables automatic synchronisation of work pro-
duced by different teams for instance by providing a facility for merging models
and highlighting differences between subsets of the formal model.

8.3 Lessons Learned

The experience of CSWT in DEPLOY provided a number of lessons to be learnt:

8 Critical Software Technologies experience with Formal Methods 125

e Definition of scope and system boundaries: It is very important to establish at
the start of the project which parts of the system are going to be formalised and
which parts are only to be captured at an abstract level. This becomes quite im-
portant in a scenario where a company is taking its first steps with formal models.
Jean Abrial Raymond [4] presents in his book several examples of how this can
be achieved. For instance, in the context of the case study CSWT decided to ex-
clude from the modelling sensors behaviour, numerical processing done within
the ISFD and display brightness adjustments, so that effectively everything that
is outside the display unit is seen as environment and is modelled at an abstract
level.

e Focus on the principles and set theory : It is very easy to get carried away with
the formal language syntax and lose focus on the principles associated with set
theory, refinement and decomposition. It is really important to learn the set theory
and to think about the problem in terms of sets from the start. Class diagrams like
the one depicted in Figure 8.2 and the relationships between the different sets
have to be well established at the start of the work and the team should ensure
this is the case at the earliest stages of the modelling. If for any reason the team
gets stuck in proving a particular invariant it is recommended that they go back
to the drawing board to review the sets and relationships.

e Technology transfer: Training is important but it is even more important to be
given a chance to experiment with the methodology on smaller case studies, es-
pecially if the engineering team background does not include any formal meth-
ods experience. The experience in DEPLOY showed that working closely to-
gether with a group of professors with several years of experience helped with
the grasping of the concepts associated with formal methods and provided access
to other practical examples of their successful application which would otherwise
not have been available.

e Mathematical language requires dedication: The approach adopted requires ded-
ication and regular commitment. The team of engineers lined up to learn and use
the methodology has to have time allocated to exercise the methodology week
after week, otherwise the classical development mindset will prevail over the
formal methods mindset.

e Benefits of formal methods should be presented from the start: It helps to see case
studies where the method has been used successfully, especially if the engineer-
ing teams are sceptical about the usage of the approach. Jean Abrial Raymond
[4] presents in his book several real scenarios where Event-B is used.

Acknowledgements Critical Software Technologies would like to thank the DEPLOY consortium
for the opportunity that was given to participate in the project and would like to give a special
thanks to professors Michael Butler and Abdolbaghi Rezazadeh from Southampton University.

126 Alex Hill, Jose Reis,Paulo Carvalho

References

1. Advanced Design and Verification Environment for Cyber-physical System Engineering,
urlhttp://www.advance-ict.eu/index.html

2. Hilderman V (2009). DO-178B Costs Versus Benefits. High Rely.

3. Sanaz Yeganefard, Michael Butler,Abdolbaghi Rezazadeh. Evaluation of a Guideline by For-
mal Modelling of Cruise Control System in Event-B, ECS, University of Southampton, 2010.

4. Jean-Raymond Abrial.Modeling in Event-B, System and Software Engineering,Cambridge
University Press,2010.

Chapter 9

Experiences Deploying Event-B in an Industrial
Microprocessor Development

Stephen Wright and Kerstin Eder

Abstract The XCore microprocessor is an embedded device developed by XMOS
Ltd of Bristol, UK. The Instruction Set Architecture (ISA) contains a range of typ-
ical instructions such as control-flow, register-to-register calculation and memory
access, but also provides support for efficient multi-threaded programming, paral-
lelism and communication with other devices via fast interconnects. Support for
these features is integrated into the ISA of the XCore. This greatly improves run-
time performance, at the cost of introducing specialist instructions to the ISA, which
comprises 170 instructions. The ISA contains instructions of both two and four byte
length, and implements a very compact encoding scheme. The XCore is general-
purpose and has been exploited in a range of different markets, including audio, dis-
play, communications, robotics and motor control. As part of a Knowledge Transfer
Secondment (Grant EP/H500316/1) at the University of Bristol, a formal model of
the complete ISA was constructed in the Event-B notation, using the Rodin toolset.
This project applied and extended the Event-B and Rodin based techniques for ISA
analysis, developed at the University of Bristol, to an industrial setting.

9.1 Introduction

One of the most fascinating aspects of a computing machine is its instructions: a
relatively small set of obscure functions that, when combined in large sequences,
forms the familiar properties of a computer program. Thus the same machine may
be used to calculate a tax return, play a video game, or keep an otherwise uncontrol-

Stephen Wright
University of Bristol, Department of Computer Science, MVB, Woodland Road, Bristol BS8 1UB,
UK, e-mail: stephen.wright@bris.ac.uk

Kerstin Eder
University of Bristol, Department of Computer Science, MVB, Woodland Road, Bristol BS8 1UB,
UK, e-mail: Kerstin.Eder@bristol.ac.uk

127

128 Stephen Wright and Kerstin Eder

lable aircraft in the air, simply by changing the seemingly unfathomable sequence of
binary digits loaded into its memory. This “Instruction Set Architecture” (ISA) [5]
also defines the interface between the hardware and software worlds, being distinct
from the micro-architecture, which is the hardware logic (and sometimes firmware
functions) used to implement it. These two worlds are often populated by two dis-
tinct sets of engineers, communicating only informally by using natural languages
such as English.

The lack of any intuitive connection between the details of a computer’s ISA and
the behavior of a functioning program presents another problem: how to clearly de-
fine the ISA and how to ensure that all the combinations of instructions that could
occur are covered. This is a classic instance of a problem where the sheer num-
ber of combinations exceeds our ability to understand, in particular, to exhaustively
cover all the cases. Formal Methods are best suited to overcome problems of ex-
actly this nature. The difficulty in understanding has also been exacerbated with the
appearance of Reduced Instruction Set Computer (RISC) machines, in which the
instruction set is designed purely for efficiency, with no thought to easing the bur-
den of a programmer attempting to write a program or understand the rationale of
a knotty instruction sequence. Also, as with many things in life, computers spend
most of their time being fair weather sailors, running programs that work most of
the time. This is reflected in the lack of consideration routinely given in practice to
error handling, i.e. handling the occasions when things do go wrong.

In this chapter we introduce the XMOS XCore commercial microprocessor, and
describe a project to capture its pre-existing ISA specification formally, using Event-
B and Rodin. We explore the need for accurate specification of the device and de-
scribe the origins of the project, its schedule, and the formal model that was pro-
duced. We then consider the issues that arose in developing a formal specification
in an industrial setting, and the issues of introducing these techniques into a pre-
existing design and verification flow based on conventional methods.

9.2 The XCore Microprocessor

The XCore microprocessor is an embedded device developed by XMOS Ltd of Bris-
tol, UK. XMOS is a “fabless” semiconductor company of about 60 employees, and
was founded in 2005, funded by a combination of enterprise and venture capital. The
XCore is general-purpose and has been exploited in a range of different markets, in-
cluding audio, display, communications, robotics and motor control. The technology
is re-used in multiple products, including a four-core device that can run up to 32
real time tasks, and a single core device that can run up to 8. The ISA contains a
range of typical instructions such as branching and jumping, register-to-register cal-
culations and memory access, but also provides support for efficient synchronized
multi-threaded programming, parallelism and communication with other devices
via fast interconnects. Support for these features is integrated into the ISA of the
XCore, in contrast to the usual memory-mapped approach. This greatly improves

9 Experiences Deploying Event-B in an Industrial Microprocessor Development 129

run-time performance, at the cost of introducing specialist instructions to the ISA.
The ISA contains instructions of both two and four byte length, and implements a
very compact encoding scheme. Some instructions have long and short forms, which
are functionally identical but allow greater range in their parameters. Thus the total
number of decoded instructions is 209: a relatively small number.

The XCore ISA is published in a specification document [6]: this is similar to
many other published ISA specifications, listing each instruction in alphabetical or-
der of its assembler mnemonic, and containing a mixture of natural language de-
scription and semi-formal pseudo-code notation.

9.3 The Need for Accurate Specification

The way that microprocessors work implies that loaded binary images are extremely
fragile mechanisms: a simple bit flip can cause subtle errors in the selection or
parametrization of an instruction, potentially leading to a catastrophe, even in the
absence of any hardware bugs. Such errors are also extremely difficult to locate and
correct, because bad values may be stored within the machine and not reveal them-
selves until many instruction cycles later. Source code debugging tools are com-
monly available with most tools, but these are targeted at correction of high-level
programming mistakes, and themselves rely on the ISA being fully understood. A
published ISA specification is the primary reference source for engineers and com-
puter scientists developing and optimizing the compiler tools. More directly, func-
tions may be coded in the device’s assembly language: this is particularly common
in the mass consumer market. Therefore accurate specification is especially impor-
tant to developers working away from the original processor designers, such as cus-
tomers or third party tools suppliers.

Although not yet relevant to XMOS, microprocessor vendors may and do license
use of an ISA without its proprietary micro-architecture, leaving the licensee to pro-
vide a separate implementation. In these cases it is vital for ISAs to be correctly de-
fined both in terms of their self-consistency and completeness. This ensures that all
software targeted at the ISA will execute identically, regardless of implementation.
The last point is particularly true for ISAs that partially expose micro-architecturally
related behaviors, such as early instruction pre-fetching, or scheduler mode changes.

9.4 The XCore Formalization Project

9.4.1 Project Objective

Our primary objective for the XCore ISA formalization project was to provide a rig-
orous re-statement of XMOS’s existing specification. In particular, we were seeking

130 Stephen Wright and Kerstin Eder

to identify errors or omissions in the document. These could be direct mis-statement
of behavior or formats, omission of possible conditions, and ambiguity in possible
interpretations.

9.4.2 Project Context

The XMOS project was conducted as a 12 month Knowledge Transfer Second-
ment (KTS). KTSs are funded by the UK government’s Engineering and Physical
Sciences Research Council (EPSRC). One objective of the KTS scheme is to place
academic researchers in commercial organizations soon after the completion of their
studies, in order to transfer and exploit their hard-won, and hard-funded, new ideas
into industry. The XCore ISA formalization project was an exact fit to the KTS ob-
jectives: the project applied and extended the Event-B and Rodin based techniques
for ISA analysis developed by our doctoral research at the University of Bristol,
which derived a formal specification of a small-scale academic ISA, dubbed “MI-
DAS” [10]. The KTS benefited from the close links between XMOS and the Uni-
versity. XMOS hosted the project from October 2010 for one year. As part of the
original proposal we planned a specific set of tasks and objectives, and then re-
ported on progress throughout the 12 months. We describe these tasks next, and
their achievement during the project.

9.4.3 Project Tasks

9.4.3.1 Architecture and Tool Chain Familiarization

The Architecture and Tool Chain Familiarization task covered initial familiarization
with all aspects of the XCore, with particular emphasis on the ISA and XMOS’s tool
support for it [8]. It included studying the ISA documentation, understanding the
aspects of the micro-architecture that affect the ISA, and writing test executables to
run on XMOS’s real and software-emulated devices. We fully completed this task,
gaining full understanding of all the instructions and their interactions, ready for
their capture into the formal model.

9.4.3.2 Hand-Coded Virtual Machine

The Hand-Coded Virtual Machine (VM) task developed an ISA-level instruction
set emulator written in C, using libraries developed during the MIDAS project. We
then re-ran the test executables created for the initial familiarization on this new VM,
checking our understanding and flagging the inevitable mistakes. We completed this
task for the “core” instructions of the ISA, i.e. the conventional operations found in

9 Experiences Deploying Event-B in an Industrial Microprocessor Development 131

almost all microprocessors. These were sufficient to run basic C programs and allow
us to enhance the Event-B methods for completion of the entire ISA. In spite of
the seemingly unnecessary duplication of effort, the hand-coded VM and test suite
provided an efficient “bootstrap” of the combined tool/model development.

9.4.3.3 Rodin Tool Set Review

Due to the fast pace of development in the field, during the Rodin Tool Set Re-
view task we researched all the developments made by the Rodin development and
user community since the MIDAS project, with particular emphasis on editing, au-
tomatic refinement, automatic proof discharge techniques and automatic code gen-
eration. The latest stable release was installed. The task was fully completed: a de-
tailed review of the available Rodin tool-set was conducted, and key extensions
were selected to aid the development process. This task was more complicated than
expected. Some extensions were clearly sufficiently ready and capable of boost-
ing productivity, specifically the newly available text editor [1] and theorem prover
“Relevance Filter” [7]. Others were found to be potentially useful but could not be
adopted due to being insufficiently mature.

9.4.3.4 ISA Model Editor

Experience from the MIDAS project made it clear that the default editing tools pro-
vided by Rodin would be insufficient for the XCore. Therefore we planned the ISA
Model Editor task; to develop an ISA-specific editing tool to allow rapid construc-
tion of repeating patterns in events and theorem structures. Fortunately, we were
able to provide the functionality of this proposed tool by a combination of using the
Rodin text editor to allow rapid copy-and-modify development, and expansion of
the C auto-generation tool to allow more concise statements to be constructed.

9.4.3.5 ISA-specific Proof Tactics

Another lesson from MIDAS was that, as model size increased, many formal proofs,
although conceptually simple, would require proof guidance and result in frequent
time-consuming manual interventions. Therefore we planned the ISA-specific Proof
Tactics task to enhance the supplied proving tools with new tactics, aiming to drasti-
cally reduce the need for manual proof guidance. Ideally, automatic proof discharge
of all theorem proofs would be achieved. We enhanced the tool with combination of
the existing “Relevance Filter” plug-in and modification of the Rodin core platform
to introduce one new automatic proof tactic (possible due to Rodin’s open-source
release). These improvements were essential, boosting automatic discharge from
approximately 10% to 64%, but still a long way short of the ideal 100%, or the 95%
typically achieved with small models by the default tools.

132 Stephen Wright and Kerstin Eder

9.4.3.6 Generic Modeling Framework Update

With these groundwork tasks completed, we were ready to begin: the Generic Mod-
eling Framework Update task sought to customize and enhance the reusable generic
model developed for MIDAS, by capturing some of the special features of the XCore
ISA at an abstract level. Due to tight time constraints this task was partially com-
pleted, being performed for only the core instructions.

9.4.3.7 XCore ISA Formalization

The main objective of the project, creation of a full specification of the XCore ISA
in Event-B, had been divided into two sub-tasks to provide a clear milestone and in
recognition of the greater technical complexity of the second part. The first iteration
sought to define the XCore’s basic infrastructure and core instructions. It was pos-
sible to extensively reuse the techniques originally developed for MIDAS. This task
was fully completed well within the planned schedule. The second iteration sought
to capture the significant XCore-specific functionality, potentially the entire ISA.
Again we fully completed this sub-task, but it dominated the project and consumed
about half its resource, preventing other tasks from being completed. Reasons for
this were the complexity of the XCore special instructions (particularly multi-thread
management and communication) calling for considerable expansion of the model-
ing methodology and tools, and the issue of automatic proof discharge not being
adequately resolved. Publishing of the complete ISA with all proofs discharged,
however, represents a significant success.

9.4.3.8 B2C ISA Refinement and Automatic VM Generation and Test

MIDAS experience emphasized the importance of VM generation and test, and we
planned the B2C [9] ISA Refinement task to provide a special refinement step to al-
low automatic code generation via the B2C auto-generation tool, another product of
MIDAS. Instead of following our original plan, a better solution was found: we ful-
filled the task’s intent with the enhancement of the B2C tool and the development of
more concise Event-B constructs, allowing a VM to be generated directly from the
main formal specification. Although these are described separately, in reality gener-
ation and test of the VM went hand-in-hand with model construction and expansion
of the test-suite to exercise them. The automatically generated VM allowed the de-
velopment of a detailed test-suite exercising both the generic and special features of
the ISA.

9 Experiences Deploying Event-B in an Industrial Microprocessor Development 133

9.4.3.9 Formally Derived ISA Specification

We had scheduled a task covering the generation of a natural language document
derived from the formal specification, describing the ISA behavior under all condi-
tions. This was not achieved in the time available, although numerous corrections
to the existing specification were identified and reported via XMOS’s computerized
reporting system.

9.4.4 Project Results

Detailed documentation describing the structure of the formal model, and instruc-
tions for its download, build and execution was fully completed and all deliverables
were made available in the public domain.

Overall, the project followed a familiar pattern for speculative development
projects. Tasks resembling previous experience ran inside their anticipated sched-
ules (e.g. construction of generic instructions and automatic code generation). More
novel tasks overran their schedules (e.g. multiple register context description, au-
tomatic proof discharge). Equally typical were the unforeseen “showstopper” prob-
lems that could in isolation cause the project to fail completely (e.g. scaling issues
within Rodin and underestimating the complexity of XCore-specific functionality).
These problems were only overcome by in-project development of new tools and
techniques.

9.5 Selecting Event-B as a Formal Method

There are a wide variety of Formal Methods available: VDM, B-Method and Z
are well known examples. Z specifications and VDM modules allow for the de-
scription of individual machines, and Classic-B also allows individual machines to
be combined into larger systems. Z notation is only capable of system specifica-
tion and modelling, whereas B-Method and VDM are specifically intended to allow
refinement through to implementations. VDM and B-Method support similar no-
tions of action definition, although B-Method syntax gives an appearance closer to
a conventional programming style, using imperative substitutions to represent state
transitions, as opposed to VDM’s and Z’s implicit representation through pre and
post conditions. Therefore, it is probably more immediately familiar to engineers
raised on conventional programming languages, although this is not necessarily an
advantage when trying to stress the more declarative intent of model notations.

As with MIDAS, the XCore ISA specification was constructed using the Event-
B formal notation. Event-B is an evolution of B-Method (now often referred to as
Classic-B), originally intended for formal development of software in industrial ap-
plications. Event-B supports the incremental decomposition of system behavior into

134 Stephen Wright and Kerstin Eder

separate guarded atomic actions, acting on a defined set of state variables represent-
ing the stored state of the system. Static verification of a specification is performed
by automatic generation and automatically-assisted discharge of Proof Obligations.
Event-B’s primary advantage is its flexibility, both in the notation itself and its sup-
porting tools. To address the latter, Event-B was developed closely alongside a sup-
porting open-source tool-set, Rodin. Rodin has a modular architecture based on the
Eclipse framework with clearly defined Application Programming Interfaces (API),
and supports expansion via the addition of Eclipse plug-ins. Rodin is supported by
a mixed academic and industrial development community, which has contributed
many plug-ins ranging in function from top-level user-interface support to low-level
translation of refined models to C.

The selection of B-Method and Event-B in particular was driven by several
factors. Event-B is a simplification of Classic-B, decomposing machines into the
eponymous discrete events, explicitly linked to their abstractions. This encourages
more incremental refinement and easier verification by the generation of more easily
discharged proof obligations, enabling the practical construction of larger systems.
As already stated, Event-B’s primary advantage is its flexibility, both in the nota-
tion itself and its supporting tools. Regarding the former, Event-B does not strictly
define a notation, but a methodology for the construction and analysis of linked log-
ical objects. The notation seen when using tools is actually an arbitrary front-end for
users familiar with Classic-B and Z notation. The Rodin tool-set allows flexibility
in the presentation and manipulation of the underlying linked database that repre-
sents the loaded model. This feature provides the capability to enhance the notation
by the addition of syntactic sugar and the automation of repetitive procedures. The
tool may be enhanced to expand its scope across the development process, allowing
complete end-to-end refinement within a single development environment.

Offsetting the advantages of Event-B and Rodin was its immaturity. Rodin de-
velopment is proceeding very rapidly but, as this project demonstrated, some func-
tionality is still evolving. The flexibility offered by the Rodin architecture, however,
allows immediate shortcomings to be overcome by provision of locally produced
plug-ins, reducing risk to development. This is an essential feature in an industrial
setting.

9.6 Formal Specification

Modelling in Event-B typically stars from an initially very abstract representation
and is conducted in a series of refinement steps, each adding more detail to the
model, until the final model is reached containing all details required for coding
or, ideally, automatic code generation. In contrast to this “top-down” modelling
methodology, which results in a hierarchy of increasingly more complex models,
the XCore ISA is “flat”, i.e. the complete specification is presented at the full level
of detail. This left the challenge of developing a meaningful method of decompo-
sition and abstraction, so that “top down” stepwise refinement could be applied to

9 Experiences Deploying Event-B in an Industrial Microprocessor Development 135

arrive at a “bottom layer” that represents the full level of detail, i.e. all information
necessary to execute compiled binaries. This detail could then be exploited by the C
source code auto-generation tool to generate an instruction set emulator VM.

Following the modelling methodology of MIDAS, the entire instruction space
of the XCore ISA was initially represented by an abstract set Inst. This technique
allows all aspects of the representation to be abstracted, including any numerical
values that may be assigned by a particular implementation. /nst represents all pos-
sible instructions that may be presented to the processor at run-time, including both
valid and invalid. Instruction groups are constructed by the successive partitioning
of sub-sets of Inst based on common features, e.g. control flow instructions, instruc-
tions which access the internal storage, load/store instructions, etc. This gives rise
to a hierarchy of abstraction layers. These sub-sets are then employed in the guards
of events describing the possible outcomes of execution of a particular instruction
group. An event describing the successful execution of the instruction is initially
created by appropriate refinement of its abstract event. Complementary events de-
scribing all possible failure conditions for the instruction are then derived by the
negation of each guard in the successful-execution event within the constraints of
the corresponding abstract failure event. One failure event is constructed for each
negated guard and inherits the actions of the abstract failure event.

In order to assist understanding by a human reader, enhance reuse of repeated
constructs, and simplify manipulation, Event-B features were used to partition the
specification into many smaller Event-B files. Partitioning of the model was per-
formed both “vertically”, in which instructions are grouped according to their gen-
eral properties, and “horizontally”, in which events are incrementally enriched via
the Event-B “extends” mechanism.

The XCore ISA implements 176 operations, some of which have multiple encod-
ings, resulting in 209 possible instructions. Construction of each of these instruc-
tions, with all their possible exceptions and a few non instruction-related events,
yielded a total of 690 “events”. The formal model of the XCore ISA was structured
with the intention of being the basis of a refined abstract model for some or all of
the ISAs functionality in the future.

9.7 Results

As expected, formal construction of the ISA specification revealed several issues
in the published document, generally falling into three classes. Firstly, direct errors
were found, where a detail is unambiguously incorrect, and a compiled executable
would never execute correctly under the specified behavior. An example of this was
the transposition of instruction fields in a format descriptor. Secondly, ambiguities
were found which could be open to misinterpretation and potentially lead to dif-
ferences in behavior between different interpretations, an example being modulo
arithmetic being used for address-offset calculation but not explicitly stated. Finally,
omissions of certain functional conditions were discovered, typically esoteric error

136 Stephen Wright and Kerstin Eder

scenarios. An example of this was the omission of an exception being thrown when
the same register index is specified for both destination fields in a dual-destination
instruction.

The project yielded a particular curiosity: the XCore ISA has a total of 209 de-
coded instructions (i.e. 176 operations, with 33 having two encodings, which thus
yield separate events). The 690 events of the model therefore implied an instruc-
tion/event ratio of 3.3. For the MIDAS ISA, 34 instructions yielded 109 fully de-
composed events, implying an instruction/event ratio of 3.2. In the absence of other
information, we used the MIDAS-derived figure to estimate the magnitude of the
project at its beginning. This would seem to be a reasonable initial estimate when
planning modeling of other ISAs and test-case coverage projects in future.

9.8 Tool Experiences

The standard Event-B notation allowed all the required aspects of the ISA to be de-
scribed, but not efficiently. The model events contain excessive repetition, mitigated
by encapsulation of multiple statements into macro axiom statements, and use of the
“extends” function. However, this approach is not compatible with integration into
an event refinement hierarchy.

In contrast to the typical verification process for small, complex academic Event-
B models, errors in the ISA specification were not generally discovered directly
by proof discharge (or lack of it). Instead, a sound description was achieved by
careful construction and simulation of events capturing successful instruction ex-
ecution across a large but simple model, followed by systematic construction of
counter-cases (such as exceptions). Proof discharge played an essential role in en-
forcing model soundness across this large number of events, which rapidly expanded
to more than a human ‘“head-full”. The model yielded a vast number of “well-
definedness” proof obligations, and these served to ensure that all the disparate com-
ponents had been assembled in a compatible manner. Some direct discovery of bugs
did, however, occur: an example was the modulo-addition implicit in address-offset
calculation being signaled by failure of the well-definedness proof of its result. On
the subject of proof discharge, one conclusion became clear to us: discharge of all
proof obligations is essential, as the last few to be discharged within a given piece of
functionality tend to be where mistakes are revealed. Without discharge of all proof
obligations, a flat model such as this provides little added value beyond that of one
coded in a non-formal language.

As anticipated, scaling issues dominated the proof discharge process, causing
many proofs that were amenable to automatic discharge to require manual interven-
tion. Considerable effort was made in restructuring the model and enhancing the
proof tools to mitigate this. Nonetheless, 36% of the proof obligations had to be dis-
charged manually, and modifications to the early horizontal partitions of the model
had to be considered carefully. The Rodin tool’s ability to cache and reapply proofs
after being trivially touched was of some help, but many changes (such as renam-

9 Experiences Deploying Event-B in an Industrial Microprocessor Development 137

ing of variables) would break many proofs such that full reproof was needed. For
a project requiring over 1700 manual proofs, this was a problem in the industrial
domain.

In contrast to many proprietary tools, Rodin provides good support for user and
third-party extension development. The open-source model adopted by Rodin en-
hances these features by supplying copious, easily obtainable examples as the basis
of new developments (for example, development of the B2C tool was initiated with
study of a rich-text document generator). Beyond plug-in development, open-source
also provided the ability to modify the core platform itself, which provided an es-
sential escape method for some issues. However, modification of the core requires a
further level of expertise beyond that of a plug-in developer. This flexibility allowed
the tool to be extended to the point that the entire development process was affected,
by inclusion of the VM testing step. The flexibility and fast development of Rodin
and its open-source model is offset by its rapid evolution requiring some careful
management. This can consist of API evolution rendering plug-ins incompatible,
through to the need for ongoing review of available tools and their maturity, in order
to maintain productivity improvements.

Event-B models and proofs could only be fully inspected via the Rodin tool, This
presented a problem: the company technical officers wished to review the model as
a conventionally formatted document, without the need to install and learn Rodin.
Thus the model was manually formatted into the appendix of a Word document,
with added structured headings allowing browsing via the table-of-contents.

The existing company design flow includes a non-formal statement of the ISA’s
functionality, corresponding to the formal restatement provided by this project. This
existing specification is stored in a linked database, and expressed in XML files.
Thus, if the formal model were to be integrated into this design flow, Rodin ar-
chitecture would provide easy integration via generation of XML input files in the
existing format. This would be achieved by development of an appropriate plug-in:
a relatively straightforward process.

9.9 Industrial Perspective

Although a technical and academic success, XMOS does not plan to integrate the
formal ISA model into its existing design flow. The company has, however, al-
lowed it to be published as open-source: it has been made available on the website
of the EU industrial formal methods project “Deploy”, and XMOS’s own open-
source website. This approach has stimulated comment and questions in the forum
of XMOS’s tech-savvy customer developers. Thus, the model will be further main-
tained and developed by the academic and industrial communities, and the possi-
bility exists for its uptake in the future, when tools and model are more mature and
resource is available. Such an approach is possible for the ISA of the machine as
this is the lowest level of functionality intended for the public domain, and contrasts
with the highly proprietary nature of its micro-architectural implementation.

138 Stephen Wright and Kerstin Eder

The goals of the formal ISA project and the setting up of the secondment that im-
plemented it were strongly supported by the company’s Chief Technology Officer,
motivated by academic interest and longer-term quality goals. Such goals could not
be supported in the short term by the product support and development team else-
where in the company. In particular, the long-serving design flow maintainer left
the company early in the project and his role was split between two replacements,
who found themselves well occupied with simply picking up the existing tools and
methodology. Cultural and practical issues such as this cannot be dismissed, as staff
turnover and re-division of responsibilities within a company are a common occur-
rence.

XMOS’s existing verification methods are based on conventional methods, i.e.
some static verification of designs supported by EDA tools, complemented by ex-
tensive test-suites running on emulators of various complexity as well as actual sil-
icon. As is to be expected for such a methodology, the company has several func-
tional models of the ISA already, and any attempt to introduce another will need
to demonstrate significant advantage with respect to these. For example, the impor-
tance of complete proof obligation discharge is not immediately apparent to engi-
neers unfamiliar with formal methods, as it provides a form of static analysis not
performed with conventional methods. The added value of the additional check is
easily grasped by experienced engineers but needs to be made explicit. As well as
its technical role, the use of formal model based simulation is also important in this
respect. It fulfills the role of existing emulators and thereby instills confidence in the
method in an audience familiar with conventional methods.

Most of the errors uncovered in the published ISA specification (such as ambigu-
ous error definitions) would be significant for a safety critical product, for which
resilience to multiple simultaneous system failures are a major factor in the design
process, but are not considered so important for consumer products. This is a fact
familiar to any user who has rebooted a PC after an unhandled failure or lost a con-
nection on a mobile phone: unhandled failure is acceptable. Thus current methods
are seen to be sufficient for the fast-moving consumer market, and there is little mo-
tivation to change to more rigorous methods with their associated risks and costs
in time and resource. Once a successful product has been developed, even an agile
start-up is reluctant to modify its methodology quickly.

The XMOS secondment also allowed us to gauge the popular perception of For-
mal Methods in the engineering community: these were in keeping with the usual
observations. Formal Methods are generally assumed to be used to construct flat
specifications, i.e. without the use of refinement and hierarchical models to cap-
ture abstract properties and requirements, and aid understanding to construct well
validated specifications. Theorem proving is usually assumed to be used for static
verification of equivalence between this flat specification and a conventional imple-
mentation: the use of theorem proving to enforce correctness within the specifica-
tion, via techniques such as well-definedness and invariant proving, is not common
knowledge. Formal Methods are also often assumed to replace all or most testing:
the dynamic testing of formal models and their use for test generation is not com-
mon knowledge. This was perhaps demonstrated during the initial definition of the

9 Experiences Deploying Event-B in an Industrial Microprocessor Development 139

project goals: the industrialists were interested in a simple unambiguous statement
of the existing specification, whereas the academics where interested in exercising
other techniques such as refinement, simulation and test generation.

9.10 Suggested Improvements

The XCore ISA is one of the largest Event-B models constructed to date, and the
experience confirmed a point already understood by the Event-B community: scal-
ing of tools to handle models far larger than academic examples is essential for the
industrial domain. This includes tasks such as editing (by enabling sub-division of
models as well as large file handling), building, proving (e.g. automatic proof dis-
charge for large hypothesis sets) and work allocation (e.g. parallelization of work
and proving to allow team working). For example, editing and build performance
should be comparable to that of conventional integrated development tools, and au-
tomatic proof discharge needs to remain at the approximately 95% achieved for
small models. These capabilities are essential in any tool’s core platform in order to
provide a firm foundation for any subsequent high-level tools.

Once a reliable, scalable core tool is available, the provision of familiar user in-
terfaces is recommended for gaining acceptance and leveraging existing industrial
skills. For example, UML and Simulink front-ends are not necessarily the ideal ve-
hicles for presenting the underlying formal techniques being used, but are de-facto
industry standards and could therefore help to achieve these goals. Automated pre-
sentation of a model’s event and refinement inter-relations in graphical and linked-
document form (such as XML) will also allow efficient reviewing via standard desk-
top tools.

Finally, reliable support is needed for a successful industrial tool. Academic and
open-source tools are generally provisioned with free and well informed but unreli-
able support from a disparate community, relying on the good will and enthusiasm
of its members. For many industrial projects, tool purchase costs are not the ma-
jor cost of a project, whereas down-time costs due to inadequate support could be.
Industrialist project managers are often justifiably nervous about relying on infor-
mal support from an unpaid community. The commercial organizations that exist
to support (and fairly profit from) the open-source Gnu toolset and Linux operating
system are possible examples of a successful model.

9.11 Event-B Modelling vs Conventional Formal Verification

It is important to appreciate the added value from modelling in Event-B as opposed
to using other formal methods available to industry for verification such as model
checking or, still rather rarely, theorem proving. Model checking, sometimes re-
ferred to as property checking, is now used quite routinely in the microelectron-

140 Stephen Wright and Kerstin Eder

ics design industry, and more recently also in embedded software development.
Assertion-based design [4] has gained in popularity and is now widely used. En-
gineers understand the benefits of assertion-based verification; the fact that property
checking is fully automatic has greatly improved uptake in industry. State-of-the-
art verification environments exploit assertions both during simulation, to monitor
design activity, and for formal property checking. While formal property checking
has become an accepted technique to demonstrate desired properties of a design, in
practice the remaining challenge is for engineers to know whether they have speci-
fied “enough” properties, and, also, how much of the design is actually covered by
the existing properties. This is still a hot topic of research.

Event-B offers a different, complementary, much more structured and system-
atic approach that overcomes exactly this problem. Modelling in Event-B starts
from first principles, typically a trivially simple abstraction, and properties must
be preserved during refinement. Formal modelling forces engineers to think when
selecting an appropriate representation and, as a consequence, they benefit from the
implicit semantics of the constructs they chose. This has the added advantage of
not having to define a domain-specific semantics for most of the model - this comes
“for free”. Self-consistency and completeness are inherent to the model by construc-
tion, provided all proof obligations have been discharged. Mathematical proof thus
serves several purposes during modelling. The first is establishing self-consistency
and completeness of the model. The second is ensuring that each refinement step is
valid. Both are enforced in Event-B by default through the generation of proof obli-
gations. The third is to demonstrate domain-specific properties which are explicitly
introduced during modelling in the form of invariants and theorems. Specific to ISAs
are, e.g. deadlock freedom, i.e. the ISA defines transitions for all input conditions
for all processor states, and determinism, i.e. the ISA defines exactly one change to
the processor state for each input condition.

For practitioners familiar with state-of-the-art verification approaches that use
formal methods such as model checking or theorem proving, the question of What
exactly is being verified with this (new) method? may arise. This is not an unfa-
miliar question for us. To answer it we must understand the fundamental difference
between verification and modelling. Verification is the process used to demonstrate
the correctness of a design with respect to its specification [2]. By its very nature,
verification requires descriptions of a design at two levels of abstraction: one higher
level, this one is typically referred to as the specification, and one lower level. In
addition, a method is needed to establish correctness of the lower-level description
with respect to the higher-level one. In the context of microprocessor verification,
the higher-level specification is typically the ISA, or a set of properties derived from
the ISA, while the lower-level description is often the micro-architecture of the pro-
cessor. Formal methods used include model checking, predominantly in industry,
and theorem proving, predominantly in academia. Verification establishes whether
or not the micro-architecture correctly implements the execution of instruction se-
quences exactly as specified in the ISA. Verification thus relies on the fundamental
assumption that the ISA is functionally correct, self-consistent and also complete in
that it must cover all the behaviors of the processor. In practice, this is very difficult

9 Experiences Deploying Event-B in an Industrial Microprocessor Development 141

to achieve. In fact, a lot of time is spent resolving inconsistencies and filling omis-
sions in the ISA during micro-architectural design and verification. Recent work
has extended coverage metrics so that the degree of completeness of a specification
can be established retrospectively [3]. Ideally, however, a specification should be
developed in such a way that these important properties are an integral part of it
from the outset. This is exactly what can be achieved by modelling in Event-B. The
final product of an ISA formalization project in Event-B is both self-consistent and
complete and can thus serve as a solid specification at the front-end of a traditional
verification flow. Even more value can be added to the verification process when the
next generation of the processor is being developed. Typically, this is done by mak-
ing extensions to parts of the current ISA, often in isolation. Such extensions, unless
rigorously verified, can easily introduce inconsistencies within the newly extended
ISA itself, which then propagate into the design and finally, if undetected during
design verification, into the end product. The Event-B ISA model lends itself nat-
urally to modification and extension based on the principle of stepwise refinement.
The need to formally establish model consistency between refinement steps, which
is inherent to the Event-B method, guarantees the absence of inconsistencies being
introduced during the ISA extension process.

9.12 Conclusion

During the project we demonstrated that a formal specification of the XCore ISA,
a medium-scale microprocessor of approximately 200 instructions, could be suc-
cessfully developed in one man-year, by extending the methods of our smaller scale
academic project. Once again Pareto was right: large amounts of resource were ex-
pended on covering a small part of the specification’s footprint, in this case the
specialist instructions of the XCore, and the resulting expansion beyond previous
experience. This hot-spot also created risk for the project, as these new techniques
had to be created if we were to cover the entire functionality and legitimately claim
success.

Most, but not all of the initially set goals were achieved. The final product even
included additional features, specifically support for simulation and test. These were
found to be essential for both technical and cultural reasons. Although a technical
and academic success, the project’s results were not seen to be conclusive or ma-
ture enough to warrant integration into the host company’s existing, stable design
methodology. Perhaps deployment of such a modified design flow requires the re-
sources of a larger company and a window of opportunity presented by the start of a
new large project. However, the open-source culture and infrastructure of the formal
method used has allowed the model to be preserved and published outside the com-
pany, maintaining the possibility of future deployment and opening this application
up for future research.

142 Stephen Wright and Kerstin Eder

References

1. J. Bendisposto, F. Fritz, M. Jastram, M. Leuschel, and I. Weigelt. Developing Camille: A text
editor for Rodin. Software: Practice and Experience, 2011.
2. J. Bergeron. Writing Testbenches: Functional Verification of HDL Models. Kluwer Academic
Publishers, 2nd edition, 2003.
3. H. Chockler, J. Y. Halpern, and O. Kupferman. What causes a system to satisfy a specifica-
tion? ACM Trans. Comput. Logic, 9:20:1-20:26, June 2008.
4. H.D. Foster, A. C. Krolnik, and D. J. Lacey. Assertion-Based Design. Springer, 2003.
. J. Hennessy and D. Patterson. Computer Architecture: A Quantitive Approach. Morgan
Kaufmann, 2003.
. D. May. XMOS XS1 Architecture. XMOS Ltd., July 2008.
. J. Roder. Relevance Filters for Event-B. ETH Zrich, 2010.
. D. Watt. Programming XC on XMOS Devices. XMOS Ltd., 2009.
. S. Wright. Automatic Generation of C from Event-B. Workshop on Integration of Model-
based Formal Methods and Tools, 2009.
10. S. Wright and K. Eder. Using Event-B to Construct Instruction Set Architectures. Formal
Aspects of Computing, 23(1):73-89, January 2010.

V)]

NeIeSREN o)

Appendix B. Full Programme of the Federated Event

43

Deploy Federated Event
Rodin Developer Tutorial

Programme
Monday 27" February

Time

08:30 - 09:00

Coffee

Session 1:
Using the Rodin Theory Plug-in - Issam Maamria (1h)
Using the Rodin prover API to connect external provers

SMT Solver Integration - Systerel (30 min)
Isabelle/HOL integration - Matthias Schmalz (30 min)

11:00-11:15

Break

Session 2:

Creating and using custom/parameterized proof tactics
- Nicolas Beauger, Jean-Raymond Abrial (30 min)
Integrating plug-ins with ProB - Jens Bendisposto (30 min)

12:15-14:00

Lunch

Master Class session 1 (1h30) in 4 Rooms:

Room A : Developping Theories - Issam Maamria
Room B : Using custom/parameterized proof tactics
- Jean-Raymond Abrial, Nicolas Beauger, Thomas Muller
Room C : Parameterizing Isabelle with theories
- Matthias Schmalz
Room D : Developing for ProB - Jens Bendisposto

15:30 - 16:00

Coffee

Master Class session 2 (1h30) in 4 Rooms:

Room A : Developping Theories - Issam Maamria
Room B : Using custom/parameterized proof tactics
- Jean-Raymond Abrial, Nicolas Beauger, Thomas Muller
Room C : Parameterizing Isabelle with theories
- Matthias Schmalz
Room D : Developing for ProB - Jens Bendisposto

Deploy Federated Event

Rodin User & Developer Workshop

Programme
Tuesday 28t February
Day One
Time

08.30 - 09.00 | Coffee

09.00 - 10.30 | Session 1:
Welcome
SafeCap Modelling Environment - Alexei lliasov
Verification of a Railway Interlocking UML Model
Translation to UML-B - Gintautas Sulskus & Colin Snook
Component Reification in System Modelling - Jens
Bendisposto & Stefan Hallerstede

10.30 - 11.00 | Break:

11.00 - 12.30 | Session 2:
Code Generation Update - Andrew Edmunds C.].Lovell, R.
Silva, .LMaamria & M.Butler
Ensuring Extensibility with Code Generation - Chris
Lovell, A. Edmunds, R.Silva, I. Maamria & M. Butler
Towards a Certifying Code Generator for Rodin — Alexei
Iliasov
Generating Executable Simulations from Event-B
Specifications - Faquing Yan, Jean-Pierre Jacquot, and
Jeanine Souquieres

12.30-13.30 | Lunch:
Session 3:

13.30 - 15.30
Fault Tolerance Views - llya Lopatkin, Alexei Iliasov,
Alexander Romanovsky
Use of Rodin in FDIR Architechture for Autonomous
Systems - Jean-Charles Chaudemar
Pattern for Modelling Fault Tolerant in Event-B - Michael
Poppleton & Gintautas Sulskus
Extending Event-B & Rodin with Discrete Timing
Properties - Reza Sarshogh & Michael Butler

15.30 - 16.00 | Coffee:

16.00 - 17.30 | Session 4:

A Framework for Diagrammatic Modelling Extensions in
Rodin - Vitaly Savicks & Colin Snook

Systematic Development for Embedded Systems Design
using RRM Diagrams and UML-B - Manoranjan Satpathy,
Colin Snook, Silky Arora

CODA: A formal Event-B based Refinement Framework for
High Integrity Embedded System Development - John

d eﬂJ

Colley, Michael Butler, Colin Snook, Neil Evans, Neil
Grant & Helen Marshall

ADVANCE: Advanced Design & Verification Environment
for Cyber-Physical Systems Engineering - The Multi-
Simulation Framework - John Colley & Michael Butler

Deploy Federated Event

Rodin User & Developer Workshop

Programme

Wednesday 29th February
Day Two

Time

08.30 - 09.00

Coffee

09.00 -10.30

Session 5:

Proving Consensus - Jeremy Bryans & Alexei Iliasov
Verification and validation of BPEL processes - A proof
and animation based approach - 1dir Ait-Sadoune, Yamin
Ait-Ameur & Mickael Baron

Formal Specification of a Mobile Diabetes Management
Application Using the Rodin Platform and Event-B -
Daniel Brown, lan Bayley, Rachel Harrison, Clare Martin
Synthesis of Processor Instruction Sets from High-Level
ISA Specifications - Andrey Mokhov, Alexei Iliasov Danil
Sokolov, Maxim Rykunov, Alex Yakovlev, Alexander
Romanovsky

10.30 -11.00

Break:

11.00-12.30

Session 6:

An Event-B Plug-in for Creating Deadlock-Freeness
Theorems - Faquing Yang & Jean-Pierre Jacquot

The Theory plug-in and its Applications - Issam Maamria
& Michael Butler

Can rippling discover the missing lemmas for invariant
proofs? - Gudmund Grov, Yuhui Lin & Alan Bundy

Proof Hints for Event-B Models - Extended Abstract - Thai
Son Hoang

12.30-13.30

Lunch:

13.30 - 15.30

Session 7:

Requirements Traceability between Textual Requirements
and Event-B Using ProR - Michael Jastram, Lukas
Ladenberger & Michael Leuschel

Towards Relating Sub-Problems of a Control System to
Sub-Models in Event-B - Sanaz Yeganefard & Michael
Butler

Lessons from Deployment - Manuel Mazzara, Cliff Jones
& Alexei lliasov

Assessment of the Evolution of the RODIN Open Source
platform - Christophe Ponsard, Jean Christophe Deprez,
Jacques Flamand

15.30 - 16.00

Coffee:

16.00-17.30

Session 8:

A Rodin Plugin for automata learning and test generation
for Event-B - lonut Dinca, Florentin Iplate, Laurentiu
Mierla & Alin Stefanescu

VTG - Vulnerability Test cases Generator, a Plug-in for
Rodin - Aymerick Savary, Jean-Louis Lanet Marc
Frappier & Tiana Razafindralambo

Visualisation of LTL Counterexamples with ProB - Andriy
Tolstoy, Daniel Plagge & Michael Leuschel.

Deploy Federated Event
DEPLOY Industry Day

Programme
Thursday 1* March

Time

08:30 - 09:00

Coffee

Introduction — Alexander Romanovski

Experience in Formal Modelling of Mode-Rich Systems in
the Space Sector — Timo Latvala

Formal Modelling in the Railways — Hung Le Dang

10:30 — 10:45

Break

Formal Methods in the Engineering of Enterprise
Applications — Andres Roth

Formal Modelling in the Automotive Sector — Rainer
Gmehlich

12:15 - 14:00

Lunch

Event-B Modelling of a CBTC system and its (3D) Animation
—Thomas Muller

Formal Proofs for the NYCT line 7 (Flushing) Modernization
Project — Denis Sabatier

The Xcore Instruction Set Architecture in Event-B — Stephen
Wright

15:30 - 15:45

Coffee

Event-B for Embedded Systems — Jose Reis

Possible Applications of Event-B in Small Industries —Aryldo
Russo

A Collaborative FAQ Approach for Collecting Evidence on
Formal Method Industrial Usage - Jean Christophe Deprez

Formal Mind, ProB, ProR and Data Validation with B —
Michael Leuschel

