Information Society

openreplicatiow of datubases-——
: — 2 Mz =

Mt St and Media

Project no. 004758
GORDA

Open Replication of Databases

Specific Targeted Research Project

Software and Services

Interface and Modules Performance
Assessment Report

GORDA Deliverable D5.3

Due date of deliverable: 2008/03/31
Actual submission date: 2008/04/28

Start date of project: 1 October 2004 Duration: 42 Months

Universidade do Minho
Revision 1.0

Project co-funded by the European Commission within the Sixth Framework
Programme (2002-2006)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)
Cco Confidential, only for members of the consortium (including the Commission Services)

Contributors

Alfranio Correia Junior, U. Minho
José Pereira, U. Minho

Luis Soares, U. Minho

Luis Rodrigues, U. Lisboa

Nuno Carvalho, U. Lisboa

Robert Hodges, Continuent

Rui Oliveira, U. Minho

@)ecel

(C) 2007 GORDA Consortium. Some rights reserved.
This work is licensed under the Attribution-NonCommercial-NoDerivs 2.5
Creative Commons License. See
http://creativecommons.org/licenses/by-nc-nd /2.5 /legalcode for details.

Abstract

This report presents methodologies and procedures used to conduct perfor-
mance assessment on the GORDA reflection API and its corresponding map-
pings. We have relied on a model-driven development approach, in which sim-
ulation played an important role in the initial stages of the development cycle.
This has been previously detailed elsewhere. Eventually, every abstract com-
ponent got replaced by its respective real implementation, subject to stress
testing and benchmarking. The procedures for this undertaking are detailed in
this document.

Contents

1 Introduction 2
1.1 Objectives o 2
1.2 Relationship With Other Deliverables 2
1.3 Document Structure 3

2 APIs and Components 4
2.1 Group Communication 5
2.2 Database 7

221 MySQL Binding oL 8
2.2.2 Notes on the GAPI Implementation Effort 9
0

2.3 Benchmarking Tool-set 1
3 Performance Evaluation Results 12
3.1 Group Communication 12
3.2 Transaction Processing 15
3.2.1 Scenarios 18

3.2.2 Discussion e e e 20

4 Conclusion 24

Chapter 1

Introduction

This document presents methodologies and procedures used to conduct perfor-
mance assessment on the GORDA reflection API and its corresponding map-
pings. GORDA proposes several components and a reflection API for database
replication, which required early and frequent tests during the development cy-
cle. A derivative of these tests, eventually led to the foundations of the validation
and performance assessment benchmarking processes.

‘We have relied on a model-driven development approach, in which simulation
played a big role in the initial stages of the development cycle. This has been
thoroughly detailed in D5.1 Report. Eventually, every abstract component got
replaced by its respective real implementation, subject to stress testing and
benchmarking. The procedures for this undertaking are detailed in the rest of
this document.

1.1 Objectives

This report aimas at:

e presenting the methodologies and procedures used to assess the GORDA
components;

e providing insight of the major distinguishing details between the several
mappings regarding the group communication and database APIs;

e provide representative performance results of the existing prototypes.

1.2 Relationship With Other Deliverables

The descriptions and results herein directly relate to the prototypes presented
by deliverables D3.3 - Replication Modules Reference Implementation, D3.5
- Group Communication Protocols Report, D4.3 to D4.6 - In-Core Proof-of-
concept, Middleware Proof-of-concept and Hybrid Proof-of-concept, respectively.

This reports complemenets deliverable D5.1 - Performance and Reliability As-
sessment Report.

1.3 Document Structure

This document is structured as follows: Chapter 2 presents relevant technical
details that may play a major role in performance evaluation, either of the APIs
as well as their implementations. In particular, Section 2.1 brings forth issues
related to the Group Communication APIs (JGCS) and its bindings. Moreover,
Section 2.2 does the same for GORDA database reflection interfaces (GAPI),
by analyzing reference implementations of the API. Chapter 3 presents the per-
formance assessment results. Section 3.1 shows results obtained when assessing
message throughput and performance overhead when using jGCS and two of its
bindings (for Appia and JGroups). On the other hand, Section 3.2 presents the
performance results for transaction processing when using a GORDA replica-
tion stack, for all three GORDA reference implementations. Finally, Chapter 4
concludes the report.

Chapter 2

APIs and Components

The GORDA architecture is comprised of three sets of components: i) the Ap-
plication Programming Interfaces (e.g., for database reflection, GAPI, and for
group communication, jGCS); ii) the API mappings (either GAPI or jGCS im-
plementations); and iii) the database monitors (which required instrumentation
for in-core implementations). Not all of these components were benchmarked
individually, but all of them were ultimately assessed by benchmarking a fully
compliant GORDA software stack.

Apart from these functional components, others, geared towards benchmark-
ing and performance assessment, were developed, either from scratch or from
formal specifications. The latter, may be classified in different categories de-
pending on their focus. Classification is performed according to the following
categories:

Workload generators. Their task is to provide realistic data in the form of
inputs to the system. The workload is much more valuable as it is more close
to reality. This was a major concern when deciding which benchmarks were to
be used.

b-probes. Benchmarking probes were developed to extract raw structured
data to be fed to numeric computation tools responsible to address statisti-
cal processing; b-probes differ from f-probes which are responsible to extract
information during run-time and feed decision making modules that operate
actuators on the system, handling gracefully and autonomically particular ex-
temporaneous behavior. b-probes do not induce any relevant overhead on the
overall system behavior, otherwise they would be jeopardizing their purpose.

Statistical software. As already mentioned above, b-probes output raw, but
yet structured, data related to the system behavior. This data needs to be
parsed and fed to statistical engines that transform the provisioned data into

Workload
Generators

Hardware
Codtim Environment Statistical Charts,
= and Software Tables,
Probes Computation Summaries

B RE

/

Figure 2.1: Component interaction.

human readable formats (charts, tables, summaries). Parsing and transforma-
tion is performed by using Python scripting and statistical engines rely on the
R Project for Statistical Computation [3]. Plotting is performed by using gnu-

plot [2].

Hardware environment. These are hardware components required to con-
duct the performance evaluation.

2.1 Group Communication

The set of group communication interface (JGCS) was implemented in sev-
eral group communication toolkits and primitives: Appia [13], JGroups [5] and
Spread [4]. To validate the generality of the service, jGCS was also implemented
using IP Multicast and NeEM [15]. All these bindings are open source and
available on SourceForge.net [11]. These toolkits and their implementations are
described in the following paragraphs.

Appia binding

Appia is a layered communication support framework that was implemented in
the University of Lisbon. It is implemented in Java and aims at high flexibility
to build communication channels that fit exactly in the user needs. The QoS
offered by a channel can be statically configured by an XML file or dynamically
assembled by the application at run time. The application can create several
channels with different QoSs and send messages to different channels, depending
on the QoS required by each message. In contrast with traditional layered
protocols, components of Appia channels can be shared and thus offer multiple

related Qualities of Service (QoS). This makes it easy, for instance, that several
channels can be bound to the same group membership.

Although Appia is protocol independent, in the sense that it can be used to
compose any protocol as long as it respects the predefined interface, it includes
an extensive layer library targeted at view synchronous group communication.
Namely, it has protocols that implement virtual synchrony, causal order, and
several implementations of total order algorithms.

The implementation of jGCS is built directly on the Appia protocol compo-
sition interfaces as an additional layer. jGCS configuration objects thus define
the micro-protocols that will be used in the communication channels. Each Ser-
vice identifies an Appia channel and messages are sent through the channel that
fits the requested service. As Appia supports early delivery in totally ordered
multicast, this is exposed in the jGCS binding using a jGCS service listener
interface. The Appia binding implements all extensions of the jGCS session
control interface, depending on the channel configuration.

JGroups binding

JGroups is a group communication toolkit modelled on Ensemble [9] and im-
plemented in Java. It provides a stack architecture that allows users to put
together custom stacks for different view synchronous multicast guarantees as
well as supporting peer groups. It provides an extensive library of ordering and
reliability protocols, as well as support for encryption and multiple transport
options. It is currently used by several large middleware platforms such as JBoss
and JOnAS.

The JGroups implementation of jGCS also uses the configuration interface
to define the micro-protocols that will be used in the communication channel.
JGroups can provide only one service to the applications, since configurations
only support one JGroups channel per group communication instance. The
JGroups binding implements all extensions of the jGCS session control interface.

Spread binding

Spread/FlushSpread [4] is a toolkit implemented by researchers of the Johns
Hopkins University. It is based on an overlay network that provides a messag-
ing service resilient to faults across local and wide-area networks. It provides
services ranging from reliable message passing to fully ordered messages with de-
livery guarantees. The Spread system is based on a daemon-client model where
generally long-running daemons establish the basic message dissemination net-
work and provide basic membership and ordering services, while user applica-
tions linked with a small client library can reside anywhere on the network and
will connect to the closest daemon to gain access to the group communication
services. Although there are interfaces for Spread in multiple languages, these
do not support the FlushSpread extension, which provides additional guarantees
with a different interface.

The Spread and FlushSpread bindings of jGCS use the configuration inter-
face to define the location of the daemon and the group name. The implemen-
tation to use (FlushSpread or just Spread) is also defined at configuration time.
In Spread, the quality of service is explicitly requested for each message, being
thus encapsulated in Service configuration objects.

Other bindings

To prove the generality of jGCS, we also provide two implementations, based
on the well known IP Multicast and on the Network-friendly Epidemic Proto-
col (NeEM) [15]. The NeEM protocol is an epidemic multicast protocol (also
called probabilistic or gossip-based) in wide-area networks that uses multiple
TCP/IP connections in a non-blocking fashion. The resulting overlay network
is automatically managed by the protocol. The implementations of jGCS that
use [P Multicast and NeEM allow peers to join and leave the multicast group,
and send and receive messages to/from other peers. One application that uses
only these functionalities can easily be ported to other implementations.

2.2 Database

In this section, we provide a brief description of each of the GAPI bindings,
including information about the number of lines of code required to implement
them, on each architecture.

Apache Derby Binding

Apache Derby 10.2[1] is a fully featured database management system with
a small footprint that uses locking to provide serializability. It can either be
embedded in applications or run as a standalone server. It was developed by
the Apache Software Foundation and distributed under an open source license;
It is also distributed as IBM Cloudscape and in the Sun JDK 1.6 as JavaDB.

The GAPI prototype implementation takes advantage of Derby being na-
tively implemented in Java to load meta-level components within the same JVM
and thus closely coupled with the base-level components. Furthermore, Derby
uses a different thread to service each client connection, thus making it possi-
ble that notifications to the meta-level are done by the same thread and thus
reduce to a method invocation, which has negligible overhead. This is therefore
the preferred implementation scenario.

Implementation Effort. The total size of the Apache Derby engine is
514941 lines of code. In order to implement the GAPI interface, 29 files were
changed by inserting 1250 lines and deleting 25 lines; in total, 9464 lines of code
were added in new files.

PostgreSQL Binding

PostgreSQL 8.1 [8] is a fully featured database management system distributed
under an open source license. Written in C, it has been ported to multiple
operating systems, and is included in most Linux distributions as well as in
recent versions of Solaris. Commercial support and numerous third party add-
ons are available from multiple vendors. Since version 7.0, it provides a multi-
version concurrency control mechanism supporting snapshot isolation.

A challenge in implementing the proposed architecture in PostgreSQL is
the mismatch between its concurrency model and the multi-threaded meta-level
run-time. PostgreSQL 8.1, as all previous versions, uses multiple single-threaded
operating system processes for concurrency. This is masked by using the existing
PL/J binding to Java, which uses a single standalone Java virtual machine and
inter-process communication. This imposes an inter-process remote procedure
call overhead on all communication between base and meta-level.

Therefore, the prototype implementation of the GORDA interface in Post-
greSQL 8.1 uses a hybrid approach. Instead of directly patching the reflector
interface on the server, key functionality is added to existing client interfaces
and as loadable modules. The proposed meta-level interface is then built on
these modules. The two layer approach avoids introducing a large number of
additional dependencies in the PostgreSQL code, most notably on the Java vir-
tual machine. As an example, transaction events are obtained by implementing
triggers on transaction begin and end. A loadable module is then provided to
route such events to meta-objects in the external PL/J server.

Implementation Effort. The size of PostgreSQL is 667586 lines of code;
the PL/J package adds 7574 lines of C code and 16331 of Java code. In order
to implement the GAPI interface on PostgreSQL 21 files changed by inserting
569 lines and deleting 152 lines, 1346 lines of C code were added in new files,
and 11512 lines of Java code added in new files.

2.2.1 MySQL Binding

MySQL [14] is a fully featured database management system. MySQL AB pro-
vides a freely downloadable version of its open source database. It is written in
C/C++ and it has ports to multiple operating systems. The most popular stor-
age engine, and the one that we have used, is the one created by InnoBase and
named InnoDB [10]. It provides serializable isolation level and ACID properties.
The core is multi-threaded, meaning that each connection is assigned its own
thread, unlike PostgreSQL which uses a single-threaded process per connection.
This has major impact on the overall performance as it avoids inter-process
communication and eases the implementation of extensions points that are to
be executed within the context of the original thread.

In the current pre-production version - 5.1 - the MySQL core has been re-
vamped and as consequence there are now interfaces that provide hooks for
pluggable modules. Several plugin types exist, most noticeable for storage en-
gines, but still, none for replication. Nevertheless, the architecture favored the

implementation of a plugin type for replication which holds a subset of the
GORDA interface.

Although the plugin was implemented both in C++ and Java, execution
context between MySQL and ESCADA was preserved by resorting to a Java
bridge coded using Java Native Interface [16], keeping overhead at the minimum.

Implementation Effort. The size of the patch to MySQL codebase is 1123
lines: 2 files added and 4 changed. The plugin that interfaces MySQL and Java
was implemented in 6 files in a total of 879 C++ lines.

Sequoia Binding

Sequoia 3.0[7] is a middleware package for database clustering built as a server
wrapper. It is primarily targeted at obtaining replication or partitioning by con-
figuring the controller with multiple backends, as well as improving availability
by using several interconnected controllers.

Nevertheless, when configured with a single controller and a single backend,
Sequoia provides a state-of-the-art JDBC interceptor. It works by creating
a virtual database at the middleware level, which re-implements part of the
abstract transaction processing pipeline and delegates the rest to the backend
database.

The current prototype exposes all context objects and the parsing and exe-
cution objects, as well as calling from meta-level to base-level with a separate
connection. It does not allow calling from base-level to meta-level, as execu-
tion runs in a separate process. It can however be implemented by directly
intercepting such statements at the parsing stage. It does not either avoid
that base-level operations interfere with meta-level operations, and this cannot
be implemented as described in the previous sections as one does not modify
the backend DBMS. It is however possible to the clustering scheduler already
present in Sequoia to avoid concurrently scheduling base-level and meta-level
operations to the backend, thus precluding conflicts.

Implementation Effort. The size of the generic portion of Sequoia is
137238 lines, which includes the controller and the JDBC driver; additional
29373 lines implement plugable replication and partitioning strategies, that are
not used by GAPI. In order to implement the GAPI interface on Sequoia, 7 files
were changed by inserting 180 lines and deleting 23 lines, and 8625 lines of code
were added in new files.

2.2.2 Notes on the GAPI Implementation Effort

The effort required to implement a subset of the GAPI interface can roughly be
estimated by the amount of lines changed in the original source tree as well as
the amount of new code added. The numbers presented in the previous sections
show that it is possible to implement the GAPI interface in various different
architectures, with consistently low intrusion in the original source code. This
translates in low effort both when implementing it but also when maintaining
the code when the DBMS server evolves.

Load Test | Description ‘
Runs mix of INSERT, UPDATE, DELETE, and SELECT
Evaluator | statements with ability to change percentages, alter number of
clients, and adjust number of rows

Table 2.1: Bristlecone main load test.

Note also that a significant part of the additional code is shared, namely in
the definition of the interfaces (6144 lines). There is also a firm belief most of the
rest of the code could also be shared, as it performs the same container and no-
tification support functionality. This has not happened as each implementation
was developed independently and concurrently.

Finally, it is interesting to note that the amount of code involved in de-
veloping a state-of-the-art server-wrapper is in the same order of magnitude
as a fullyfeatured database (i.e. hundreds of Klines of code). In comparison,
implementing the GAPI involves 100 times less effort as measured in lines of
code.

2.3 Benchmarking Tool-set

Continuent Bristlecone Test Tools

Bristlecone [6] test tools suite was designed to allow rapid performance bench-
marking across a wide variety of scale-out architectures. It is specifically tar-
geted at performance of primary-backup, state-machine, and certification based
architectures supported by GORDA. The main benefits in addition to address-
ing performance issues of interest to GORDA are rapid set-up and easy-to-read
output.

Continuent has released Bristlecone Test Tools under GPLv2 license and
the source code is therefore publicly available[6]. Contributions from other
GORDA participants are integrated in the code and are to be maintained on an
on-going basis. Continuent is also using the tools as a vehicle to promote the
overall GORDA architecture. (Plans for additional productization are discussed
further in D6.5.)

It provides a mean to easily conduct mixed load tests in which mixed trans-
actions are sent to the database to test overall scaling. Table 2.1 summarizes
the current main load test that is available.

Figure 2.2 shows typical output showing response time and request rates in
a test run. This graph also illustrates the ability to scale load during the test.

10

re 00 Continuent Cluster Monitor

Performance Statistics

’

Requests
s 58 &8 32 2 2

o

— Requests/sec
— Response Time

Milliseconds
g B

g

00:04 005 0O:06 0007 00:08
Time

00:0‘9

00:00 00:01 0002 DO:03

Figure 2.2: Typical graphical output generated from a bristlecone run.

Statistical Analysis and Data Plotting

R bindings to python [18] and python itself were used to conduct analysis over
raw structured data files. R provided means to easily conduct numeric/statis-
tical computation over the samples collected. This automated the process and
eliminated error prone ad hoc approaches to computation that one might be

tempted to create.

As for plotting data, gnuplot [2] was the tool selected. It provides a simple,

easy and clear script language to create advance plots in little time.

11

Chapter 3

Performance Evaluation
Results

3.1 Group Communication

We have done a number of experiments to assess the overhead imposed by the
use of jGCS to wrap different group communication toolkits. Namely, we wanted
to assess the impact of the extra level of indirection between the application and
the toolkit introduced by jGCS. For this purpose we have defined two different
sets of tests. In the first set we carried standalone throughput measurements for
two different toolkits, both with and without jGCS. In the second set of tests
we have integrated jGCS in a production environment, namely in the Sequoia
database clustering middleware.

Scenario I: jGCS for Appia and JGroups

To measure the impact of the jGCS on the maximum throughput of existing
group communication toolkits we have selected Appia and JGroups. To run the
experiments, we have implemented three different versions of a test application
that transmits a number of messages of a configurable payload size to the group.
One version uses the Appia native interface, other uses the JGroups native
interface, and the last version uses jGCS. This allowed us to run four different
configurations: i) the test application with Appia; i) the test application with
JGroups, iii) the test application with jGCS, configured to use Appia and iv)
the test application with jGCS, configured to use JGroups.

Measurements were obtained with the following environment. The JGroups
and the Appia protocol stack were created using similar configurations. All tests
used a virtual synchrony protocol stack and a token based total order protocol.
Furthermore, they were made with a group of three members, each member
sending 10 totally ordered messages to the group. Each member of the group
runs in a Pentium IV/2.8GHz server with 1GB of memory. The three machines

12

1800

L T 1800 T N T T
Appia + jJGCS —+— JGroups + jGCS —+—
1500 Appia ---x--- 1500 JGroups ——-x-—-
(%] [
£ 1200 - — £ 1200 —
g2 900 ” 2 900 e
< <
2 / 2
o 600 ¥ o 600
= £
= =
300 300 ¥
0 0
0 2048 4096 6144 8192 0 2048 4096 6144 8192
Message Size (bytes) Message Size (bytes)
(a) Appia Throughput. (b) JGroups Throughput.

Figure 3.1: Throughput of the toolkits with and without the jGCS.

were connected through a 100Mbps ethernet switch. Each test was carried
with different message sizes. Figure 3.1 shows the throughput of the two group
communication toolkits, using directly the interface provided by the toolkit
and using jGCS. As we can see in Figure 3.1(a), the Appia implementation of
jGCS does not cause a significant overhead and this overhead is increasingly less
noticeable as the message size grows. In the case of JGroups, in Figure 3.1(b),
the overhead caused by the jGCS is also very small but it grows as the message
size increases. This is explained as follows: For improved performance, JGroups
delivers messages in a buffer that can be reused later by the protocol, forcing
the application to locally copy data during delivery. The native JGroups test
application does not perform this copying, and thus has better performance. On
the other hand, the current jGCS binding does this copying in order to provide
the same service as other bindings and thus incurs in additional overhead. In
the future, this decision should probably be left to the configurator, thus making
it possible to achieve the same performance as with the native interface.

Scenario II: jGCS in Sequoia

The second set of tests measures the overhead of having jGCS in a real appli-
cation. To do these tests we used Sequoia that exports a JDBC interface to
applications and routes client requests to a set of databases. Sequoia is com-
posed by a JDBC driver, that is used by applications that want to access the
databases and a controller that receives the client requests and forward them to
a set of databases. For availability and fault tolerance, the Sequoia controller
can be replicated. Each controller manages a set of databases. In a system with
more than one controller, the application can use any controller to make the
requests. The controllers exchange their requests using total order multicast, to
execute the same set of requests in the same order in all databases.

The implementation of primitives that make use of group communication is
distributed as a separate package, Hedera (formerly ObjectWeb Tribe). In de-
tail, it provides access to an application specific subset of group communication

13

Throughput Over Time Throughput Over Time.

Normalized WIPS

|
Bt s mmm e s s o o S e 1 i e S S

- . L . L —] P n " . L]
o 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Time (s) Time (s)

(a) with jGCS (b) without jGCS

Figure 3.2: Throughput of Sequoia in WIPS.

and additional functionality for explicitly acknowledged messages, multiplexing
and dispatching. Hedera has been previously implemented against JGroups and
Appia. We ported Hedera to jGCS which allowed us to use Sequoia with any
jGCS implementation that supports the required service guarantees.

Performance figures were obtained in a system configured as follows. The
clients are a Java implementation of the TPC-W [12] that use the Jakarta Tom-
cat to make requests to a database. The requests are made to a sequoia con-
troller that replicates the requests. Sequoia is configured to use three controllers,
each one controls one MySQL database. The emulated browsers of the bench-
mark used and Tomcat run in one machine. The other three machines have
one instance of the Sequoia controller and one instance of the MySQL database
each. All four machines are connected by a 100Mbps ethernet switch and have
the same memory and processing power of the machines used in the previous
tests. In these tests, the benchmark was configured to have always 20 clients
(emulated browsers) making requests to the database, in the Ordering Mix (50%
of write operations).

Figure 3.2, shows the throughput of the Sequoia controller in normalized
Web Interactions Per Second (WIPS), one of the metrics defined by the TPC-
W implementation used. The Figure shows that the throughput of the system
is not affected by the usage of jGCS in the whole system, since the number
of WIPS over time is equivalent. Table 3.1 details even more, as it shows
that latency results, when using the Appia toolkit, either through the native
interface or through jGCS, are in practice the same. In fact, the difference is
not statistically relevant, even with a very low confidence level, as confidence
intervals overlap significantly. This shows that the use of jGCS is negligible in
the overall performance of a complex system.

14

Implementation | Mean | Std. Dev. | Samples
Native 39.96 41.10 3846
With jGCS 40.26 52.97 3832

Table 3.1: Latency of client requests of TPC-W (ms).

Component Node 1 Node 2 Node 3 Node 4
P (lhufa) (lhona) (inha) (ucha)
P Dual AMD Opteron(tm) | Dual AMD Opteron(tm)
FOCessor 2.4 GHz 1.5 GHz
Memory 4 GB 3 GB
Storage One 55 Gb dedicated volume for each node.
Network 1 Gbps (Ethernet)
Operating System Ubuntu 7.10

Table 3.2: Hardware and SO Specifications.

3.2 Transaction Processing

The GORDA interface has been implemented on four different systems, namely,
Apache Derby, PostgreSQL, MySQL and Sequoia. These bindings illustrate
the effort required to implement the GAPI using different apporaches. Details
about components implementations were already provided in Section 2.2.

The systems under test were deployed on a cluster of four HP Proliant ma-
chines. All shared a storage area network (SAN) by means of a fibre switch
which connected the nodes to an EMC storage tank with 1 Terabyte capacity
in RAID-5 configuration. A dedicated volume, sized at 55 GB, was assigned for
each of the nodes. Complete hardware, network infrastructure and Operating
System specifications is depicted in Table 3.2. Additionally, Figure 3.3 provides
a graphical layout of the involved hardware parts. Node 3 was used to start the
emulated clients that connected to the databases using a regular JDBC connec-
tion. Node 1 and 2 hosted the database instances. Finally, Node 4 was used to
compute raw data output from benchmark runs.

Performance evaluation was conducted by resorting to the TPC-b [17] bench-
mark. TPC-b is a stress test oriented benchmark with an update intensive
workload. It is characterized by significant disk I/O and moderate system and
application execution time. Focus is put on the performance of the database
management system with particular interest in the transaction processing. CPU
stressing occurs due to the absence of user think time between operations, and
I/O gets stressed, due to the mix of large amounts of small read and write
operations within each transaction.

15

Ihona
Ihufa
ucha

inha

Z 0 =
Workload

Console Replica
generator

Figure 3.3: TPC-b benchmark runs hardware layout and description.

Branch

1:M 1M
Teller 1M Account
h 1M
1M
Hist.

Figure 3.4: TPC-b Database Schema.

TPC-b simulates a bank information system. The bank is comprised of one
or more branches each of which having several tellers and holding accounts, one
for each costumer. As a whole, the database tracks the cash position of each
entity (branch, teller and account). Alongside, there is also a record or history
of recent monetary transactions run by the bank. Whenever a deposit or a
withdrawal is issued by a customer, a transaction is performed by a teller at
some given branch.

The database contains four tables: branches; tellers; accounts; and history.
Their logical relation is depicted in Figure 3.4. Only one type of transaction
profile exists in the system and an instance of this transaction is issued by ev-
ery emulated customer everytime it iterates. Five SQL statments compose the
transaction and are presented in Figure 3.2. Aid, Tid, Bid and Delta are gen-
erated according to the TPC-b specification on each transaction instantiation,
i.e. on each costumer application iteration.

16

UPDATE accounts
SET Abalance = Abalance + :delta
WHERE Aid = :Aid;

SELECT Abalance
INTO : Abalance FROM accounts
WHERE Aid = :Aid;

UPDATE tellers
SET Tbalance = Tbalance + :delta
WHERE Tid = :Tid;

UPDATE branches
SET Bbalance = Bbalance + :delta
WHERE Bid = :Bid;

INSERT INTO history (Tid, Bid, Aid, delta, time)
VALUES (:Tid, :Bid, :Aid, :delta, CURRENT);

Figure 3.5: TPC-b transaction profile.

TPC-b costumer emulation was performed by integrating its implementation
into Bristlecone. Bristlecone was also used to conduct experiments to assess read
scalability of GORDA middleware reference implementation, Sequoia. These
benchmarks were conducted by using Bristlecone workloads specifications.

The TPC-b benchmark choice was driven by three reasons: i) it provides an
update intensive workload, meaning that the GORDA reflection API pipeline is
mostly covered; #i) given its nature, it stresses out the reference implementations
and API mappings; and i) it is a benchmark that is supported on all the
prototypes developed during the GORDA project.

Ultimately, performance assessment relies on three metrics: transaction ex-
ecution latency; transaction overall throughput; and transaction abort rate.
Transaction execution latency provides a mean to measure the end-to-end over-
head as observed by the end user. Overall throughput measures the average
amount of work done successfully within a given period of time (we are con-
sidering one minute period). Although throughput already presents some hints
on how the system behaves, it does not distinguish contention, transactions
that get blocked waiting for others, from aborts, transactions that abort due
to deadlocking or conflict resolution. This is our third metric, the abort rate.
The results were obtained by conducting the runs several times and using a
percentile of 0.95 when calculating the average values. This eliminated outliers
values from the samples read resulting in excelent overall accuracy.

17

250

250

Vanilla —— Vanilla ——
Lo ---x-—- Lo ---%--—-
200 200 | P ---%---
__ 150 150
(%) (%)
£ £ .
100 100 %
50 p—— 50 / -
=== == x -
o */-/ o ==
0 16 32 48 64 0 16 32 48 64
Number of Costumers Number of Costumers
(a) Apache Derby (b) PostgreSQL
250 ; 2500 —
Vanilla —+— Vanilla ;/—+—
Lo ---x-—- Lo/ ---%---
200 Pb ---%--- 2000 - Pl ---%---
150 1500
)) .
E £
100 o 1000
50 500 X
0 | o et
0 16 32 48 64 0 16 32 48 64
Number of Costumers Number of Costumers
(c) MySQL (d) Sequoia

Figure 3.6: Average execution latency (ms).

Finally, we have also conducted micro-benchmarking for assessing read scal-
ability on several Sequoia proxies. The metric used in this case is the average
number of queries per second.

3.2.1 Scenarios

Scenario I: No Modifications (vanilla). TPC-b runs were performed against
an unmodified version of the original component (either in-core - derby and post-
gresql, or middleware - sequoia). Results obtained here, represent the baseline
for the evaluation. No intrusive GORDA patchs or GORDA overhead of any
kind are imposed.

Scenario II: Loopback (lo). Overhead of the GORDA API reflection inter-
face is assessed by performing runs against all three reference implementations.
For each of the three prototypes, a single database instance is configured for
GORDA notifications but coordination and communication stacks are set to
loopback nature. The resulting notifications are handled by a fake listener that
emulates the loopback behavior. No network communication and transaction
dissemination overheads are imposed in this setting.

Scenario IIT: Primary-Backup (pb). Overhead of a replicated database in
a cluster environment is assessed by conducting runs of TPC-b in a synchronous

18

100000

100000

Vanilla —— Vanilla ——
Lo —--x-—- Lo ---%--—-
80000 80000 Pb ---%---
\\
60000 - e R sz 60000
z z P
—
= 40000 " 40000 e
20000 20000 Homoggrs iz Sy
0 0
0 16 32 48 64 0 16 32 48 64
Number of Clients Number of Clients
(a) Apache Derby (b) PostgreSQL
100000 T T 100000 T T
Vanilla —+— Vanilla ——
Lo ---x-—- Lo ---%--—-
80000 - Pb ---%--- 80000 Pb ---%---
60000 - 60000
= =
= =
40000 ¥ 40000
B B ST S,
20000 20000
0 0
0 16 32 48 64 0 16 32 48 64
Number of Costumers Number of Clients
(c) MySQL (d) Sequoia

Figure 3.7: Average throughput (TPM).

primary-backup database replication scenario. The cluster contains two replicas,
a primary and a backup. Reflection, communication and coordination overheads
are assessed, given the synchronous nature of the replication protocol. The
synchronous property, means that the primary only replies to the customer once
the backup replica acknowledges the reception of the transaction. Node 1 and
2, from Table 3.2 were used to host primary and backup instances, respectively.

Scenario I'V: Micro-Benchmarks Micro-benchmarks provide detailed tests
of specific operations with the ability to vary test parameters like result set sizes
and numbers of clients systematically. Table 3.3 describes types of micro bench-
marks developed during the GORDA project timeframe. Bristlecone permits
many different types of tests of scale-out architectures. For example, it can help
evaluate proxy throughput and latency. Such latency is an important consider-
ation for scale-out solutions that use proxies. Sequoia mapping is itself a proxy,
as it is based on the original Sequoia software. Bristlecone provides a basic
benchmark for latency entitled ReadSimpleScenario. This scenario selects all
rows from a table of configurable length using a simple SQL query of the form
shown below:

SELECT * from benchmark_scenario_O
Fach client in the test repeats this query as fast as it can. The table used

for testing is relatively small and there is no other activity on the database,

19

25000 16

Myosotis Connector J—— MyosotisIConnector LA
pgpool-Il ---x--- pgpool-Il ---x---
= 20000 - PostgreSQL 8.3 ------ . 12k PostgreSQL 8.3 ---%--- 1
8 uni/cluster for PG & uni/cluster for PG &
¢ 15000 — .
g e —— Z s x
§ 10000
5]
p=3
(o4 5000 -
%l """"""""" Sk
o =
0 10 20 30 20 30
Clients Clients
(a) Query Throughput. (b) Proxy Latency Overhead.

Figure 3.8: Query micro-benchmarks.

which guarantees that the table contents will be in the server buffer cache,
thus rapidly accessible. Such a benchmark is helpful in establishing boundary
conditions for proxy performance, since it makes overhead induced by proxies
very easy to distinguish. Benchmark tests were run using the following hardware
configuration: Dell SC 1425 dual-core dual-CPU Xeon, 1 GB memory, SATA
disks.

3.2.2 Discussion

Apache Derby. Figure 3.6(a) shows that increasing transaction latency as
more customers are added to the system. This is due to higher contention rate
in queuing and locking. There is also an increased latency penalty as we go from
a vanilla deploy to a full synchronous primary-backup replication setting. The
additional latency in the loopback (lo) runs are due to extra calls to GAPI noti-
fication methods. Such calls are performed by a different thread from the one in
transaction execution, forcing a context switch thus worsening latency penalty.
Although not a bug, this is sure lacking an optimal implementation, which is
scheduled to happen in one of the next releases. The impact on throughput is
presented in Figure 3.7(a). It shows that increased load (number of customers)
leads to higher contention rate in locks resulting in a slight decrease in the over-
all throughput. Note that the benchmarks were conducted with read committed
isolation level, thence no aborts have been observed. Note: We were unable
to run Primary-Backup scenario using Apache Derby. We faced some excep-
tions during the execution and were unable to solve them in time to deliver this
report.

PostgreSQL. Figure 3.6(b) presents latency results for PostgreSQL. We can
find the same pattern as the one observed in Apache Derby. However, unlike
Apache Derby, PostgreSQL uses operating system processes instead of threads

20

Micro-Benchmark

Category Description

Measures latency on queries with ability to
generate result sets running to many millions

of rows. Ideally suited to testing performance
overhead of middleware solutions like Sequoia.
Measures performance of queries that perform
Read Scaling resource intensive queries. Current benchmarks
stress CPU and buffer cache (shared memory).
Benchmarks to test performance of simple update,
Write Latency updates that include queries (e.g., SQL UPDATE
requests), as well as mixed transactions.

GORDA testing and is incorporated in

the benchmark suite. Measures number of
Deadlocks deadlocks/aborts as transaction size scales.
Designed to test middleware and certification
approaches that offer one-copy serializability.

Read Latency

Table 3.3: Micro-benchmarks types developed during GORDA timeframe.

to handle incoming connections and foster concurrent transaction processing.
This makes difficult interaction between our Java-based replication engine and
the GAPI PostgreSQL binding. Although masked by using the existing PL/J
binding to Java, as explained previously, the context switch and the inter-
process communication (and the respecive necessary serialization) contribute
to the increased latency. Furthermore, collecting a transaction write set is done
by installing table level triggers that fire changes into an in-memory hash ta-
ble. This poses an additional negative performance impact. The synchronous
primary-backup replication results, very much like Apache Derby, present the
same overhead induced by serialization and data propagation. Nevertheless, al-
though serialization and propagation are pretty much the same in Apache Derby
and PostgreSQL, because are both handled by the ESCADA replicator, applying
remote updates in the backup replica poses much more background noise.® Ulti-
mately, this leads to more load on the backup replica related to all the require-
ments needed for the apply process, thence delaying delivery acknowledgment
to primary, resulting indirectly in latency penalty on other transactions.

MySQL. MySQL matches Apache Derby, in terms of latency results shown in
the Vanilla and Lo runs. This is depicted in Figure 3.6(c). MySQL uses a multi-
threaded core, which leverages concurrency and optimizes resource consump-
tion. As such this has direct impact on the overall performance and throughput.
Hooks placed inside MySQL core pose negligible overhead when compared with

1Remote updates are applied using JDBC client connections, but it seems that PostgreSQL
performs worse and needs more resources than Apache Derby to do the same amount of work.

21

the unmodified version of the DBMS, as it is shown by the loopback run. This
means that even the most complex operation of extracting the write-set, which
is done by inspecting MySQL binary-log events, has little impact on the average
execution latency. The primary-backup replication run, shows that there is a
significant latency penalty as more customers are added to the system. The ad-
ditional latency is imposed by queuing, serialization and message propagation
leading to a significant performance loss. The overall throughput of the system
is depicted in Figure 3.7(c). One can easily note that as the primary-backup
run exhibits twice the latency of the unmodified single database and loopback
run, the throughput is cut in half. Furthermore, there is a trend in increased
latency and constant throughput. This happens due to queuing effect which
results in a steady debit of committed transactions but increased latency due
to time spent waiting in the resource queues.

Sequoia. Sequoia approach presents an overwhelming latency increase even
in the vanilla runs, as it performs table level locking. In TPC-b there is only
one type of transaction (see Figure 3.2), that accesses all tables. Consequently,
transaction execution is serialized, increasing queuing and therefore contention
rises. Figure 3.6(d) shows the results. Note that the scale is tenfold of the
previous two approaches. In the loopback results, there is additional over-
head related to the GAPI notifications, featuring the collection of the write
set. This is done resorting to table triggers that fire changes into temporary
tables, existing during connection lifecycle. This has a cascading effect and
worsens as more costumers are added (number of connections increases). As
for the primary-backup replication scenario, the latency overhead builds on the
loopback issues and on the need for extracting write sets, which is done using
client-side JDBC connections and SELECT statements. Additionally, data se-
rialization and propagation to the backup replica also impact latency. Queuing
and contention impact negatively on throughput, especially because this is a
closed system in which clients are sequential, thence if execution latency in-
creases, less transactions per second will be submitted. As a consequence, less
transactions per second will be committed. This is shown in Figure 3.7(d).

Micro-benchmarks. Figure 3.8 diagram shows typical graphical output gen-
erated from the run. This experiment compares read throughput of several prox-
ies including Myosotis, which is a proxy used to provide native DBMS client
wire-protocol support for Sequoia.

Figure 3.8(a) and 3.8(b) show comparisons of read latency using runs of 1,
10, 20, and 30 clients operating directly against the PostgreSQL database as
well as through 3 proxy implementations:

e Myosotis connector (Continuent’s transparent proxy for native database
clients);

e Pgpool-IT (A load-balancing proxy for PostgreSQL written in C);

e Sequoia (Continuent’s uni/cluster implementation of Sequoia)

22

Figure 3.8(a), shows query throughput for all proxies as loads scale from 1 to
30 clients. The database is the base—native throughput is bound by database
host CPU and tops out at slightly over 12,700 queries per second. This is the
maximum possible throughput. Proxy output by contrast tops out around 3,000
queries per second. In both cases, throughput is bound by CPU on the database
host machine, which also has the proxy.

Figure 3.8(b), by contrast evaluates the exact latency induced by a proxy
on a single request. Query response from the native PostgreSQL server sets the
baseline response time. The other series show response time for queries sent
through proxies. The query latency can be read off the graph by comparing the
baseline response for each query. This graph demonstrates that query latency
increases linearly for larger numbers of clients, as available CPUs are completely
occupied.

Scale-out environments may need to handle enormous numbers of queries.
The foregoing numbers are helpful in capacity planning for such scale-out. For
example, an environment that processes 6000 queries per second might need to
budget 3 hosts of the type shown here when proxying through Sequoia. Inter-
estingly, this test also indicates that proxies and middleware are a significant
performance drag for applications that have very short queries on data entirely
resident in memory. Middleware offers a performance scaling benefit only as the
cost of queries begins to outweigh the latency effects.

23

Chapter 4

Conclusion

Results show that the jGCS interfaces can be implemented using most of the
state of the art group communication toolkits. It is also shown that the overhead
caused by the jGCS service is negligible and do not affect real applications,
improving modularity and configurability. This service was implemented in
Java and is hosted at SourceForge.net (http://jges.sf.net).

Performance of GORDA interfaces was assessed in four different mappings:
Apache Derby, PostgreSQL, MySQL and Sequoia controller. Results have shown
that the middleware approach has some disadvantages as it redoes most of the
DBMS work outside in the middleware and presents a very coharse concurrency
control grain. Nevertheless, it performs well for read-oriented workloads. On
the other hand, other mappings, either as a plugin, user level procedures or
deep in-core implementations show good performance even in stressful update-
intensive workloads, as is the case for TPC-b. Implementations are available at
the GORDA web-site (http://gorda.di.uminho.pt).

24

Bibliography

Derby. http://db.apache.org/derby/.
GnuPlot. http://www.gnuplot.info/.
The R Project for Statistical Computing. http://www.r-project.org/.

Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant architec-
ture and protocol for wide area group communication. June 2000.

B. Ban. Design and implementation of a reliable group communication
toolkit for java, 1998.

Continuent. Bristlecone Project. http://bristlecone.continuent.org/.
Continuent. Sequoia version 2.9. http://sequoia.continuent.org, 2006.

PostgreSQL Global Development Group. PostgreSQL.
http://www.postgresql.org, 2003.

M. Hayden. The Ensemble System. PhD thesis, January 1998.
InnoBase. InnoDB. http://www.innodb.com.

Lasige Research Lab. jGCS: Group Communication Service for Java.
http://jgcs.sourceforge.net/.

Mikko H. Lipasti. Tpc-w in java. http://www.ece.wisc.edu/ pharm/t-
pcw.shtml.

H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel
supporting multiple coordinated channels. April 2001.

SUN Microsystems Inc MySQL AB. MySQL. http://www.mysql.com,
1995.

J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveira, and A.-M. Kermarrec.
Neem: Network-friendly epidemic multicast. In Proceedings of the 22th
IEEFE Symposium on Reliable Distributed Systems (SRDS’03), pages 15—
24, Florence,Italy, October 2003.

25

[16] Inc Sun Microsystems. Java Native Interfaces.
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html, 2003.

[17] Transaction Performance Council. TPC Benchmark B.
http://www.tpc.org/tpcb.

[18] Walter Moreira and Gregory R. Warnes. RPy (R from Python).
http://rpy.sourceforge.net/.

26

	GORDA-D5.3-Cover
	main

