

Project no. 004758

GORDA

Open Replication Of Databases

Specific Targeted Research Project

Software and Services

Proceedings of the VLDB Workshop on Design,
Implementation, and Deployment of Database

Replication

GORDA Deliverable D6.3

Due date of deliverable:
Actual submission date: 2005/08/28

Start date of project: 1 October 2004 Duration: 36 Months

Universidade do Minho

 Revision 1.0

Project co-funded by the European Commission within the Sixth Framework
Programme (2002-2006)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

VLDB WORKSHOP ON DESIGN, IMPLEMENTATION,
AND DEPLOYMENT OF DATABASE REPLICATION

August 28, 2005
Trondheim, Norway

in conjunction with

31st Conference on Very Large Databases (VLDB 2005)

Edited by

Rui Oliveira
(Universidade do Minho, Portugal)

and

José Pereira
(Universidade do Minho, Portugal)

The editors have been partially supported by EU project GORDA (FP6 IST 004758).
http://gorda.di.uminho.pt

Organization

Program chair
• Rui Oliveira (Universidade do Minho, Portugal)

Program committee
• Emmanuel Cecchet (EMIC Networks & ObjectWeb Consortium, France)
• Jonathan Goldstein (Microsoft, USA)
• Bettina Kemme (McGill University, Canada)
• Thomas Lane (RedHat Inc., USA)
• Henrique Madeira (Universidade de Coimbra, Portugal)
• Marta Patiño-Martínez (Universidad Politécnica de Madrid, Spain)
• Fernando Pedone (Università della Svizzera Italiana, Switzerland)
• Luís Rodrigues (Universidade de Lisboa, Portugal)
• Jonathan Stanton (George Washington University, USA)
• Jean-Bernard Stefani (INRIA, France)
• Lars Thalmann (MySQL AB, Sweden)
• Jan Wieck (Afilias Inc., USA)

Workshop Organization
• José Pereira (Universidade do Minho, Portugal)

VLDB Conference Organization
• Kjell Bratsbergsengen (General Chair, NTNU, Norway)
• Klaus R. Dittrich (Workshops Chair, University of Zurich, Switzerland)
• Mads Nygård (Organization Committee Chair, NTNU, Norway)
• Svein Erik Bratsberg (Coord. Co-Located Workshops and Conf. Chair, NTNU, Norway)

i

ii

Preface

Database replication is widely used to improve both the performance: and resilience of database
management systems. Although most commercially available solutions and the large majority of de-
ployments use asynchronous updates in a shared nothing architecture, there is an increasing demand
for additional guarantees, configuration flexibility, and manageability.

Examples of this demand abound. The upgrade of current fail-over clusters to active-active con-
figurations, thus leveraging the additional computational resources for additional performance. The
deployment of eager update replication over a MAN or WAN for disaster recovery, without resort-
ing to volume replication, thus improving manageability and performance. The combination of both
local clusters and wide-area systems in grid-style large scale systems poses new challenges in per-
formance and manageability. The drive for self-manageable systems also discourages the need for
human intervention in recovery and conflict solving, thus favoring eager update approaches. Finally,
typical loads of current middleware and applications might allow novel trade-offs between resilience
and performance that are not viable with OLTP loads.

The goal of the workshop is to bring together researchers and practitioners from the database and
fault-tolerant distributed systems communities to discuss the current state of the art, pending chal-
lenges and trends, and novel solutions in the design, implementation and deployment of database
replication. Topics covered in the workshop include cluster, MAN and WAN replication protocols,
replication middleware, group communication based replication, self-manageable and autonomic
replicated databases, replication transparency and client interfaces, novel applications and loads for
replicated databases.

Rui Oliveira and José Pereira

iii

iv

Program

Revisiting the database state machine approach . 1
V. Zuikeviciute, F. Pedone (Università della Svizzera Italiana)

Exactly once interaction in a multi-tier architecture . 9
B. Kemme, R. Jimenez, M. Patiño, J. Salas
(McGill University, Universidad Politécnica de Madrid)

Oracle R© Streams for near real time asynchronous replication . 17
N. Arora (Oracle)

Replication tools in the MADIS middleware . 25
L. Irún-Britz, J. Armendáriz, H. Decker, J. Mendívil, F. Muñoz-Escoí
(Universidad Politécnica de Valencia, Universidad Pública de Navarra)

Replication in node partitioned data warehouses . 33
P. Furtado (University of Coimbra)

Large-scale experimentation with preventive replication in a database cluster 41
P. Valduriez, E. Pacitti, C. Coulon (University of Nantes)

Fine-grained refresh strategies for managing replication in database clusters 47
S. Gançarski, H. Naacke, C. Le Pape (Laboratoire d´Informatique de Paris 6)

Self-manageable replicated servers . 55
C. Taton, S. Bouchenak, F. Boyer, N. De Palma, D. Hagimont, A. Mos
(INRIA, University of Grenoble I)

v

vi

Revisiting the Database State Machine Approach

Vaidė Zuikevičiūtė Fernando Pedone

Università della Svizzera Italiana (USI) Università della Svizzera Italiana (USI)
Via Lambertenghi 10A Via Lambertenghi 10A

CH-6904 Lugano CH-6904 Lugano
Switzerland Switzerland

vaide.zuikeviciute@lu.unisi.ch fernando.pedone@unisi.ch

Abstract

The Database State Machine (DBSM) is a
replication mechanism for clusters of database
servers. Read-only and update transactions
are executed locally, but during commit, up-
date transactions execution outcome is broad-
cast to all the servers for certification. The
main DBSM’s weakness lies in its dependency
on transaction readsets, needed for certifica-
tion. This paper presents a technique to by-
pass the extraction and propagation of read-
sets. Our approach does not incur any com-
munication overhead and still guarantees that
transactions are serializable.

1 Introduction

Replication is an area of interest to both distributed
systems and databases: in database systems replica-
tion is done mainly for performance and availability,
while in distributed systems mainly for fault tolerance.
The synergy between these two disciplines offers an
opportunity for the emergence of database replication
protocols based on group communication primitives.

This paper focuses on the Database State Machine
(DBSM) approach [20]. The DBSM is based on de-
ferred update replication, implemented as a state ma-
chine. Read-only transactions are processed locally at
some database replica; update transactions do not re-
quire any synchronization between replicas until com-
mit time. During commit, the transaction’s updates,
readsets, and writesets are broadcast to all servers for
certification. To ensure that each replica converges to
the same state, each server has to reach the same de-
cision when certifying transactions and guarantee that
conflicting transactions are applied to the database in
the same order. These requirements are enforced by
an atomic broadcast primitive and a deterministic cer-
tification test.

The DBSM has several advantages when compared
to existing replication schemes. In contrast to lazy
replication techniques, the DBSM provides strong

consistency (i.e., serializability) and fault tolerance.
When compared with primary-backup replication, it
allows transaction execution to be done in parallel
on several replicas, which is ideal for workloads pop-
ulated by a large number of non-conflicting update
transactions. By avoiding distributed locking used in
synchronous replication, the DBSM scales to a larger
number of nodes. Finally, when compared to active
replication, it allows better usage of resources because
each transaction is executed by a single node.

The main weakness of the DBSM lies in its de-
pendency on transaction readsets, needed for certifi-
cation. Extracting readsets usually implies changing
the database internals or parsing SQL statements out-
side the database, both undesirable solutions due to
portability, complexity, and performance reasons. On
the other hand, extracting writesets is less of a prob-
lem: writesets tend to be much smaller than read-
sets and can be obtained during transaction processing
(e.g., using triggers). This paper extends the original
DBSM to avoid the need of readsets during certifica-
tion. Our approach has no communication and con-
sistency penalties: termination still relies on a single
atomic broadcast and the execution is still serializable.
Moreover, in most cases of practical interest, the price
to pay is a few additional aborted transactions.

The remainder of the paper is organized as follows:
Section 2 introduces our system model and some defi-
nitions. Section 3 explains how to avoid readsets dur-
ing certification. Section 4 presents some preliminary
performance results, and Section 5 discusses related
work. Section 6 summarizes the proposed ideas and
gives an overview of future refinements.

2 System model and definitions

In this section we present the DBSM and the two con-
cepts it relies upon: state machine and group commu-
nication. The state machine approach delineates the
replication strategy. Group communication primitives
constitute a sufficient mechanism to implement a state
machine.

1

2.1 Database replication

We consider a system Σ = {s1, s2, ..., sn} of database
sites. Sites communicate with each other through
atomic broadcast, built on top of message passing.
Replicas fail independently and only by crashing (i.e.,
we exclude Byzantine failures). Database sites may
eventually recover after a crash.

Each database site plays the role of a replica man-
ager and each has a full copy of the database. Transac-
tions are locally executed according to strict two-phase
locking (2PL). Our consistency criteria is one-copy se-
rializability [18].

Transactions are sequences of read and write oper-
ations followed by a commit or abort operation. A
transaction is called a query (or read-only) if it does
not contain any write operations; otherwise it is called
an update transaction.

2.2 State machine replication

The state machine approach is a non-centralized repli-
cation technique. Its key concept is that all replicas
receive and process the same sequence of requests in
the same order. Consistency is guaranteed if replicas
behave deterministically, that is, when provided with
the same input (e.g., a request) each replica will pro-
duce the same output (e.g., state change).

The way requests are disseminated among replicas
can be decomposed into two requirements [23]:

1. Agreement. Every non-faulty replica receives
every request.

2. Order. If a replica processes request req1 before
req2, then no replica processes req2 before req1.

Notice that the DBSM does not require the execu-
tion of transaction to be deterministic; only the certi-
fication test is implemented as a state machine.

2.3 Atomic broadcast communication

In order to satisfy the above mentioned state ma-
chine requirements, database sites interact by means of
atomic broadcast, a group communication abstraction.
Atomic broadcast guarantees the following properties:

1. Agreement. If a site delivers a message m then
every site delivers m.

2. Order. No two sites deliver any two messages in
different orders.

3. Termination. If a site broadcasts message m
and does not fail, then every site eventually deliv-
ers m.

Several atomic broadcast algorithms exist in the liter-
ature [6]. Our experiments (see Section 4) are based
on a highly efficient Paxos algorithm [15].

2.4 The Database State Machine approach

The Database State Machine is based on deferred up-
date replication. During transaction execution there
is no interaction between replicas. When an update
transaction is ready to be committed, its updates
(e.g., redo logs), readsets, and writesets are atomically
broadcast to all replicas. All sites receive the same se-
quence of requests in the same order and certify them
deterministically. The certification procedure ensures
that committing transactions do not conflict with con-
current already committed transactions.

The notion of conflicting concurrent transactions is
based on the precedence relation, denoted by tj → ti,
and defined next.

• If ti and tj execute on the same replica si, then
tj → ti only if tj enters the committing state at
si before ti enters the committing state at si.

• If ti and tj execute on different replicas si and sj ,
respectivelly, then tj → ti only if tj is committed
at si before ti enters the committing state at si.

Two operations conflict if they are issued by dif-
ferent transactions, access the same data item and at
least one of them is a write. Finally, a transaction tj
conflicts with ti if they have conflicting operations and
tj does not precede ti.

During processing, transactions pass through some
well-defined states:

1. Executing state. In this state transaction ti is lo-
cally executed at site si according to strict 2PL.

2. Committing state. Read-only transactions com-
mit immediately upon request. If ti is an up-
date transaction, it enters the committing state
and si starts the termination protocol for ti: ti’s
updates, readsets, and writesets are broadcast to
all replicas. Upon delivering this message, each
database site si certifies ti. Transaction ti passes
the test at si if the following condition holds:

[
∀tj committed at si :
tj → ti ∨ (writesets(tj) ∩ readsets(ti) = ∅)

]

Atomic broadcast is used to ensure that the se-
quence of transactions certified by each replica is
the same, thus consistency is guaranteed.

3. Committed/Aborted state. If ti passes the certifi-
cation test, its updates are applied to the database
and ti passes to the committed state. Transac-
tions in the executing state at sj holding locks on
data items updated by ti are aborted.

2

3 DBSM?: refining the DBSM

In the original DBSM, readsets of update transactions
need to be broadcast to all sites for certification. Al-
though storing and transmitting readsets are sources of
overhead, extracting them from transactions is a more
serious problem since it usually implies accessing the
database internals or parsing SQL statements outside
the database. For the sake of portability, simplicity,
and efficiency, certification should be ”readsets free.”

3.1 Readsets-free certification

The basic idea of the DBSM remains the same: trans-
actions are executed locally according to strict 2PL.
In contrast to the original DBSM, when an update
transaction requests a commit, only its updates and
writesets are broadcast to the other sites. Certifica-
tion checks whether the writesets of concurrent trans-
actions intersect; if they do, the transaction is aborted.
Transaction ti passes certification at si if the following
condition holds:[

∀tj committed at si :
tj → ti ∨ (writesets(tj) ∩ writesets(ti) = ∅)

]
Does such a certification test ensure one copy serial-

izability? Transactions executing at the same site are
serializable, but the certification test does not ensure
serializability of global transactions: not all the serial-
ization anomalies are avoided in the execution [9]. For
instance, it does not avoid the write-skew anomaly:

ri[x], ri[y] ... rj [x], rj [y], wj [x], cj ... wi[y], ci

In the above example ti and tj are executed concur-
rently at different sites, ti reads x and y, tj reads the
same data items, writes x and tries to commit. Then
ti writes y and tries to commit. Both transactions pass
the certification test because their writesets do not in-
tersect, however the execution is not serializable (i.e.,
no serial execution is equivalent to it).

3.2 Snapshot Isolated DBSM?

Snapshot isolation (SI) is a multi-version concurrency
control algorithm introduced in [9]. SI does not pro-
vide serializability, but is still attractive and used in
commercial and open-source database engines, such as
Oracle and PostgreSQL. Under SI a transaction ti sees
the database state produced by all the transactions
that committed before ti started. Thus if ti and tj are
concurrent, neither will see the effects of the other.
According to the first-committer-wins rule, ti will suc-
cessfully commit only if no other concurrent transac-
tion tj that has already committed writes to data items
that ti intends to write.

Although specific workloads will not be serializable
under SI, such cases seem to be rare in practice. Fairly

complex transaction mixes, such as the TPC-C bench-
mark, are serializable under SI. Moreover, there are
different ways to achieve serializability from SI [1, 2].

Transactions executing in the same site in the
DBSM? are snapshot isolated. This follows from the
fact that such transactions are serializable, and serial-
izability is stronger than SI [9]. Are global transactions
also snapshot isolated in the DBSM?? It turns out that
the answer to this question is yes. We provide only an
informal argument here. First, notice that any two
concurrent transactions executing in different sites are
isolated from one another in the DBSM?: one transac-
tion does not see any changes performed by the other
(before commit). Second, the DBSM?’s certification
test provides the first-committer-wins behavior of SI
since the first transaction to be delivered for certifica-
tion commits and later transactions abort.

3.3 One-copy serializable DBSM?

The DBSM?, as well as the original DBSM, has an in-
teresting property: if all transaction requests are sub-
mitted to the same replica, the DBSM? will behave
as primary-backup replication [26]. Since all transac-
tions would then be processed according to 2PL at the
primary site, 1SR would be ensured. Therefore, en-
suring 1SR in the DBSM? would be a matter of care-
fully scheduling update transactions to some selected
database site; read-only transactions could still be ex-
ecuted at any replica. However, for load-balancing and
availability reasons, localizing the execution of update
transactions in the same site may not be such a good
idea.

In [1] it was proved that two transactions executing
concurrently under SI produce serializable histories if
they are interference-free, or their writesets intersect.
Two transactions are interference free if one does not
read what is written by the other (notice that this
is precisely what the original DBSM certification test
guarantees). Therefore, two transactions concurrently
executed at different sites in the DBSM? are serializ-
able if their writesets intersect or one does not read
what is written by the other. Since this may not hold
for each pair of update transactions, the authors in [2]
suggested conflict materialization techniques as a way
to guarantee serializable histories of dangerous trans-
actions executed under SI.

Following these ideas, we describe next our tech-
nique, which guarantees 1SR with no communication
overhead w.r.t. the original DBSM. Briefly, the mech-
anism works as follows:

1. The database is logically divided into a number of
disjoint sets (according to tables, rows, etc), each
one under the responsibility of a different replica,
and extended with a control table containing one
dummy row per logical set. This control table is
used for conflict materialization. Note that each
replica still stores a full copy of the database.

3

2. Each replica is responsible for processing update
transactions that access data items in its as-
signed logical set.Transactions that only access
data items in a single logical set and execute at
the corresponding replica (we call them ”local”)
are serialized with other transactions of the same
type by the 2PL scheduler on the server where
they execute.

3. Update transactions that access data items in
more than a logical set should execute on a server
responsible for one of these logical sets. We call
such transactions ”complex”. Complex transac-
tions are serialized with other transactions updat-
ing data items in intersecting logical sets by the
certification test. But the certification test cannot
serialize them with interfering transactions exe-
cuting at different servers.

4. To ensure 1SR update transactions that read data
items in a logical set belonging to the remote
replica are extended with update statements for
dummy rows corresponding to each remote log-
ical set read.This can be done when the appli-
cation requests the transaction commit. Dummy
rows are constructed in such a way to material-
ize write-write conflicts between complex or local
transactions that access data items in the same
logical set.Therefore, if ti executes at si and one
of ti’s operations reads a data item that belongs
to sj ’s logical set, a dummy write for sj logical
set is added to ti. This ensures that if ti exe-
cutes concurrently with some transaction in sj ,
complex or not, only one transaction will pass the
certification test.

5. Read-only transactions can be executed at any
database site independently of the data items ac-
cessed.

Correctness is a consequence of the fact that read-
only and version-order dependencies in multiversion
serialization graph follow the delivery order of com-
mitted transactions. We prove this formally in an ex-
tended version of this document.

Abort rates can be reduced in the above scheme
if the division of the database into logical sets takes
the workload into account. For example, a criterion
for defining logical sets could be the tables accessed
by the transactions. Moreover, notice that we do not
have to know exactly which data items are accessed by
a transaction to schedule it to its correct server; only
its logical sets have to be known (e.g., which tables are
accessed by the transaction).

The issue of transaction scheduling is orthogonal to
the described work and a detailed account of it is be-
yond the scope of this paper. Whatever mechanism
is used, it should obviously be aware of the division
of the database into logical sets and schedule update

transactions accordingly. Nevertheless any transaction
can be executed at any database site as long as a cor-
responding dummy writes for remote logical sets read
are added to materialize the conflict.

4 Performance results

In this section we evaluate the impact of the modifi-
cations proposed on the abort rate of the DBSM.

4.1 Simulation model

All experiments were performed using a discrete-event
simulation model written in C++ based on the C-SIM
library. Every server is modelled as a processor with
some data disks and a log disk as local resources. The
network is modeled as a common resource shared by all
database sites. Communication delays between repli-
cas are based on experiments measuring Paxos in a
real network.

The workload contains 50% of update and 50%
of read-only transactions. The number of opera-
tions within a transaction varies from 5 to 15. Each
database replica contains 2000 data items. We assume
that access to data items is uniform – there are no
hotspots.

4.2 Experiments

We are interested here in understanding the implica-
tions of conflict materialization on the abort rate of
the DBSM?. Conflict materialization introduces addi-
tional aborts to the DBSM? whenever a conflict arises
between concurrently executing transactions. Such
aborts are essential to avoid non-serializable execu-
tions.

In the graphs presented next, each plotted point
was determined from a sequence of simulations, each
containing 100000 submitted transactions. In order
to remove initial transients, only after the first 1000
transactions had been submitted the statistics started
to be gathered.

 2 4 6 8 10 12 14 16
 10 20 30 40 50 60 70 80 90 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

Abort Rate (Update)

Number of Sites
workload mix

Abort Rate (Update)

Figure 1: DBSM?’s abort rate (updates only)

4

Figure 1 presents the abort rate of update transac-
tions when the number of database sites and the per-
centage of complex update transactions increases. In
a workload mix of 100%, all transactions are complex.
Obviously, the abort rate increases with the number of
complex transactions and the number of sites. More
interesting, workload mixes with few complex trans-
actions (0%–15%) tend to scale very well with the
number of sites. This is particularly important since
in practice, the percentage of complex transactions is
fairly low. For example, in the heaviest transaction
mix of the TPC-W benchmark (the ordering scenario,
with the highest number of update transactions) the
percentage of complex transactions varies from 10%–
15% of all update transactions. Moreover, TPC-C is
serializable under SI, and therefore no conflict materi-
alization is needed.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 2 4 6 8 10 12 14 16

A
bo

rt
 R

at
e

(U
pd

at
e)

Number of Sites

DBSM
DBSM*

Figure 2: DBSM? vs. DBSM (updates only)

In Figure 2 we compare the abort rate of update
transactions executing in the original DBSM and the
DBSM?. In the experiments, the workload mix con-
tains 10% of complex update transactions. Although
the DBSM aborts fewer transactions than the DBSM?,
both abort less than 5% of update transactions.

5 Related Work

Several works have proposed database replication cen-
tered on group communication. Among them Agrawal
et al. present a family of replica management protocols
that exploit the properties of atomic broadcast and are
based on immediate and deferred replication [5]. De-
ferred replication based on group communication was
also proposed in [8].

A suite of eager, update everywhere replication pro-
tocols is introduced in [12]. The authors take advan-
tage of the different levels of isolation provided by
databases to relax the consistency of the protocols. In
[4] Kemme and Alonso introduce Postgres-R, a repli-
cation mechanism implemented within PostgreSQL.
Snapshot isolation is further investigated in [27, 16].

In [21] the authors present Ganymed, a middleware-
based replication solution. The main idea behind
Ganymed is a separation between updates and read-

only transactions: updates are handled by a mas-
ter replica and lazily propagated to the slaves, where
queries are processed.

Clustered JDBC (C-JDBC) [7] is another
middleware-based replication solution. C-JDBC
supports both partial and full replication. The ap-
proach consists in hiding a lot of database complexity
in the C-JDBC layer, outside the database. Extending
JDBC with a primary-backup technique was proposed
in [19].

Some works have concentrated on reducing the com-
munication overhead of group communication by over-
lapping transaction processing with message ordering
[13, 14, 17]. While NODO [17] protocol requires trans-
actions scheduling to be known in advance, that is, be-
fore the transactions execution, in DBSM? scheduling
is more like a hint: 1SR is ensured even if transactions
are scheduled independently of data items accessed.

Amir et al. [3] deal with replication in wide area
networks. An active replication architecture is intro-
duced by taking advantage of the Spread Group Com-
munication Toolkit. Spread provides atomic broad-
cast and deals with network partitions. In [22] other
two replication protocols based on atomic multicast
for large-scale networks are presented.

The original DBSM has been previously extended
in two directions. Sousa et al. investigate the use
of partial replication in the DBSM [25]. In [11] the
authors relax the consistency criteria of the DBSM
with Epsilon Serializability.

A number of works have compared the performance
of group-based database replication. In [10] Holliday
et al. use simulation to evaluate a set of four ab-
stract replication protocols based on atomic broadcast.
The authors conclude that single broadcast transac-
tion protocol is the one that allows better performance
by avoiding duplicate execution and blocking. This
protocol abstracts the DBSM. Another recent work
[24] evaluates the original DBSM approach, where a
real implementation of DBSM’s certification test and
communication protocols is used. All the results con-
firm the usefulness of the approach.

6 Conclusion

The Database State Machine is a simple approach to
handle database replication. This paper addresses one
of its main weaknesses: the dependency on transac-
tion readsets for certification. The conflict material-
ization technique adopted for DBSM? does that with-
out sacrificing one copy serializability and increasing
communication overhead. Depending on the workload,
transactions with dangerous structures can be forced
to execute on the same site or at different replicas, if
an artificial update on dummy row is introduced in
the transaction. As future work we plan to prototype
the DBSM? and optimize our conflict materialization
algorithm.

5

7 Acknowledgments

We would like to thank the anonymous reviewers for
their remarks which helped us to improve the paper.

References

[1] A.Fekete. Serialisability and snapshot isolation.
In Proceedings of the Australian Database Con-
ference, Auckland, New Zealand, January 1999.

[2] A.Fekete, D.Liarokapis, E.O’Neil, P.O’Neil, and
D.Shasha. Making snapshot isolation serial-
izable. Unpublished manuscript, available at
http://www.cs.umb.edu/isotest.

[3] Y. Amir and C. Tutu. From total order to
database replication. In Proceedings of the Inter-
national Conference on Dependable Systems and
Networks, 2002.

[4] B.Kemme and G. Alonso. Don’t be lazy, be
consistent: Postgres-R, a new way to implement
database replication. In Proceedings of the 26th
International Conference on Very Large Data
Bases, 2000.

[5] D.Agrawal, G.Alonso, A.El Abbadi, and I.Stanoi.
Exploiting atomic broadcast in replicated
databases. In Proceedings of the 3th Inter-
national Euro-Par Conference on Parallel
Processing, 1997.

[6] X. Défago, A. Schiper, and P. Urbán. Total order
broadcast and multicast algorithms: Taxonomy
and survey. ACM Computing Surveys, 36(4):372–
421, 2004.

[7] E.Cecchet, J.Marguerite, and W.Zwaenepoel. C-
JDBC: Flexible database clustering middleware.
In Proceedings of USENIX Annual Technical Con-
ference, Freenix track, 2004.

[8] F.Pedone, R.Guerraoui, and A.Schiper. Transac-
tion reordering in replicated databases. In Pro-
ceedings of the 16th IEEE Symposium on Reliable
Distributed Systems, 1997.

[9] H.Berenson, P.Bernstein, J.Gray, J.Melton,
E. O’Neil, and P.O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of the ACM SIG-
MOD International Conference on Management
of Data, 1995.

[10] J. Holliday, D.Agrawal, and A. E. Abbadi. The
performance of database replication with group
multicast. In Proceedings of the 29th Annual In-
ternational Symposium on Fault-Tolerant Com-
puting, 1999.

[11] A. Correia Jr., A. Sousa, L. Soares, F. Moura,
and R. Oliveira. Revisiting epsilon serializabilty
to improve the database state machine (extended
abstract). In Proceedings of the Workshop on De-
pendable Distributed Data Management, SRDS,
2004.

[12] B. Kemme and G. Alonso. A suite of database
replication protocols based on group communi-
cation primitives. In Proceedings of the Interna-
tional Conference on Distributed Computing Sys-
tems, 1998.

[13] B. Kemme, F. Pedone, G. Alonso, and A. Schiper.
Processing transactions over optimistic atomic
broadcast protocols. In Proceedings of 19th In-
ternational Conference on Distributed Computing
Systems, 1999.

[14] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and
M. Wiesmann. Using optimistic atomic broad-
cast in transaction processing systems. IEEE
Transactions on Knowledge and Data Engineer-
ing, 15(4):1018–1032, July 2003.

[15] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–
169, 1998.

[16] Y. Lin, B. Kemme, M. Patino-Mart́ınez, and
R. Jiménez-Peris. Middleware based data replica-
tion providing snapshot isolation. In Proceedings
of the 2005 ACM SIGMOD International Confer-
ence on Management of data, 2005.

[17] M. Patino-Mart́ınez, R. Jiménez-Peris,
B. Kemme, and G. Alonso. Scalable repli-
cation in database clusters. In Proceedings of
the 14th International Conference on Distributed
Computing, 2000.

[18] P.Bernstein, V.Hadzilacos, and N.Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[19] F. Pedone and S. Frolund. Pronto: A fast failover
protocol for off-the-shelf commercial databases. In
Proceedings of the 19th IEEE Symposium on Re-
liable Distributed Systems, 2000.

[20] F. Pedone, R. Guerraoui, and A. Schiper. The
database state machine approach. Journal of Dis-
tributed and Parallel Databases and Technology,
14:71–98, 2002.

[21] C. Plattner and G. Alonso. Ganymed: scalable
replication for transactional web applications. In
Proceedings of the 5th ACM/IFIP/USENIX In-
ternational Conference on Middleware, 2004.

6

[22] L. Rodrigues, H. Miranda, R. Almeida, J. Mar-
tins, and P. Vicente. The GlobData fault-tolerant
replicated distributed object database. In Pro-
ceedings of the 1st Eurasian Conference on Ad-
vances in Information and Communication Tech-
nology, 2002.

[23] F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: A tu-
torial. ACM Computing Surveys, 22(4):299–319,
1990.

[24] A. Sousa, J.Pereira, L. Soares, A.Correia Jr.,
L.Rocha, R. Oliveira, and F. Moura. Testing the
dependability and performance of group commu-
nication based database replication protocols. In
Proceedings of IEEE International Conference on
Dependable Systems and Networks - Performance
and Dependability Symposium, 2005.

[25] A. Sousa, F. Pedone, F. Moura, and R. Oliveira.
Partial replication in the database state machine.
In Proceedings of the IEEE International Sym-
posium on Network Computing and Applications,
2001.

[26] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme,
and G. Alonso. Understanding replication in
databases and distributed systems. In Proceed-
ings of the 20th International Conference on Dis-
tributed Computing Systems, April 2000.

[27] S. Wu and B. Kemme. Postgres-R(SI):combining
replica control with concurrency control based on
snapshot isolation. In Proceedings of the IEEE
International Conference on Data Engineering,
2005.

7

8

Exactly Once Interaction in a Multi-tier Architecture∗

Bettina Kemme†, Ricardo Jiménez-Peris∗, Marta Patiño-Martı́nez∗, Jorge Salas∗

†McGill University, Montreal, Canada, kemme@cs.mcgill.ca
∗Universidad Politcnica de Madrid (UPM), Madrid, Spain,{rjimenez,mpatino}@fi.upm.es, jsalas@alumnos.upm.es

Abstract

Multi-tier architectures are now the standard for
advanced information systems. Replication is
used to provide high-availability in such architec-
tures. Most existing approaches have focused on
replication within a single tier. For example there
exist various approaches to replicate CORBA or
J2EE based middle-tiers, or the database tier.
However, in order to provide a high-available so-
lution for the entire system, all tiers must be repli-
cated. In this paper we analyze what is needed to
couple two replicated tiers. Our focus is to ana-
lyze how to use independent replication solutions,
one for each tier, and adjust them as little as pos-
sible to provide a global solution.

1 Introduction and Background

Current information systems are often built using a multi-
tier architecture. Clients connect to an application server
(also called middle-tier) which implements the applica-
tion semantics. The application server in turn accesses
a database system (also called backend tier) to retrieve
and update persistent data. Application server (AS) and
database (DB) together build the server-side system, while
the client is external and usually an independent unit. In
this paper, we do not consider architectures where an AS
calls another AS or several DBs. The standard mecha-
nisms to provide high-availability for the server system are
logging with fast restart of failed components, or replica-
tion. [4, 3] look at fault-tolerance across tiers via log-
ging. The idea of replication is that for both AS and
DBS, there are several server replicas, and if one server
replica crashes others can take over. Existing replica-
tion solutions, both in academia and an industry have fo-
cused on the replication of a single tier. For instance,
[8, 12, 19, 22, 15, 14, 13, 31, 30, 26, 5, 18, 16] only look at
AS replication. Many of these approaches do not even con-
sider that the AS accesses a database via transactions which

∗This work has been partially supported by the MDER-Programme
PSIIRI: Projet PSIIRI-016/ADAPT (Québec), by NSERC (Canada) Rg-
pin 23910601, by the European Commission under the Adapt project
grant IST-2001-37126, and by the Spanish Research Council (MEC) un-
der grant TIN2004-07474-C02-0

have to be handled in case of an AS replica crash. Only re-
cent solutions take such database access into account. In
regard to database replication, some recent approaches are
[2, 17, 6, 23, 1, 24, 7, 9, 25, 30, 21]. Again, these ap-
proaches do not consider that the client (namely the AS
server) might be replicated. Note that an alternative way
to achieve high availability is logging with fast restart of
failed components.

However, in order to attain high availability, all tiers
should be replicated. Providing a correct replication so-
lution when considering a single tier has already shown to
be non-trivial. Providing the same degree of correctness
when multiple tiers are replicated is even more challenging
[20, 10].

We first have to understand the relationship between AS
and DB. Typically, both maintain some state. The DB con-
tains all data that can be accessed by different users (shared
data) and that should survive client sessions. The AS main-
tains volatile data. For instance, the J2EE specification for
AS distinguishes between data that is only accessible by a
single client during the client session (kept within stateful
session beans), and data cached from the DB that is ac-
cessible to all clients (kept within entity beans). There is
typically no data that is shared between clients but is not
persisted in the DB. Typically, for each client request, a
transaction is started, and all actions are performed within
the context of this transaction. If all actions are success-
ful the transaction commits before a response is returned to
the user. Otherwise, the transaction aborts, all state changes
performed so far are undone (typically both in the AS and
DB), and the client is notified accordingly. A transaction
might abort because of some application semantics (e.g.,
not enough credit available). If now either the AS or the
DB crashes, request execution is interrupted and the client
usually receives a failure exception. The task of replication
is to hide such failures from the client. Instead, replication
should provide exactly-once execution despite any possible
failures. That is, a client receives for each request submit-
ted exactly one response. This response might be an abort
notification that was caused by the application semantics
but no failure exception. Furthermore, the server has either
executed and committed exactly one transaction on behalf
of the client request or, in case of an abort notification, no
state changes on behalf of the request are reflected at the
server.

9

� � � � � � � � � � �
	
 � �
 �

 � � � � �

� �

� � � � � � � � � � �
	
 � �
 �

� � � � � � �

� � � �

� � � � � � � � � � �
	
 � �
 �

	
 � � � � � �

� � � � � � � � � � �
	
 � �
 �

 � � � � �

� �

� � � � � � � � � � �
	
 � �
 �

 � � � � �

� � � �

� � � � � � � � � � �
	
 � �
 �

 � � � � �

� � � � � � � � � � � � � � ! " # $ % & � % $ � ' � � � � � � � � � () � * �) + � , � & - " # .

� / � 0 � ! 1 � 1 � ! 1 � & 2 1 � � � / � & � � �

Figure 1: Replication Architectures

In order to handle an AS or DB crash, both AS and DB
should be replicated. The idea is that any state changes
performed by a transaction are known at all replicas be-
fore the response is returned to the client. In this case, if
a replica fails, the state changes of successfully executed
transactions are not lost. We see two ways to perform
replication across tiers. Atightly coupled approach has
one global replication algorithm that coordinates replica-
tion within and across tiers. The algorithm is developed
with the awareness that both tiers are replicated. In con-
trast, aloosely coupled approach takes two existing repli-
cation algorithms, one for each tier, plugs them together
and adjusts them such that they work correctly together.

For simplicity, we only look at primary/backup ap-
proaches. Each client has a primary AS replica which
executes all the requests of this client and sends the state
changes to the backup replicas. When the primary fails, a
backup takes over as new primary for this client. Asingle
primary approach requires all clients to connect to the same
primary, in amultiple primary approach each replica is pri-
mary for some clients and backup for the other primaries.

Fig. 1 (a) and (b) show tightly coupled approaches. Only
the AS is responsible to coordinate replication. We use the
term DB copies instead of replicas to express that the DB
does not actively control replication.

Fig. 1 (a) presents a tightly coupledvertical replication
approach. Each AS replica is connected to one DB copy,
and each AS replica must make sure that its DB copy con-
tains the same updates as the other DB copies. That means,
the AS primary of a client has to send not only all state
changes within the AS to the AS backups but also enough
information so that the AS backups can update their DB
copies correspondingly. Within J2EE, if all DB access is
done via entity beans (no SQL statements within session
beans), then this can be achieved by sending both changes
on session and entity beans to AS backups since the en-
tity beans reflect all DB changes. Otherwise, SQL state-
ments might have to be re-executed at the AS backups. If
either an AS replica or a DB copy fail, the corresponding
DB copy (resp. AS replica) has to be forced to fail, too.

This approach has several challenges. All AS replicas have
to guarantee to commit the same transactions with the same
AS and DB changes despite the possibility of interleaved
execution of different client requests at different replicas1.
But even if DB access is not interleaved (e.g., using a sin-
gle primary), guaranteeing the same DB changes at all sites
might be difficult if non-determinism is involved (e.g., SQL
statements contain time values). Furthermore, when an AS
/ DB replica pair recovers, the AS replica must assure that
the DB copy receives the current DB state. The DB copy
cannot help with this task because it is not even aware of
replication. Hence, recovery is a challenging task.

Fig. 1 (b) is an example of tightly coupledhorizontal
replication with a single primary AS. The AS primary is
connected to all DB copies and performs the necessary
updates on all these copies. At the time the AS primary
crashes, a given transaction might have committed at some
DB copies, be active at others, and/or has not even started at
some. When an AS backup takes over as new AS primary,
it has to make sure that such transaction eventually either
commits or aborts at all DB copies. One solution is to per-
form all DB updates within a single distributed transaction
that terminates with a 2-phase commit protocol (2PC). If
during the 2PC the AS primary informs the AS backups in
which phase a transaction is (e.g., before prepare, after pre-
pare, etc.), the new AS primary can commit or abort any
outstanding transactions appropriately [15]. However, 2PC
is very time consuming. Since the 2PC was only introduced
for replication purposes this solution very expensive. Also,
DB recovery is again a challenge.

A loosely coupled integration approach is shown in
Fig. 1(c). Since so many solutions exist for replication of
the individual tiers the idea is to simply couple any repli-
cation solution for one tier with a replication solution for
the other tier. Assume the replication solution for the AS
tier guarantees exactly-once execution under the assump-
tion that AS replicas might crash but the DB to be accessed
is reliable. Further assume the replication solution for the
DB tier expects a non-replicated client and guarantees that
each transaction either commits or aborts at all replicas.
Finally assume that the DB provides an interface such that
its clients are actually not aware that they are connected to
a replicated DB but view it as a single, reliable DB. The
question is whether plugging these two replicated tiers to-
gether without any further actions on either of the tiers re-
ally provides exactly-once execution across both tiers in the
presence of AS and DB crashes.

In the following, we analyze this issue in detail. We
take existing replication solutions for the two tiers, and
analyze which failure cases are handled correctly and for
which cases changes or enhancements have to be made to
one or both of the replication algorithms in order to provide
correctness across the entire server system. We first look at
single primary approaches, and then discuss the challenges
associated with multiple primary solutions.

1J2EE AS replication with a non-replicated DB is simpler, since the
concurrency control of the central DB handles all access to shared data.

10

2 Application Server Replication

Our example of a single primary AS approach is taken from
[29]. Other approaches use similar techniques [15, 13].
The approach is for J2EE architectures, assumes a reliable
centralized database and reliable communication. An AS
replica might crash. If it was connected to the DB and had
an active transaction at the DB (no commit submitted yet),
the DB aborts this transaction upon connection loss. For
space reasons we bring a simplified version that does not
consider application induced aborts.

The replication algorithm has a client, primary, backup
and failover part. At the client, a client replication algo-
rithm (CRA) intercepts all client requests, tags them with
an identifier and submits them to the AS primary (after per-
forming replica discovery). If the CRA detects the failure
of the primary, it reconnects to the new primary. Further-
more, it resubmits the last request with the same identifier
if the response was still outstanding. In J2EE, upon receiv-
ing a request, the AS server first initiates a transaction and
then calls the session bean associated with this request. The
session bean might call other session or entity beans. Each
of these beans might also access the DB. The primary repli-
cation algorithm (PRA) intercepts transaction initiationto
associate the request with the transaction. It intercepts the
calls to beans in order to capture the state changes. When
it intercepts the commit request, it sends a checkpoint con-
taining the state of all changed session beans, the request
identifier and the client response to the AS backups. Ad-
ditionally, a marker containing the request identifier is in-
serted into the DB as part of the transaction. Backups con-
firm the reception of the checkpoint. Then, the PRA for-
wards the commit to the DB, and the response is returned
to the client. For each session bean, backups only keep the
state of the bean as transmitted in the last two checkpoints
that contain the bean. If the primary fails, one backup is
elected as new primaryNP . For each clientc, NP per-
forms the following failover steps. Letr with associated
transactiontr be the last request ofc for which NP re-
ceived a checkpointcpr. NP checks whethertr commit-
ted at the DB by looking for the marker in the DB. If it
exists,tr committed. Otherwise, it aborted due to the crash
of the old primary.NP does not perform checks for earlier
requests ofc because each new checkpoint is an implicit ac-
knowledgement that previous transactions ofc committed.
Also, if tr committed,NP keeps the responserpr found
in cpr. NP sets the state of each session beanb to the state
found in the last checkpointcpr

′ containingb and transac-
tion tr′ committed. Then,NP starts the PRA algorithm.
If the CRA did not receive a response for the last request
r, it resubmits it toNP . EitherNP has storedrpr and
immediately returns it or it reexecutesr like a new request.

To see why this leads to exactly-once execution, we can
distinguish the following timepoints at which the AS pri-
mary can crash. (1) If it fails before sending the checkpoint
cpr, then the corresponding transactiontr aborts, and the
new primaryNP has no information aboutr. The CRA re-
submitsr and it is executed as a new request. (2) If it fails

after sendingcpr but before committingtr at the DB,tr
aborts.NP checks in the DB but does not find the marker,
hence ignores the state changes and response found incpr.
The CRA resubmitsr and it is executed as a new request.
(3) If it fails after committingtr but before returning the re-
sponse,NP finds the marker, applies the state changes on
the session beans, and keeps the responserpr. When CRA
resubmitsr, NP immediately returnsrpr. r is not again
executed. (4) If it fails after returningrpr to the client,tr
committed,NP has the state changes on beans, and the
CRA does not resubmitr providing exactly-once.

3 Database Server Replication

Commercial databases have provided high-availability so-
lutions for a long time [11]. However, since the documen-
tation available to us is not very precise, the following de-
scribes our suggestion of a highly-available solution with
a single DB primary and one DB backup (adjusted from
[21]).

All communication with the DB is via the JDBC driver
provided by the DB. The JDBC driver runs in the context
of the application. Upon a connection request from the
application, the JDBC driver connects to the DB primary
(address can be read from a configuration file). The appli-
cation submits transaction commands and SQL statements
through the JDBC driver to the DB primary where they are
executed. Upon the commit request from the application,
the DB primary propagates all changes performed by the
transaction in form of a writeset to the backup. It waits un-
til the backup confirms the reception of the writeset. Then
it commits the transaction and returns the ok to the appli-
cation. Writesets are sent in FIFO order, and the backup
applies the writesets in the order it receives it.

If the DB primary crashes the JDBC driver looses its
connections. The driver automatically reconnects to the
backup which becomes the new primary. At the time of
crash a connection might have been in one of the following
states. (1) No transaction was active on the connection. In
this case, failover is completely transparent. (2) A transac-
tion T was active and the application has not yet submitted
the commit request. In this case, the backup does not know
about the existence ofT . Hence,T is lost. The JDBC
driver returns an appropriate exception to the application.
But the connection is not declared lost, and the application
can restartT . (3) A transactionT was active and the appli-
cation already submitted the commit request, but it did not
receive the commit confirmation from the old DB primary
before its crash. In this case, the backup (a) might have
received and appliedT ’s writeset and committedT , or (b)
it did not receiveT ’s writeset before the crash. Hence, it
does not know about the existence ofT , andT must be
considered aborted as under case (2).

Let’s have a closer look at case 3. Generally, if a non-
replicated DB crashes after a commit request but before re-
turning the ok, the application does not know the outcome
of the transaction. With replication, however, we can do
better. When a new transaction starts at the DB primary,

11

3 4 5 6 7 8 9 6 :

; < = 6 7 8 9 6 : ; < > 9 ? @ A =

3 4 < 9 ? @ A =

B ; < C D 6 E B ; < C D 6 E

C F 7 G H I

C J 3

Figure 2: Loose Coupling of single primary AS and DB

the DB primary assigns a unique transaction identifier and
returns it to the JDBC driver. Furthermore, the identifier is
forwarded to the backup together with the writeset. If the
DB primary crashes before returning the ok for a commit
request, the JDBC driver connects to the backup and in-
quires about the commit of the in-doubt transaction (using
the transaction identifier). If the backup did not receive the
writeset before the crash (case 3b), it does not recognize the
identifier and informs the JDBC driver accordingly. The
JDBC driver returns the same exception to the application
as in case 2. If the backup received the writeset (case 3a),
it recognizes the identifier, and returns the commit confir-
mation to the JDBC which informs the application. In this
case, failover is transparent. Garbage collection is quite
simple because for each connection the JDBC driver might
ask only for the outcome of the last transaction.

One has to be aware that, due to the asynchrony in the
system, the backup might receive the inquiry about a trans-
action from a driver and after that it receives the writeset
for the transaction (the primary had sent the writeset before
the crash but the backup had not yet retrieved it from the
communication channel). In order to handle this correctly,
the backup does not immediately return to the JDBC driver
if its does not find the transaction identifier. Instead, be-
fore allowing any JDBC requests, it switches to failover
and first applies and commits all outstanding writesets that
were successfuly transferred to the backup before the pri-
mary’s crash. Only then, it responds to JDBC requests.

The approach above is actually quite similar to the com-
bination of CRA/PRA algorithm for AS replication where
the JDBC driver takes over the task of CRA. The main
difference is that in AS replication, each request was ex-
ecuted in an individual transaction that started at the AS.
With this, it is easy to provide exactly-once, and failover
is completely transparent. In contrast, in the DB environ-
ment, the application starts and ends a transaction, and sev-
eral requests can be embedded in this transaction. Hence,
if the primary crashes in the middle of executing the trans-
action, the application receives a failure exception. Hence,
execution is actually at-most once.

4 AS / DB Integration

Fig. 2 shows how the algorithms of Sections 2 and 3 are
coupled. We can distinguish different failure cases.

4.1 DB primary fails, AS primary does not fail

We look at the state of each connection between AS pri-
mary and DB primary at the time the DB primary crashes.

If no transaction was active, the AS primary does not
even notice that the driver reconnects to the DB backup.
If a transactiontr triggered by client requestr was active
but the AS primary had not yet submitted the commit, the
JDBC driver returns a failure exception and the AS primary
knows thattr aborted.tr might already have changed some
state (beans) at the AS primary leading to inconsistency.
The task of the AS primary is to resolve this inconsistency
and hide the DB crash from the client, i.e., provide exactly-
once execution forr despite the DB primary crash. This
task is actually quite simple. The AS primary has to undo
the state changes on the beans executed on behalf oftr.
Then, it simply has to restart the execution ofr initiating
a new transaction. The JDBC driver has already connected
to the DB backup which is now the new DB primary. The
AS primary is not even aware of this reconnection. Reexe-
cuting the client request is fine since all effects of the first
execution have been undone at the AS and the DB, and no
response has yet been returned to the client.

In the third case the DB primary fails after the AS pri-
mary submitted the commit request fortr but before the ok
was returned. In this case, the JDBC driver detects whether
the DB backup committedtr or not. Accordingly, it re-
turns a commit confirmation or exception to the AS primary
(case 3 of Section 3). In case of commit, the AS primary is
not even aware of the DB failover and returns the response
to its client as usual. In case of an exception it should be-
have as above. It should undo the state changes on beans
performed bytr and reexecuter. There is one more issue.
Since the AS primary first transfers the checkpointcpr for
r to the AS backups and then submits the commit to the
DB, the AS backups havecpr containing the changes of
aborted transactiontr. There are now two cases. Firstly,
the AS primary successfully reexecutesr and sends a new
checkpoint forr to the AS backups. In this case, the AS
backups should discard the old, invalid checkpoint. Sec-
ondly, the AS primary might crash during reexecution be-
fore sending a new checkpoint. In this case, the AS backup
that takes over as new AS primary checks for the marker
(corresponding to the old checkpoint) but will not find it in
the DB, and discard the checkpoint. That is, in any case,
the old invalid checkpoint is ignored.

In summary, little has to be done in case of the crash of
the DB primary in order to correctly couple the two replica-
tion algorithms. The only action that has to be performed is
the following: whenever the AS primary receives a failure
exception from the JDBC driver for a transactiont, it has
to abortt at the AS level, and restart the execution of the
corresponding client request.

12

4.2 DB primary does not fail, AS primary fails

When the AS primary fails its connections to the DB pri-
mary are lost. The DB primary aborts each active transac-
tion for which it did not receive the commit request before
the crash. This is the same behavior as that of a centralized
DB system. At AS failover, the new AS primary connects
to the DB primary and checks for the markers for the last
checkpoints it received from the old AS primary. Since it
is connected to the same DB replica as the old AS primary
was, it will read the same information as in a centralized
DB system. As a result, nothing has to be done in case of
the crash of the AS primary in order to correctly couple the
two replication algorithms. The failover actions of the AS
replication algorithm of Section 2 are correct, whether the
AS is connected to a reliable centralized DB system or to a
replicated DB based on the algorithm of Section 3.

4.3 Both DB and AS primaries fail

Crash at the same time This is possible if DB and AS pri-
maries run on the same machine, and the machine crashes.
In this case the JDBC driver of the new AS primary con-
nects to the new DB primary. Nevertheless, failover can be
performed in exactly the same way. There is only one issue.
The new DB primary may not execute any requests from
the new AS primary before it has applied and committed
all writesets it has received from the old DB primary, i.e.,
before failover is completed. Otherwise, the new AS pri-
mary could check for a marker for a requestr, not find it,
and only after that the new DB primary processes the write-
set of the corresponding transactiontr and commitstr. In
this case, the new AS primary would discardr’s checkpoint
and reexecuter leading to a new transactiont′

r
althoughtr

already committed at the DB.

Crash at different times The interesting case is if the AS
primary first fails, the new AS primary performs failover,
and while checking for markers in the DB primary, the DB
primary crashes. Checking for a marker is a simple transac-
tion. If the DB primary fails in the middle of execution, the
JDBC driver returns a failure exception to the new AS pri-
mary. The new AS primary can simply resubmit the query,
and the JDBC driver redirects it to the new DB primary
where it will be answered once the new DB primary has
processed all writesets from the old DB primary.

4.4 Summary

The discussion above shows that with the two particular AS
and DB replication algorithms, the coupling is extremely
simple. There is only one slight modification to the AS
replication algorithm. Since the failure of the DB primary
is not completely transparent (the application receives fail-
ure exceptions for any active transaction), the AS might
have to reexecute a request if the DB primary fails. No
other changes have to be performed.

5 Multiple Primary Approaches
Recall that with multiple primaries, each replica can be pri-
mary of some clients and backup for the other primaries.

5.1 Multiple AS Primaries

Extending above single primary AS algorithm to allow for
multiple primaries is straightforward as long as client ses-
sions are sticky (a client always interacts with the same AS
replica during the lifetime of a session unless the AS replica
crashes), and as long as access to shared data is synchro-
nized via the DB tier2. Some load balancing mechanism is
needed to assign new clients to one of the AS replicas but
the basics of the replication algorithm can remain the same.

Coupling with a single DB primary We can use the
failover mechanism of the single AS primary solution pre-
sented in Section 4 without any changes. If any of the AS
replicas fails, only the clients for which this AS replica was
primary must be failed over to another AS replica.

5.2 Multiple DB Primaries

Many recent systems [17, 23, 27, 24, 30, 21] allow an ap-
plication to connect to any DB replica which executes the
transaction locally and at commit time multicasts the write-
set to the other DB replicas. Since transactions on differ-
ent DB replicas might access the same data, conflicts must
now be detected across the system. A typical solution is to
use the primitives of a group communication system (GCS)
[28]. The replicas build a group and writesets are multi-
cast such that all group members receive the writesets in
the same total order. If two transactions are concurrent and
conflict then the one whose writeset is delivered later must
abort at all replicas. There exist many solutions to detect
such conflicts using locking, optimistic validation, snap-
shots, etc. GCS also detect the crash of group members
and inform surviving members with a view change mes-
sage. Writesets are usually multicast with a uniform reli-
able delivery guaranteeing that if one DB replica receives
a writeset each other replica also receives it or is removed
from the group.

Failover after the crash of a DB replica is proposed in
[21] and nearly as described in Section 3. The replicated
DB has one fixed IP multicast address. To connect the
extended JDBC driver multicasts a discovery message to
this address. DB replicas that are able to handle additional
workload respond and the driver connects to one of them.
Let’s denote it withdb. If db crashes, the JDBC driver re-
connects to another DB replicadb′. Only crash case 3 of
Section 3 where the commit for a transactiont was sub-
mitted butdb crashes before returning an answer must be
handled slightly different than in Section 3. Due to the
asynchrony of message delivery, the JDBC driver might in-
quire about the commit oft atdb′, and only afterwardsdb′

receivest’s writeset. In order to handle this correctlyt’s
identifier contains information thatt was executed atdb.

2Transactions on different AS replicas may access shared data via en-
tity beans but access is synchronized with the DB before commit.

13

Then,db′ waits until the GCS informs it about the crash of
db. According to properties of the GCS,db′ can be sure that
it either receivest’s writeset before the view change remov-
ing db (and then, tells the JDBC driver about the outcome),
or not at all (and then, returns a failure exception).
Coupling with a single AS primary Assume the AS pri-
mary is connected to DB replicadb.

If neither the AS primary nordb fail, then the only dif-
ference to Section 4 is that a transactiontr might now abort
at the DB tier at commit time because of a conflict. The
AS primary can hide such abort could from the AS client
by undoing the AS state changes oftr and reexecutingr
as done in Section 4.1 when the transaction aborts due the
crash of the DB primary.

If the AS primary does not fail butdb fails, the AS pri-
mary might receive an abort or failure exception for a trans-
actiontr. As in Section 4.1, the AS primary abortstr at the
AS level and reexecutesr.

If the AS primary fails and the new AS primary connects
again todb, the situation is as in Section 4.2.

The only really interesting case is if the AS primary
fails, and the new AS primaryNP connects to DB replica
db′ 6= db (this might happen due because of load-balancing
issues or becausedb also fails).NP checks for markers in
db′. These are simple read only transactions. However, we
have again the problem of asynchrony. Althoughdb′ might
have receivedtr’s writeset it might still execute it while
NP checks forr’s marker. Hence,NP will not find the
marker buttr later commits. Conceptually, the problem is
similar to the JDBC driver inquiring about the commit of a
transaction but the DB replica might not yet have processed
the writeset. The difference is that the JDBC driver is part
of the DB replication system. Hence, coordination is sim-
pler. Whendb′ receives an inquiry from the JDBC driver
for a transaction that was executed ondb, it knows it has
to wait until it either receives the writeset or a view change
message from the GCS. However, when theNP looks for a
marker, this is a completely new, local transaction, anddb′

cannot know that this transaction actually inquires abouttr.
In order to allowNP to connect to any DB replicadb′

we suggest to extend both the AS and DB replication so-
lutions slightly. Firstly, we make a JDBC connection ob-
ject a “state” object which keeps track of the last transac-
tion tr associated with the connection.tr ’s identifier im-
plicitly contains the identifier of the DB replica it is exe-
cuted on (e.g.,db). Secondly, we make the submission of
the commit request over a given connection to the repli-
cated DB an idempotent operation. We show shortly how
this is achieved. Furthermore, the new AS primaryNP

has to perform the following actions at failover. Instead
of checking for the marker ofr for the last checkpointcpr

of a client,NP submits the commit request fortr using
the connection object found incpr. At this timepoint, the
connection object is not really connected to any DB replica.
Hence, it connects to any DB replicadb′ and inquires about
the commit oftr. Assume first thatdb′ = db. db, before
the old AS primary crashed might have already received

tr ’s commit request or not. In the first case, it had either
committedtr or aborted due to conflict. In the second case,
it has abortedtr due to the crash of the AS primary. Hence,
it returns the corresponding outcome to the driver which re-
turns it toNP . In case of commit,NP applies the state in
cpr and keeps track of the response, otherwise it discards
cpr and restarts execution ofr when the client resubmits.
If db′ 6= db, thendb′ can detect by looking attr thattr was
originally executed atdb. db′ knows that the driver would
only send a commit inquiry of a transaction executed ondb

if db crashed. Hence, it waits until it has received from the
GCStr ’s writeset or the view change message excludingdb

from the group. In the first case, it returns a commit/abort
answer depending on conflicts. In the second case, it re-
turns a failure exception. The driver forwards this decision
to NP which handlescpr accordingly.

With this mechanism, there is actually no need for the
marker mechanism. Instead of looking for the marker,
the new AS primary simply submits the commit request
over the connection object copy. It either receives the out-
come of the transaction (commit/abort) or a failure excep-
tion. Hence, this extended functionality of the DB repli-
cation algorithm – allowing a resubmission of a commit
request (with idempotent characteristics) – provides addi-
tional functionality over a centralized system. As a result,
the AS replication algorithm can be simplified avoiding to
insert a marker for each transaction.

6 Conclusions
This paper analyzes various approaches for replication both
at AS and DB tier. The main focus is to combine typical
existing replication solutions, developed for the replication
of one tier, to provide a replication solution for the entire
multi-tier architecture. We show that only minor changes
need to be performed to the existing solutions in order to
provide exactly-once execution across the entire system.
One main issue is that the replicated AS tier should hide
DB crashes from its own clients. This is easy to achieve.
The second main issue is for the AS tier to detect whether a
given transaction committed at the DB tier in the presence
of crashes of AS and/or DB replicas. A transparent solution
is embedded in a replication aware JDBC driver.

References
[1] C. Amza, A. L. Cox, and W. Zwaenepoel. Dis-

tributed versioning: Consistent replication for scaling
back-end databases of dynamic content web sites. In
ACM/IFIP/USENIX Int. Middleware Conf., 2003.

[2] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool.
Replication, consistency, and practicality: Are these
mutually exclusive? InSIGMOD Int. Conf. on Man-
agement of Data, 1998.

[3] R. Barga, S. Chen, and D. Lomet. Improving log-
ging and recovery performance in phoenix/app. In
Int. Conf. on Data Engineering (ICDE), 2004.

14

[4] R. Barga, D. Lomet, and G. Weikum. Recovery guar-
antees for general multi-tier applications. InInt. Conf.
on Data Engineering (ICDE), 2002.

[5] BEA Systems. WebLogic Server 7.0. Programming
WebLogic Enterprise JavaBeans, 2005.

[6] K. Böhm, T. Grabs, U. Röhm, and H.-J. Schek.
Evaluating the coordination overhead of synchronous
replica maintenance. InEuro-Par, 2000.

[7] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-
JDBC: flexible database clustering middleware. In
USENIX Annual Technical Conference, FREENIX
Track, 2004.

[8] M. Cukier, J.. Ren, C. Sabnis, D. Henke, J. Pistole,
W. H. Sanders, D. E. Bakken, M. E. Berman, D. A.
Karr, and R. E Schantz. AQuA: an adaptive architec-
ture that provides dependable distributed objects. In
Symp. on Reliable Distributed Systems (SRDS), 1998.

[9] K. Daudjee and K. Salem. Lazy database replication
with ordering guarantees. InInt. Conf. on Data Engi-
neering (ICDE), 2004.

[10] E. Dekel and G. Goft. ITRA: Inter-tier relationship
architecture for end-to-end QoS.The Journal of Su-
percomputing, 28, 2004.

[11] S. Drake, W. Hu, D. M. McInnis, M. Sköld, A. Srivas-
tava, L. Thalmann, M. Tikkanen, Ø. Torbjørnsen, and
A. Wolski. Architecture of highly available databases.
In Int. Service Availability Symposium (ISAS), 2004.

[12] P. Felber, R. Guerraoui, and A. Schiper. Repli-
cation of CORBA objects. In S. Shrivastava and
S. Krakowiak, editors,Advances in Distributed Sys-
tems. LNCS 1752, Springer, 2000.

[13] P. Felber and P. Narasimhan. Reconciling replica-
tion and transactions for the end-to-end reliability of
CORBA applications. InInt. Symp. on Distributed
Objects and Applications (DOA), 2002.

[14] S. Frølund and R. Guerraoui. A pragmatic implemen-
tation of e-transactions. InSymp. on Reliable Dis-
tributed Systems (SRDS), Nürnberg, Germany, 2000.

[15] S. Frølund and R. Guerraoui. e-transactions: End-
to-end reliability for three-tier architectures.IEEE
Transactions on Software Engineering (TSE), 28(4),
2002.

[16] The JBoss Group. JBoss application server.
http://www.jboss.org.

[17] J. Holliday, D. Agrawal, and A. El Abbadi. The per-
formance of database replication with group commu-
nication. InInt. Symp. on Fault-Tolerant Computing
(FTCS), 1999.

[18] IBM. WebSphere 6 Application Server Network De-
ployment, 2005.

[19] M.-O. Killijian and J. C. Fabre. Implementing a re-
flective fault-tolerant CORBA system. InSymp. on
Reliable Distributed Systems (SRDS), 2000.

[20] A. I. Kistijantoro, G. Morgan, S. K. Shrivastava, and
M. C. Little. Component replication in distributed
systems: a case study using Enterprise Java Beans. In
Symp. on Reliable Distributed Systems (SRDS), 2003.

[21] Y. Lin, B. Kemme, R. Jiménez-Peris, and M. Patiño-
Martı́nez. Middleware based data replication provid-
ing snapshot isolation. InSIGMOD Int. Conf. on
Management of Data, 2005.

[22] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Strongly consistent replication and recovery of fault-
tolerant CORBA applications.Journal of Computer
System Science and Engineering, 32(8), 2002.

[23] E. Pacitti, P. Minet, and E. Simon. Replica consis-
tency in lazy master replicated databases.Distributed
and Parallel Databases, 9(3), 2001.

[24] F. Pedone, R. Guerraoui, and A. Schiper. The
database state machine approach.Distributed and
Parallel Databases, 14(1), 2003.

[25] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In
ACM/IFIP/USENIX Int. Middleware Conf., 2004.

[26] Pramati Technologies Private Limited. Pra-
mati Server 3.0 Administration Guide, 2002.
http://www.pramati.com.

[27] L. Rodrigues, H. Miranda, R. Almeida, J. Martins,
and P. Vicente. Strong Replication in the Glob-
Data Middleware. InWorkshop on Dependable
Middleware-Based Systems, 2002.

[28] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev.
Group communication specification: A comprenhen-
sive study.ACM Computing Surveys, 33(4), 2001.

[29] H. Wu, B. Kemme, and V. Maverick. Eager replica-
tion for stateful J2EE servers. InInt. Symp. on Dis-
tributed Objects and Applications (DOA), 2004.

[30] S. Wu and B. Kemme. Postgres-R(SI): Combining
replica control with concurrency control based on
snapshot isolation. InInt. Conf. on Data Engineer-
ing (ICDE), 2004.

[31] W. Zhao, L.E. Moser, and P.M. Melliar-Smith. Uni-
fication of transactions and replication in three-tier
architectures based on CORBA.IEEE Transactions
on Dependable and Secure Computing, 2(1):20– 33,
2005.

15

16

Oracle® Streams for Near Real Time Asynchronous
Replication

Nimar S. Arora

Oracle USA
M/S 4op10, 500 Oracle Pkwy

Redwood Shores, CA
U.S.A.

nimar.arora@oracle.com

Abstract
Replication users typically have two very
conflicting needs. They require the online
transaction workload to proceed seamlessly, as if
there was no replication. At the same time, they
need the latency of the replica to be extremely
small, or, in other words, near real time. Now,
synchronous replication guarantees no latency,
but it does so at tremendous cost to the
transaction throughput and system availability.
Thus, it is not surprising that asynchronous
replication is the more popular choice. The
challenge is to design an asynchronous
replication system that can guarantee a small,
fixed latency while at the same time keeping up
with the full transaction throughput supported by
the database. This paper discusses the design of
Oracle® Streams (as configured for replication)
to provide near real-time asynchronous
replication at throughputs close to the maximum.

1. Introduction
Replication has traditionally been associated with high
availability and disaster recovery applications. Recently,
however, replication is being used for data warehouse
loading and online upgrade or migration of applications.
These new uses are placing stringent demands on
replication performance.

For data warehouse loading, a customer might want to
run a data mining application concurrently with online
transaction processing, without affecting the transaction
throughput. The solution typically is to perform the data
mining on a replica. It is often acceptable in this case that
the data mining application is running on a replica with
slightly older data than the data in the source database, but
strict limits are placed on the maximum latency allowed.

For online upgrade, an application often must be
upgraded with essentially no downtime. In this case, the

upgrade is performed on a point-in-time replica, while the
older version of the application is running. After the
upgrade, the replica database is synchronized with the
source database by replaying all the changes made since
the point-in-time and mapping them to conform to the
new version of the application. When the replica has
almost caught up, the old version is taken offline briefly,
while the new version completely catches up. Finally, the
workload is redirected to the replica. Online migration is
similar, whereby the customer is migrating a database to a
different operating system or platform with essentially no
downtime.

Because synchronous replication requires that the
replica must be available while the changes are being
made to the source, it does not work for online upgrade.
Also, synchronous replication forces each transaction to
wait for at least one network round trip before
committing. This required round trip not only increases
the delay seen by an individual transaction, but because
locks are held longer, it affects overall transaction
throughput as well. In other words, synchronous
replication is unusable for these cases.

Asynchronous replication, on the other hand, has
problems of its own. Although potential inconsistencies
are a common concern, inconsistencies are less of an issue
in practice. Experienced users can easily configure
replication to virtually eliminate the possibility of
divergence. The more critical problem is for the replica to
keep up with the workload at the source.

The maximum transaction throughputs, as reported by
popular benchmarks, have been skyrocketing over the
years (Figure 1, [4]). Although much of the improvement
has been fueled by faster hardware, database algorithms
have also been getting better at extracting higher
concurrency from multi-processor computer systems.
Thus, the challenge for replication is not only to ride the
hardware technology curve, but also for the replica to
mirror the source’s concurrency.

17

This paper discusses how these problems are handled
by Oracle® Streams, which can be used for asynchronous
replication. Section 2 provides an overview of Streams
and some terminology. Section 3 is a brief overview of
some of the alternate replication designs provided by
Oracle®. Section 4 discusses overall performance
characteristics. Finally, section 5 deals with the
concurrency issues at the replica.

2. Overview of Oracle® Streams
Oracle® Streams is a unified information sharing
infrastructure, which provides generalized modules for the
capture, propagation, and consumption of information. A
full overview of the many features of Streams and its uses
is beyond the scope of this paper; the interested reader is
referred to [1]. This document limits this discussion to the
replication of changes made to relational databases.

2.1 LCR and CR

In the context of replication, the information representing
a change to a relational database is known as a logical
change record (LCR). An LCR is a generalized
representation of all possible changes to a database, and is
independent of the database vendor. A change record
(CR), on the other hand, is a term used to denote a
database-specific representation of a change.

2.2 Rules and Transformations

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

00 01 02 03 04 05

tpmC

The user can specify which LCRs to replicate by using a
set of rules with rule conditions that are similar to SQL
WHERE clauses. These rules are evaluated against all the
changes made to the database to filter out the irrelevant
ones. For example, the following rule specifies that only
DML changes to table SCOTT.EMP are of interest.

:dml.get_object_owner()=’SCOTT’ and
:dml.get_object_name()=’EMP’

Similarly, rules can be specified for non-DML activity,
such as ADD CONSTRAINT and DROP USER.

Moreover, rules can have transformations associated
with them. A transformation uses a user-specified or built-
in stored procedure, and it automatically changes any
LCR that satisfies the rule condition of the associated
rule. A transformation typically is used to delete sensitive
attributes (for example, social security numbers), or to
rename a table or a column before replication.

2.3 Queue

A queue is a temporary staging area that stores LCRs as
they move between different Streams modules and across
databases. The user configures Streams by first creating
the queues and then attaching various Streams modules as
producers or consumers for the queues. Along with each
module, a set of rules or transformations can be specified
to filter information flowing into or out of that module.

Figure 1. OLTP Performance Trends

The queue supports three operations, enqueue, browse
and remove. Here, the standard dequeue operation has
been broken up into separate browse and remove
operations.

2.4 Capture, Propagation, and Apply

The three modules of Streams are capture, propagation,
and apply. The behavior of each module is controlled by
rules.

Capture reads CRs contained in the redo generated by
the database. It converts these CRs into LCRs and
enqueues them.

Propagation consumes LCRs from one queue and
enqueues them into another queue on the same, or on a
different, database.

Apply consumes LCRs from a queue and changes the
database as specified in the LCR. Because all database
changes are recorded in the redo, apply can be thought of
as writing CRs into the redo. In that sense, apply is the
inverse of capture.

Figure 2 gives a high-level overview of Streams
replication. It shows capture, propagation, and apply
modules for replicating changes from one database to
another. This configuration is an example of
unidirectional replication, but it’s not the only
configuration that is possible. We could add another set of
capture, propagation, and apply modules in the reverse
direction to get bi-directional replication, for example.
Similarly, by connecting appropriate modules, it’s

18

Source Database

Capture Propagation User
Transactions

QueueRedo
Logs

CR CR LCR LCR

possible to configure any conceivable replication
topology.

2.5. Supplemental Logging and Replication Based on
Primary Keys

The CR from which an LCR is constructed typically has
minimal information in it. Usually, it is only possible to
extract the modified attributes and the rowid. However, to
apply a DML LCR, the primary key of the modified row
must be available in the LCR. For parallel apply and
inconsistency detection and resolution, other columns
might also be needed. Thus, the CR must include extra
columns. The addition of these extra columns in the redo
log is known as supplemental logging.

2.6. Apply Handlers

In some replication scenarios, it is helpful to specify a
user-created stored procedure, called an apply handler, to
apply LCRs. For example, when schemas change during
online application upgrades, the LCRs from the old
version of the application schema cannot be applied as is.
An apply handler is needed to convert a change
(represented by an LCR) so that it is relevant to the new
version of the schema. This conversion often requires
querying the current application state. In this case,
transformations are not suitable.

2.7. Inconsistencies

One of the drawbacks of asynchronous replication, versus
synchronous, is the possibility of inconsistencies. In
general, inconsistencies arise when users make conflicting
changes on the source and the replica. Inconsistencies
lead to two problems: detection and resolution.

For detection, all the columns in the LCR pertaining
to “old” data on the source (that is, before the change
corresponding to this LCR) are compared with the current
values in the corresponding row in the replica during

apply. Also, users can supplementally log additional
unmodified columns from the source to strengthen this
check. In addition, the database identifies constraint
violations, such as unique key, foreign key, and so on.

For resolution, Streams provides built-in conflict
handlers for common strategies such as maximum value
and overwrite. Alternatively, users can write their own
stored procedures for resolving inconsistencies.

In practice, a combination of conflict resolution and
conflict avoidance strategies works well for most user
requirements.

2.8. Online Instantiation

Customers frequently add new sites to their replication
configuration or add new tables to an existing
configuration. It is imperative that such reconfigurations
do not involve any downtime. The following steps show
how Streams supports online instantiation:
1 Suspend apply activity, and start capturing changes to

the new table and propagating these changes to the
new site.

2 Briefly hold a shared lock on the source table to
ensure that there are no long running transactions.

3 Make a point-in-time copy of the table.
4 Instantiate the table at the replica.
5 Resume apply activity, but ignore transactions which

committed before the instantiation point-in-time
(from step 3) for this table.

3. Alternate Repliation Configurations

3.1. Propagating CRs vs LCRs

In Figure 2, a modification makes it possible to propagate
the CRs directly to the replica. This change has the
advantage that the conversion of CRs to LCRs can be
shifted to the replica and offloaded from the source.

L
C
RReplica Database

Apply QueueRedo
Logs

CR LCR

Figure 2. Overview of Streams Replication

19

However, for the replica database to be able to decode the
CRs, it must be running the same version of Oracle® as
the source on the same platform as the source. This
restriction disqualifies this approach for platform
migration scenarios.

An interesting option that is available when
propagating CRs is to obtain a weak form of synchronous
replication by synchronously writing out the redo on the
replica. This option is similar to synchronous replication
in the sense that a user issuing a transaction commit must
wait for at least one network round-trip. However, this
option is different than synchronous replication in that
locks on modified data items can be released before
network acknowledgement. Some of the concurrent steps
performed during transaction commit are shown in Figure
3.

This form of synchronous redo replication works well
when the average transaction size is large enough that the
network round-trip time is not significant. It also works
well when the redo generation for concurrent transaction
commits can be batched, so that the transaction commit
rate is not limited by the network round-trip latency.

 3.2. Applying CRs vs LCRs

If CRs are propagated to the replica, they can be applied
directly, as if the replica is being “recovered” from the
redo of the source. The obvious advantage is the reduction
of the number of steps involved and avoidance of
supplemental logging. The disadvantage, however, is that
the replica must be an exact copy of the source. Thus, the
replica cannot be open for updates.

See [2] for more on these alternate configurations.

4. Replication Performance Commit issued

4.1. Latency and Throughput Definition

In standard I/O terminology, latency and throughput are
defined with respect to bits or bytes, because those are the
atomic units at which data is processed. In replication,
however, the atomic unit is a change record, and so
replication latency is measured in terms of CRs or LCRs.
The immediate problem with such a definition is that CRs
can vary widely in size, and consequently latency and
throughput are not fixed measures. To address this issue,
one standard CR is used, and latency and throughput are
defined in terms of this fixed CR. Also, variation in
latency can be measured with variation in CR size.

Locks
Released

Redo written
on replicant

Commit
ack’ed to
user

If the latency of the capture, propagation, and apply
modules is, respectively, Lcapture, Lpropagation, and Lapply, then
the overall latency for the simple replication configuration
of Figure 2 is Lcapture + Lpropagation + Lapply. This method
assumes that the throughput of each of the modules is at
least as high as the throughput of redo generation.
Otherwise, replication could steadily fall behind and the
latency would grow unbounded.

Figure 3. Synchronous Redo Replication

4.2. Capture Performance

The capture module has to perform three distinct
activities: read the CRs from the redo; convert the CRs
into LCRs; and enqueue the LCRs. This document
denotes the time taken by each of these activities as Lread,
Lconvert, and Lenqueue, respectively.

All the activities of the capture module cannot be
performed in a single process (or thread of control). The
problem is that the rate of reading redo is about the same
as the rate of writing redo (disk I/O rates are typically
symmetrical). If the capture process has to perform other
activities in addition to reading redo, then it could not
keep up with the maximum redo generation rate. Hence, a
separate process is used for the reading activity. Although
CRs can be read from the redo log buffer, which is much
faster, the design of capture must handle situations where
capture is so far behind the redo generation that it is
forced to read the CRs from disk. For example, in the
online upgrade scenario, as described in the introduction,
replication might be started after some delay.

It follows that the maximum capture throughput is:
min(1/Lread, 1/(Lconvert + Lenqueue))

and latency is:
Lread + Lconvert + Lenqueue

Here Lread is either (LCR size)/(disk bandwidth) or (LCR
size)/(memory bandwidth) depending on whether capture
is reading from disk or memory. The cost of the
conversion and enqueue operations, however, is
somewhere in between these two values. In general, the
time taken to convert an LCR depends on the LCR size
and the number of columns. LCR conversion is a more
complex operation than simply copying memory. The

20

enqueue operation operates on a pointer to the LCR and is
independent of the actual size. Therefore, LCR conversion
cost primarily determines capture process latency.

It follows that when capture is reading redo from
memory, its latency is primarily Lconvert and it’s maximum
possible throughput is 1/Lconvert, which is more than the
maximum CR generation rate.

4.3. Queue Performance

Although all queue operations are performed in memory
and are independent of the LCR size, some queue
performance issues warrant consideration. In some cases,
concurrency issues with queue operations can be costly.
For example, if a process goes to sleep waiting for a latch,
it could be rescheduled as much as 10 milliseconds later
(assuming that there are other processes available to be
scheduled).

In general, when there are fewer processes
concurrently accessing a data structure, there is a smaller
likelihood of concurrency related delays. In the simple
topology of Figure 2 and in many commonly used
topologies, the maximum concurrency is just two (one
producer and one consumer per queue). At this level,
concurrency is not a significant issue.

4.4. Propagation Performance

Similar to capture, propagation performs three tasks:
browse LCRs, transmit LCRs over the network, and
remove LCRs. However, because the removal of an LCR
is done after the LCR is sent, the cost of removing an
LCR does not contribute to the latency. In fact, the
removal of the LCR is done in a separate process to avoid
any impact on the transmission throughput. The browse
activity is extremely lightweight and is done in the same
process as the transmission. LCRs are browsed and
transmitted continuously to ensure that network latency
cannot affect the throughput.

Therefore, the maximum throughput is:
min(1/(Lbrowse + Ltransmit), 1/Lremove)

and the latency is:
Lbrowse + Ltransmit + network latency

Where Ltransmit is (LCR size)/(network bandwidth).
The propagation throughput is dominated by 1/Ltransmit

or, in other words, the network bandwidth. Also, because
network latency is bound by speed of light considerations
while network bandwidth is tripling every year [5], it is
reasonable to assume that the propagation latency is
bound by network latency.

The size of an LCR propagated can be comparable to
the redo generated for the corresponding change. Thus,
for propagation throughput to keep up, network
bandwidth must be comparable to disk bandwidth.

4.5. Apply Performance

The apply module also has three broad activities: browse
LCRs, execute LCRs (that is, manipulate the database

corresponding to the contents of the LCRs), and remove
the LCRs from the queue. As in propagation, the removal
activity does not contribute to the latency.

The main problem when applying an LCR is that the
act of manipulating the database is slower than the
generation of the redo that represents the change. So, if
apply were to execute the LCRs serially, it could not keep
up with the redo generation rate. For this reason, the apply
module executes LCRs in parallel. If Lexecute is the
execution time and Lwrite is the time taken to write the redo
for the same LCR, the apply module requires effective
apply parallelism of Lexecute / Lwrite to keep up.

In order to support parallel apply, the apply module
must compute dependencies between the transactions so

that it can identify the LCRs that can be executed
concurrently. As shown in Figure 4, there is one apply
process for browsing and computing dependencies, and
one for each active transaction. It is important that LCRs
are executed as soon as they are received, even before the
corresponding transaction on the source has committed.
Otherwise, the latency could grow unbounded. Although
the apply process executes an LCR immediately, it still
replicates transactionally. For example, if the transaction
on the source is rolled back, the apply module rolls back
the corresponding replica transaction.

Execute LCR

Execute LCRBrowse LCRs
and compute
dependencies

Execute LCR

Figure 4. Apply Processes

From this description, it follows that the maximum
throughput of apply is:

min(1 / (Lbrowse+Ldependency), p / Lexecute)
where p is the effective parallelism. The latency is:

Lbrowse+Ldependency+Lexecute
The dependency computation, which will be described

in detail in the next section, is a relatively simple, in-
memory operation, while writing redo is limited by the
much slower disk bandwidth, that is:

Lbrowse+ Ldependency << Lwrite
Combined with the observation that Lexecute > Lwrite, it

follows that apply throughput is p/Lexecute, and the latency
is dominated by Lexecute.

21

4.6. Overall Performance
Transaction T1,
LCR1: insert into
A (A1) values ‘x’;

… Remember that Lconvert is the most important latency factor
for the capture module, but the conversion time is much
smaller than the execution time because conversion is a
simple, in-memory operation. Thus, if apply can extract
sufficient parallelism to keep up with the redo generation,
and if capture is reading redo from memory, the
replication latency is essentially (network
latency)+Lexecute.

K: T1, L1

…

5. Parallel Apply

5.1. SCN Ordering

All changes in the Oracle® database are ordered by a
number, called the system change number (SCN).
Normally, this is a monotonically increasing number, but
concurrent changes might be assigned the same value. It
is a Lamport Clock as in [3] because a change x which
depends on a change y has to have a higher SCN than y’s.
Here the notion of depends says that change x acquires a
lock which conflicts something locked by change y.

In addition to changes, the act of committing a
transaction also has an SCN associated with it, known as
the CSCN (or commit SCN). Because locks on modified
data items are released only at the commit of a
transaction, a stronger statement is needed for dependent
changes: If change x depends on a change y, then x must
have a higher SCN than y’s CSCN unless x and y are part
of the same transaction.

5.2. Dependency Computation

For each LCR, apply must determine the set of locks that
would be acquired during execution. If these locks could
conflict with any lock needed by concurrently executing
LCRs, then apply must suspend execution. Otherwise,
apply might, as a result of a race condition, acquire the
locks in the wrong order.

For DML LCRs only, locks taken on individual rows
are of interest. In general, DDL LCRs are not executed in
parallel. Because Oracle® only takes write locks, it
becomes easy to compute dependencies for them. The
LCRs are processed in SCN order, and, for each LCR,
multiple entries are made into a fixed size dependency
hash table, as follows. For each row of a table or index
that an LCR execution would involve, apply hashes a
unique identifier for that row to locate a bucket of the
dependency hash table. If there is an entry in that bucket,
then this LCR depends on it. Finally, the contents of the
bucket are overwritten with the current LCR so that future
LCRs that involve this row depend on the current LCR.
Of course, false dependencies are possible due to hash
collisions. However, with large enough hash tables, the
probability of a false dependency between concurrently
executing LCRs is extremely low.

Figure 5 shows an example of dependency
computation. The insert LCR of transaction T1 causes an
entry to be written in the hash table at the location
determined by hash(A, A1, ‘x’). Later, when the delete of
transaction T2 is processed, the same entry in the hash
table is referenced. The delete LCR of T2 must wait on
the insert LCR of T1, and the hash entry is updated with
the information on the delete LCR of T2.

5.3. In-Order Apply

Another dependency between transactions is the commit
SCN order. In general, it is safest to commit transactions
in the same order as on the source. Although dependency
computation ensures that dependent transactions are
always correctly ordered, the CSCN order of transactions
is also important. Reordering seemingly independent
transactions might transiently violate application
constraints that are not expressed as database constraints.

For example, an application might enforce a constraint
that at most ten people are in the sales department.
Consider a situation where the sales department has
exactly ten employees. Now, assume that an employee is
moved out of the sales department, and another employee
moved into the department in two consecutive
transactions. From the dependency computation point of
view, these transactions are independent. But if they are
not committed in CSCN order, it is possible to reach a
state where the sales department has eleven employees.

5.4. Dependency DAG

A dependency directed acyclic graph (DAG) is created
with individual LCRs as nodes and edges between any
two LCRs that depend on each other. Figure 6 shows an

Transaction T2,
LCR1: Delete
from A where
A1=’x’

…

K:T1,L1 T2, L1

…

K = Hash(A, A1,’x’)

Figure 5. Transaction Dependency Computation

22

T1:
Insert into A(A1)
values (‘x’)

T2:
Insert ….

example of such a DAG. Note that the dependencies
created by in-order apply requirements are expressed as
edges between the commit LCRs of the transactions.
Also, the requirement that the changes within a
transaction be made in serial order is expressed as edges
between consecutive changes of a transaction.

The apply module can therefore be thought of as an
online DAG scheduling algorithm.

6. Conclusion
Oracle® Streams achieves near real-time replication by
moving changes to the replica faster than the redo
generation rate, and by applying them with a high degree
of concurrency.

7. Acknowledgements
The author is indebted to Jim Stamos, Bipul Sinha and
Mahesh Girkar for numerous discussions that helped
shape the arguments presented here. Randy Urbano

provided valuable comments, which helped improve the
layout of the presentation, and Marybeth Pierantoni
helped with the performance data.

This work wouldn’t have been possible without the
support of my wife, Geeta, and the encouragement of my
managers: Lik Wong and Alan Downing.

8. References
1. Oracle® Streams Concepts and Administration 10g

Release 2 (10.2). http://otn.oracle.com
2. Oracle® Data Guard Concepts and Administration

10g Release 2 (10.2). http://otn.oracle.com
3. Leslie Lamport. Time, clocks and the ordering of

events in a distributed system. Communications of the
ACM, 21(7):558−565, July 1978.

4. TPC-C Benchmark Results. http://www.tpc.org
5. G. Gilder, “Fiber Keeps Its Promise: Get ready.

Bandwidth will triple each year for the next 25.”
Forbes, 7 April 1997.

T2:
Delete from A
where A1=‘x’

T1:
commit

T2:
commit

T3:
Update ….

T3:
commit ….

Figure 6. Example of a Dependency DAG

23

http://www.tpc.org/

24

Replication Tools in the MADIS Middleware ∗

L. Irún-Briz1, J. E. Armendáriz2, H. Decker1, J. R. González de Mendı́vil2, F. D. Muñoz-Escoı́1

1Instituto Tecnológico de Informática 2Depto. de Matemática e Informática
Universidad Politécnica de Valencia Universidad Pública de Navarra

46022 Valencia, SPAIN 31006 Pamplona, SPAIN
{lirun, hendrik, fmunyoz}@iti.upv.es {enrique.armendariz, mendivil}@unavarra.es

Abstract
To deal with consistency in replicated database
systems, particularities of the chosen target envi-
ronment and applications must be considered. To
this end, several replication protocols have been
discussed in the literature, each one requiring a
different set of data to be maintained for each
replicated object or for each transaction being ex-
ecuted. For instance, many protocols need to col-
lect the writeset of each transaction.
In this paper, we describe the MADIS middleware
architecture and its support for transaction man-
agement provided to its replication protocols.

1 Introduction
There are two approaches for building a replication support
for databases in a share-nothing case. The first one consists
in adding or modifying some components of the DBMS
core at each replica. Its main advantages are a good perfor-
mance, since the DBMS may provide direct access to the
information needed by replication protocols, and that the
solutions to be provided require the addition of a minimal
amount of code. On the other hand, this approach also im-
plies that the internal architecture of the target DBMS has
to be carefully studied and the resulting solution would be
DBMS-dependant, i.e., it is difficult to port such a solution
to other DBMSes.

The second approach tries to implement the replication
support in a middleware. In this case, some performance
will be lost, since the information needed by the repli-
cation protocol regarding transactions and accessed data
items has to be obtained using the standard API provided
by the DBMS; i.e., using SQL. Thus, many optimisations
that are available in the previous approach cannot be used
in a middleware. However, this second case also provides
some advantages, being portability the most important one.

There are many examples of systems that have provided
replication support using one of these approaches. For in-
stance, the Dragon [4] and Escada [20] projects required

∗This work has been partially supported by the Spanish grant
TIC2003-09420-C02 and EU grant FP6-2003-IST-2-004152.

both some changes to the DBMS core in order to provide
its replication support. The middleware alternative has also
been used by many research groups, like the Distributed
Systems Laboratory of the Technical University of Madrid
[12], and projects, like C-JDBC [13], or GlobData [8]. Ad-
ditionally, projects like GORDA [21] are developing repli-
cation support for these two environments. This is very
interesting since it will allow a direct comparison between
both approaches.

This paper describes some components of the repli-
cation support provided in the MADIS middleware [9],
a replication solution based on the second approach de-
scribed above. This middleware is being implemented in
Java and provides a JDBC interface to its client applica-
tions. Its current release works on top of PostgreSQL, but
uses only a JDBC interface and some stored procedures and
triggers to access the database. So, it will be easily portable
to other DBMSes. Some parts of our architecture are de-
scribed in the following sections, particularly the support
needed for collecting transaction writesets and for notify-
ing the middleware when a transaction gets blocked and for
allowing the termination of ongoing transactions.

The rest of the paper is structured as follows. Section
2 describes the structure and functionality of MADIS. Sec-
tion 3 describes the schema modification that MADIS pro-
poses to aid a local consistency manager (CM). Section 4
outlines a Java implementation of the CM, in the form of
a standard JDBC driver. In section 5 a performance anal-
ysis is included, presenting a comparative study of a Post-
greSQL database with the MADIS schema modification.
Section 6 compares our approach with other systems and
section 7 summarises the paper.

2 The MADIS Architecture
The MADIS architecture is composed by two main lay-
ers. The bottom one (or MADIS DBlayer) generates some
extensions to the relational database schema, adding some
fields in some relations and also some tables to maintain the
collected writesets and (optionally) readsets of each trans-
action. These columns and tables are automatically filled
by some triggers and stored procedures that must be in-
stalled, but they only use standard SQL-99 features and

25

can be easily ported to different DBMSes. Thus, the ap-
plication layer will see no difference between the MADIS
JDBC driver and the native JDBC driver.

The top layer is the MADIS Consistency Manager (CM)
and is composed by a set of Java classes that provide a
JDBC-compliant interface. These classes implement the
following JDBC interfaces: Driver, Connection, State-
ment, CallableStatement, ResultSet, and ResultSetMeta-
Data. They are used to intercept all invocations that could
be relevant for a database replication protocol. The invo-
cations made on other interfaces or operations are directly
forwarded to the native JDBC driver (the PostgreSQL one,
in our case). Besides these classes there exists a Core class
(or RepositoryMgr) that is also able to provide a skeleton
for this layer that maintains the rest of classes and gives
also support for parsing the SQL sentences in order to mod-
ify them in some cases.

The database replication protocol (or consistency proto-
col, on the sequel) has to be plugged into this CM, and it
has to provide a ConsistencyProtocol interface to the CM,
and it may implement some Listener interfaces in order to
be notified about several events related to the execution of
a given transaction. This functionality will be described in
section 4.

Figure 1 shows the overall layout of the MADIS archi-
tecture.

Extended
Schema

Original
Schema

Consistency
Manager
(JDBC Driver)

User Application

Standard JDBC Driver

Jdbc interfaces Consistency
Protocol

Figure 1: MADIS architecture.

Take into account that the consistency protocol can also
gain access to the incremented schema of the underlying
database to obtain information about transactions, thus per-
forming the actions needed to provide the required consis-
tency guarantees. The consistency protocol can also manip-
ulate the incremented schema, making use of the provided
database procedures when needed.

Finally, this protocol is also responsible of managing the
communication among the database replicas. To this end, it
has to use some group communication toolkit that provides
several kinds of multicast operations. Our current proto-

cols need at least a FIFO reliable multicast, plus a FIFO
atomic, and also uniform variants of them, according to the
multicast descriptions given in [6].

3 The MADIS DBlayer
The MADIS DBlayer is an extension of the original schema
of a given database that provides the following items:

• Metadata information is collected in a second table for
each one of the original database tables. This addi-
tional table maintains a global identifier for its asso-
ciated original record, a version number, the identifier
of the transaction that has generated the latest version
of such an item, and the timestamp for this latest up-
date. This additional table is called MADIS Meta Tj

if the original table was Tj .

• A global TrReport table (or per-transaction, depend-
ing on the overall load) is also needed to collect the
writeset of each transaction. The contents of this table
are automatically filled by a set of database triggers
that are executed when an update, delete, or insert op-
eration is made by the target transaction. These trig-
gers are disabled when the transaction being managed
corresponds to the application of a remote update on
the local database replica. To this end, the consistency
protocol has to set a flag when a transaction is initiated
in order to avoid the use of such triggers.

A detailed description of these two kinds of tables is
provided in [10], we only give now a minimal description
needed to explain the overall helping mechanisms provided
by our middleware for developing replication protocols.
These mechanisms are the writeset collection, the detec-
tion of conflicts between transactions, and the mechanisms
needed for cancelling ongoing transactions; i.e., rolling
them back.

3.1 Writeset Collection
As stated above, MADIS introduces a set of new triggers
in the database schema definition. Some of these triggers
are devoted to the generation of metadata information as,
for instance: (i) version numbers that are increased each
time an update has been made, (ii) setting timestamps, or
(iii) writing the identifier of the latest updating transaction.
However, these metadata updating triggers are quite trivial,
and the interested reader could refer again to [10] to get a
thorough description of them.

The writeset collection is performed defining three trig-
gers for each table Ti in the original schema. They insert
in the TrReport table the information related to any write-
access to the table performed by the executing transactions.

The writeset collector (WSC) triggers are named
WSC I Ti, WSC D Ti, and WSC U Ti, and its definition
allows to intercept any write access (insert, delete or up-
date respectively) to the Ti table, recording the event in the
transaction report table (TrReport).

26

The following example shows the definition of a basic
WSC I trigger, related to the insertion of a new object.
Note that the trigger executes the procedure getTrid() to
obtain the current transaction identifier. The example in-
serts a single row in the TrReport table for each insertion
in the table mytable. The execution of the invoked proce-
dure causes the DBMS to insert in the TrReport table the
adequate rows, in order to keep track of the transaction ac-
tivities.

CREATE TRIGGER WSC I mytable
BEFORE INSERT ON mytable
FOR EACH ROW EXECUTE
PROCEDURE tr insert(mytable,
getTrid(), NEW.l mytable oid);

Deletions and updates must also be intercepted by
means of similar triggers. Note also that the actual inser-
tion of the data into the TrReport table is made by a stored
procedure called tr insert().

Finally, when an object is deleted, the corresponding
metadata row must be also deleted. To this end, an addi-
tional trigger is also included for each table in the original
schema.

3.2 Detecting Transaction Conflicts
In many database replication protocols we may need to ap-
ply the updates propagated by a remote transaction. If sev-
eral local transactions are accessing the same data items
that this remote update, such remote update will remain
blocked until those local transactions terminate. Moreover,
if the underlying DBMS uses a multiversion concurrency
control combined with a snapshot isolation level [2], such
a remote update is commonly aborted, and it has to be reat-
tempted until no conflicts arise with any local transaction.
Additionally, in most cases, the replication protocol will
end aborting also such conflicting local transactions once
they try to commit. As a result of this, it seems appropriate
to design a mechanism that notifies to the replication pro-
tocol about conflicts among transactions, at least when the
replication protocol requires so. Once notified, the replica-
tion protocol will be able to decide which of the conflicting
transactions must be aborted and, once again, a mechanism
has to be provided to make possible such abortion.

To this end, we have included in the MADIS DBlayer
some support for detecting transaction conflicts that have
produced a transaction blocking. It consists of the follow-
ing elements:

• A stored procedure named getBlocked() that looks
for blocked transactions in the pg locks view placed
in the PostgreSQL system catalog. It returns a set of
pairs composed by the identifier of a blocked trans-
action and the identifier of the transaction that has
caused such a block.

• An execution thread per transaction that is used each
time its associated transaction begins any operation

that might be blocked due to the concurrency con-
trol policy of the underlying DBMS. Take into account
that in multiversion DBMSes the read-only operations
cannot be blocked.

Thus, once a database connection is created, a thread
is also created and associated to it. Each time the current
transaction in a given connection initiates an updating oper-
ation, its associated thread is temporarily suspended, with
a given timeout. If such an updating operation terminates
before that timeout has expired, the thread is awakened and
nothing else needs to be done. On the other hand, if the
timeout is exhausted and the operation has not been con-
cluded, the thread is reactivated and then makes a call to
the getBlocked procedure. As a result, the replication pro-
tocol is able to know if the transaction associated to this
thread is actually blocked and which other transaction has
caused its stop.

This mechanism can be combined with a transaction pri-
ority scheme in the replication protocol. The O2PL [3]
BULLY variation described in [1] uses this priority scheme
as follows. Three priority classes are defined, with values
0, 1, and 2. Class 0 is assigned to local transactions that
have not started their commit phase. Class 1 is for trans-
actions that have started their commit, but whose updates
have not yet been delivered in the local node. Finally, class
2 is assigned for those transactions associated to delivered
writesets that have to be locally applied. Once a conflict is
detected, if the transactions have different priorities, then
that with the lowest priority is aborted. Otherwise, i.e.,
when both transactions have the same priority, both of them
are allowed to proceed. This replication protocol [1] is an
update everywhere, constant interaction, and voting pro-
tocol, following the classification given by [22]. Similar
approaches may be followed in other replication protocols
that belong to the UE-CI (update everywhere with constant
interaction) class.

3.3 Transaction Termination
A replication protocol may abort an ongoing transaction
cancelling all its statements. This implicitly rollbacks such
a transaction, and may be requested using standard JDBC
operations. If the transaction is currently executing a state-
ment, it may be aborted using another thread to request
such a cancellation.

4 Consistency Manager
The current Java implementation of the MADIS consis-
tency manager allows a pluggable consistency protocol to
intercept any access to the underlying database, in order to
coordinate both local accesses, and update propagation of
committed local transactions (and, consequently, the local
application of remotely initiated transactions).

In our basic implementation of MADIS, we implement
the consistency manager as a JDBC driver that encapsu-
lates an existing PostgreSQL driver, intercepting the re-
quests performed by the user applications. The requests

27

are transformed, and a new request is elaborated in order to
obtain additional information (as metadata). The user per-
ception of the result produced by the requests is also ma-
nipulated, in order to hide to the user applications the addi-
tionally recovered information. This mechanism allows the
plugged replication protocol to be notified about any ac-
cess performed by the application to the database, includ-
ing query execution, row recovery, transaction termination
requests (i.e. commit/rollback), etc. The protocol then has
a chance to take specific actions during the transaction ex-
ecution, in order to accomplish its tasks. To this end, our
consistency manager has a set of classes that implement the
following JDBC standard interfaces: Driver, Connection,
Statement, CallableStatement, PreparedStatement, Result-
Set and ResultSetMetaData. All these classes provide the
support needed by the replication protocol. Some of the
transformations that may request the protocol may imply
a modification of the sentence to be sent to the database.
This is accomplished using a parsing tree that can be easily
modified using a special interface.

4.1 Protocol Interface
The interaction between our consistency manager and the
plugged replication protocol is ruled by an interface with
operations to complete the following tasks:

• Protocol registration. The protocol has to be plugged
into the consistency manager using a registration
method. In this registration procedure it has to specify
with a parameter the set of events it is interested in.
Some of these events depend on the information that
has been put into the TrReport that was described in
section 3. The available events are:

1. RECOVERED: Some objects have been recov-
ered in a ResultSet. The protocol will receive an
extended ResultSet that also contains the OIDs
of the objects being recovered, and may use this
information for building the transaction readset,
if needed.

2. UPDATED: This event is similar to the previous
one, but reports the objects that have been up-
dated, instead of those that were read.

3. UPDATE PRE: The protocol will be notified
when the current transaction is going to initiate
an updating operation on the database. Thus, the
protocol may modify the update sentence at will,
if needed.

4. UPDATE POST: The protocol will be notified
after an update sentence has been executed.
Thus, it may read the current transaction report
for obtaining the set of updated objects. This is
an alternative way of doing the same as in the
event number 2 described above.

5. QUERY PRE: The protocol will be notified be-
fore a select operation is initiated in the database.
It may modify the query, if needed.

6. QUERY POST: The protocol will be notified
once a query has been completed. It may access
then the transaction report, if needed.

7. ACCESSED: The protocol will get all the ob-
jects accessed by the latest SQL sentence, in-
stead of the objects being recovered in its Re-
sultSet.

8. TREE: The protocol requests that the consis-
tency manager builds a parsing tree for each sen-
tence being executed. Later, the protocol may
ask for such a tree, modifying it when needed.

• Event requesting. There are also a set of explicit op-
erations that the protocol may use for requesting those
events that were not set at protocol registration time.

• Event cancellation. A set of operations for eliminat-
ing the notification of a given event to the currently
plugged-in protocol.

• Access to transaction writeset and metadata. A set
of operations that allow the full or partial recovery of
the current writeset or metadata for a given transac-
tion. Most of the protocols will need the transaction
writeset only at commit time in its master node, for
its propagation to the rest of replicas, but others may
need such data before and these operations allow this
earlier recovery, too.

This interface is general enough to implement most of
the replication protocols currently developed for databases.

4.2 Connection Establishment
In the figure 2, a UML sequence diagram is shown describ-
ing how a new MADIS connection is obtained.

Figure 2: Connection Establishment
DriverManager madis.Driver postgressql.Drivermadis.Connection postgresql.Connection

createConnection(url)

createConnection(url)
«create»

«create»
createConnection(url’)

«destroy»

«destroy»

pC

mC

mC
pC

madis.Core

newConnection(mC)

removeConnection(mC)

The sequence starts with a request to the DriverMan-
ager, and the selection of the MADIS JDBC Driver. Then,
the MADIS Driver invokes the MADIS Connection to be
built, indicating the underlying PostgreSQL connection
URL to be used. The constructor of the MADIS Connec-
tion builds a PostgreSQL Connection, and includes it as
an attribute. Finally, the MADIS Driver returns the new
MADIS Connection.

28

4.3 Common Query Execution
Application query executions are also intercepted by
MADIS, by means of the encapsulation of the Statement
class. As response of user invocations to “createStatement”
or “prepareStatement” the MADIS Connection generates
Statements that manage user query execution. When the
user application requests a query execution, the request is
sent to the consistency manager, which may call the pro-
cessStatement() operation of the plugged consistency pro-
tocol if it previously requested any of the * PRE or TREE
events.

Now, the consistency protocol may modify the state-
ment, adding to it the patches needed to retrieve some
metadata, or collect additional information into the trans-
action report. However, this statement modification is only
needed by a few consistency protocols, which also have the
opportunity to retrieve these metadata using additional op-
erations once the original query has been completed. Op-
timistic consistency protocols do not need such metadata
(like current object versions, or the latest update times-
tamps for each accessed object) until the transaction has
requested its commit operation. So, they do not need these
statement modifications on each query. The process for
queries is depicted in figure 3.

Figure 3: Query Execution

We recommend to access the metadata using a sepa-
rate query. Otherwise, the following additional steps are
needed:

1. The resulting SQL statement is executed, performing
a common invocation to the encapsulated JDBC State-
ment instance, and a ResultSet is obtained as a re-
sponse. The obtained ResultSet is also encapsulated
by MADIS, returning to the user application an in-
stance of a MADIS ResultSet. This MADIS ResultSet
contains the ResultSet returned by the JDBC State-

ment.

2. When the application tries to obtain a new record from
the ResultSet, MADIS intercepts the request, and no-
tifies about the new obtained object to the Core class.
This allows MADIS to notify the plugged protocol
about the row recovery. Consequently, in order to
keep the required guarantees, the protocol may mod-
ify the database, the state of the MADIS ResultSet,
or even abort the current transaction. In addition, the
MADIS ResultSet tasks also include the ”hidding” of
the metadata (included in the query) when the appli-
cation requests the different fields of the current row.

4.4 Commit/Rollback Requests
The termination of a transaction is also requested by the
user application. Either when the application requests a
commit or when a rollback is invoked, MADIS must inter-
cept the invocation, and take additional actions.

When the user application requests a commit operation
(see Figure 4), the MADIS Connection redirects the request
to the MADIS Core instance. Then, the plugged protocol
is notified, having then the chance to perform any action
involving other nodes, access to the local database, etc.

If the protocol concludes this activity with a positive re-
sult, then the transaction is suitable to commit in the local
database, and the MADIS Core responds affirmatively to
the Connection request. Finally, the MADIS Connection
completes locally the commit, and returns the completion
to the user application after the notification to the MADIS
Core using the doneCommit() operation. On the other hand,
a negative result obtained from the protocol activity will be
notified directly to the application, after the abortion of the
local transaction.

Take into account that the doneCommit() method is also
able to notify a unilateral abort, generated by the under-
lying database, and that this may allow that the plugged
protocols were able to manage such unilateral aborts, too.
This is the case of the BULLY protocol described in [1].

Finally, rollback() requests received from the user appli-
cation must be also intercepted, redirected to the MADIS
Core, and notified to the plugged protocol.

5 Experimental Results
As presented above, the proposed architecture is based on
the modification of the database schema of an existing in-
formation system. With this technique, the database man-
ager is the main responsible for generating and maintaining
the information needed by any pluggable replication pro-
tocol to accomplish the tasks of consistency maintenance,
concurrency control, and update propagation.

However, an important question to be discussed is the
cost to be paid by the system from obtaining such bene-
fits. This question, for our architecture, corresponds to the
degree of performance degradation when we consider dif-
ferent types of accesses.

29

Figure 4: Commit suceeded vs aborted

madis.
Connection

mC

madis.Protocolmadis.Corepostgresql.
Connection

pC
commit()

commit()

toCommit(mC)

okok

ok/aborted

toCommit(trid)

ok/aborted

commit()

rollback()

toCommit(mC)

abort
abort

toCommit(trid)

aborted

doneCommit(trid, result) doneCommit(trid, result)

5.1 Overhead Description
In spatial terms, the overhead introduced by the schema
modification may be easily determined. Considering the
trigger and procedure definitions as negligible, the main
overload in space is produced by the MADIS Meta Tj ta-
bles. These tables contain at least two identifiers (local
and global object identifier) and the rest of fields are used
by each one of the pluggable protocols. We consider that
many protocols can be implemented with the support of a
transaction identifier, a timestamp, and a sequential version
number. Finally, the transaction report maintains the infor-
mation regarding the executed transactions just during the
lifetime of such transactions. Thus, in global terms, this
does not constitute a spatial overhead by itself.

Regarding computational overhead, our architecture in-
troduces a number of additional SQL sentences and com-
putations for each access to the database.

This overhead can be classified into four main cate-
gories:

• Insertion. The overhead is mainly caused by the in-
sertion of a row into the TrReport table for registering
such insertion. An additional row is also inserted in
the MADIS Meta Tj . Thus, for each row inserted in
the original schema, two additional rows are inserted
by the schema extension.

• Update. When updating a row of the original schema,
there will be inserted an additional row in the TrReport
table. However, in this case there will not be needed
to insert into the MADIS Meta Tj table any row, but
just an update.

• Deletion. In this case, an additional row must be
inserted in the TrReport table to register the dele-
tion, and the deletion of the corresponding row in
MADIS Meta Tj should be also deleted (although in
a deferred mode).

• Selection. When selecting a row from the original
schema, there is no need to alter the MADIS Meta Tj

table at all. In addition, depending on the particular
replication protocol plugged in the system1, it can also
be avoided any insertion in the TrReport table.

Summarizing, Insertion, Update and Deletion need ad-
ditional insertions on the TrReport table, and other op-
erations with the corresponding MADIS Meta Tj table.
In contrast Selection overhead varies depending on the
plugged protocol. Since many database replication proto-
cols do not need the transaction readsets, readset collection
will not be analysed here.

5.2 Performance Results
The experiments consisted in the execution of a Java pro-
gramme, performing database accesses via JDBC. The
schema used by the programme contains four tables (CUS-
TOMER, SUPPLIER, ARTICLE, and ORDER). Each ar-
ticle references a row in the SUPPLIER table, and each
ORDER references a CUSTOMER row, as well as an AR-
TICLE row. Each table contains additional fields as item
description (a varchar[30]).

A programme execution starts with the database con-
nection, and schema creation. Then, a number of ”train-
ing” transactions are executed, ensuring that all Java classes
are loaded, and then three measurements are done. Each
measurement calculates the time taken by numtr sequential
transactions (performing a number of INSERTIONS, UP-
DATES or DELETIONS depending on the required mea-
surement).

For each measurement, the experiment provides three
values: the total cost of the numtr transactions of type I, U
and D respectively, each one acting with numrows rows per
table. These performance tests have been taken in a system
with an Intel Pentium 4 processor at 2.8 GHz, with 1 GB
of RAM, and a hard disk of 7200 rpm with an average seek
time of 8.5 ms, running a Fedora Core 2 operating system.
The DBMS is PostgreSQL 7.4.1.

We observed that deletions are the most overheaded op-
erations in our core implementation. To determine with a
more descriptive sense such overhead, we calculated the
times per transaction (figures 5(a) and 5(b)).

The results stabilised with a few of transactions, which
indicates that the system does not suffer appreciable per-
formance degradation along time. In addition, it is shown
in figure 5(a) that the overhead per transaction is always
lower than 80 ms in our experiments. In addition, figure

1Replication protocols just based on the writeset will not need records
about the objects read by a transaction.

30

Figure 5: Mean Overhead

overhead (in ms)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

-20

 0

 20

 40

 60

 80

 100

 120

 140

ms

(a) Absolute (ms) Overhead

overhead (in %)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 0

 100

 200

 300

 400

 500

 600

 700

%

(b) Relative (%) Cost

5(b) shows that the sensibility for numrows is unapprecia-
ble (the system scales well in respect to managed rows) for
any of the transaction types (I,U, and D).

We conclude that our implementation of the MADIS
database core introduces bounded overheads for Insertion
and Update operations. On the other hand, Delete opera-
tions imply a cost that is 6 times higher than in a native
JDBC driver.

6 Related Work
As already outlined in section 1 there are multiple ap-
proaches to implement a support for database replication.
The best option for getting a good performance is to mod-
ify the DBMS core, like in the Postgres-R [11], Dragon [4]
and Escada [20] projects. However, such solutions cannot
be seamlessly ported to other DBMSes.

Several examples of middleware approaches can be
found in the literature:

• GlobData [17, 8] is a middleware providing a subset
of the standard ODMG API for Java applications. The
system also included a heavy Relational-Objectual
transformation. This allows the applications to make
use of an object-oriented database schema, and the
system translates this schema to a relational database.
The system, although allows multiple consistency

protocols to be plugged into, provides a propietary
API for the applications to gain access to distributed
databases, reducing the generality of the solution.

• Other specific solutions for Java, implemented as a
JDBC driver: like C-JDBC [13] and RJDBC [5]. The
former emphasizes load balancing issues, whilst the
latter puts special attention to reliability. The imple-
mentation of these approaches are centred in Java, and
porting the solution to other platforms has a high com-
plexity, due to the characteristics of the specific tech-
niques.

• PeerDirect [14] uses a technique based on database
triggers and procedures to replicate a database. How-
ever, the system only includes one consistency proto-
col, providing particular guarantees, well fitted for a
limited kind of applications.

• Other papers [12] have focused on replication proto-
cols that could be easily implemented in a middle-
ware.

Besides this, another good characteristic of these mid-
dleware solutions is that they provide some interface for
replication protocols, and multiple protocols can be de-
signed and tested on them. A future work in the MADIS
project will be the design and implementation of replication
protocols for mobile databases, or the implementation and
testing of some well-established solutions in this research
area [15, 16, 7]. These protocols are specially appropriate
for partitionable environments, and they could be compared
with the hybrid replication and reconciliation protocols be-
ing designed in the DeDiSys project [19, 18].

DeDiSys is a research project focused on the trade-off
between availability and consistency in partitionable dis-
tributed systems[18]. It uses a synchronous replication
model in a healthy system and an asynchronous one when
failures arise, so its replication protocols could be consid-
ered as hybrid. Additionally, when partitions are merged
a reconciliation protocol is needed to bring the system to
a consistent state. MADIS could be used as a persistent
storage layer for a DeDiSys system if special replication
protocols were implemented on it. At least, we will be
able to compare the DeDiSys-specific replication protocols
(specially tailored for a consistency model based on con-
straints, and dealing with object replication instead of data
replication), with those designed for mobile databases in
MADIS.

7 Conclusions
MADIS is a middleware designed to give support to a wide
range of replication protocols, using a minimal database
schema extension and some triggers, stored procedures and
rules in order to collect the metadata needed by such pro-
tocols.

The MADIS consistency manager makes use of the au-
tomatically collected information in the database, notifying

31

such accesses to a plugged replication protocol. It is possi-
ble to include a wide range of protocols in the system, each
one providing different guarantees and behaviours to the
user transactions. The implementation of this upper layer
is simple enough to be ported from one platform to another
with a minimal cost.

In this paper, we have described the MADIS architec-
ture and its current implementation. This implementation
allows user applications to access in a standard way a repli-
cated database without needing to include changes in their
code.

In the future we plan to use the MADIS middleware for
testing several replication protocols, particularly some sim-
plifications of the object replication and reconciliation pro-
tocols designed in the DeDiSys project, and other protocols
for mobile databases.

References
[1] J. E. Armendáriz, J. R. Juárez, I. Unzueta, J. R. Garitagoitia,

F. D. Muñoz-Escoı́, and L. Irún-Briz. Implementing repli-
cation protocols in the MADIS architecture. In Proc. of
the XIII Jornadas de Concurrencia y Sistemas Distribuidos,
Granada, Spain, September 2005. Accepted for publication.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data,
pages 1–10, San Jose, CA, USA, May 1995.

[3] M. J. Carey and M. Livny. Conflict detection tradeoffs for
replicated data. ACM Trans. Database Syst., 16(4):703–746,
1991.

[4] École Polytechnique Fédérale de Lausanne. Dragon
project web page, 2003. Accessible in URL:
http://lsrwww.epfl.ch/˜ dragon.

[5] J. Esparza-Peidro, F. D. Muñoz-Escoı́, L. Irún-Briz, and
J. M. Bernabéu-Aubán. RJDBC: A simple database repli-
cation engine. In 6th Int. Conf. Enterprise Information Sys-
tems (ICEIS’04), April 2004.

[6] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. Mullender, editor, Distributed Sys-
tems, chapter 5, pages 97–145. ACM Press, 2nd edition,
1993. ISBN 0-201-62427-3.

[7] J. Holliday, D. Agrawal, and A. El Abbadi. Disconnection
modes for mobile databases. Wireless Networks, 8(4):391–
402, July 2002.

[8] Instituto Tecnológico de Informática. GlobData web site.
Accessible in URL: http://globdata.iti.es, 2002.

[9] Instituto Tecnológico de Informática. MADIS web site. Ac-
cessible in URL: http://www.iti.es/madis, 2005.

[10] L. Irún-Briz, H. Decker, R. de Juan-Marı́n, F. Castro-
Company, J. E. Armendáriz, and F. D. Muñoz-Escoı́.
MADIS: a slim middleware for database replication. In
Proc. of the 11th Intnl. Euro-Par Conf., Monte de Caparica
(Lisbon), Portugal, September 2005. Springer.

[11] B. Kemme. Database Replication for Clusters of Worksta-
tions. PhD thesis, Swiss Federal Institute of Technology,
Zurich, Switzerland, 2000.

[12] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-
Peris. Middleware-based data replication providing snap-
shot isolation. In Proc. of ACM SIGMOD Int. Conf. on Man-
agement of Data, Baltimore, Maryland, USA, June 2005.

[13] ObjectWeb. C-JDBC web site. Accessible in URL: http://c-
jdbc.objectweb.org, 2004.

[14] PeerDirect. Overview & comparison of data replication ar-
chitectures (white paper), November 2002.

[15] S H. Phatak and B. R. Badrinath. Multiversion reconcilia-
tion for mobile databases. In Proc. of the 15th International
Conference on Data Engineering, pages 582–589, March
1999.

[16] N. Preguiça, C. Baquero, J. L. Martins, F. Moura, H. Domin-
gos, R. Oliveira, J. O. Pereira, and S. Duarte. Mobile trans-
action management in Mobisnap. Lecture Notes in Com-
puter Science, 1884:379–386, 2000.

[17] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vi-
cente. The GlobData fault-tolerant replicated distributed ob-
ject database. In Proceedings of the First Eurasian Confer-
ence on Advances in Information and Communication Tech-
nology, Teheran, Iran, October 2002.

[18] R. Smeikal and K. M. Göschka. Trading constraint consis-
tency for availability of replicated objects. In Proc. of 16th
Intl. Conf. on Parallel and Distributed Computing and Sys-
tems, pages 232–237, 2004.

[19] Technical University of Vienna. DeDiSys project web page,
2005. Accessible in URL: http://www.dedisys.org/.

[20] Universidade do Minho. Escada project web page, 2003.
Accessible in URL: http://escada.lsd.di.uminho.pt/.

[21] Universidade do Minho. GORDA project web page, 2005.
Accessible in URL: http://gorda.di.uminho.pt/.

[22] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
G. Alonso. Database replication techniques: A three pa-
rameter classification. In Proc. of the 19th IEEE Symposium
on Reliable Distributed Systems (SRDS’00), pages 206–217,
October 2000.

32

���������	
��
��	
���������	
�
�����������	�����
�

���������	
���

��
����
	�������
���
�
���
�	
���	�����������
�

��������	
�
�

�����������
��
�����
�������
!"!"���#$"���
���
�

���	��
��
���%��
&��&�	�

�
�

���������

��� 	�
�� �
���� '�� ������	�
	�� ��� ��
�
�	��
���
���
�
��	�
�

�
�
�
	��
��� �����	
���
�
�
��
�
�
	��
��
� ������
�	
	
����� �
	
�
'
�������� ()��*+&� ,��� ��-��	
���
�� 	�
	� 	���
���	��� ���
�'
������
���
�'
��� ���
�
��	� �����
'���� ��	
��� �
�	�� ���
	�
��� 	
.��� ����
��� ����
�

�	��
����
����
�
�����	� ����	
���� �����
��
��
�
��� '
	�� ��'� �
	
� ��� �	���� �/0�
����	
��
�
	�&� 1���
�
	
��� �
��
���
��� �����
�	��
��� ���� �
�
����� �
	
�
����
�� �����
�&� *��

����	
�
	�� ��'�
�	���
	
��� ����
�
	
��� �	�
	��
���
�
�����
���
���	��	���)��*����	�2	�
���
�
��3��

��
�	
����
�����
'�
�.��
�

��	���	�
��&��

��� �
��	
����	
�

�
�
�����
���
	��	����� �
�� �������� �
��
�
�
�	��� 	���
�������
��� ����� �
���� �
	
� '
��������&� *�� �
��� �����
�����
��� 	���
��
� ��� ����
�
��� ���������
�
	���
���
��'�����������������
�����
�����������
�
	�����	'��.����
��'����	4� �������	
�
3��� �����	���� 	�� �����
��� ��������
�
	
�'
��������&� ,��� �
	
�'
�������� �
�� ��
��� �
�
� ���
����� 	��
��	���
���
�� 	��
�
���� ���
�
3���
��
� � ��	� ���
���	
�
����
��
�������
��56"7&�,�����
���	��
�
���������
������
�����
	
����8��
�	�����	��
����
�	��
�
����	

�4������
��
�
���
��
�
��
�� �
��� ��� �
��� ������	�
�� �
��� �	���� ���
�
��	

�� ��

�4�
��� ��
����� ���
	
���� 8� �
����
���� 8� '
	��
�����
�	
��� ������	
��� ���� 	��� �
����
���� (�&�&� ������	4�
�	���4�	
��+&����	�
	����	�2	4��
�	
	
��
����������	���
�
�
���
���
	
����
�	�� ������ ������'4� 	�� 	
.��
��
�	
��� ���
�
�
����� ����� �������
��&� *�� �
��� �
�������� ���
3��	
��
�
�	
	
��
��� �	�
	��
��� ����)��*�
�� 597�
��� ���'��� 	�
	�
�
�
������ �
�	
	
��
��� �	�
	���� �����
� �'
	����� ��	'��.�
���
������	� �
��
��
����
����	
���� ��������&� :�'����4�

�

�
�
�
	��
��
��
�����
�� �����
� ���	�2	4� ��� 	�
	�
�

�
�
�
	��
��
��	�������
�
	
�����������
��
-���������
	��
��
�'
��	��
����
���
�

�
�
�
	�&� 0� ����
�
�
��
� ;�	
����<� ����� ���
������
	
�	�
	��
�����
�	
�
	���
	�
��������	�
���
������
��
�

�
�
�
	�� ��� �

����� ��� 	��� ����� ����
��� 	���
;��
�
�
�<4� ��� 	�
	� �������
��� ��������
�� ���
�&� ���
�������
��� '
	�� ��
�

�
���� ������
��
�������	���
���
�
��	��4� ��
�

�
�
�
	�� �������� ����� �������� 	�� 	���
'��������	���
���
	�
��������������
�
����	���	���
���	����
������ ���� �
	
� ��
�
��4��

�	��
���4� ����
�
��� ��� �	����
�
�
�����	�
�	
�
	
��4� '
	���	�
��� �
-��� ���������
����
	���������
��&�,������	������

���
�'
������
���
�'
���
���
�
��	&��
1���
�
� ��
�����	� �
�� ����� �	��
���
�� 	��� ���	�2	� ���
�����
�� �
�
�����
��� �
�	�
��	��� �
	
�
����
�� '�
��� 	���
���
	
����
�����	��
�	
	
�����5#4�=4�>4�$4�694�6?7&�*�����
�'�
	�����'��.��
��	������
	���'��.����	
��&����	�
���
����'��
�
������ ����
�
	
��� ����
�

�
�
�
	��
�� 	���)��*����	�2	�

����
������	��
������������	��	����
	
���������

������
���

���'
������	
���� ������ 	����� ����
��� �
���	
�������� ����
��
�
��� ���
��
�
�	�
	
��&� *�� ����
��� 	���
����
�����
�����	����������	
���������
�
����&�@����

�����	�
��	
����

������A����'
�����'�����
�
	
����	�
	��
����
�����
���
���
	��
� '��.��
���
���� �����
�	
	
�����)��*� ��		
���
���
��'� �������
��� �
��
�������
	�� 	��� ����
�
��
�� �
��� ���
����� �

�����B�
�
��3
���
�	���
	
����
�

��	� �����
�	�
��	�
��B� ��
��
	
��� 	���
�	���
	
���� '
	�� ����
�
�� ���
���
�
�����
��� ���2
�
�
	�� ����
���'
��� ���	
���� ����
���
�����B�
�
��3
��� 	��� 	�
��������	'�������
�
�����
��� 	���
�
�
�
	�� 	�� 	
.�� ���	
���� ������ ����
��� �
���	
�������&��
,��� �
����
�� ���
�
3���
�� �����'�A� ���	
��� #� �
��������
���
	��� '��.&� C��	
��� !� �����
�'�� 	���)���� �
�	
	
�����
�
	
� *
�������&� C��	
���� D�
��� 9� �
������ ����
�
	
���

�	���
	
����
��� ���	
��� ?� ����
���� 	���
����
����&�
C��	
���=����	

����������
������
�.��
�����	����'��.&����

33

�

�
�

�����������������������	
�
����� �����
������!"�#$%����� �&

'���������
��	�(�

,��� ���	� �����
�	� ���
	��� '��.� ���� 	�
�� �
����
��������� ��� ����
�
	
��� �	�
	��
��4� ��	� '��
���� ���
�'�
��
����� �
�	
	
��
��&� C���� ��� 	��� ���	� ����
�
���
�
�	
	
��
���
��� ��
�����	�
����
����� ������ ��� E�����
'��.��
���
���� �
�	
	
��
��� ���
��� 56D4� 6$7&� ,���
��
�

�� 	����� '��.��
�� 	�� ���� 	��� E����� '��.��
�� 	��
��	���
��� 	��� ���	�
������

	�� �
�	
	
��
���
		�
��	��4�
'�
��� ������� ��� ���
	��� 	�� 	��
�
�� E�����
������
�
		����&� 0��� 	����� '��.�� ������ �

���� ��� �
���
�
�	
	
��
��4� ���� ���
�
��	� �
�
����� -�
�� �������
��� 5!4�
6674�
���� ���
�'���
�� 56>7&� �@�������
����'��.���� 	���
)��*� 5D4� 97� ���������
���
�
��3��� �����
�� �
	
�
�
�	
	
��
��� �	�
	��
���
���������	��� ��� 	��� �������
���
�
	
�
��� �������
��� 	
���	���
	� ����� �
�	
	
����� �
	
�
'
��������&� @��� ��������
�� 	�
�� �
����
�� 	�� �	����

�

�
�
�
	��
��� ����
�
	
��� ��������� 	�� 	���)��*�
���
��&�
1���
�
	
����
��������	��
���
��	����
�
������
	
�
���

���	�2	&� ��� ,
����F��)��C	��� CGH� 5697� 	��� ���� ���
�
��������
�.� ��
���� �������
� �
��� ������ ���
�

�
�
�
	��
��	������
������ -�������
�	�
��	
��� 	��� ��
�����
� �

����
���������&� ���
� ���������� �

��4� 	��� ����	
	�	�� ����������
'
����
���	���
�����	����
�.�����	����

��������������
��
'����
��
	�� �'�4� �����	

���� �����
��� 	��� �������
���
	
��&� ��� 	�
�� �
���� '��
����� 	�
�� �	�
	����
�� 	��� �����
����
�
	
��� (�1+� ��	
��&� ,��
�
	
F�� ������� 56?7�

������� ���
	
��� ����	���� (������ ��� �����+�
��� �
��
�
�.���
��
�	
	
�������������
����
	
��������
�
���
	�
��
	���)�6� �	���� ������ ��� 	��� ���
	
��� ����	��� '
	��)�
�����&�0�	������	�
����������
�
�����	����������
���
��
�
�������

�����4�
�������	�
�����������
����
�

�
����
��
	�������	���	������	����	���&������

����������	��
���5=4�
>4� $7� 	'�� ������	����� ���
���
��� .��	� ����� 	�
	� 	���

��
����	�����	����������������	����������
�����
����
��
�
������	������������	�����������	�����
�
�������&�,�
��
�	�
	����
��������
�

�
�
�
	�� '�
��� �

�	

�
��� 	���
�������
���� ������ ��� 	��� ,��
�
	
� ������&� ��� 56?7�

�	����
���� ������	��
��� �
�
���� 	��� �
�.��
�	�� ����	����

��� ������ ������	���� ���
	
��� �
�	
	
����
�	�� 	���
����������
�������	��&����5#7�	���
�	���������
����
���

�

�
�
�
	�� ���

� ��������� 	����
E����
��
� �����
��
@H,�� ���
������	4�
�����
��� ,��
�
	
F��
�	����
����
������	��
��&�
1����	� '��.� ��� ����
�
	
���
�������� 564� 6!7&� ,���

�	����������
	
�����
�
	
���	��
��������
	
�
�

�
�
�
	��

��� E����� ��
�� �
�
��
��� '�
��� ��
�
��� '
	��
����
�	����� ��������&� ,���� ��������
� �
3�� ������	
���
�
	
�����
�
	
�������	
���
��56!7�
���
��	�
	����	����
���
���	�������	
���
��567&�,���'��.�
��56#7��	��
����
�
�
��

����
�����'����
���
���	��*0)����
������	�&�,����

���	
��� 	��� ���	� ����

�� ��		�����.�� ��� 	��� �2
�	
���
���	�����4�
��� �������� ��	
�
3
	
���� 	�
	�
����

	�� 	���

���	
�
�����������&�
*�
��� 	����� '��.�� ������ ��� �����
�� ����
�
	
���

�	�
	��
��� ����
�

�
�
�
	�� ����
���
��� �����
�	
	
�����
���
	
����
��I��� @H,�� ��
��4� '�� �
�����4�
�
��3��
���
��
��
	������
�
	
����	�
	��
������	�������
�
�����	�2	����
	���)�����
�	
	
������
	
�*
��������
���
��������
����

�� 	��� �	�
	��
���
���'� ���	
���� ������ 	�� ��� ����
���
�
���	
�������������

�	��
��������
�
�����	&�

)���"��������

,���)��*�
��
� ���
��� ���� ���
�
��	� �������
��� ���
	����
	
�'
���������������'����	������	������������
�
����
���� �������
�
	��4� �'
	����� ��	'��.&� ,���
��-��	
���
����	� 	��
������
�������

�
3����
��'
������

�	��������	�4� ��� 	�
	� 	���)��*�
��
���� 	�� ���� ����

��	
����
��
� 6"" ���� �'
	����� H0)&� � �
�
����
���
��

34

��	

��������
�
�
���	����
	
���	�
�
	

����
�	��	����
�.��
���
��
�
��
�������4����	�
	��
��������
��
����	��
������

	�� �
	
� ���
����
��� �
	
�
�� �2��
����� ��	'���� ������
'���� ������
��&� ��� ������ 	�� ���
����
� ��
�� 	�� �
��
��
�������������	���������
�	
	
�����)��*����	�2	4�
	�
��
������
��� 	�� �
��� ��
	
���� �
�	
	
��
���
��� ��
�����	�
�	�
	��
��� ���� 	��� �
	
4� '�
����
�� ������� 	��� ����� 	��
�2��
�����
	
���	'���������&�,�
��
�����
���
��������
��
��	

��
��5D4�97�
���'����������
�'�
	�
��	�
���
���&�@���
��-��	
��� '
�� ���� 	���)��*� 	�� ���
���� 	�� ��������
���
�
��	��� ��	� ����� �
����� �	
�� �����
�� 56"74� ��	�
����
�����������2��
	
�'
�������������
�������
��,���:�
56=7&� ���
� �
�	
	
��
���
��� ��
�����	� ������4� �
���
���
	
��� �
�� �����	

���� ��� �
�	
	
����� (�
�
����
�	��
�
�	
	
������� ��
����	�+�������
���
�� 	��
����	
��	��
�	��

������������
������&����������	���
���
��������
�����
��4�
'��
������	�
	�	����
����
	�������
�������
�	
	
�����
�	��

��� �����4� 	�
	�
�4� 	��� ������
�� ;
��� �����<&� *��
����
�
���
��� 	��� �
�����
��� ��� ����
���
��� ������������
�����4� ��� 	�
	� �
��� ����� �
�� 	��� �
��� ��
�&� ,�
��
����	�

�	� �
�� ��� ��
�
�
	��� ��� 	
.
���
�	��
�����	�
����� �������
�����
�� 	���
�
	

�� ��
�����	�
���
�����E���	� �����
�
3
	
���� ���� ��
�� �
�
��
��&�
1��
	
����	�
	�
������
���
�	��
���������
���
��������	���

�� ����
�
	��� ���
	
���&� ,��� ���
�
��� 	�� ����
�
	��
���
	
���� ���� �������
���� ��
�����
��
�� ��	��	� �����
�
�	
	
��
��4���	�
�

�
�
�
	�����
	�������
�
	
��4���	� 	���
�����	
��� ����
�
��
��4� ��� ������4�
���� ������� ����

�

�
�
�
	�&����������	���
�	
���
���
�����
�
��
�	
	������

� �
�	
	
��
���
����
	��� ����� ���� �
�	
	��� �����

�

�
�
�
	�� '�� ����	�� �
�	
	
��
��� ����
�
	
���
�� ��
����
�
	
��&��
�
�	
	
����� ���
	
���� �
������
�
������
���
� ������

���
�4� �
����4� �
���� ��� �
����
���� ������&� ,���
)��*� ����� ���
3��	
�� �
����
�	
	
��
��4�
�� 	�
��

����
��� �
�
�
	
	��� .����
���� 	����� ���
	
���
��� -�
��
����
	
���&� � �
����� 6� ���'�� 	��� �
�	
	
��
���
���
��
�����	� ��� ���
	
���� ���� 	���,���:�������
�.� 56=7�

�	��� 	���'��.��
���
����
����
	���
�� 597�'
��
���
���
(H���
��
	��4�@�������4��C��
�	����4����
�	4�C������
��4�
�����	����+&� � ��� 	�
	� �
����4� �
����� ���	
������
��������	� �������
�	
	
����� ���
	
���B� �
�����
���'��
��������	�;���
�	
	
���-�
��<�(1J��-�
���	�
	���E�
����
	
�
	�� ��� ��
����� ��	'���� �����+B� �����
���'�� ��������	�
;�E�
��
�	
	
����� -�
��<� (�J�� -�
��� 	�
	� ��� ��	� ��E�
���
�
	
� 	�� ��� ��
����� ��	'���� ������ ���
���� 	���

�	�����
��� �
	
� ��	��
��� �
�	
	
����� ��� 	��� -�
�� .��+�

�������
��
���'����������	�;������
�
	��� -�
��<�(11J�
8� -�
��� 	�
	������	� ��E�
����
	
� 	�������
�������	'����
������ ���
���� ���� ��� 	���
�	�����
��� ���
	
����
�� ��
����
�
	��+&� 1��
�	
	
��
��� ������� 	�� 	��� ����� 	��
�2��
�����
	
���	'����������
��������	�������
�
3��	'��
�
	
� ��	�� ��� 	�
	� 	���� ������� �E�
��
�	
	
�����
(�
�	
	
����� ��� 	��� �
���
		�
��	�+&� ��� ������ 	�� �������
	��� ���	�
������

	�� �
�	
	
��
���
�	���
	
��4� '�� ���	�
����
��	�
	���������
��'��.��
���
�����
�	
	
��
���597&�
,���
��
�
��	����������
�	
	
��
���.����	�
	�;�
2
�
3�<�

	���
����	� ����J�
�� �������� 	��1J4� ��� ���.
���
	� 	���
E����� '��.��
�&� 0��
	
��
���4� ���� ���
	
���� 	�
	�
���
��
���
������
�
���� 	�� 	����
	
���	� 	�
	�'���������� 	��
��� ���
�	
	
����� 	�� -�
�� '
	�� 	���4� 11J� �
�� ���
������
���� 5D74�
��
	�
��
��� ��	��	

���� �
����
���
�	
	
��
��� ������
��&� ,�
��
�� 	��� ��
���� '���
��
����	� ���
	
���� (��
��� C+�
��� ������
�
	��4�
��
	�

��
��� 	��� ����� 	�� ��
�� �
����� �
	
� ��	'���� ������ 	��
-�
��'
	��	�������
������
	
���	�&�
G����� �������
��� �����
� �
�
����� �
	
�
��4�
���
��

�
�	
���
�������	���)��*4������'����������	����	����
��
�
����� !4� '�
��� '�� �����
���
�� ����� ��	

��
�� 5?7&�
�
����� #�
����	�
	���
� �
����� �2
����&�����
����
� ����
E����&��
��������������	��
������2
�	���	����
���
�
	

��
E����� (��� ����� �����
�
���4�
� ���
�
��� E����+� ���
	��
�
�	

�� �
	
4�
��� 	��� �����	��
���������� ���
����
���
�
������E�����
�

��
	�	�������
��������'
	��	����
�	

��
�����	�����
��������	����������
��������&��
 ���������
�
���4�	���	��
�
��E������������
���������

�� ���'��
���
�����!�
���
�������	���2
�����
���
����

���
�����9&�C	���6�����
����	��������
���������E�����
��������	�� ����� 	��� ��
�
�
�� ����
		���E����&�C	���#�
;C����G����<����'
����	��������E�����
�	��
���������
��
	���)��*4�'�
����������� 	���E����� ���
����
�� �	���!&�
�
��������	����������
	���
�	

�������	�
�	��	�������
		���
����4�'�
���
���
��� 	���������E�����
��C	���9&�C	���?�
���
�	�
��	��� �����	��
�	�� �������
��� ������
�� ��E�
����
(���������E���
������	

�
������E���
��4�
��'�
����
���
�����	�
�������������
����������
�������E�
���+&�
�

�

�������'*�"+������,���+�	-��������
�

�

�������)�*�,���+���	�����
��.������
������
�
�

1�'�
	���
G�����

C�����
G�����

�����	���
�
�	

��
1����	�

C����
�
�	

��
1����	��

0����� ������
G�����

#	 ����
���
�	
���

6&� #&�

!&� D&�

9&�

1��
�	�
��	��

?&�

.�� �������	
��

C� (K+��
�����������0�,��
L1@���/M��
�0		���

C� (K+��
����������0�,��
L1@���/M��
�0		���

C� (C� �+�
�)�@)���
�	

�NC����
L1@���/M��
�0		���

C� (K+��
������0�,��
L1@���/M��
�0		���

C����	��
������

35

�������/��.��� ���
��	
��0�1�������������
�.��� ��2�	 ��	
��3�

�
��� �	���� 6�
��� #� ��� �
����� D� '�� �
�� ���� 	�
	�

0�����
	
�����
�
	
����
��������	���
	��
�������&�,���
���	����������
�
	
����
��A��

�
H
��
�����A�(HCOC� (K++B�
C�������E�
����(CCOC� (K#++B��
����������������	��()+B��
�2	������(0K�
��� �)+&�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�������4�*����������������	
�,���+�.�����

�
0�	������ '�� �
��� �
��������
��� ��
��
	���

�2	���
������
�	
	
��
���
����������
������
���� ���� 	���
)��*�
�� ����
���� '��.�4� '�� �
�� ��	� �
������

�

�
�
�
	�4�'�
���
�������	������������
����	
�	�
��	���
��	��	

���������

�������
������	�����'�
���)��*�
��
���
�����	�����&��

0� �
�����
��� ���
�

�
�
�
	�� ���� 	���)��*� ��
���� ���
�����
��
�����&�����
��	
���A���	'��.��

�����B��

��������
	��� ����
		��� ��� �����	
��� �����B� ��
�
��� �

�����B�

�

�
�
�
	�����
	��
��4�
��������&��
������	�����
������
��E�
���� ����
�
�� ����	
���&� ����
��	
���4� ��	'��.�
�

������ �
�� ���
�������
	��� ��
��� �
�.���
������	
���B� ��
�

�
�
�
	�� ��� ����
		��� ����� �
�� ���

�������
	������
���'
��������	�
�����������	�����
�
��	��	

�� ����
		���
��� ���	
��� ��
��	� ��E���	��
�	��

�

�
���� �����B� �

����� ��� 	��� ����
		��� �����
�� 	���
�
����� ��� E����� �������
��� �
�� ��� �
������ ���
���
���	
��� �
�	

�� �����	��
�	��
��	���� ����� ���
������
		
��� 	��� E����&� ,�����
������
��� �
�	� ��� ����
������	�
�����	����'��.����	������-��	&����	�
���
����'��
���	�
�	�����
		��	
���	��	�����
�

�
�
�
	����������	
���
�����4� ����
�
	
���
�	���
	
���� 	��
��
���� �
���

�

�
�
�
	��
����������
������
�
�����
��	���������������
����
�
	
���
�����
�

�
�
�
	�&���

/����-���������+$�������
����������	
�	-���
�����

����
���� �
��	� 	�
	� 	��� �
�
�� ����
�
	
��� ��
	�
��
)��*�
��	�������&�0�'����������������
	
����
�	
	
����
����� ���� ����� �
�� ��� ��
����
��
��	���� �����
��4�
��
�
��� ��� �

����4� 	��� ����
�����	� ����� '
��� ��������
;	'
��<�	���
����	�����
	
�8�
	���'��������
	
�
���	���
����
	�
�� ����
�
��&� ��� ��
�	
��4� ������
�
	��� ���
	
����
(��
��� �
����
���+� ��� ��	� ����� 	�� ��� ����
�
	���
�

��
����
�

�
�
�
	�&��
�����D����'��	��������
����
������K�
'
	������
�
	����
	
������
��	���������M&�)����K��
��
��'�����
��������M�
���
��������
�

�
�
�
	�����M&���
*��'
���
�����
������
��	�����2	����	
���
�

�
�
�
	��

�	�
	��
��� 	�
	� ��
��� 	��� ����
�
	
��� ��
	�� ���	����
���
�
�
��� 	�����
������������ 	�
����������&�,�
���	�
	����

�������� 	��� ���
�
����� ��� �������
���
�� �
��� ��� �����
��
�

�
�
�
	�&� ����
��	
���4� H
��
�� �
����� D� '
��� ���
����
���� ��� H
�-4� -O6&&��
��� �
�
����
�	���� �����&� ���
	�
���
���	�����
	��������
�
	
���'
������	�����
��&��
,�����
��
����
��	���� ��E�
�����	� �������
�����

����
�
	
��� ��
���&�����
����
��
�	
	
���H

� ���
� ���
	
���

5��,���+���� ����	
��
C����	����(
+4�����	(
+4�
���
��(
+4��
2(
+4��
�(
+4��
�	����(
+4������N
		�
��	����
������
�	4��
����
����(-�
�+�
L�������������N
		�
��	��B�
�6'��,���+���1����
���

�
���������	
��	������
	
���
C����	����(
+4�����	(
+4����(
�2�
+4��
2(
+4��
�(
+4���
�����N
		�
��	���
������
�	4��
����
����(-�
�+�
L�������������N
		�
��	��B�
)��#	 ����������������������
C����	����(
+4�����	(
+4����(
�2�
+4��
2(
+4��
�(
+4���
�����N
		�
��	���
������
�	4��
����
����(-�
�+�
L�������������N
		�
��	��B�
/�����������	������
���
���
	���
�����	
�����
�1E����K(����4����
4�����	
4�����
4��
2
4��
�
4��
�����N
		�
��	��+��

��P
����	�����
���������	�QB�
4���������� ����
���
C����	����(���
+4����(����	
+4��
���(���
+�I����(����	
+4��
2(�
2
+4��
�(�
�
+�
(���(����
+����(���
+�+I���(����	
+4������N
		�
��	���
������)�@)N0HH(�1E����K+4��
����
����(-�
�+�
L�������������N
		�
��	��B�

�����

�
�

�

�

�

�������	
�

��

��

�
���	
�

�����

�

���

���
7��

��
���	
�

�.��

�.�� 7��

������	
�

36

H
�	�
	�
����
����
	�
������K&�0�����
�	���
���
������6�

��� D4� ���
	
����
��� �
�	
	
����� ���
� �
�	
	
��
��� .���
(��
�
���� �
����
�	
	
����+�
��� ��
����
�� �E�
�
�
�	
	
����� �
��
��� '���� ����
���� (�&�&� H
�
��� @�
���
��	���
�	
	
��������@NR�M�
��� 	������'
	��
� ����
�
��
�
���� ��� @NR�M�
��� ��
���� ��� 	��� �
��� ����+&� ,���
��E�
�����	�
�� 	�
	� ����
�
	
�����
����
����������
�
3���
����
�	
	
��
���.���
��
��
�
�
��'
�4����	�
	�	������'
	��
	����
���.���'
����	
������������
	��&��
*
	��������	�	��E������������
���'
	������
�
�4�	�����

���	'��
�����A�'�
�����������������'�
�������
�
��
���
��'�	�����2	����	��
���������
���	���
�����	�������
�
�&�
,����
��	�
�����
��
��������
�����������'�
���
����	�����
�

�� ��������
�� 	�
�� �
����
��� ���� '�
��� '�� ����
�
�
����������������	
��A�
�
�
�
�
�
������������������
	���'���
	
B�
�����
�����
�

�
���������

�����������
�
�����
��������'
	�� ����� ��
��	��
��������
	������
�
����

������(
�� ����� 	�
�� ���� �
��� �
��� ��
�4� �������
������	+�
�
0�	������ 	�
��
����
	��� ����� ��	� ��
�
�	���

�
�
����� �
�	�
��	
��� ��� ��
�4�
	�
�� ����
�
��	� ���� ����
���������
���
��	�����
��
��
�
����
��	��������	�(�&�&�	���
	��� ��
�� ��
���
� ����� '
	������� ����� ��
�� 	�
�� 	���
�	���� ����+4�
� ������� �	��� �
�� 	��� 	�� ��
����
	�� 	���
�������
����������������������
�
�������	�
	�����&�
*�� ��'� ������	�
	�� ��� ��'� 	�� �
����� ����
�
��

'�
��� �������
��� E���
��&�0� ����� ����
���
� ����
�
� ���
��
��� �
�� ��������
	�� �
	
� ��	�
��� 	��� ����
�
�

���������	��4�
��
��
	� ��������	��� ;	'���
�	�
�� �����<�
����
��� 	'��
���������	�
��	
����� ��� 	��� ������
��
�
����� !&�,����� �����	
	
���� �
���� 	'�� �
�	

�� �����	��

��
��
	�'����	����
�	

�������	�������	'�����
�
	�������4�
'�
��� �
�� ���������� ��
��� �	��� 9� ��� �
����� !� �������
����
���
��
������
�	

�� �����	� 	�� 	��������������&�,���
����
�� �������
��� ��������
�� �������
�� �	��� D4� '
	��
���������������
���	��
�������	��	��	�������
�������(�+&�
,�
�� �	�
	����
�� ��	� 	��� ���	� ���
�
��	� ���
���� 	���
����
�����	� ����� ���������� 	���'����� �
	
� ���
�
	����
������	���
�	�
��������
���
���
���
���2	�
�������E����&�
0���		���
�	���
	
���
�� 	�� ��
�� 	�����
������ �
�	
	
�����
���
	
���&� C�
�� ����
	
���� ����� �
�	
	
����� ���
	
����
��'� ��
�� ��	�� 	��� �����F� �
	
�
��� 	��� ����
�
�F� �
	
�

��� 	��� E����� ���������
��
��
� �
����� ����� ('
	�� 	���
E����� ��	
�
3��� �����
��� 	��� ���	� E����� ��
�+&� ,�
��

�	���
	
���
�� ��		��� ���
����
	�
��
��� �2	�
� ����
���
������
��
���
����	��������	��-�
��	'
���'
	������
�
	���
���
	
����	�
	�
���
���
��	����
�	�
��������
����
���'
��
�����
��	�
�� (���� ���� �
��� �
�	�
�� ����4� '�
��� ��
��
��
��� ��E�
����
� �
����� �������
��� ��� ����
�
	���
���
	
���+&� 0�� 	��� ��
�� ��
���
�	���
	
���
�� �����

���
�
��	� 	�
�� 	��� �
�	�
�� ������
����
��4� '��
���	���
��
����
���
��)��*� (��� �2���
���	
�� ��
��
	
���
��
�
����
����
����
��+&�

4�������
���-�����������	
�.����������

In this section we consider and analyze alternative
replication strategies. We analyze the advantages of
each strategy using as metrics: degree of fault tolerance
(how many nodes can be unavailable or fail
simultaneously); efficiency (performance upon node
failure); provision for taking several nodes offline
simultaneously for data loading or other management or
maintenance activities. For instance, it may be possible
to take half the nodes offline for loading while the
system remains online, then switch to loading the other
half while never stopping the availability status of the
system.

5.1. Full Replicas (FR)

The simplest replica placement strategy involves
replicating each node’s data into at least one other node.
In case of failure of one node, a node containing the
replica resumes the operation of the failed node. A
simple placement algorithm considering R replicas is:

Number nodes linearly;
For each node i
 For replica =1 to R
 data for node i is also placed in node (i+R) MOD N;

Metrics:
• Degree of fault tolerance: R nodes when considering
R replicas;
• Efficiency (performance upon node failure):
processing time doubles when a node fails;
• Provision for taking several nodes offline
simultaneously: can take multiple nodes offline
simultaneously, as long as the set of unavailable nodes
does not include all R+1 copies of any node. For
example, in Figure 6 with two replicas, shaded boxes
may be unavailable and the system still works, because
nodes 3, 6 and 9 contain replicas of their two closest
neighbors. This suggests that up to R/(R+1)N nodes can
be offline simultaneously, if chosen carefully.

6� #� !� D� 9� ?� =� >� $�

�������8���-���������+��
����

The major drawback of this simple strategy is
processing efficiency when unavailability of a few
nodes occur: consider a NPDW system with N
homogeneous nodes. Using a simplified linear model,
assume that each node contains and processes about

37

1/N of the data in O(1/N) of the time it would take to
process the whole data. If one node fails, the node
replacing it with the replica will take (at least) about
twice as long O(2/N), even though all the other nodes
will take O(1/N). The replica effort is placed on a single
node, even though other nodes are less loaded.

5.2. Fully Partitioned Replicas (FPR)

Instead of having full replicas in a single node, much
more efficiency results if replicas are partitioned into as
many slices as there are nodes minus one. If there are N
nodes, a replica is partitioned into N-1 slices and each
slice is placed in one node. The replica of node i is now
dispersed into all nodes except node i. The following
algorithm can be used to place the slices:

Number nodes linearly;
The data for node i is partitioned into N-1 numbered
slices, starting at 1;
For slice x from 1 to N-1:

Place slice x in node (i+x) MOD N .

This strategy is the most efficient one because,
considering N nodes, each replica slice has 1/(N-1) of
the data and each node has to process only that fraction
in excess in case of a single node being unavailable. If a
node becomes unavailable, the remaining nodes will
process their data together with the replica slices
corresponding to the unavailable node. However, in this
case it is not possible to stop more than one node if
there is a single replica, because all nodes that remain
active are needed to process a slice from the replica. In
order to allow up to R nodes to become unavailable,
there must be R non-overlapping replica slice sets. Two
replicas are non-overlapped iff the equivalent slices of
the two replicas are not placed in the same node.
Consider that R replicas are to be created (tolerance to
unavailability of R nodes). In order to avoid slice
overlapping, the following placement algorithm is used:
�
Number nodes linearly;
The copy of the data of node i is partitioned into N-1
numbered slices, starting at 1.
For j=0 to R:

For slice x from 1 to N-1:
Place slice x in node (i+j+ x) MOD N

�
Metrics:
• Degree of fault tolerance: R nodes, when R replicas
are used;
• Efficiency (performance upon node failure):
processing time increases proportionally to size of slice
(fraction 1/(N-1));
• Provision for taking several nodes offline
simultaneously: need multiple non-overlapping
replicas.

�
�
5.3. Partitioned Replicas (PR)

Replicas may be partitioned into less than N slices (in
NPDW with N nodes). If replicas are partitioned into x
slices, we denote it by PR(x). If x=N, we have a fully
partitioned replica. A very simple algorithm to generate
less than N slices is:

Number nodes linearly;
The data for node i is partitioned into X slices starting
at 1;
For slice set j=0 to R:

For slice x from 1 to X:
Place slice x in node (i+j+ x) MOD N

If we desire y nodes to be able to come offline
simultaneously when a single replica is used, then the y
nodes must not contain replica slices of each other. In
order to achieve this, we can divide the nodes into
groups that we want to take offline simultaneously.
Then we guarantee by placement that replica slices of
the nodes in a group are not placed in any node of that
group and therefore we can take the whole group
offline simultaneously for maintenance or other
functionality.
For instance, Figure 7 shows twelve nodes organized
into two groups G1 and G2. Replicas of each node are
PR(6) and the slices are placed in the other group. The
labels R1 and R2 in the Figure represent the replicas of
nodes of each group and indicate that they are placed in
the other group. The replicas are fully partitioned into
the other group.

�

�������9��:�	���
�����������

Using this strategy, it is possible to take a whole group
(6 nodes) offline simultaneously. The system will run
slightly slower than if we had a single node offline with
12 full replica slices, because slices are larger. This
layout guarantees availability to failures of a single
node (R=1) but also of any number of nodes from a
single group.
We denote this strategy by PRG(g,x) (g groups with x
elements each) or PR(x), for simplicity and considering
equal-sized groups. It works like FR at the inter-group
level and FPR within each group. If we use this
strategy with R replicas and R+1 groups, the system can
tolerate failures or unavailability of nodes from up to R

1#�

16�

L6� L#�

38

groups. More groups allow more nodes to be
unavailable but slices will be larger, leading to possibly
slower processing when groups are offline.

Metrics:
• Degree of fault tolerance: X nodes from a single
group; If R replicas over R+1 groups are used, the
system can tolerate failures or unavailability of nodes
from up to R groups;
• Efficiency (performance upon node failure):
processing time increases proportionally to size of slice
(fraction 1/(X));
• Provision for taking several nodes offline
simultaneously: can take offline whole groups.
�

8��#	 ������-���
��+����

�
��� 	�
��
�
���
�� '�� ������ ��� 	��� �
�
���� ��	'����

���
�
��	�
�

�
�
�
	�4� ���
�
��3
��� 	��� �������
����
������ ����� ��
�

�
�
�
	�4�
��� 	��� ���2
�
�
	�� 	�� 	
.��
���	
���� ������ ����
��&� *�� ����
���� 	��� ���� ��� �����
����
�
�� (�1+4� ������ �
�	
	
����� ����
�
�� (��1+�
���
�
�	
	
����� ����
�
�� (�1+&� ,���
�
���
��
��������
��
���
��� ��������� 	
��� ���)��*� ��� ��'� ���	� ����
(>"" :34� 96#� /� 10 +&� 9"L/� ,���:� 56=7� '
��
�
��
���� ��	���
�	�� 64� 6"�
��� #"� �����4� '
	��
�
�	
	
��
���
��� ��
�����	�
�� �����
����
�� ���	
��� !&�
*��	������
���������������	
�������E�����$����,���:�
'
	���	� ������ ����
���
��� ����
���� 	��� �����	� 	�� 	���
��������� 	
��� '
	�� 9� ������ ����
��&� G����� $�
��
����������� ����'� ���� ���������� (��� E����� �
�
��	����
'���������
	���
�������
����
��	���,���:�����
�
�
	
���

���	��������	��
���	���
���
������6"�����+&�

Select nation, o_year, sum(amount) as sum profit from
(
Select n_name as nation, year(o_orderdate) as o_year,
l extendedprice * (1 - l discount) – ps_supplycost*
l_quantity as amount
from
tpcd.part,tpcd.supplier, tpcd.lineitem, tpcd.partsupp,
tpcd.orders, tpcd.nation
where
s suppkey = l_suppkey and ps suppkey = l_suppkey
and ps partkey = l_partkey and p_partkey = l_partkey
and o_orderkey = l_orderkey
and s_nationkey = n_nationkey
and p_name like x and n_nationkey > y
and o_orderpriority = 'z' and ps_availqty > w
) as profit
group by nation, o_year
order by nation, o_year desc;)

�
�����>����'��	������������	
���(�
�A���+�'����9�

��	� ��� #"� ������
��� ����
��� (�
��+&� ,���
�	���
	
����

����
����
��A� ;���
��<�8������������
�����
��B���1�8�
������ �
�	
	
����� ����
�
�4� 9� ������ ����
��B� �1(6"+� 8�
�
�	
	
����� ����
�
�4� 	'�� ������� ��� 6"� ������ �
��B�
�1(9+�8��
�	
	
���������
�
�4�D�����������9��������
��&�
�	�
�������'��	����
�
������������������
�
��	�
	�
���
������
��� 	�� ����
��� 	��� ��E�
����
�

�
�
�
	�&� ,�����
�����	�� ���'� 	��� ����� �
����� ���
�	��
�������� ��� �1�

���	����2����
�����������������
�
����E�
����������1�
	��
���'� 9� ������ ����
��� �
���	
�������&� �1(6"+�
(�
�	
	
���������
�
��'
	��	'��6"�������	�������+�
���
�
��������
��4�
��
	���E�
����
��
���������
�
�
�����	

���
�
��������������	
����
���	
�������&��

�

�

�

�

�����	
�� ��
��� ��
��
�

��
��
���
	�
���
��

�����

�����

�����

�����

�	
��
��
�	
���
�
	�

�

��
��
	�
�

�������	������
�	�����	����	�
�����	��

�
�������;������	
���"� ��<����������'5�
	
��=4�2����!,���+�>&�
�
,��������	������)��*�'
	��6"�������
������'��
��

�
�����$&���� 	�
���
���'������
����D���
�

�
����������

��	�
�� ��� 	��� 9� ��� 	��� ����
���� �����	��
��� 	��� �

��
�1(9+4���1(#+�
��	�
������1(6"+�
����1(9+&�

�

�

�

�

�����	
�� ��
�� ��
��
�

��
��
���
	�
���
��

�����

�����

�����

� ���

�	
��
��
�	
���
�
	�

�

��
��
	�
��������	������

�	�����	����	�
�����	��

�
�������>������	
���"� ��<�����������5�
	
��=/�2����!,���+�>&�
�
,���	�����
���
�
�
��	��	����������������
���
�����>4�

	��� �

�� �
��������� ��
��� 	�
	� 	��� ��������� 	
����
���
����� �
�����
�� ������ �
��� ���
���� 	�����
��� ����� �
���
	��� ������� ��� ������ (6"� ������
�� �
����� $� ������� #"�
������
���
�����>+&� ��� 	�
���
����1(9+� ������ 	����� 	���
���	� ���
��4�
��
	�
��
��� 	��� ���	� ��� �1� ��� �1(#+�
���
�
���	
��������	�����E�
�����	������1�	�
	�	��������
	�
��
�	�D�����
�
������
�������&���
�
����� 6"� ����
���� 	��� ��������� 	
��� ���)��*�

'
	�� 6"� ������ �������)��*� '
	�� #"� �����&� ,�����
�����	�� ���'� 	�
	4�
�	������ 	��� ��������� 	
���'
	�� 6"�
������
�� ����� �
����� 	�
�� 	�
	� '
	�� #"� �����4�
��

39

�2���	��4� 	��� ����
�
���� ��	'����
�	���
	
���
����
�
	
����������������'��
��
�
�
��	����&���
,����� �2���
���	
�� �����	�� �
��� ���'�� 	�
	�
	�
��

��
�	
������	������
�����
�	
	
���������
�
��
��	�
�����
�
����� ����� ����
�
��
�� 	��� ���	���
�� 	�� ������ ���
�
��	�

�

�
�
�
	�&�*
	�� �����
� �
�
�
�
	�4� 	��� ���	����
�����

�'
�����4�
�'
������
�
��	������ 	�������
�	�����
	�
���
	
.�������
��������

�	��
��������
�
�����	�����	
����
�����
����
�
���'
	����'��
	
�����/0�����	
��
�
	�&���
*��
���������	���	��	
���	����	�
	��
��������
��
	
��
��
E�����'��.��
���'
	���
�
�����
�
�	��
�	
��&�
�

�����

�����

�!��!

�����

�����

�����

online FPR PR(5)
PR(10)

PR (2)
PR (5)

FR

��
��
���
	�
���
��

�	�����	����	�
�����	��������"	�
�	�����	����	�
�����	��������"	�

�
�

�
��������5��#	 �����	
��5�
	
���-������'5�
	
���

9��#	
�����	
���

���������	�(�

,���'��.�������	���
��	�
���
�������������������
�
	
���
���� ���
�
��	�
�

�
�
�
	�� ��� 	���)���� �
�	
	
������
	
�
*
�������� ()��*+&� 0�	��� ���
�'
��� ��
�����	�
���
�������
���
������ ����� 	���)��*4�'���
��� ����
����

�	���
	
�������
�
��	�
	��
�����
�����	�
���	�
	�
��������
���
�
����4� ������� ��� 	����
���� 	�� ����� �

������
���
�
�
�
	�� 	��
���'� ���	
���� ������ 	�� ��� ����
���
�
���	
�������&� ,���
�	���
	
���4� �
��
��� ����� �����
����
�
	
���	���
�
����������������
�	
	
���������
�
	
��4�
'��������
�����2���
���	
���������	����������	
������
�������
���� ����
�
	
��� '���� ������ ��� ����
��&� *��
���������� 	�
	� ����
�
�� �
�	
	
����� ��� �������
��� 	���
���	�
��
�	
������
�	���
	
��� ����)��*�
�� '��
����
���� ��	�� �������
����
��� ���2
�
�
	��
��
���'
���
���	
���� ������ 	�� ��� 	
.��� ����
��� �
���	
�������� ����
�

�	��
���� ��� ��
�
��� ��
����&� /��
���� �2	���
���
	��	
��� ��� 	���
����
����4� ���� ��	���� '��.�
�� 	�
��
���-��	�
��������
�	��
	
�������
�
	
���
�����������4�
��
'����
��
�	��
	��� �
	
� '
�������� ��
�
��� '
	�� 	���
���	���
�'
��������
���	����1(+��	�
	��
��������
����
��
	�
���
���&��

;������2���
����
567� ������� �&4� �&� �
�
		
4� �&� S
����
�34� ;C�
�
��� ��� 	���
������	
���1���
�
	
��� ���0�	���������
	
�
����
�� ����	���
C��	���<4� S���
�� #""D4� ?	�� ��	���
	
��
�� ����������4�
S
����

4�C�

�4�J����#>�!"4�#""D&�

5#7� �����
��� L&4� ,��� R�����4� ;0� ����
�
���� ��� �
���

�

�
�
�
	�����

����������	����
E���<4�������������	���6$>$�
0� ���	���
	
��
������&����
�
�����	�����
	
&�

5!7���*
		��&4�L������1&� 4�; ��	
����������:
���/
����J�
��
0����
	���<&� �������
���� ��� 	��� ������	�� ����������� ���
S����H
�����
	
�
���4�696�6?D4�C	��.����4�C'����4�0����	�
6$>9&�

5D7� ���	
��� �&4� T,��� ������ ��� H
���� 1��
	
����
��)����
�
�	
	
����� �
	
� *
��������T4� ��	���
	
��
�� ����������� ���
�
	
�
���C��	��������0��
�����0���
�
	
���� (�0C�00"9+4�
/�
-
��4���
�
4�0��
��#""9&�

597� ���	
��� �&4� T�2���
���	
�� ��
������ ��� �
�	
	
��
���
��
�
�
������
	
�*
��������T4��@H0��"D���*@1RC:@�����	���
��	F����������������������
	
���
���R��'������
�
�����	�
(��R +4�*
��
��	��4�)��������#""D&�

5?7� ���	
��� �&� ;���
�
��	��� �������
��� G�������	���
���
�
	
�
���������
�)������
�
	���H��
��)�	'��.<&�)
��	���	��
��	���
	
��
���
�
�����
����
�	�
��	����������
���C�����
��4�
������4������
��4��C04�
��#""9&�

5=7�:�

��:&4��
�
��J&���*
		A�1���
�
	����
	
�
�
�����	�

�� 	��� L
��
� �
	
�
���
���
��&� *��.����� ��� 	���

�
�����	����1���
�
	����
	
�6$$"&�

5>7�:�

��:&4��
�
��J&���*
		A���

����������	��
��A�0�)�'�
0�

�
�
�
	��C	�
	�������� ��	
������������
	
�
���
��
���&�
�����6$$"&�

5$7�:�

��:&4��
�
��J&���*
		A�0��������
����C	�������,�����
:
���0�

�
�
�
	���
	
�1���
�
	
���C	�
	��
��4����C�6$$6&��

56"7�R
��
��4�1&� (6$$?+&�,����
	
�*
��������,���.
	&�)�'�
M��.A�J&�*
����U�C���&�

5667� R
	�����
'
� &4� ,
�
.
� :&�
��� �	��.
� ,&4�
;0���
�
	
��� ��� :
��� 	�� �
	
�
���
��
���
���
	��
0���
	��	���<4�)�'�L����
	
��������	
��4�?!�=D4�6(6+&�

56#7�H
��M&4�/&�R����4�1&� J
����3����
�4� ;����
�	��	��
	
�
1���
�
	
��A� ���
	� ��
�
����
�� *0)�V<�
�� 66	�� ��	���
	
��
��
������
������������4�H
���
4����	��
�4�0����	�!"�#4�#""9&�

56!7��
�
		
��&4� &�W3��4��&�������4�;������	
��� ��	
�
�	���
1���
�
	
���
��
� ����	��� ��� 0�	�������� �
	
�
���<4� $	��
��	���
	
��
�� ������
�� ����������4� R�
������	4� 0��	�

4�
0����	�#?�#$4�#""!&�

56D7�1
�4�J&4�X�
����&4� ��
�����&4�H���
��L4�;0�	��
	
���
����
�
�� �
	
�
��� ���
���
��
� �
�
����� �
	
�
��<4� 0� �
��	���
	
��
�� ����������� ���
�
�����	� ��� �
	
4� 99>�9?$4�

�
���4�*
�����
�4��C04�J����#""#&�

5697�,
������
	
�
���L����4�T)��C	���CGH4�0��
�	�
��	��4�
:
����������
���4�:
���1��

�
�
	����������	
	
������CGH4T�
*��.��������:
����������&�,�
��&�C��&4��04����	�6$>=&�

56?7� ,��
�
	
4� T�/�I6"6#� �
	
�
��� �����	��� C��	���

��
��1���
���#&"4T��6"�"""6�"#4�,��
�
	
4�)���6$>9&�

56=7� ,��� /�����
�.� :4� ,�
��
�	
��� �������
��� �����
�4�
J����6$$$&�0�

�
����
	��		�AII'''&	��&���I&�

56>7�M�4��&�,&�
��� ����*&� (6$$>+&���
��
���������
	
�
���
G����� �������
��� ���� 0��
����� 0���
�
	
���&� ���
��
R
���
��&�

56$7�X
�
�4��&��&4�J�
���
��0&4��
��
�
��
��C&4�;�
�	
	
��
���
R��� C����	
��� ����
� C�
����)�	�
��� �
�
����� �
	
�
���
C��	��<&��/ �1���
����1����	�1��6$>#"�(>==!$+4�6$$D&�

40

Large-scale Experimentation with Preventive Replication in a Database Cluster

Patrick Valduriez, Esther Pacitti, Cédric Coulon
INRIA and LINA, University of Nantes – France

Patrick.Valduriez@inria.fr, {Cedric.Coulon, Esther.Pacitti}@lina.univ-nantes.fr

Abstract

In a database cluster, preventive replication can

provide strong consistency without the limitations of
synchronous replication. In this paper, we present a full
solution for preventive replication which supports multi-
master and partial configurations, where databases are
partially replicated at different nodes. To increase
transaction throughput, we propose an optimistic
refreshment algorithm that eliminates delay times at the
expense of a few transaction aborts. We describe large-
scale experimentation of our algorithm based on our
RepDB* prototype1 over a cluster of 64 nodes running the
PostgreSQL DBMS. Our experimental results using the
TPC-C Benchmark show that it yields excellent scale-up
and speed up.

1. Introduction

Database clusters provide a cost-effective alternative to
parallel database systems, i.e. database systems
implemented on parallel computers. A database cluster is
a cluster of PC servers, each having its own processor(s)
and hard disk(s), and running a “black-box” DBMS.
Using a “black-box” DBMS at each node has the major
advantages of preserving the autonomy of the databases
and avoiding expensive data migration (for instance to a
parallel DBMS) [3].

To improve performance and high-availability in a
database cluster, an effective solution is to replicate
databases at different nodes. Data replication has been
extensively studied in the context of distributed database
systems [7]. In the context of database clusters, the main
issue is to provide scalability (to achieve performance
with large numbers of nodes) and autonomy (to exploit
black-box DBMS) while preserving the consistency of
replicas. Furthermore, support for various replication
configurations such as master-slave, multi-master and
partial replication is important.

1 http://www.sciences.univ-nantes.fr/lina/ATLAS/RepDB, released as
open source software under GPL. Work partially funded by the MDP2P
project of the ACI “Masses de Données” of the French ministry of
research.

Synchronous (eager) replication can provide strong
consistency but its implementation, typically through
2PC, violates system autonomy and does not scale up.
The synchronous solution proposed in [6] reduces the
number of messages exchanged to commit transactions
compared to 2PC. It uses group communication services
to guarantee that messages are delivered at each node
according to some ordering criteria. However, DBMS
autonomy is violated because the implementation must
combine concurrency control with group communication
primitives. The algorithm proposed in [5] provides strong
consistency for multi-master and partial replication while
preserving DBMS autonomy. It requires that transactions
update a fixed primary copy: each type of transaction is
associated with one node so a transaction of that type can
only be performed at that node. This is a problem for
update intensive applications. Furthermore, the algorithm
uses 2 messages to multicast the transaction, the first one
being a reliable multicast and the second one a total
ordered multicast. However, one advantage of this
algorithm is to avoid redundant work: the transaction is
performed at the origin node and the target nodes only
apply the write set of the transaction.

Asynchronous (lazy) replication typically trades
consistency for performance [8] and thus can scale up
better. Preventive replication [1,2,9] is an asynchronous
solution that enforces strong consistency. Instead of using
atomic broadcast, as in synchronous group-based
replication [6], it uses First-In First-Out (FIFO) reliable
multicast which is a weaker constraint. It works as
follows. Each incoming transaction is submitted, via a
load balancer, to the best node of the cluster. Each
transaction T is associated with a chronological timestamp
value C, and is multicast to all other nodes where there is
a replica. At each node, a delay time d is introduced
before starting the execution of T. This delay corresponds
to the upper bound of the time needed to multicast a
message. When the delay expires, all transactions that
may have committed before C are guaranteed to be
received and executed before T, following the timestamp
chronological order (i.e. total order). Hence, this approach
prevents conflicts and enforces consistency.

In this paper, we present a full solution for preventive
replication which supports multi-master and partial
configurations, where databases are partially replicated at

41

different nodes. Unlike full replication, partial replication
can increase access locality and reduce the number of
messages for propagating updates to replicas. To increase
transaction throughput, we propose an optimistic
refreshment algorithm that eliminates delay times at the
expense of a few transaction aborts. We describe large-
scale experimentation of our algorithm based on our
RepDB* prototype over a cluster of 64 nodes running the
PostgreSQL DBMS. Our experimental results using the
TPC-C Benchmark show that it yields excellent scale-up
and speed up.

The rest of the paper is organized as follows. Section 2
defines our replication model. Section 3 describes
preventive refreshment for full and partial replication,
including the algorithm and architecture. Section 4
describes our large-scale experimentation. Section 5
concludes.

2. Replication Model

In this section, we define full and partial replication and
transactions over partially replicated databases. We
assume that a replica is an entire relational table. Let R be
a table, we may have three kinds of copies: primary,
secondary and multi-master. A primary copy, denoted by
R, is stored at a master node where it can be updated
while a secondary copy, denoted by ri, is stored at one or
more slave nodes i in read-only mode. A multi-master
copy, denoted by Ri, is a primary copy that may be stored
at several multi-master nodes i. Figure 1 shows various
replication configurations, using two tables R and S.

Figure 1a shows a fully replicated configuration. In
this configuration, all nodes support the update
transaction load because whenever R or S is updated at
one node, all other copies need be updated at the other
nodes. Thus, only the read-only query loads are different
at each node. Since all the nodes perform all the
transactions, load balancing is easy and availability is
high because any node can replace any other node in case
of failure.

Figure 1b and 1c illustrate partially replicated
configurations where all kinds of copies may be stored at
any node. For instance, in Figure 1c, node N1 carries the
multi-master copy R1 and the primary copy S, node N2
carries the multi-master copy R2 and the secondary copy
s1, node N3 carries the multi-master copy R3, and node N4
carries the secondary copy s2. Compared with full
replication, all the nodes do not have to perform all the
incoming transaction (only those where that hold
common multi-master copies). Therefore, transactions do
not have to be multicast to all the nodes. Thus, the nodes
and the network are less loaded and the overhead for
refreshing replicas is significantly reduced.

Figure 1. Replication Configurations

A transaction may be composed of a sequence of read
and write operations followed by a commit (as produced
by the SQL statement in Example 1) that updates multi-
master copies. This is more general than in [9] where only
write operations are considered. We define a refresh
transaction as the sequence of write operations of a
transaction, as written in the Log History.

Given a transaction T received in the database cluster,
there is an origin node chosen by the load balancer which
triggers refreshment, and a set of target nodes that carries
replicas involved with T. For simplicity, the origin node is
also considered as a target node. For instance, in Figure
1a whenever node N1 receives a transaction that updates
R1, then N1 is the origin node and N1, N2, N3 and N4 are
the target nodes.

To refresh multi-master copies in the case of full
replication, it is sufficient to multicast the incoming
transactions to all target nodes. But in the case of partial
replication, even if a transaction is multicast towards all
nodes, it may happen that they are not be able to execute
it because they do not hold all the necessary replicas. For
instance, Figure 1b allows an incoming transaction at
node N1, such as the one in Example 1 to read s1 in order
to update R1. This transaction can be entirely executed at
N1 (to update R1) and N2 (to update R2). However it
cannot be executed at node N3 (to update R3) because N3
does not hold a copy of S. Thus, refreshing multi-master
copies in the case of partial replication needs to take into
account replica placement.

UPDATE R1 SET att1=value
 WHERE att2 IN
 (SELECT att3 FROM S)
COMMIT;

Example 1. Incoming Transaction at Node N1

3. Preventive Refreshment

In this section, we first present the basic refreshment
algorithm originally designed for full replication [9].
Then we introduce an optimization which involves the
elimination of the delay time necessary to assure strong
consistency. Then we present the extension of the

42

refreshment algorithm to deal with partial replication.
Finally, we describe the Replication Manager architecture
that supports this algorithm.

3.1. Basic Algorithm

We assume that the network interface provides global
FIFO reliable multicast: messages multicast by one node
are received at the multicast group nodes in the order they
have been sent [4]. We denote by Max, the upper bound
of the time needed to multicast a message from a node i to
any other node j. It is essential to have a value of Max that
is not over estimated. The computation of Max resorts to
scheduling theory [11] and takes into account several
parameters such as the global reliable network itself, the
characteristics of the messages to multicast and the
failures to be tolerated. We also assume that each node
has a local clock. For fairness reasons, clocks are
assumed to have a drift and to be ε-synchronized. This
means that the difference between any two correct clocks
is not higher that ε (known as the precision).

To define the refreshment algorithm, we need a formal
correctness criterion to define strong copy consistency.
Inconsistencies may arise whenever the serial orders of
two transactions at two nodes are not equal. Therefore,
they must be executed in the same serial order at any two
nodes. Thus, global FIFO ordering is not sufficient to
guarantee the correctness of the refreshment algorithm.

Each transaction is associated with a chronological
time stamp value. The principle of the preventive
refreshment algorithm is to submit a sequence of
transactions in the same chronological order at each node.
Before submitting a transaction at node i, we must check
whether there is any older committed transaction en route
to node i. To accomplish this, the submission time of a
new transaction at node i is delayed by Max + ε. After this
delay, all older transactions are guaranteed to be received
at node i. Thus chronological and total orders are assured.

Whenever a transaction Ti is to be triggered at some
node i, node i multicasts Ti to all nodes 1, 2, …, n,
including itself. Once Ti is received at some other node j
(i may be equal to j), it is placed in the pending queue for
the triggering node i. Therefore, at each multi-master
node i, there is a set of queues, q1, q2, …, qn. Each
pending queue corresponds to a node storing a multi-
master copy and is used by the refreshment algorithm to
perform chronological ordering.

3.2. Optimistic Execution

In a cluster network (which is typically fast and reliable),
messages are naturally totally ordered [10]. Only a few
messages can be received in order which is different than
the sending order. Based on this property, we can

improve our algorithm by optimistically submitting a
transaction to execution as soon as it is received, thus
avoiding the delay time. Yet, we need to guarantee strong
consistency. In order to do so, we schedule the commit
order of the transactions so a transaction can be
committed only after Max + ε. To enforce strong
consistency, all the transactions must be performed
according to their timestamp order. A transaction is out of
order when its timestamp is lower than the timestamps of
the transactions already received. Thus, when a
transaction T is received out of order, all younger
transactions must be aborted and re-submitted according
to their correct timestamp order with respect to T.
Therefore, all transactions, even unordered, are committed
in their timestamp order.

Thus, in most cases the delay time (Max + ε) is
eliminated. Let t be the time to execute transaction T. In
the previous algorithm [9], the time spent to refresh a
multi-master copy, after reception of T, is Max + ε + t.
Now, it is max[(Max + ε), t]. And, in most cases, t is
higher than the delay Max + ε. Thus, this simple
optimization can well improve throughput.

3.3. Dealing with Partial Replication

With partial replication, some of the target nodes may not
be able to perform a transaction T because they do not
hold all the copies necessary to perform the read set of T
(recall the discussion on Example 1). However the write
sequence of T, which corresponds to its refresh
transaction, denoted by RT, must be ordered using T's
timestamp value in order to ensure consistency. So T is
scheduled as usual but not submitted for execution.
Instead, the involved target nodes wait for the reception
of the corresponding RT. Then, at origin node i, when the
commitment of T is detected (by sniffing the DBMS’ log
– see Section 3.4), the corresponding RT is produced and
node i multicasts RT towards the target nodes. Upon
reception of RT at a target node j, the content of T (still
waiting) is replaced with the content of incoming RT and
T can be executed.

Partial replication may be blocking in case of failures.
After the reception of T, some target nodes are waiting for
RT. Thus, if the origin node fails, the target nodes are
blocked. However, this drawback can be easily resolved
by replacing the origin node by an equivalent node. Once
the target nodes detect the failure of the origin node, they
can request another node j, which holds all the replicas
necessary to execute T, to multicast RT given T’s origin
node identifier and timestamp value. At node j, the RT is
produced in the same way that at the origin node:
transaction T is performed and upon detection of T’s
commitment, an RT is produced and stored in the log to
resist the failure of the origin node. In the worst case

43

where no other node holds all the replicas necessary to
execute T, then T is globally aborted. Consistency is
enforced because none of the active nodes has performed
the transaction. In this case, at recovery time, the origin
node would undo T.

3.4. Replication Manager Architecture

To implement the refreshment algorithm for partial
replication, we add several components to a regular
DBMS. Our goal is to maintain node autonomy, i.e.
without requiring the knowledge of system internals.
Figure 2 shows the architecture of the preventive
replication manager. The Replica Interface receives
transactions coming from the clients. The Propagator and
the Receiver manage the sending and reception
(respectively) of transactions and refresh transactions
inside messages within the network.

Figure 2. Preventive Replication Manager Architecture

Whenever the Receiver receives a transaction, it places

it in the appropriate pending queue, used by the
Refresher, and in the running queue used by the Deliver
to start its execution. Next, the Refresher executes the
refreshment algorithm to ensure strong consistency. The
Deliver submits transactions, read from the running
queue, to the DBMS and commits them only when the
Refresher ensures that the transactions have been
performed in chronological order.

With partial replication, when a transaction T is
composed of a sequence of reads and writes, the
Refresher at the target nodes must assure correct ordering.
However T’s execution must be delayed until its
corresponding refresh transaction RT is received. This is
because the RT is produced only after the commitment of
the corresponding T at the origin node. At the target node,
the content of T (sequence of read and write operations) is
replaced by the content of the RT (sequence of write

operations). Thus, at the target node, when the Receiver
receives T, it interacts directly with the Deliver.

The Log Monitor checks constantly the content of the
DBMS log to detect whether replicas have been updated.
For each transaction T that updated a replica, it produces
a refresh transaction. To provide fault-tolerance in case of
failure of the origin node (see Section 3.3), it also stores T
in the delivered log, even if the node is not the origin
node of a transaction. At the origin node, whenever the
corresponding transaction is composed of reads and
writes and some of the target nodes do not hold all the
necessary replicas, the log monitor submits the refresh
transaction to the propagator which multicasts it to those
nodes. Then, upon receipt of the refresh transaction, the
target nodes can perform the corresponding waiting
transaction.

4. Experimentation

In this section, we describe our experimentation setup and
study the scale up and speed up of preventive replication.

4.1. Experimentation Setup

We implemented our Preventive Replication Manager in
our RepDB* prototype on a cluster of 64 nodes (128
processors). Each node has 2 Intel Xeon 2.4GHz
processors, 1 GB of memory and 40GB of disk. The
nodes are linked by a 1 Gb/s network. We use Linux
Mandrake 8.0/Java and CNDS’s Spread toolkit that
provides a reliable FIFO message bus and high-
performance message service among the cluster nodes.
We use the PostgreSQL Open Source DBMS at each
node. For this validation, we implemented most of the
Replicator module in Java outside of PostgreSQL. For
efficiency, we implemented the Log Monitor module
inside PostgreSQL.

To perform our experiments, we use the TPC-C
Benchmark which is an OLTP workload with a mix of
read-only and update intensive transactions. It has 9
tables: Warehouse, District, Customer, Item, Stock, New-
order, Order, Order-line and History; and 5 transactions:
Order-status, Stock-level, New-order, Payment and
Delivery. New-order represents a mid-weight, read-write
transaction with a high frequency of execution. Payment
represents a light-weight, read-write transaction with a
high frequency of execution. Order-status represents a
mid-weight, read-only transaction with a low frequency
of execution. Stock-level represents a heavy, read-only
transaction with a low frequency of execution. For our
experiments, we do not use the Delivery transaction because it
is executed in a deferred mode that is not relevant to test the
response times on which are based our measures.

44

The parameters of the performance model are shown
in Table 1. The values of these parameters are
representative of typical OLTP applications. The size of
the database is proportional to the number of warehouses
(a tuple in the Warehouse table represents a warehouse).
The number of warehouses also determines the number of
clients which submit transaction. As specified in the TPC-
C benchmark, we use 10 clients per warehouse. For a
client, we fix the transactions’ arrival rate λclient at 10s. So
with 100 clients (10 warehouses and 10 clients by
warehouse), the average transactions’ arrival rate λ is
100ms. In our experiments, we vary the number of
warehouses W to be either 1, 5 or 10. Then, the different
average transactions’ arrival rates are 1s, 200ms and
100ms.

During an experiment, each client submits to a random
node a transaction among the 4 TPC-C transactions used.
At the end, each client must have submitted M
transactions and must have maintained a percentage of
mixed transactions: 6% for Order-status, 6% for Stock-
level, 45% for New-order and 43% for Payment.

Finally, for our experiments, we use two replication
configurations. In the Fully Replicated (FR) configuration
all the nodes carry all the tables as multi-master copies. In
the Partially Replicated (PR) configuration, one fourth of
the nodes holds tables needed by the Order-status
transaction as multi-master copies, another fourth holds
tables needed by the New-order transaction as multi-
master copies, another fourth holds tables needed by the
Payment transaction as multi-master copies and the last
fourth holds tables needed by the Stock-level transaction
as multi-master copies.

Param. Definition Values
W
Clients
λ client

λ
Conf.
M

Max + ε

Number of warehouses
Number of clients by warehouse
Average arrival rate for each client
Average arrival rate
Replication of tables
Number of transactions submitted
during the tests for each client
Delay introduced for submitting a
Transaction

1, 5, 10
10
10s
1s, 200ms, 100ms
FR, PR
100

200ms

Table 1. Performance Parameters

4.2. Scale up Experiments

These experiments study the algorithm’s scalability. That
is, for a same set of incoming transactions (New-order
and Payment transactions), scalability is achieved
whenever increasing the number of nodes yields the same
response times. We vary the number of nodes for each
configuration (FR and PR) and for different numbers of
warehouses (1, 5 and 10). For each test, we measure the
average response time per transaction. The duration of

this experiment is the time to submit 100 transactions for
each client.

The experimental results (see Figure 3) show that for
all tests, scalability is achieved. The performance remains
relatively constant according to the number of nodes. Our
algorithm has linear response time behavior even when
the number of node increases. Let n be the number of
target nodes for each incoming transaction, our algorithm
requires only the multicast of n messages for the nodes
that carry all required copies plus 2n messages for the
nodes that do not carry all required copies. The
performance decreases with the increase in the number of
warehouses which increases the workload.

The results also show the impact of the configuration
on transaction response time. As the number of
transactions increases (with the number of nodes which
receive incoming transactions), PR increases inter-
transaction parallelism more than FR by allowing
different nodes to process different transactions. Thus,
transaction response time is slightly better with PR
(Figure 3a) than with FR (Figure 3b) by about 15%. In
PR, nodes only hold tables needed by one type of
transaction, so they do not have to perform the entire
updates of the other type of transactions. Hence, they are
less overloaded than in FR. Thus the configuration and
the placement of the copies should be tuned to selected
types of transactions.

 0

 200

 400

 600

 800

 1000

 64 48 32 24 16 8 4

R
es

po
ns

e
tim

es
 (

m
s)

number of nodes

1
5

10

 0

 200

 400

 600

 800

 1000

 64 48 32 24 16 8 4

R
es

po
ns

e
tim

es
 (

m
s)

number of nodes

1
5

10

a) Fully Replicated (FR) b) Partially Replicated (PR)

Figure 3. Scale up Results

4.3. Speed up Experiments

These experiments study the performance improvement
(speed up) for read queries when we increase the number
of nodes. To accomplish this, we reproduced the previous
experiments and we introduced clients that submit
queries. We vary the number of nodes for each
configuration (FR and PR) and for different number of
warehouses (1, 5 and 10). The duration of this experiment
is the time to submit 100 transactions for each client.

The number of clients which submit queries is 128.
The clients submit light-weight queries (Order-status
transaction) sequentially while the experiment is running.
Each client is associated to one node and we produce an
even distribution of clients at each node. Thus, the
number of read clients per node is 128 divided by the

45

number of nodes that support the Order-status transaction.
For each test, we measured the throughput of the cluster,
i.e. the number of read queries per second.

The experiment results (see Figure 4) show that the
increase in the number of nodes improves the cluster’s
throughput. For example in Figure 4a, whatever the
number of warehouses, the number of queries per seconds
is almost twice better with 32 nodes (1500 queries per
seconds) than with 16 nodes (800 queries per seconds).
However, if we compare FR with PR, we can see that the
throughput is better with FR. Although the nodes are less
overloaded than in FR, performance is twice less than
with FR because only half of the nodes support the
transaction. This is due to the fact that in PR, all the nodes
do not hold all the tables needed by the read transactions.
In FR, beyond 48 nodes, the throughput does not increase
anymore because the optimal number of nodes is reached,
and the queries are performed as fast as possible.

 0

 400

 800

 1200

 1600

 2000

 64 48 32 24 16 8 4

Q
ue

rie
s

pe
r

se
co

nd

number of nodes

1
5

10

 0

 400

 800

 1200

 1600

 2000

 64 48 32 24 16 8 4

Q
ue

rie
s

pe
r

se
co

nd

number of nodes

1
5

10

a) Fully Replicated (FR) b) Partially Replicated (PR)

Figure 4. Speed up Results

4.4. Effect of Optimistic Execution

We also studied the effect of optimistically executing
transactions as soon as they arrive. The optimistic
execution of transactions can introduce aborts. We ran the
scale up experiments with 10 warehouses to derive the
percentage of unordered messages and the percentage of
aborted transactions. Below 5% of the messages are
unordered, and only 1% of the transactions are aborted.
For PR, the percentage of the unordered messages is
lower than the percentage for FR because less messages
are multicast by the algorithm. Thus, the number of
aborted transactions is small enough to warrant the gain
introduced by the elimination of the delay time.

5. Conclusion

In this paper, we presented a full solution for preventive
replication in database clusters which supports multi-
master and partial configurations. To increase transaction
throughput, we proposed an optimistic refreshment
algorithm that potentially eliminates the delay time at the
expense of additional transaction aborts. We also

described the system architecture components necessary
to implement the refreshment algorithm.

We described large-scale experimentation of our
algorithm based on our RepDB* prototype over a cluster
of 64 nodes running the PostgreSQL DBMS. Our
experimental results using the TPC-C benchmark show
that our algorithm scales up very well. Our algorithm has
linear response time behavior. We also showed the impact
of the configuration on transaction response time. With
partial replication, there is more inter-transaction
parallelism than with full replication because of the nodes
being specialized to different tables and thus transaction
types. Thus, transaction response time is better with
partial replication than with full replication (by about
15%). The speed up experimental results showed that the
increase of the number of nodes can well improve the
query throughput. The optimistic execution of
transactions also increases performance much at the
expenses of very few aborts. However, the performance
gains strongly depend on the types of transactions and of
the configuration. Thus an important conclusion is that
the configuration and the placement of the copies should
be tuned to selected types of transactions.

6. References

[1] C. Coulon, E. Pacitti, P. Valduriez: Scaling up the
Preventive Replication of Autonomous Databases in Cluster
Systems, VECPAR Conf., 2004.
[2] C. Coulon, E. Pacitti, P. Valduriez: Consistency
Management for Partial Replication in a High Performance
Database Cluster. IEEE Int. Conf. on Parallel and Distributed
Systems, 2005.
[3] S. Gançarski, H. Naacke, E. Pacitti, P. Valduriez: Parallel
Processing with Autonomous Databases in a Cluster System,
CoopIS Conf., 2002.
[4] V. Hadzilacos, S. Toueg: Fault-Tolerant Broadcasts and
Related Problems. Distributed Systems, 2nd Edition, S.
Mullender (ed.), Addison-Wesley, 1993.
[5] R. Jiménez-Peris, M. Patiño-Martínez, B. Kemme, G.
Alonso: Improving the Scalability of Fault-Tolerant Database
Clusters: Early Results. ICDCS, 2002.
[6] B. Kemme, G. Alonso: Don’t be lazy be consistent:
Postgres-R, a new way to implement Database Replication,
VLDB Conf., 2000.
[7] T. Özsu, P. Valduriez: Principles of Distributed Database
Systems. 2nd Edition, Prentice Hall, 1999.
[8] E. Pacitti, P. Minet, E. Simon: Replica Consistency in Lazy
Master Replicated Databases. DAPD Journal, 2001.
[9] E. Pacitti, T. Özsu, C. Coulon: Preventive Multi-Master
Replication in a Cluster of Autonomous Databases. Euro-Par
Conf., 2003.
[10] F. Pedonne, A Schiper: Optimistic Atomic Broadcast.
DISC, 1998.
[11] K. Tindell, J. Clark: Holistic Schedulability analysis for
Distributed Hard Real-time Systems. Micro-processors and
Microprogramming, 40, 1994.

46

Fine-grained Refresh Strategies for Managing
Replication in Database Clusters

Stéphane Gançarski Cécile Le Pape Hubert Naacke

Laboratoire d’Informatique de Paris 6, Paris, France
email : Firstname.Lastname@lip6.fr

Abstract

Relaxing replica freshness has been exploited
in database clusters to optimize load balanc-
ing. In this paper, we propose to support both
routing-dependant and routing-independent
refresh strategies in a database cluster with
multi-master lazy replication. First, we pro-
pose a model for capturing refresh strategies.
Second, we describe the support of this model
in a middleware architecture for freshness-
aware routing in database clusters. Third, we
describe an algorithm for computing refresh
graphs, which are the core of all the refresh
strategies.
Keywords: replication, database cluster, load
balancing, refresh strategy.

1 Introduction

Database clusters provide a cost-effective alternative
to parallel database systems, i.e. database systems on
tightly-coupled multiprocessors. A database cluster
[10, 9, 26, 27] is a cluster of PC servers, each run-
ning an off-the-shelf (“black-box”) DBMS and holding
a (partial) replica of the database. Since the DBMS
source code is not necessarily available and cannot be
changed to be “cluster-aware”, parallel database sys-
tem capabilities such as load balancing must be imple-
mented via middleware.

Managing replication in database clusters has re-
cently received much attention. As in distributed
databases, replication can be eager (also called syn-
chronous) or lazy (also called asynchronous). With
eager replication, a transaction updates all replicas,
thereby enforcing the mutual consistency of the repli-
cas. By exploiting efficient group communication ser-
vices provided by a cluster, eager replication can be
made non blocking (unlike with distributed transac-
tions) and scale up to large cluster sizes [14, 15, 25, 13].
With lazy replication, a transaction updates only one
replica and the other replicas are updated (refreshed)
later on by separate refresh transactions [22, 23].

With lazy replication, two different problems may
occur. First, replicas may diverge if the same data is
updated simultaneously in two different nodes. This is
the well known problem of replica control which must
enforce eventual consistency : if updates stop, replicas
must eventually converge to the same state. Second, a
(read-only) query executed on a replica which has not
been synchronized yet may read inconsistent and/or
stale data. We call this the query control problem.
Different strategies have been proposed to solve this
problem : wait until data become consistent and/or
fresh, or accept to read “almost consistent/fresh” data
[11, 17, 27, 1, 20, 30, 3]. The client specify its consis-
tency/freshness requirements while the system guaran-
tees them with an adequate update propagation strat-
egy. Little work has been done to consider these two
problems together. We think that performances can
greatly benefit from controlling replica and queries si-
multaneously, thanks to a uniform load balancing. In
our approach, replicas are controlled in a preventive
way : transactions which perform updates are prop-
agated with respect to a global transaction ordering
graph (TOG). Conflicts are prevented because updates
are executed on all nodes in compatible orders. A
transaction is executed on a node only when all trans-
actions preceding it have been already executed on
the node. Queries are not distributed thus they al-
ways read consistent states, though maybe stale. The
problem of query control reduces to controlling the
replica freshness, which reflects the distance between
the state of the replica and the most recent state of
the corresponding data. In this context, we treat both
replica and query control uniformly as a refresh prob-
lem, which can be stated as follows : given an dababase
cluster state and a request (transaction or query), eval-
uate for each node which transactions should be prop-
agated before routing the request to the node such
that (1) no unnecessary transaction is propagated, (2)
the local execution order is compatible with the global
TOG, (3) the results satisfy the freshness requirements
of the request, and (4) the choice of the node minimizes
the request response time.

We make the distinction between routing-dependent

47

and routing-independent refresh strategies. The
routing-dependant strategy (or On-demand) works as
follows: if the load balancer selects an underloaded
node that is not fresh enough for an incoming request,
it first sends refresh transactions to that node before
sending the query. It is not sufficient since the fresh-
ness level of some nodes may get lower and lower,
thus increasing the cost of refreshment. Thus, we add
routing-independant refresh strategies, that are trig-
gered based on events other than routing, e.g. when a
node is too stale, idle or little busy, or after some time
from the last refreshment. There are several possible
refresh strategies, according to the application work-
load. For instance, if the workload is update-intensive
and if queries are rare and require a perfect freshness,
then it is better to refresh nodes frequently, e.g. as
soon as possible, in order to take advantage of periods
when nodes are query-free. On the contrary, when the
workload is query intensive but queries do not require
high freshness, it is better to refresh only when neces-
sary, in order to not overload nodes with unnecessary
refreshment.

Many refresh strategies have been proposed in the
context of distributed databases, data warehouse and
and database clusters. A popular strategy is to prop-
agate updates from the source to the copies as soon
as possible (ASAP), as in [4, 5, 7]. Another simple
strategy is to refresh replicas periodically [6, 19] as in
data warehouses [8]. Another strategy is to maintain
the freshness level of replicas, by propagating updates
only when a replica is too stale [29]. There are also
mixed strategies. In [21], data sources push updates to
cache nodes when their freshness is too low. However,
cache nodes can also force refreshment if needed. In
[17], an asynchronous Web cache maintains material-
ized views with an ASAP strategy while regular views
are regenerated on demand. Refreshment in [27] is in-
terleaved with query scheduling which makes difficult
to analyze the impact of the refresh strategy itself. In
all these approaches, refresh strategies are not chosen
to be optimal with respect to the workload. In par-
ticular, refreshment cost is not taken into account in
the routing strategy. There has been very few stud-
ies of refresh strategies and they are incomplete (ex.
[12]). For instance, they do not take into account the
starting time of update propagation [28, 16] or only
consider variations of ASAP [24].

This paper has three main contributions, which
clearly distinguish it from our previous work [18].
First, we propose a model which allows describing and
implementing refresh strategies, independent of other
load balancing issues. Second, we describe the sup-
port of this model in our prototype. It is based on
the concept of refresh graph whose execution brings a
node to a required level of freshness while guarantee-
ing global serializability. For transactions, it brings
the node to a perfectly fresh state, in order to be com-

patible with the global order. For queries, it brings
the node to the required level of freshness specified by
the application. Routing independant strategies are
also described through refresh graphs, one for each
node involved in the strategy. Third, we give an al-
gorithm that computes minimal refresh graphs with
respect to a given freshness requirement. In com-
parison, [18] is based on a mono-master replication,
based on refresh sequences, while this paper presents
a multi-master replication scheme based on refresh
graphs. Furthermore, our previous work had only
a routing-dependant refresh strategy while here we
added routing-independant refresh strategies.

The paper is organized as follows. Section 2 de-
scribes our database cluster architecture, with empha-
sis on load balancing and refreshment. Section 3 de-
fines our model to describe refresh strategies. Section 4
describes the algorithm for computing refresh graphs.
Section 6 concludes.

2 Database Cluster Architecture

CLIENT

REQUEST FACTORY

FRESHNESS EVAL
event
send

LOAD
BALANCER

JDBC DRIVER INTERFACE

M
ID

DL
EW

AR
E

LA
YE

R

XML EDITOR

METADATA
REPOSITORY

XML

METADATA

SCHEDULER

REFRESH
MANAGER

REFRESHER

LOAD EVAL.

forward request

forward request
rmetadata

read

edit metadata

ROUTER
update state
read state

CLUSTER STATE MGR

update state
ask for refresh ask for refresh

send query or transaction send refresh graph

send request (query or transaction)

N N

. . . .

p1

TOG MGR

CLOCK

N3

NODE

N2

NODE NODE NODE

request or refresh graphrequest or refresh graph request or refresh graph request or refresh graph

Figure 1: Multi-master replicated database architec-
ture

Figure 1 gives an overview of our multi-master
database cluster middleware. We assume that the
database composed of relations R1, R2, . . . , Rk is fully
replicated on nodes N1, N2, . . . , Np. We note Ri

j the
replica of relation Ri on node Nj . Our middleware
receives requests (transactions or queries) from the ap-
plications through a standard JDBC interface. All ad-
ditional information necessary for routing anf refresh-
ing is stored in a metadata repository and managed
separately of the requests. The metadata repository
includes for instance the default level of freshness re-
quired by a query. It also includes information about
which part of the database is read and which part is
updated by the requests, thus enabling the detection of

48

potential conflicts between updates and queries. Our
architecture preserves the autonomy of both applica-
tions and databases which can remain unchanged, as
required in ASP [9] for instance.

To support general applications such as ASP, the
access to the database is through stored procedures :
clients requests are procedure calls. The request fac-
tory enriches requests with metadata obtained from
the repository and dynamic information provided by
the clients (e.g. parameters for stored procedures).
Then it sends the requests to the scheduler.

As we focus on refresh policies, we use here a simple
FIFO scheduling : requests are sent to the router in
the same order they arrive to the scheduler.

Dynamic information such as transaction commit
time on nodes, data freshness on nodes, estimated
nodes load, is maintained by the cluster state man-
ager. The information related to each transaction is
maintained until it has been executed on every node,
after which it is removed. It also maintains a transac-
tion ordering graph (TOG). Intuitively, a transaction
T precedes a transaction T ′ in the TOG if T ′ arrives
in the system when T is currently running and T po-
tentially conflicts with T ′. The load evaluation mod-
ule evaluates the nodes’ load by the summing the re-
maining execution times of running requests on nodes.
The execution time of a request is estimated through
a weighted mean algorithm based on the previous ex-
ecutions of the request.

The router implements an enhanced version of
SELF (Shortest Execution Length First) [2], which
includes the estimated cost of refreshing a node on-
demand. Upon receiving a request, it computes a cost
function for every node and selects for execution the
node which minimizes the cost function, thus minimiz-
ing the request response time. The cost of executing
a request on a node is composed of the node’s load
plus the cost of preparing the node for executing the
request. Preparing a node consists in executing a re-
fresh graph on the node prior to request execution.
The refresh graph is a minimal subgraph (in the sense
of inclusion) of the TOG which, when applied to the
node, makes it fresh enough for the request (perfectly
fresh if the request is a transaction). Transactions in
the refresh graph are executed on the node according
to the refresh graph (partial) order.

Executing the refresh graph for a request is called
routing-dependent (on-demand) refreshment. On the
other side, the refresh manager handles routing-
independent refreshment. According to the refresh
strategy, it receives events coming from different part
of the cluster state manager: load evaluation module,
freshness evaluation module or external events such as
time. It then triggers the selected routing-independent
refresh policy which eventually asks the refresher mod-
ule to perform refresh graphs. Building a refresh graph
depends on the nature of the refresh strategy. The

alogrithm that performs this task is presented in Sec-
tion 4 . Whenever the refresher sends refresh graphs
to a node, it updates the cluster state for further fresh-
ness evaluations by the corresponding module.

3 Modeling Refresh Strategies

In this section, we propose a model for defining various
refresh strategies. It can be used as a basis to help a
DBA specifying when, to which nodes, and how much
to refresh. The refresh model is based on a freshness
model which allows measuring the staleness of a slave
node with respect to the master node.

3.1 Conflicts detection

We detect conflicts based only on procedure codes, i.e.
the procedure code is known in advance. Thus we de-
tect potential conflicts, at the relation level, because re-
lations potentially read or written by a request can be
easily infered from the procecure code. Each request
req is associated to the set of relation its potentially
reads (resp. writes), called req.read (resp. req.write).
A query Q potentially conflicts with a transaction T if
T potentially writes a data that Q potentially reads. A
transaction Ti potentially conflicts with another trans-
action Tj if Ti potentially writes a data that Tj poten-
tially reads or writes. Potential conflict detection is
more formally described in [18].

3.2 Freshness Model

In [18] we introduced several freshness measures. For
simplicity in this paper, we consider only measure Age.
Age(Ri

j) denotes the maximum time since at least one
transaction updating Ri has committed on a node and
has not yet been propagated on node Nj , i.e.

Age(Ri
j) = Max(now() - T.ct), T ∈ U(Ri

j)
0 if U(Ri

j) = ∅

where U(Ri
j) is the set of transactions updating Ri

and not yet propagated to node Nj and T.ct is the
commit time of T on the first node it has validated.
Measure Age allows modelling queries such as “Give
the value of X as it was no later than Y minutes ago”.
It is also useful for queries accessing history relations.
Other freshness measures defined in [18] can be used,
according to applications needs and can even be com-
bined.

The freshness level of a request Req is a conjunction
of conditions of the form Age(Ri) < thi, for each Ri ∈
Req.write ∪Req.read, where thi is the maximum age
(threshold) of Ri tolerated by Req. The default value
of thi is 0 for both queries or transactions (they must
access perfectly fresh relations). If Req is a query, thi

can be overwritten by the user in order to increase the
tolerated freshness. In all cases, a node Nj is fresh
enough to satisfy Req if the freshness level of Req is
satisfied on Nj . The freshness level of Req is stored in

49

the vector Req.FL[1..k], such that Req.FL[i] = thi if
Ri is accessed by Req, and ∞ otherwise.

3.3 Refresh Model

Refresh Strategy ::= ({Event}, Dest. , Quantity)
Event ::= Routing(Nj,Req)

| Underloaded(Nj,limit load)
| Stale(Nj,Ri, limit age)
| Trans commit(Nj,T)
| Period(t)

Dest. ::= { node }
Quantity ::= Age[1..k]

Figure 2: Refresh model

We propose to capture refresh strategies with the
model in Figure 2. A refresh strategy is described
by the triggering events which raise its activation, the
nodes where the refresh transactions are propagated
and the quantity of refreshment to do. A refresh strat-
egy may handle one or more triggering events, among:

• Routing(Nj , Req) : a request Req is routed to
node Nj .

• Underloaded(Nj , limit load): the load of node Nj

decreases below the limit load value.

• Stale(Nj,Ri, limit age) : the age of Ri
j increases

above limit age value. In other words, the fresh-
ness atom Age(Ri) < limit age is no more satis-
fied on node Nj .

• Trans commit(Nj,T) : transaction T has com-
mited on node Nj .

• Period(t) : triggers every t seconds.

As soon as an event handled by the refresh man-
ager is raised, the refresher computes a refresh graph
to propagate. The refresh graph can be sent to one
or several nodes. For instance, Routing(Nj , Req) usu-
ally activates a refreshment only on node Nj while
Period(t) usually activates a refreshment on all the
nodes.

Finally, the refresh quantity of a strategy indicates
“how many” refresh transactions are part of the re-
fresh graph for each node to refresh. The Age[1..k]
vector expresses for each Ri, the age that must not be
overpassed after applying the refresh graph. The re-
fresh graph is thus a minimal subgraph (in the sense of
inclusion) to make the node fresh enough with respect
to Age[1..k]. Note that the default value for Age[i] is
∞.

We apply our refresh model to the following strate-
gies. Other strategies are possible, we give here some
examples inspired from the state-of-art strategies.

3.3.1 On-Demand.

The On-Demand strategy is triggered by a
Routing(Nj , Req) event. It sends a minimal re-
fresh graph to node Nj to make it fresh enough for
Req, i.e. Age[1..k] = Req.FL.

3.3.2 ASAP

The ASAP (As Soon As Possible) strategy is triggered
by a trans commit(Nj,T) event. It sends a refresh
graph to all the nodes where T has not been sent yet.
As ASAP strategy maintains nodes perfectly fresh,
the refresh is specified with Age[i] = 0,∀i s.t. Ri ∈
T.write ∪ T.read.

3.3.3 Periodic(t,Ri, limit age)

The Periodic strategy is triggered by a period(t) event.
It sends refresh graphs to all nodes to keep the stal-
eness of Ri under the limit age value. Thus, the re-
fresh graph for Nj is defined by Age[i] = limit age. If
limit age = 0, then the strategy brings Ri to a perfect
freshness on every node.

3.3.4 ASAUL(limit load, limit age)

The ASAUL (As Soon As underloaded) strategy is
triggered by a Underloaded(Nj,limit load) event. It
sends a refresh graph to Nj to bring the staleness
of all the relations replica on Nj under a limit age
value. Thus, the refresh graph for Nj is defined by
Age[i] = limit age,∀i = 1 . . . k

3.3.5 ASATS(limit age)

The ASATS (As Soon As Too Stale) strategy is trig-
gered by a Stale(Nj,Ri, limit age) event. It sends a
refresh graph to Nj to make the local copy Ri

j perfectly
fresh, i.e. Age[i] = 0.

3.3.6 Hybrid Strategies.

Refresh strategies can be combined to improve perfor-
mance. For instance, the interaction between routing-
dependent (On-Demand) and routing-independent
strategies (all other strategies) allows using any node
for executing any request, since On-Demand always
refreshes the node where the request is routed before
sending the request. Another example is to create dif-
ferent periodic strategies for different relations with
different periods, allowing to associate a smaller pe-
riod for “hot-spot” relations and a higher for rarely
requested relations.

4 Computing refresh graphs

In this section, we present our method to compute
refresh graphs. We first introduce the data structures,
and present the algorithms.

50

4.1 Data structures and auxiliary functions

• TOG =
(
{T},≺

)
is the transaction ordering

graph, defined as a set of transaction {T} and
a partial order ≺. TOG is obviously acyclic since
its order is compatible with the transaction arrival
time.

• Each transaction T is associated with attributes
T.ct (commit time, see Section 3.2) and T.write,
(set of relations potentially written by T , see Sec-
tion 3.1).

• Each node Nj is associated with an attribute
Nj .yet (Youngest Executed Transactions) which
is the set of the youngest (w.r.t. ≺) transactions
already executed on Nj . Attribute Nj .yet can be
seen as the current freshness state of node Nj .

• Function Leaves() returns the leaves of acyclic
graph TOG.

• Function Parents(T) returns the parents of T in
the TOG.

• Vector Age[1..k] is the specification of the refresh
graph to compute (see Section 3.3).

4.2 Algorithm

The algorithm is shown on Figure 3. Function
Refresh graph(Age[1..k],Nj) computes a minimal re-
fresh graph for refreshing node Nj in order to fulfill
freshness requirements specified by vector Age[1..k].
The main idea is, starting from the leaves of the
TOG, to recursively include in the refresh graph
all the necessary transactions, detected by function
Necessary(T,Age[1..k]). The process stops when
reaching transactions already executed on Nj , i.e.
transactions belonging to Nj .yet. For sake of simplic-
ity, we do not handle individual precedences among
transactions, they can be deduced from the ≺ prece-
dence order. The age of data on node Nj is computed
based on the cluster current time when the algorithm
starts.

5 Conclusion

In this paper, we proposed a refresh model that al-
lows capturing state-of-the-art refresh strategies in a
database cluster with multi-master lazy replication.
We distinguish between the routing-dependent (or on-
demand) strategy, which is triggered by the router, and
routing-independent strategies, which are triggered by
other events, based on time-outs or on nodes state.
The on-demand strategy serves for both query routing,
according to query freshness requirement, and trans-
action routing, in order to guarantee global serializ-
ability based on a global transaction order graph. The
output of any refresh strategy is a refresh graph to be

Function Refresh graph(Age[1..k],Nj)
Tset := ∅
t = now()
for all T ∈ Leaves() do

Tset := Tset ∪ Refresh set(T ,Age[1..k],Nj,t)
end for
return (Tset,≺)

Function Refresh set(T ,Age[1..k],Nj,t)
Nset := ∅
if T ∈ Nj .yet then

return ∅
end if
if Necessary(T ,Age[1..k],t) then

Nset = {T}
end if
for all T ′ in Parents(T) do

Nset := Nset ∪ Refresh set(T ,Age[1..k],Nj,t)
end for
return Nset

Function Necessary(T,Age[1..k],t)
for all Ri ∈ T.write do

if Age[i] ≤ (t− T.ct) then
return true

end if
end for
return false

Figure 3: The algorithm for computing refresh graphs

executed, for each target node. The refresh model al-
lows for specifying the refresh graph to execute in a
simple way, and we give the algorithm which produces
a refresh graph based on its specification. The refresh
manager is independent of other load balancing func-
tions such as routing and scheduling. We are currently
testing the prototype to optimize the implementation
of the Refresh graph algorithm. We plan to run it with
different workload types in order to determine the best
strategy to select with respect to the workload.

References

[1] R. Alonso, D. Barbará, and H. Garcia-Molina.
Data caching issues in an information retrieval
system. ACM Trans. on Database Systems,
15(3):359–384, 1990.

[2] C. Amza, A. Cox, and W. Zwaenepoel. Conflict-
aware scheduling for dynamic content applica-
tions. In Proceedings of the Fifth USENIX Sym-
posium on Internet Technologies and Systems,
March 2003, 2003.

[3] D. Barbará and H. Garcia-Molina. The demarca-
tion protocol: A technique for maintaining con-
straints in distributed database systems. VLDB
Journal, 3(3):325–353, 1994.

51

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. J. O’Neil, and P. E. O’Neil. A critique of ansi
isolation levels. In ACM SIGMOD Int. Conf.,
1995.

[5] Y. Breitbart, R. Komondoor, R. Rastogi, S. Se-
shadri, and A. Silberschatz. Update propagation
protocols for replicated databates. In ACM SIG-
MOD Int. Conf., pages 97–108, 1999.

[6] D. Carney, S. Lee, and S. Zdonik. Scalable appli-
cation aware data freshening. In IEEE Int. Conf.
on Data Engineering, 2002.

[7] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. De-
ferred updates and data placement in distributed
databases. In IEEE Int. Conf. on Data Engineer-
ing, pages 469–476, 1996.

[8] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick,
and H. Trickey. Algorithms for deferred view
maintenance. In ACM SIGMOD Int. Conf., pages
469–480, 1996.

[9] S. Gançarski, H. Naacke, E. Pacitti, and P. Val-
duriez. Parallel processing with autonomous
databases in a cluster system. In Int. Conf. On
Cooperative Information Systems (CoopIS), 2002.

[10] S. Gançarski, H. Naacke, and P. Valduriez.
Load balancing of autonomous applications and
databases in a cluster system. In Workshop on
Distributed Data and Structures (WDAS), 2002.

[11] H. Guo, P.-A. Larson, R. Ramakrishnan, and
J. Goldstein. Relaxed currency and consistency:
How to say ”good enough” in sql. In ACM SIG-
MOD Int. Conf., 2004.

[12] Y. Huang, R. H. Sloan, and O. Wolfson. Diver-
gence caching in client server architectures. In
Proceedings of the Third International Confer-
ence on Parallel and Distributed Information Sys-
tems (PDIS 94), Austin, Texas, September 28-
30, 1994, pages 131–139. IEEE Computer Society,
1994.

[13] R. Jiménez-Peris, M. Patino-Martinez,
B. Kemme, and G. Alonso. Are quorums
an alternative for database replication. ACM
Trans. on Database Systems, 28(3):257–294,
2003.

[14] B. Kemme and G. Alonso. Don’t be lazy be
consistent : Postgres-r, a new way to implement
database replication. In Int. Conf. on Very Large
Data Bases, pages 134–143, 2000.

[15] B. Kemme and G. Alonso. A new approach to de-
veloping and implementing eager database repli-
cation protocols. ACM Trans. on Database Sys-
tems, 25(3):333–379, 2000.

[16] S. Krishnamurthy, W. H. Sanders, and M. Cukier.
An adaptive framework for tunable consistency
and timeliness using replication. In Int. Conf. on
Dependable Systems and Networks, pages 17–26,
2002.

[17] A. Labrinidis and N. Roussopoulos. Balancing
performance and data freshness in web database
servers. In Int. Conf. on Very Large Data Bases,
pages 393–404, 2003.

[18] C. Le Pape, S. Gançarski, and P. Valduriez. Re-
fresco: Improving query performance through
freshness control in a database cluster. In
Int. Conf. On Cooperative Information Systems
(CoopIS), pages 174–193, 2004.

[19] H. Liu, W.-K. Ng, and E.-P. Lim. Scheduling
queries to improve the freshness of a website.
World Wide Web, 8(1):61–90, 2005.

[20] C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over
replicated data. In Int. Conf. on Very Large Data
Bases, 2000.

[21] C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over
replicated data. In Int. Conf. on Very Large Data
Bases, 2000.

[22] E. Pacitti, P. Minet, and E. Simon. Fast algo-
rithms for maintaining replica consistency in lazy
master replicated databases. In Int. Conf. on
Very Large Data Bases, 1999.

[23] E. Pacitti, P. Minet, and E. Simon. Replica
consistency in lazy master replicated databases.
Distributed and Parallel Databases, 9(3):237–267,
2000.

[24] E. Pacitti and E. Simon. Update propagation
strategies to improve freshness in lazy master
replicated databases. VLDB Journal, 8(3–4):305–
318, 2000.

[25] M. Patino-Martinez, R. Jimenez-Peris,
B. Kemme, and G. Alonso. Scalable Repli-
cation in Database Clusters. In Int. Conf.
on Distributed Computing (DISC’00), pages
315–329, 2000.

[26] U. Röhm, K. Böhm, and H.-J. Schek. Cache-
aware query routing in a cluster of databases. In
IEEE Int. Conf. on Data Engineering, 2001.

[27] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt.
Fas - a freshness-sensitive coordination middle-
ware for a cluster of olap components. In Int.
Conf. on Very Large Data Bases, 2002.

52

[28] Y. Saito and H. M. Levy. Optimistic replication
for internet data services. In Int. Symp. on Dis-
tributed Computing, pages 297–314, 2000.

[29] S. Shah, K. Ramamritham, and P. Shenoy. Main-
taining coherency of dynamic data in cooperative
repositories. In Int. Conf. on Very Large Data
Bases, 1995.

[30] H. Yu and A. Vahdat. Efficient numerical error
bounding for replicated network services. In Int.
Conf. on Very Large Data Bases, 2000.

53

54

Self-Manageable Replicated Servers
 Christophe Taton1, Sara Bouchenak2, Fabienne Boyer2, Noël De Palma3, Daniel Hagimont1, Adrian Mos1 1 INRIA Grenoble, France 2 University of Grenoble I Grenoble, France 3 INPG Grenoble, France {Christophe.Taton, Sara.Bouchenak, Fabienne.Boyer, Noel.Depalma, Daniel.Hagimont, Adrian.Mos}@inria.fr Abstract This paper describes a middleware solution for self-manageable and autonomic systems, and presents its use with replicated databases. Preliminary case studies for automatically recovering from server failures and for automatically adapting a cluster of replicated servers according to QoS requirements are presented. 1. Introduction Replication is a well-known approach to provide service scalability and availability. Two successful applications are data replication [6], and e-business server replication [2][4][7]. The complexity of such systems makes their management extremely difficult as it involves multiple coordinated repair and tuning operations, and usually requires the manual help of operators with combined skills in database, middleware and operating system management. In this paper, we propose a middleware-based solution for self-manageable and autonomic systems; and illustrate its use with replicated databases. The originality of the proposed approach is its generality on two axes. First, it may apply different reconfiguration strategies to tackle runtime changes, e.g. automatic recovery from failures, and automatic guarantee of a given quality of service (QoS). Second, the proposed approach is illustrated here with replicated databases; but we show that it may apply to other software components for providing them with self-management, e.g. web servers, or e-business application servers. We implemented Jade, a prototype of the proposed middleware-based solution for self-manageable systems. We then used Jade with an e-business web application relying on databases replicated in a cluster. Our preliminary experiments illustrate the usefulness of Jade for ensuring QoS and availability requirements.

The remainder of the paper is organized as follows. Section 2 presents an overview of the Jade middleware for the management of autonomic systems. Section 3 describes scenarios in which Jade was used for ensuring QoS requirements and providing failure management. Finally, section 4 presents our conclusions and future work. 2. JADE middleware for autonomic systems This section first introduces the main design principles of the Jade management system, before discussing QoS management and failure management in Jade. 2.1. Design principles Jade is a middleware for the management of autonomic computing systems. Figure 1 describes the general architecture of Jade and its main features and reconfiguration mechanisms, namely the QoS Manager and the Failure Manager. Roughly speaking, each Jade’s reconfiguration mechanism is based on a control loop with the following components:
− First, sensors that are responsible for the detection of the occurrence of particular events, such as. a database failure, or a QoS requirement violation.
− Second, analysis/decision components that represent the actual reconfiguration algorithm, e.g. replacing a failed database by a new one, or increasing the number of resources in a cluster of replicated databases upon high load.
− Finally, actuators that represent the individual mechanisms necessary to implement reconfiguration, e.g. allocation of a new node in a cluster. Figure 1 illustrates the use of Jade with an e-business multi-tier web application distributed in a cluster, which consists of several components: a web server as a front-end, two replicated enterprise servers in the middle-tier, and four replicated database servers as a back-end.

55

Figure 1. JADE architecture Jade provides a Deployment Manager which automates and facilitates the initial deployment of the managed system. To that purpose, the Deployment Manager makes use of two other mechanisms in Jade: the Cluster Manager and the Software Repository. The Cluster Manager is responsible for the management of the resources (i.e. nodes) of the cluster on which the managed system is deployed. A node of the cluster is initially free, and may then be used by an application component, or may have failed. The Cluster Manager provides an API to allocate free nodes to the managed system/release nodes after use. Once nodes are allocated to an application, Jade deploys on those nodes the necessary software components that are used by the managed system. The Software Resource Repository allows the automatic retrieval of the software resources involved in the managed application. For example, in case of an e-business multi-tier J2EE [8] web application, the used software resources may be a MySQL database server software, a JBoss enterprise server software, and an Apache web server software [5]. Once nodes have been allocated by the Cluster Manager and software resources necessary to an application retrieved from the Software Resource Repository, those resources are automatically deployed on the allocated nodes. This is made possible due to the API provided by nodes managed by Jade, namely an API for remotely deploying software resources on nodes. The Jade prototype was implemented using a Java-based and free open source implementation of a software component model called Fractal [3]. Moreover, the software resources (e.g. MySQL server software) used by the underlying managed system are themselves encapsulated in Fractal components which homogeneously exhibit management-related interfaces, such as the lifecycle interface (e.g. start/stop operations). Therefore, this helps to provide a generic implementation of the Jade management system with a uniform view of all the managed software components, regardless of whether those components actually represent different

legacy software systems such as MySQL or Postgres. Abstracting the managed software as Fractal components enables the development of advanced deployment services. Moreover, the component model provides dynamic component introspection capabilities that are used for reconfiguration operations. 2.2. QoS manager One important autonomic administration behavior we consider in Jade is self-optimization. Self-optimization is an autonomic behavior which aims at maximizing resource utilization to meet the end user needs with no human intervention required. A classical pattern in a standard QoS infrastructure is depicted by Figure 2. In such pattern, a given resource R is replicated statically at deployment time and a front-end proxy P acts as a load balancer and distributes incoming requests among the replicas.
Figure 2. Load balancing among replicas Jade aims at autonomously increasing/decreasing the number of replicated resources used by the application when the load increases/decreases. This has the effect of efficiently adapting resource utilization (i.e. preventing resource overbooking). To this purpose, the QoS manager uses sensors to measure the load of the system. These sensors can probe the CPU usage or the response time of application-level requests. The QoS manager also uses actuators to reconfigure the system. Thanks to the generic design of Jade, the actuators used by the QoS manager are themselves generic, since increasing/decreasing the number of resources of an application is implemented as adding/removing components in the application structure. Besides sensors and actuators, the QoS manager makes use of an analysis/decision component which is responsible for the implementation of the QoS-oriented self-optimization algorithm. This component receives notifications from sensors and, if a reconfiguration (resource increase) is required, it increases the number of resources by contacting the Cluster Manager to allocate available nodes. It then contacts the Software Resource Repository to retrieve the necessary software resources, deploys those software resources on the new nodes and adds them to the existing application structure. Symmetrically, if the resources allocated to an application are under-utilized, the QoS manager performs a reconfiguration to remove some replicas and release their resources (i.e. nodes).

P

R

R

requests

R

56

To summarize, Figure 3 describes the main operations performed by the QoS manager, which are the following: If more resources are required:
− Allocate free nodes for the application
− Deploy the required software on the new nodes
− Perform state reconciliation with other replicas if necessary
− Integrate the new replicas to the load balancer. If some resources are under-utilized:
− Unbind some replicas from the load balancer
− Stop those replicas
− Release the nodes hosting those replicas if no more used.

Figure 3. QoS management 2.3. Failure manager Another autonomic administration behavior we consider in Jade is self-repair. In a replication-based system, when a replicated resource fails, the service remains available due to replication. However, we aim at autonomously repairing the managed system by replacing the failed replica by a new one. Our current goal is to deal with fail-stop faults. The proposed repair policy rebuilds the failed managed system as it was prior to the occurrence of the failure. To this purpose, the failure manager uses sensors that monitor the health of the used resources through probes installed on the nodes hosting the managed system; these probes are implemented using heartbeat techniques. The failure manager also uses a specific component called the System Representation. The System Representation component maintains a representation of the current architectural structure of the managed system, and is used for failure recovery. One could state that the underlying component model could be used to dynamically introspect the current architecture of the managed system, and use that structure information to recover from failures. But if a node hosting a replica crashes, the component encapsulating that replica is lost; that is why a System Representation which maintains a backup of the component architecture is necessary. This

representation reflects the current architectural structure of the system (which may evolve); and is reliable in the sense that it is itself replicated to tolerate faults. The System Representation is implemented as a snapshot of the whole component architecture. Besides the system representation, the sensors and the actuators, the failure manager uses an analysis/decision component which implements the autonomic repair behavior. It receives notifications from the heartbeat sensors and, upon a node failure, makes use of the System Representation to retrieve the necessary information about the failed node (i.e., software resources that were running on that node prior to the failure and their bindings to other resources). It then contacts the Cluster Manager to allocate a new available node, contacts the Software Resource Repository to retrieve the necessary software resources and redeploys those software resources on the new node. The System Representation is then updated according to this new configuration. Figure 4 summarizes the operations performed by the failure manager.

 Figure 4. Failure management Note that the same abstractions (components) and the same actuators are used to reconfigure the managed system for the QoS aspect and the failure management aspect. However, the sensors differ in these two cases. Furthermore, owing to the component abstraction and reconfiguration capabilities, this repair policy can be used to repair the management system itself, i.e. Jade, which is a Fractal-based implementation, and therefore benefits from reconfiguration capabilities of that software component model. 3. Case Studies In order to validate our management approach, we have implemented and tested several use-cases related to QoS and failure management.

Health sensors Allocate new
nodes

Insert
replicas

Recovery
reconfiguration

System representation

Cluster manager

Managed resource

QoS sensors Allocate new
nodes

Insert
replicas

QoS
reconfiguration

Cluster Manager

Managed resource

57

Our first experiments involved stateless replicated servers (i.e. Apache web server and Tomcat application server). In addition we implemented a stateful read-only case-study and we are working on adding read-write support for replica recovery. All the experiments used the Rubis benchmark [1] as the application environment. Rubis is an auction application prototype similar to eBay and intended as a performance benchmark for application servers. It is therefore appropriate for the validation of cluster management functionality present in Jade. 3.1. QoS management experiments Stateless replicas This experiment involves dynamic resizing of a cluster of Apache web-servers delivering static pages. All servers (active and idle) contained identical content and activating one server implied using Jade’s dynamic deployment to deploy Apache on an idle node. The web load is distributed by a proxy P to the replicated Apache (A) servers. Figure 5 illustrates that an active node can be automatically removed or an idle node can be automatically added, based on workload variations. The QoS sensor in this case is monitoring the workload received by P.
 Figure 5. QoS management of stateless replicas Stateful replicas / read-only access Dynamic cluster-resizing, illustrated in Figure 6, is applied in this experiment to a set of DB replicas serving a read-only client load. As an optimization, we preloaded the same database content on all nodes (active and idle). In our experiments, the load-balancer among replicated databases is c-jdbc [6]. The database load, arriving from the web server is distributed by c-jdbc to the DB replicas that can be added and removed based on workload variations. The QoS sensor in this case is monitoring the workload received by the c-jdbc controller.

 Figure 6. QoS management of R/O stateful replicas Stateful replicas / read-write access We are currently working on providing the same functionality in scenarios with read-write client loads. The technique we use leverages the logging facilities of c-jdbc. For each node activation, the manager will perform the deployment operation on the node, thus bringing it to the initial state of all the database nodes (as in the previous use-case, all nodes have the DB state preloaded). In order to update the new node so as to synchronize it with the other replicas, the log file is used to replay all the SQL statements that have been recorded since the last state synchronization. Figure 7 illustrates the reconciliation operation performed as part of node activation. This is a relatively fast operation; however it depends on the time between state synchronizations and the number of writes during this time.
 Figure 7. Reconciliation of a new R/W replica 3.2. Failure management experiments We have tested Jade’s ability to repair running systems in a Rubis web application scenario in which we had a cluster of 4 Tomcat servers serving dynamic content to one Apache server. The Tomcat servers were connected to a MySQL database holding the application data.

 Figure 8. Failure management case study The case-study’s architecture is illustrated in Figure 8.

-

+

c-jdbc

Log

P A

-

+

Web

Load
c-jdbc

P A

A

A

-

+

Web

Load

A

T

T

T

T

M Web

Load

58

We induced 3 consecutive Tomcat server crashes in order to observe the evolution of the application performance when not being managed by Jade as well as when under Jade’s management. When the system was not under Jade management, the only remaining server saturated and the response time perceived by the client emulator increased dramatically, essentially rendering the system unavailable. When the system was managed by Jade, the failure manager automatically recovered the crashed servers. This demonstrates Jade’s capacity to dynamically repair the affected parts of the software architecture and preserve system availability. Note that this assumes that either a pool of available nodes exists, or that the cause of the crashes is a software malfunction and the same nodes can be reused after a restart and redeployment. The presented experiments involved stateless replicas, i.e. replicas whose internal state did not need to be preserve between crashes. We plan to perform the same experiments in a scenario with replicated databases. As such, we would induce consecutive DB server crashes and observe the repair functionality of Jade involving state reconciliation operations (see section 3.1). 4. Conclusion and future work Managing replicated systems is a complex task, in particular in large enterprise settings that deal with important variations in resource utilization and server crashes. We presented a middleware solution that enables automatic reconfiguration and repair of large clusters of database, web and application servers, thus limiting the need for costly and slow manual interventions. By encapsulating all architectural entities in a consistent component model, Jade provides a uniform management framework capable of enforcing QoS and availability constraints in heterogeneous deployments. We demonstrated the QoS management operations with experiments that involved automatic resizing of web and database clusters for preserving optimal resource utilization. In addition we illustrated the failure recovery functionality by contrasting the evolution of a system with and without Jade management, in a replicated enterprise environment with induced failures. For future work we will consolidate the implementation of the QoS and failure managers to better deal with read-write scenarios in DB clusters. The general aspect of Jade’s management approach will allow us to provide a consistent set of operations valid for all DB servers, while at the same time have efficient state reconciliation techniques that leverage DB-specific optimizations.

5. References [1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Rajamani and W. Zwaenepoel. Specification and Implementation of Dynamic Web Site Benchmarks. IEEE 5th Annual Workshop on Workload Characterization (WWC-5), Austin, TX, USA, Nov. 2002. http://rubis.objectweb.org [2] BEA WebLogic. Achieving Scalability and High Availability for E-Business, January 2004. http://dev2dev.bea.com/pub/a/2004/01/WLS_81_Clustering.html [3] E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive and Dynamic Software Composition with Sharing. 7th International Workshop on Component-Oriented Programming (WCOP02), Malaga, Spain, June 10, 2002. http://fractal.objectweb.org/ [4] B. Burke, S. Labourey. Clustering With JBoss 3.0. October 2002. http://www.onjava.com/pub/a/onjava/2002/07/10/jboss.html [5] R. Cattell, J. Inscore. J2EE Technology in Practice: Building Business Applications with the Java 2 Platform, Enterprise Edition. Pearson Education, 2001. [6] E. Cecchet, J. Marguerite, W. Zwaenepoel. C-JDBC: Flexible Database Clustering Middleware. FREENIX Technical Sessions, USENIX Annual Technical Conference, Boston, MA, Etats-Unis, June 2004. http://c-jdbc.objectweb.org/ [7] G. Shachor. Tomcat Documentation. The Apache Jakarta Project. http://jakarta.apache.org/tomcat/tomcat-3.3-doc/ [8] Sun Microsystems. Java 2 Platform Enterprise Edition (J2EE). http://java.sun.com/j2ee/

59

60

