Information Society
and Media

.<7fwcv\‘,_r_1ipl¢(.'(llt4‘)ox oj ;lu(_aflm«.sw—, 24P

Project no. 004758
GORDA

Open Replication Of Databases

Specific Targeted Research Project

Software and Services

Database Support Description and
Configuration Guide

GORDA Deliverable D4.6

Due date of deliverable: 2006/09/30
Actual submission date: 2007/09/29
Revision date: 2008/03/30

Start date of project: 1 October 2004 Duration: 42 Months
Continuent

Revision 1.1

Project co-funded by the European Commission within the Sixth Framework
Programme (2002-2006)

Dissemination Level

PU Public
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)

co Confidential, only for members of the consortium (including the Commission Services)

Contributors

Nuno Carvalho, U. Lisbon
Emmanuel Cecchet, Continuent
Alfranio Correia, U. Minho
Rui Oliveira, U. Minho

José Pereira, U. Minho

Luis Rodrigues, U. Lisbon

Luis Soares, U. Minho

Ricardo Vilaga, U. Minho

@009

(C) 2007 GORDA Consortium. Some rights reserved.
This work is licensed under the Attribution-NonCommercial-NoDerivs 2.5 Creative Commons License.
See http://creativecommons.org/licenses/by-nc-nd/2.5/legalcode for details.

Abstract

This document describes how to install and configure the GORDA compliant versions of the Apache Derby,
PostgreSQL and Sequoia database management systems.

Contents

1 Introduction 3
L1 ODbjJectives o o o e e e e 3
1.2 Relationship with other deliverables, . 3
2 Apache Derby/G 4
2.1 Introduction e 4
2.2 Downloading, installing and configuring Apache Derby, 4
2.2.1 Download andextract Derby 4
2.2.2 Download and install Apache Ant 1.6.3 orhigher 5
2.2.3 Download and install Java Development Kit JDK) l.4.xand 1.3.x 5
2.2.4 Download JDBC 2.0 extension for Java Development Kit release 1.3.x 5

2.2.5 Download Java Cryptography Extension (JCE) version 1.2.2 for Java Development
Kitrelease 1.3.X e 6
2.2.6 Create Antproperty file 6
227 BuildDerby. 7
22.8 Configure Derby 8
2.3 Downloading, installing and configuring the Derby/G Toolkit 8
2.3.1 Download and extract Dertby/G Lo o 8
2.3.2 Install Derby/G e 9
2.3.3 Configure Derby/G 10
3 Sequoia 11
3.1 Introduction 11
3.2 Downloading and installing Sequoia oL oL 11
3.2.1 SequoiatoolKit e e 11
322 Installingadatabase 12
3.3 Configuring Sequoia e e e 13
331 MySQL . . . 13
3.3.2 Sequoiatoolkit e e 13
4 PostgreSQL/G 15
4.1 Introduction e 15
4.2 Downloading, installing and configuring PostgreSQL/G 15
4.2.1 Downloand and build PostgreSQL/G toolkit 16
4.2.2 Download and build PostgreSQL o 17

4.2.3 Configure PostgreSQL/G and PostgreSQL
4.3 Replica configuration

5 Using PostgreSQL/G Demos

Chapter 1

Introduction

This document describes how to install and configure the packages implemented in the scope of the GORDA
project, related to Database Support. This includes the changes made into three different database manage-
ment systems, namely Apache Derby version 10.2, PostgreSQL version 8.1 and Sequoia version 3.0.

Each of this solutions represents one possible configuration of the GORDA architecture. The solution
provided by Apache Derby is totally in-core and allows the replication process to run in the same Java Virtual
machine as the Database management System itself. It also allows portability between different operating
systems. PostgreSQL/G provides a Hybrid solution of the GORDA architecture. Sequoia is a Middleware
solution that wraps the Database management System and replicates client requests. This solution is needed
to use the GORDA replication architecture with non-compliant Database management Systems, such as
Oracle.

1.1 Objectives

The goal of this document is to provide a detailed guideline on how to build and configure the three GORDA
compliant DBMS: Apache Derby/G, PostgreSQL/G and Sequoia.

1.2 Relationship with other deliverables

This deliverable describes and shows how to configure the packages that resulted from the work reported in
deliverables D4.3 - In-Core Proof-of-concept, D4.4 - Middleware Proof-of-concept and D4.5 - Hybrid Proof-
of-concept. The DBMS described in the previous deliverables and subject of the current document can be
used with all protocols described in deliverable D3.3 - Replication modules reference implementation.

Chapter 2

Apache Derby/G

2.1 Introduction

In this chapter we show the necessary steps to configure a GORDA replication system based on Apache
Derby (Derby, for short) by means of the Derby/G toolkit. To proceed, one should be familiar with the
following tools and concepts:

e Build and deploy Java programs using Ant [2];

e Basic understanding of Java Technology [6].

In the following we provide the information necessary to easily compile, install, and configure such
packages and programs as long as it is required to enable Derby/G.

2.2 Downloading, installing and configuring Apache Derby

This section is intended for anyone interested in downloading and building a source distribution of Derby

10.2.2.0, including all its dependencies, and is based on Derby building instructions available at http://db.apache.org/derby/.
Derby is designed to work in JDK 1.3 (JDBC 2.0) and JDK 1.4 (JDBC 3.0) environments. In addition

Derby’s IDBC 2.0 implementation must compile against JIDBC 2.0 class definitions and naturally the JDBC 3.0

implementation against JDBC 3.0 class definitions.

2.2.1 Download and extract Derby

1. Download Derby source code to any directory. This directory will be referred to as the $derby.source
directory in the rest of this section.

2. After downloading the source code to directory $derby.source, there should be, at least, the following

files and directories:

${derby.source}/build.xml
${debry.source}/java

${derby.source}/tools

2.2.2 Download and install Apache Ant 1.6.3 or higher
1. Download a binary distribution of Ant 1.6.x from http://ant.apache.org/bindownload.cgi.

2. Install Ant 1.6.x in any directory. This directory will be referred to as $ant.dir directory in the rest of
this section.

3. Create environment variable ANT_HOME to point to the directory where you have installed Ant:

setenv ANT_HOME ${ant.dir} —-- On unix (csh)
export ANT_HOME=${ant.dir} -- On unix(ksh)

4. Modify the PATH environment variable to include the directory $ant.dir/bin in its list. This makes the
“ant” command line script available, which will be used to actually perform the build:

setenv PATH ${ant.dir}/bin:${PATH} —-- On unix(csh)
export PATH=${ant.dir}/bin:${PATH} —-- On unix (ksh)

2.2.3 Download and install Java Development Kit (JDK) 1.4.x and 1.3.x

1. Download JDK 1.4.x and JDK 1.3.x from http://java.sun.com/j2se.

2. Install both in any directories, according to the instructions included with the release. The directories

where you have installed JDK 1.4.x and JDK 1.3.x will be referred to as $jdk14.dir and $jdk13.dir in
the rest of this section.

3. Create environment variable JAVA_HOME to point to the directory where you have installed JDK 1.4.x:

setenv JAVA_HOME ${jdkl4.dir} -- On unix (csh)
export JAVA_HOME=${jdkl4.dir} -- On unix(ksh)

2.2.4 Download JDBC 2.0 extension for Java Development Kit release 1.3.x

1. Download IDBC 2.0 (jdbc2_0-stdext.jar) from http://java.sun.com/products/jdbc/download.html by
selecting *JDBC 2.0 Optional Package Binary’.

2. Save jdbc2 _0-stdext.jar file in directory $derby.source/tools/java .

2.2.5 Download Java Cryptography Extension (JCE) version 1.2.2 for Java Devel-
opment Kit release 1.3.x

1. Download JCE 1.2.2 (jce-1_2_2.zip) from http://java.sun.com/products/jce/index-122.html by selecting
’Download JCE 1.2.2 software, policy files, and documentation.”. You will be asked to login or register
in order to proceed with the download'.

2. After downloading, unzip the file jce-1_2_2.zip to any directory. That directory will now contain docu-

mentation files and multiple jar files. Copy only jcel.2.2/lib/jcel 2 2.jar file to directory $derby.source/tools/java

2.2.6 Create Ant property file

You will need to create a property file to specify your environment and some of your options. Do the
following to specify your environment and options:

1. Determine the directory on your system that corresponds to the 'user.home’ system property of the
JVM referred to by JAVA_HOME. This directory will be referred to as the $user.home directory in the
rest of this section. In order to determine the correct value of $user.home, you can do either of the
following:

e Run ant diagnostics and look for "user.home’ in the list of System properties:
ant —-diagnostics

e Write and run a small java program that prints the value of the 'user.home’ system property, e.g.
by including the following line in the program:

System.out.println(System.getProperty ("user.home"));

e On Unix systems, $user.home is often equivalent to the value of the environment variable ${HOME} or
$home.

2. Create a file called ’ant.properties’ in your $user.home directory and define the following variables in
"ant.properties’:

(a) Define the location of JDK 1.4.X:
j141ib=${jdkl4.dir}/jre/lib

(b) Define the location of JDK 1.3.X:
j131ib=${jdk13.dir}/jre/lib

(c) When set to true (default false), directs Ant to proceed past any build errors:
proceed=true

IThis package is now only available for users from US or Canada.

(d) When set to false (default true), no extra asserts or debugging information is included in the class
files, making Derby run faster as it generates smaller class files:
sane=false

2.2.7 Build Derby

1.
2.

Go to directory $derby.source.

Run the following commands to build Derby:

ant —-— build all classes into ${derby.source}/classes
ant testing —— build the Derby test framework and related files
ant buildjars —-- build all jars

. Check if the following directories were created:

${derby.source}/classes
${derby.source}/jars —— if you have built the Jjars in last step

Verify the Derby system info by executing the following command:

java —-cp S${derby.source}/classes org.apache.derby.tools.sysinfo

The output should look like this:

—————————————————— Java Information ————————-——————————

Java Version: 1.5.0_08

Java Vendor: Sun Microsystems Inc.

Java home: /usr/1lib/jvm/java-1.5.0-sun-1.5.0.08/]jre
Java classpath: /home/nunomrc/workspace/derby2-g/classes/
OS name: Linux

OS architecture: 1386

OS version: 2.6.17-10-generic

Java user name: nunomrc

Java user home: /home/nunomrc

Java user dir: /home/nunomrc

java.specification.name: Java Platform API Specification
java.specification.version: 1.5

777777777 Derby Information ———————-

JRE - JDBC: J2SE 5.0 - JDBC 3.0
[/home/nunomrc/workspace/derby2-g/classes] 10.2.2.0 - (1)

5. If the installation was successful, you are ready to use Apache Derby. Please refer to the Derby
Developer’s Guide [16] and Derby Administration Guide [17] for more information about Apache
Derby.

2.2.8 Configure Derby

In Derby you can set persistent system-wide properties in a text file called derby.properties. The file must
be placed in the system directory DERBY_HOME, meaning that there should be one derby.properties file per
system, not per database. In a client/server environment, that directory is on the server.

Derby does not provide derby.properties, does not create it automatically, and does not automatically
write any properties or values to this file. Instead, you must create, write, and edit this file yourself. The file
should be in the format created by the java.util. Properties.save method. Only properties set in the following
ways have the potential to be dynamic:

e As database-wide properties

e As system-wide properties via a Properties object in the application in which the Derby engine is
embedded

For more information about a Derby system and the system directory, see Derby System’ in the Derby
Developer’s Guide [16].

2.3 Downloading, installing and configuring the Derby/G Toolkit

The Derby/G package provides the Java side of the GAPI implementation in Apache Derby 10.2.2.0. To use
this package, you need Apache Derby 10.2.2.0 installed and building correctly (see section 2.2).

2.3.1 Download and extract Derby/G
1. Download Derby/G from http://gorda.di.uminho.pt/community to any directory.

2. Extract Derby/G using the command:

unzip derby-g-<version>.zip

3. The directory derby—-g-<version> created with the extraction operation will be referred to as
$derby.G.source directory in the rest of this section. This directory contains the Derby/G files includ-
ing:

config/ Directory with the configuration files.
configure This file configures Derby/G over an original Derby 10.2.2.0 version, on Unix systems.

derby-g-$version$-patch.diff Patch to apply to original Derby 10.2.2.0 containing Derby/G exten-
sions.

docs/ Directory with Derby/G documentation including Javadoc.

java/ Directory with Derby/G source code including reflector, drda, client, and demo code.

lib/ Directory with the required jars for Derby/G.

2.3.2 Install Derby/G

1. Derby/G patch will only be successfully installed if the Derby System is installed and building cor-
rectly. In the directory where you have installed Derby you may optionally verify if it is building
correctly:

ant clean
ant all

2. Configure Derby/G using the configure script. This script expects an argument with the Derby home
directory, from now on referred to as SDERBY _HOME:

./configure ${DERBY_HOME }

3. If you have Apache Derby 10.2.2.0 correctly installed you should now be ready to use the GORDA
Derby Reflector. But, if you had any problems using the configure script and your Derby installation
is working fine, please try the following steps:

(a) Go to $SDERBY_HOME to proceed with the configuration:
cd ${DERBY_HOME}

(b) Create the directory to place Derby/G files:
mkdir -p ./patches/gordaReflection

(c) Copy Derby/G files:
cp -r ${derby.G.source}/* ./patches/gordaReflection

(d) Apply the DIFF:

cp ${derby.G.source}/derby-g-0.3-patch.diff
patch -pl < derby-g-0.3-patch.diff
rm —-f derby-g-0.3-patch.diff

(e) Recompile Derby with Derby/G extension:

ant clean
ant all

4. Derby/G toolkit is now installed. Extra functionalities like demos and reflection clients support are
also available and may be built in the Derby/G directory:

cd ./patches/gordaReflection
ant all

2.3.3 Configure Derby/G

Although Derby/G is now correctly installed in Apache Derby 10.2.2.0 it is disabled by default. In order to
use Derby/G one will need have the following properties configured in the derby.properties file:

derby.service.GordaReflection=gorda.reflector.derby.iapi.ReflectionFactory
derby.gorda.plugin=PluginClassName
derby.system.bootAll=true

In Derby/G docs directory you will find a sample derby.properties fully documented about Derby and
Derby/G configuration. You can copy it to DERBY_HOME directory:

cp ${derby.G.source}/docs/derby.properties ${DERBY_HOME }

10

Chapter 3

Sequoia

3.1 Introduction

In this chapter we show the necessary steps to configure a GORDA replication system based on a non-
compliant DBMS by means of the Sequoia toolkit. As an example we will use MySQL as the underlying
DBMS. To proceed, one should be familiar with the following tools and concepts:

e Install Mysql [13] ;
o Build and install Java programs using Ant [2];
e Basic understanding of Java Technology [6].

o Install and configure Sequoia [15].

Different client applications can use Sequoia providing that such applications access a database through
either JDBC 3 or ODBC (For further details on the ODBC see Carob Project [8]).

3.2 Downloading and installing Sequoia

3.2.1 Sequoia toolkit
Sequoia toolkit can be downloaded from
e http://gorda.di.uminho.pt/community.

Once downloaded, decompress the files by doing:
e unzip sequoia-3.0-betal2-src.zip
The sources should be compiled using the Ant tool [2]. To do so, execute the following commands:

e ant clean

e ant compile

11

To install Sequoia on Unix, define in which directory the installation should be placed and afterwards
copy the files into that directory:

e SEQUOIA_HOME=/usr/local/sequoia ; export SEQUOIA_HOME

e ant install
One may also use a graphical installation:

e java —jar sequoia-x.y-bin-installer. jar

3.2.2 Installing a database

Sequoia needs to extract information on updated tuples thus requiring changes on database catalogs. To do
so, it exploits the fact that triggers are available in most database systems. Unfortunately, each database has
its proprietary language to create triggers and a binding for each database must be provided. Our current
prototype has bindings for PostgreSQL and MySQL, but the code to provide the triggers is extremely simple
as it only logs information on updated tuples and soon we will have binds to different database systems.
Nevertheless, for these two DBMS bindings it is possible to use any of the GORDA implementations of the
protocols in deliverables D3.3 - Replication modules reference implementation.
In what follows we quickly present how to install MySQL version 5.X. One should download it from:

e http://www.mysqgl.com/.

The MySQL should be installed as follows:

e groupadd mysqgl

e useradd —-g mysgl mysqgl

e cd /usr/local

e gunzip < /path/to/mysgql-VERSION-OS.tar.gz | tar —-xvf
e In —-s full-path-to-mysgl-VERSION-OS mysqgl
e cd mysqgl

e chown —-R mysqgl

e chgrp -R mysqgl

e scripts/mysqgl_install_db —--user=mysql

e chown —-R root

e chown -R mysgl data

Of course, if one already has a MySQL installed and a database working, this section and the next might
be skipped.

12

3.3 Configuring Sequoia
3.3.1 MySQL

The first step consists on running MySQL as follows:
e bin/mysgld_safe —--user=mysqgl &
Then, we should create a database by using the MySQL utility “mysql”:
e mysqgl
Then by using the utility run the following SQL commands:

e CREATE DATABASE test

e create table orders (key int not null default auto increment,
sum float, description varchar (20),
primary key (key));

e create table order_line (key int not null default auto increment,
okey int, wvalue float, unit int,
description varchar (20), primary key (key));

When you are done, quit the utility by typing:

e \g

3.3.2 Sequoia toolkit
Copy or create a “controller.xml”, move it to “sequoia/config/controller” and then edit it as follows:

<SEQUOIA-CONTROLLER>
<Controller name="cl" jdbcIpAddress="127.0.0.1"
jdbcPort="25322">
<JmxSettings JmxIpAddress="0.0.0.0" jmxPort="1090"/>
<EscadaReplicator/>
</Controller>
</SEQUOIA-CONTROLLER>

e Include the public identifier in the beginning of the controller configuration file.

e If your controller host uses multiple IP addresses, include the ipAddress attribute of the Controller
element to bind the controller to a specific IP address. We may also configure the port number by
changing “jdbcPort”.

e Include a JmxSettings element. This allows the controller to be administered remotely using the
Sequoia Command Line Console (CLC), a JMX client based on the standard RMI connector for IMX.
The JMX/RMI IP address/port number is 0.0.0.0:1090 by default.

13

o Include a EscadaReplicator element. This allows to start the ESCADA replicator.

The next step consists on configure the virtual database by editing the file “backend-distribution.xml”.
One controller may manage one or more virtual databases and a virtual database may have one or more
database backends which are Database management Systems (DBMSs). In what follows, we present how to
configure a backend attached to a virtual database named “GordaDatabase-01":

<DatabaseBackend
name=?mysql?
driver=?com.mysql. jdbc.Driver?
url=?jdbc:mysqgl://localhost/tpcc"?
connectionTestStatement=?select 17
objectSetImplementation="gorda.db.sequoia.
utils.objectset.MySQLObjectSet">
</DatabaseBackend>

e Specify a unique name for the database backend as the value of the name attribute.
e Specify the class name of your native database JDBC driver as the value of the driver attribute.
e Specify the JDBC URL used to connect to this database backend as the value of the url attribute.

e Specify a value for the connectionTestStatement attribute. This SQL statement is used by the con-
troller after a failed request execution to check if the connection is still valid:

e Specify the class name of the binding for this database that extract information on updated tuples ex-
ploiting triggers. For PostgreSQL databases use objectSetImplementation="gorda.db.sequoia.utils.objectset. PGObjectSet”
and add a element <DatabaseSchema gatherSequences="“false”/>.

14

Chapter 4

PostgreSQL/G

4.1 Introduction

In this chapter we show the necessary steps to configure a replication system based on PostgreSQL by means
of the PostgreSQL/G toolkit. To proceed, one should be familiar with the following tools and concepts:

e Build and deploy PostgreSQL [5] by using GNU Software [3];
e Build and deploy Java software using maven (version 2) [12];
e Basic understanding of Java Technology [6].

PostgreSQL/G has the following dependencies:

e PostgreSQL JDBC Driver [1].

o Logdl [4].

jUnit Test[11]
e Bean Scripting Framework [7]
e Commons Beanutils [9]

e OpenJMS Server [14].

4.2 Downloading, installing and configuring PostgreSQL/G
Running PostgreSQL/G requires to apply a patch to PostgreSQL, compile and install it along with differ-

ent components written in Java. The patch and Java components are available as an archive named Post-
2reSQL/G toolkit.

15

4.2.1 Downloand and build PostgreSQL/G toolkit
1. Download PostgreSQL/G toolkit from http://gorda.di.uminho.pt/community to any directory.
2. Extract PostgreSQL/G toolkit using the following command:
e unzip postgresql-g-0.4.zip

3. The directory postgresgl—-g—0.4 created with the extraction operation is referred to as $gorda
directory in the rest of this document. This directory contains:

csrc It has a patch for the PostgreSQL’s source code.

javasrc This has the GAPI’s source code, its rendering on
PostgreSQL and demos:

gorda—-interfaces which has the GAPI’s source code;

gorda-postgres which has the GAPI’s rendering on PostgreSQL;

interfaces—-demos which has common files shared by different rederings

of the GAPI to run simple demos;

postgres—demos which has the PostgreSQL/G’s code to start up simple
demos.

4. Build the java component of the PostgreSQL/G. To do this, you need Apache Maven?2 and Java SDK
1.5 installed.

e mvn compile
— compile (output: target/classes)
e mvn package
— package (output: target/)
e mvn install
— install (maven cache)
e mvn javadoc:javadoc
— documentation (output: ./target/site/apidocs)
e mvn clean

- clean
5. Change to the sub-directories in the “javasrc”, build and deploy each one with the following command:
e mvn clean install
6. From the extracted directory, define the shell variable $gorda as follows:

e gorda="'‘pwd'; export gorda

16

4.2.2 Download and build PostgreSQL

1. Download the PostgreSQL version 8.1.X from http://www.postgresql.org/. It is worth noticing that
our current prototype has been only tested on PostgreSQL 8.1.X.

2. From the directory where the PostgreSQL source code was extracted, apply the proper patch from the
PostgreSQL/G toolkit as follows:

e patch -pl < $gorda/csrc/postgresql-8.1.3-gorda-0.4.diff

3. Right after, the PostgreSQL should be compiled and installed as follows!:

e ./configure —--enable-depend --prefix=$gorda/install
e make

e make install

4.2.3 Configure PostgreSQL/G and PostgreSQL

It is not necessary to dump and restore a database in order to use the PostgreSQL/G. In fact, after installing
the patch to PostgreSQL, the database can be used transparently as the patch was never applied. To replicate
a database, we should first create it by using the commands provided by the PostgreSQL. Let us assume that
a PostgreSQL installation did not exist prior to this guide:

1. Create a database cluster which is a collection of databases managed by a single server instance:
e Sgorda/install/pgsgl/bin/initdb -D S$gorda/PostgreSQL.data.l
2. After creating a database cluster, run the PostgreSQL as follows:

e Sgorda/install/pgsql/bin/postmaster —-i -p 5432 \
-D Sgorda/PostgreSQL.data.l

3. Change to the directory src/reflector/scripts and create a database as follows:
e Sgorda/install/pgsgl/bin/createdb test

4. Create a set of tables to be replicated. To do so, firstly, run the PostgreSQL utility psgl as follows:
e Sgorda/install/pgsgl/bin/psgl —-d test

5. Then type the following SQL commands to create tables:

e create sequence segorders increment by 1 no minvalue
no maxvalue start with 1 cache 20 no cycle;

e create table orders (key int not null default
nextval (' seqorders’), sum float, description wvarchar (20),
primary key (key));

'Make sure that the Flex and Bison are installed in your system.

17

e create sequence seqorderline increment by 1 no minvalue
no maxvalue start with 1 cache 20 no cycle;

e create table order_line (key int not null default
nextval (! seqorderline’), okey int, value float, unit int,
description wvarchar (20), primary key (key));

e grant all on orders to public;
e grant all on order_line to public;
e grant all on seqgorders to public;

e grant all on seqorderline to public;
6. To test the system, create an unprivileged user to update our database as follows:

e Sgorda/install/pgsql/bin/createuser test —--no-superuser \
—-—no-createdb —--no-createrole

7. When you are done, quit the utility by typing:

e \quit

4.3 Replica configuration

The next step consists on enabling the database for replication. In order to avoid cluttering the text with
unnecessary SQL commands, we use a set of scripts installed by the PostgreSQL’s patch and available at its
source code directory: src/reflector/scripts. There is a configuration file configs that should
be edited if any of the steps presented were not strictly applied.

1. Change to the directory of the PostgreSQL source code and then to the script directory:
e cd src/reflector/scripts

2. Enable replication on the database test by executing the script:
e sh ./enable-db-reflection.sh test

3. For each table that needs to be replicated, run the script enable-table —reflection.sh. In
our case, run what follows:

e sh ./enable-table-reflection.sh test orders

e sh ./enable-table-reflection.sh test order_line
To be able to replicate updates on a table, it should have a single primary key.
4. Specify where the replication engine is located. This should be done as follows:
e sh ./configure-reflector.sh test localhost 2000 tcp
5. If one wants to use futures provided by the PL-J, execute the following script:

e sh ./enable-plj.sh

18

Chapter 5

Using PostgreSQL/G Demos

This section briefly describes the demos available and its usefulness to demonstrate the ideas and the sim-
plicity behind the PostgteSQL/G and the GAPI. For a full-fledged replicator see [10].

1. Change to the directory gorda-postgres-demos and run:
e mvn assembly:assembly

This command builds and installs all demos.

2. Execute a demo:

AllInOne This demo accepts mosts of the events specified on the GAPI, prints on the standard output
what is going on and immediately allows a database to proceed with its execution. Thus, when
a client connects to a PostgreSQL database using a regular driver (e.g. JDBC driver), messages
are printed on the standard output showing its execution. To run it, one should use the script
demoAllInOne. sh.

Hotback Demo This demo performs continuos backups to disk, while periodically performing full
backups. One should use the script demoBackup . sh to run it.

Naivepb Demo This demo creates a naive asynchronous primary backup replication. One should use
the script demoPrimary . sh and demoBackup . sh, to start the primary and backup replica,
respectively.

Pubsub Demo This demo mimics a publisher/subscriber plataform where the publisher propagates all
updates performed by committed transactions using a JMS Server [14]. Thus right after starting a
JMS Server, ' one can start both the publisher and the subscriber, running demoPublisher. sh
and demoSubscriber. sh, respectively.

Selftune Demo This demo implements an admission control on a transaction level. To start it, one
should run the following script demoSelftune. sh.

3. Run some updates and see their effect on the demos:

e insert into orders(sum, description) values(1.0,’test-01");

IThis demo was tested with OpenIMS [14].

19

insert into
insert into

insert into

values (1,10.

orders (sum, description)

orders (sum, description)

values (5.0, test-02");
values (10.0,"test-03");

order_line (okey,value,unit,description)

0,1,"prod-01");

20

Bibliography

[1] Postgresql jdbc driver. http://jdbc.postgresql.org/.

[2] Ant. http://ant.apache.org/, 2006.

[3] GNU Software. http://www.gnu.org/software/software.html, 2006.

[4] Log4l. http://logging.apache.org/log4j/docs/, 2006.

[5] PostgreSQL. http://www.postgresql.org, 2006.

[6] The Source for Java Technology. http://www.java.sun.com, 2006.

[7] Bean scripting framework. http://jakarta.apache.org/bsf/, 2007.

[8] Carob project. http://carob.continuent.org/HomePage, 2007.

[9] Commons beanutils. http://commons.apache.org/beanutils/, 2007.
[10] Escada replicator. http://sourceforge.net/projects/escada/, 2007.
[11] Junit. http://www.junit.org/, 2007.

[12] Maven. http://maven.apache.org/, 2007.

[13] Mysql. http://www.mysql.org/, 2007.

[14] Openjms. http://openjms.sourceforge.net/, 2007.

[15] Sequoia. http://sequoia.continuent.org/HomePage, 2007.

[16] The Apache Software Foundation. Derby developer’s guide.
http://db.apache.org/derby/docs/10.3/devguide/, 2007.

[17] The Apache Software Foundation. Derby server and admnistration guide.
http://db.apache.org/derby/docs/10.3/adminguide/, 2007.

21

	GORDA-D4.6-v1.1-fp
	GORDA-D4.6-v1.1

