
    
 
 
 
 

Project no. 004758 
 

GORDA 
 

Open Replication Of Databases 
 
 
Specific Targeted Research Project 
 
Software and Services 
 
 
 
 

Group Communication Protocols Report 
GORDA Deliverable D3.5 

 
 
 
 

Actual submission date: 2007/09/06 
 
 
 
 
 
 
 
 
Start date of project: 1 October 2004   Duration:  42 Months 
 
 
Universidade de Lisboa 

   Revision 1.0 

 
 

Project co-funded by the European Commission within the Sixth Framework 
Programme (2002-2006) 

Dissemination Level  
PU Public X 
PP Restricted to other programme participants (including the Commission Services)  
RE Restricted to a group specified by the consortium (including the Commission Services)  
CO Confidential, only for members of the consortium (including the Commission Services)  



Contributors
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Abstract

This document reports on the work that has been performed on selection, development
and evaluation of new algorithms to support wide-area and clustering database replica-
tion protocols. These algorithms include total order with optimistic assumptions and
the definition of primary views on partitionable systems.

This work focused on total order protocols, their evaluation and how can they be
dynamically changed adapt to network fluctuations. We also report the work done
on how to improve the group communication solution adopted by GORDA to fit the
project requirements. The requirements include security on the communication and the
definition of management interfaces.
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Chapter 1

Introduction

The main goal of this deliverable is to present and discuss (i) the group communication
toolkit and its configurability and (ii) the new protocols for total order and primary
views, needed for clustering and wide-area replication protocols.

Group communication supports message passing within groups of processes by
offering membership management and reliable multicast services. Membership man-
agement keeps track of which processes are operational and mutually reachable, taking
into account both voluntary requests to join and leave the group as well as process fail-
ures and network partitions. By ensuring that a common membership is observed by all
participants, many distributed algorithms are simplified. Message ordering simplifies
application programming by ensuring that each message is handled in a predictable
context resulting from previous messages. The definition of primary views helps the
recovery processes and avoids that the state of the database replicas diverges.

This document reports the efforts and progress made in the scope of the project
to improve the group communication toolkit for clustering and wide-area replication
protocols, namely:

• a new total order protocol that combines several implementations and allows that
the system can change at run time the instance being used for better performance;

• an improved statistically estimated optimistic total order protocol;

• a protocol that uses a partitionable group communication system and provides
to the replication protocols the notion of primary partitions, avoiding state diver-
gence; and

• the efforts made in the group communication toolkit to cope the project needs.

1.1 Objectives
The goals of the work reported in this document are as follows:
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• improve the group communication toolkit for the new GORDA database replica-
tion protocols;

• design appropriate total order protocols that are adaptive and well suited for clus-
tering and wide-area networks;

• support the notion of primary partitions and ease the recovery process.

1.2 Relationship with other deliverables
This deliverable departs from the work on D1.1 (State of the Art Report) and, to some
extent, the choices herein are influenced by D1.2 (User Requirements Report), D1.3
(Strategic Research Directions Report) and D2.3 (GORDA Interfaces Definition). It
is instrumental on shaping the work to be delivered with D3.3 (Replication Modules
Reference Implementation). The current deliverable has two companion reports: D3.1
(Wide-Area Oriented Protocols Report) and D3.2 (Cluster Oriented Protocols Report).
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Chapter 2

Switching algorithm for total
order protocols

A total order broadcast protocol is a fundamental building block in the construc- tion
of many distributed fault-tolerant applications [18] and in particular in the construc-
tion of most of the database replication protocols of the GORDA project. Informally,
the purpose of such a protocol is to provide a communication primitive that allows
processes to agree on the set of messages they deliver and, also, on their delivery or-
der. Uniform total order broadcast is particularly useful to implement fault-tolerant
services by using software-based replication [10]. Unfortunately, the implementation
of such a primitive can be expensive both in terms of communication steps and number
of messages exchanged. This prob- lem is exacerbated in large-scale systems, where
the performance of the algorithm may be limited by the presence of high-latency links.
Several total order protocols have been proposed that use different strategies to offer
good performance [7]. There is no protocol that outperforms all others in all scenarios:
each protocol offers best results under different load profiles and/or network conditions.

Informally, total order broadcast is a group communication primitive that ensures
that messages sent to a set of processes are delivered by all those processes in the same
order. Such a primitive is useful, for example, in the implementation of fault-tolerant
services [18], for instance, using the state machine approach (active replication) [22].
More formally, total order broadcast is defined on a set of processes Ω by the primitives
(1) TO-broadcast(m) which issues message m to Ω, and (2) TO-deliver(m) which is
the corresponding delivery of m. When a process pi executes TO-broadcast(m) (resp
TO-deliver(m)), we say that pi “TO-broadcasts m” (resp “TO-delivers m”). The total
order primitive characterized by the properties listed in Table 2.1 is known as regular
total order. A stronger version, called uniform total order [7], can also be defined.
The difference among these definitions is not relevant for understanding our adaptive
protocol, thus we will not delve further in this topic.

Many algorithms exist to implement total order. To give an insight on the possible
alternatives, we briefly introduce two of the most used ones, namely the sequencer-
site [11] and the symmetric [17, 8] approach. Both methods have advantages and dis-
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TO1 - Total order: Let m1 and m2 be two messages that are TO-broadcast. Let pi and pj

be any two correct processes that TO-deliver(m1) and TO-deliver(m2). If pi TO-delivers(m1)
before TO-delivers(m2), then pj TO-delivers(m1) before TO-delivers(m2), and we note m1 <
m2.

TO2 - Agreement: If a correct process in Ω has TO-delivered(m), then every correct process
in Ω eventually TO-delivers(m).

TO3 - Termination: If a correct process TO-broadcasts(m), then every correct process in Ω
eventually TO-delivers(m).

TO4 - Integrity: For any message m, every correct process TO-delivers(m) at most once, and
only if m was previously TO-broadcast by some process p ∈ Ω.

Table 2.1: Regular total order properties

advantages.
In the sequencer-site approach one site is responsible for ordering messages on

behalf of the other processes in the system. Sequencer-based protocols are appealing
because they are relatively simple and provide good performance when message transit
delays are small (they are particularly well suited for local area networks). However,
in these protocols, a message sent by a process that is not the sequencer experiences a
delivery latency close to 2D, where D is the message transit delay between two system
processes (i.e., the time to disseminate the message plus the time to obtain an order
number from the sequencer process). Thus, sequencer-based approaches are inefficient
in face of large network delays. Note that it is possible to design solutions where the
sequencer role is rotated among processes [5].

In the symmetric approach, ordering is established by all processes in a decentral-
ized way, using information about message stability. This approach usually relies on
logical clocks [13] or vector clocks [3, 17]: messages are delivered according to their
partial order and concurrent messages are totally ordered using some deterministic al-
gorithm. Symmetric protocols have the potential for providing low latency in message
delivery when all processes are producing messages. In fact, symmetric protocols can
exhibit a latency close to D + t, where t is the largest inter-message transmission
time [19]. Unfortunately, this also means that all (or at least a majority [8]) processes
must send messages at a high rate to achieve low protocol latency.

Several other alternatives exist. For a comprehensive survey, the reader is referred
to [7]. However, from the two examples above, it should be clear that it is interesting
to have a protocol that can dynamically adapt to changes in the operation envelope by
switching, in run-time, from one algorithm to another.

In this chapter we describe and evaluate a total order protocol that combines dif-
ferent algorithms and adapts itself to the running environment. The protocol allows a
fluid transition between algorithms, never stopping the flow of application messages.
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1: Initialization:
2: deliv←∅
3: undeliv←∅
4: curAlg← TO-A {current algorithm}
5: newAlg←∅ {next alg.}
6: switching← false
7: check[1..n]← false

8: upon changeAlgorithm(newTO) do
9: rBroadcast(switch,newTO)

10: upon rDeliver(switch,newTO) do
11: newAlg← newTO
12: switching← true
13: TO-broadcast(curAlg,(flag,null,myself))

14: upon TO-deliver(curAlg,(flag,null,sender)) do
15: check[sender]← true

16: upon check[1..n] = true do
17: endSwitch()

18: upon TO-broadcast(msg) do
19: TO-broadcast(curAlg,msg)
20: if switching = true then
21: TO-broadcast(newAlg,msg)

22: upon TO-deliver(alg,msg) do
23: if alg = curAlg ∧ msg /∈ deliv then
24: deliver(msg)
25: deliv← deliv ∪ {msg}
26: else if msg /∈ deliv then
27: undeliv← undeliv ∪ {msg}

28: procedure endSwitch()
29: for all msg ∈ undeliv ∧ msg /∈ deliv do
30: deliver(msg)
31: deliv← deliv ∪ {msg}
32: undeliv←∅
33: check[i..n]← false
34: curAlg← newAlg
35: switching← false

Figure 2.1: Adaptive Total Order algorithm

2.1 Protocol description
To be able to effectively transition from one algorithm to the other, all nodes need to
agree on the point in the message flow where they switch. Also, both algorithms must
provide FIFO ordering of messages (which is the most common case). The rational
behind our proposal is to start broadcasting messages using both total order algorithms,
during the switching phase, until a safe point is reached in every process. By using both
algorithms simultaneously, no stoppage in the message flow is necessary. The protocol
is listed in Figure 2.1.

Let us assume that the adaptation protocol is using algorithm TO-A to order mes-
sages and wants to switch to algorithm TO-B. The transition protocol works as follows.
A control message is broadcast to all processes to initiate the reconfiguration (lines
8–9). When a node receives this message (line 10) it starts broadcasting messages us-
ing both total order algorithms. Also, the first message it broadcasts using algorithm
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TO-A is flagged. If no message is to be sent, then a flagged special null message is
broadcast using TO-A, to allow faster protocol termination (flagged first message is
not represented in the algorithm to preserve clarity). When a process starts receiving
messages from both TO algorithms it performs the following steps (lines 22–27): mes-
sages received from TO-A are delivered as normally; messages received from TO-B
are buffered in order. As soon as a flagged message is received from each and every
node (line 15) the transition is concluded using the following “sanity” procedure (lines
28–35). Firstly, all messages received from TO-B that have not yet been delivered by
TO-A are delivered in order. Finally, from this point on, all messages received from
TO-A are simply discarded and no further message is sent using TO-A (until a new
reconfiguration is needed). The TO-B algorithm is then used to broadcast and receive
all the messages to be delivered.

Note that, after the transition is concluded, messages received from TO-B are de-
livered only if they have not been already received and delivered from TO-A (line 23).
This is a necessary safeguard as the two total order algorithms do not necessarily de-
liver messages in the same order, nor at the same time. So there is a possibility that a
message that has already been delivered from TO-A is received after the termination of
the reconfiguration procedure from TO-B.

Also, the protocol presented does not allow concurrent adaptations. For one adap-
tation to happen, the previous (if any) should always have concluded.

2.2 Evaluation
We evaluate the performance of the adaptive protocol from two different perspectives.
First, we evaluate the overhead of the switching procedure. Then, we provide a com-
parative analysis on how different switching strategies interfere with the traffic flow
during the reconfiguration.

2.2.1 Switching overhead
To evaluate the switching overhead of our adaptive protocol we compare the perfor-
mance of a system that always uses the same total order algorithm, with that of a sys-
tem that is periodically switching between two algorithms. To make the comparison as
fair as possible, we made our protocol switch between two instances of the same total
order algorithm, which is also used as the non-adaptive protocol. Also, the network
topology and working conditions did not change during the tests. In this way, we can
isolate the cost of the switching procedure given that all the remaining factors remain
unchanged.

The adaptive protocol was implemented in Java using the Appia toolkit. The exper-
iments were conducted in the SSFNet [15] network simulator and the scenario consists
of a five node cluster, where all nodes are connected to each other by 100Mbps bi-
directional links.

Two runs of the same experiment were performed: (A) one using a single total
order protocol (non-adaptive), (B) and another using the proposed adaptive total or-
der protocol, which is forced to switch periodically. Each run consists of every node
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Figure 2.2: TO throughput in non-adaptive,
adaptive and optimized algorithms
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Figure 2.3: TO throughput in adaptive and
stop algorithms

broadcasting 5000 messages of 5KB in total order. The experiment ends when all
nodes receive all the broadcast messages. The values presented are averages of the
measurements conducted in each node.

Figure 2.2 presents the overall throughput results when the send rate is made vari-
able. As depicted, both total order algorithms perform the same until they reach ap-
proximately 800 msg/s. After this point, the throughput of the non-adaptive protocol
continues to grow while its value stabilizes for the adaptive protocol. This behavior is
explained by the overhead introduced by the switching phase in the adaptive protocol.
During this phase, the same set of messages is being broadcast by two total order algo-
rithms at the same time, leading to an increase (approximately double) in the bandwidth
usage. If the send rate is too high, the available bandwidth can be exhausted, leading
to the stagnation observed in the throughput.

Thus, we can conclude that our switching protocol offers negligible overhead as
long as there is enough network bandwidth to support the transmission of data in par-
allel during the reconfiguration. When the protocol operates close to the available
bandwidth, the switching procedure introduces an overhead. This limitation can be ad-
dressed at the implementation level, by sending the payload of the messages using just
one of the two algorithms. The overhead of this optimization depicted in Figure 2.2.

2.2.2 Comparative analysis
Most switching protocols require the message flow to be stopped in order to terminate
the reconfiguration process. By not imposing a gap in the message flow, our protocol
provides smooth transitions between algorithms, thus allowing applications that rely
in its services to normally execute, even during the switching phase. Therefore, it
should offer better overall throughput, as long as enough bandwidth is available to cope
with the demand imposed by the transmission of messages using two algorithms at the
same time. The same experiment described in 2.2.1 was conducted using a protocol
that stops the message flow. This protocol operates by sending a stop request to all
nodes and awaiting for a confirmation from each of these nodes. After confirming
the stop request a node does not send further messages until the switch is complete.
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Figure 2.5: Latency in RABP

The performance of such protocol when compared to our proposal can be observed in
Figure 2.3, which clearly shows that our approach always performs better.

Other protocols that try to minimize the cost of switching between algorithms have
also been proposed. A previous work [20], proposes a solution that has some simi-
larities with our protocol, but differs from it by not requiring every node to wait for
a “special” (in our algorithm the term is “flagged”) message from every other node,
and also for not making any assumptions about the failure model where it is execut-
ing. In [20], a special reconfiguration message is broadcast in total order. When a
node receives such message, it stops the flow in the current algorithm, and re-issues
all his undelivered messages in the next algorithm. It then starts using it to broadcast
messages in total order. We will refer to this protocol by RABP (Replacement of the
Atomic Broadcast Protocol).

The RABP strategy has the advantage of requiring less bandwidth during the switch-
ing phase. However, some delay is imposed to the message flow during the retransmis-
sion of the undelivered messages. To observe this side effect, the experiment was now
conducted using our protocol and the RABP protocol. In Figures 2.4 and 2.5 we can
observe how both compare in terms of latency. The spikes depicted correspond to the
switching phases, in the time-line of the experiment. The inter-arrival time of messages
was also measured and its evolution is shown in Figures 2.6 and 2.7. Finally, the num-
ber of messages delivered by a fixed period of time (10 ms) was also observed and the
comparative results are depicted in Figures 2.8 and 2.9.

This experiment clearly showed that our proposal is able to keep a sustained de-
livery rate during the switching phase and performs similarly to RABP during the re-
maining time. By not significantly delaying the message flow, our protocol can best suit
environments where application stoppage, due to significant communication delays, is
not desirable.
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Figure 2.7: Inter-arrival time in RABP
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Chapter 3

Improved SETO protocol

The notion of optimistic total order was first proposed in the context of local-area
broadcast networks [16]. In many of such networks, the spontaneous order of mes-
sage reception is the same in all processes. Moreover, in sequencer-based total order
protocols the total order is usually determined by the spontaneous order of message
reception in the sequencer process. Based on these two observations a process may
estimate the final total order of messages based on its local receiving order and, there-
fore, provide an optimistic delivery as soon as a message is received from the network.
With this optimistic delivery, the application can make some progress. For example, a
database replication protocol can apply the changes in the local database without com-
mitting it. The commit procedure can only be made when the final order is known and
if it matches the optimistic order. If the probability of the optimistic order matching the
final order is very high, the latency window of the protocol is reduced and the system
gains in performance.

Such approach is unfeasible in large-scale networks. The long latency in wide-
area links causes different processes to receive the same message at different points in
time. Consider the topology depicted in Figure 3.1. Assume that process a multicasts
a message m1 and that, at the same time, the sequencer s multicasts a message m2.
Clearly, the sequencer will receive m2 < m1, given that m1 would require 12ms to
reach the sequencer. On the other hand, process b will receive m1 < m2, as m1 will
take only 2ms to reach b while m2 will require 12ms. From this example, it should
be obvious that the spontaneous total order provided by the network at b is not a good
estimate of the observed order at the sequencer.

To address the problem above, [23] proposed to introduce artificial delays in the
message reception to compensate for the differences in the network delays. It is easier
to describe the intuition of the protocol by using a concrete example. Consider again
the network of Figure 3.1. Assume also that we are able to provide to each process an
estimate of the network topology and of the delays associated with each link. In this
case, b could infer that message m1 would take 10ms more to reach s than to reach
b. By adding a delay of 10ms to all messages received from a, it would mimic the
reception order of a’s messages at s. A similar reasoning could be applied to messages
from other processes.
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a b
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Figure 3.1: Local and wide-area links.

In this chapter we describe a new total order algorithm that improves previous [23]
work by making a better estimation of the network delays. We will show that the
algorithm used in [23] fails to offer the optimal average latency of optimistic deliveries.
Departing from this observation we discuss how the optimal delays can be computed
and, subsequently, propose an efficient heuristic to approximate the optimal result in
an cost-effective manner.

In this section we seek solutions that minimize the overall average latency (OAL)
of all optimistic deliveries, denoted ∆avg. Let ri be the rate at which process pi sends
messages. ∆avg is defined as:

∆avg =

PN
i,j=1 riδ

j
i

N
PN

j=1 rj

(3.1)

Minimizing the overall average latency of all optimistic deliveries is equivalent to
Minimize the Overall Latency (MOL) and this problem can be mathematically formu-
lated in linear programming as:

MOL:

min
NX

i,j=1

riδ
j
i (3.2)

s.t.:
δ1
i − δ1

i+1 = δj
i − δj

i+1, i = 1, ..., N − 1, j = 2, ..., N (3.3)

δj
i ≥ 0, i, j = 1, . . . , N. (3.4)

Equation (3.2) states the objective function to be minimized: the weighted sum of
all the latencies. Equation (3.3) ensures that the latencies under decision will give rise
to a total order. Finally, equation (3.4) ensures that all the latencies are non-negative.

Let ωj
i denote the network delay of messages from process pi to process pj and

let xj
i denote the delay these messages should suffer to accomplish the corresponding

latency δj
i , i, j = 1, ..., N . Consequently, by rewriting δj

i as δj
i = ωj

i + xj
i , and

considering xj
i as the new decision variables, the MOL can be reformulated as:

min
NX

i,j=1

rix
j
i (3.5)
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s.t.:

(ω1
i + x1

i )− (ω1
i+1 + x1

i+1) = (ωj
i + xj

i )− (ωj
i+1 + xj

i+1),

i = 1, ..., N − 1, j = 2, ..., N (3.6)

xj
i ≥ 0, i, j = 1, . . . , N. (3.7)

In this new formulation, equation (3.5) states the objective function to be mini-
mized: the weighted sum of the delays to impose to all the messages. Equation (3.6)
ensure total order, while equation (3.7) guarantees for the non negativity of the delays.

3.1 New heuristics to calculate delays
This problem has N2 decision variables and (N − 1)2 constraints of type (3.6). In-
stances of the MOL problem can be solved using a solver of Linear Programming
models, such as ILOG CPLEX [6]. Unfortunately, it may be unpractical to install and
execute such solver in each protocol stack of every process of the distributed system.
Therefore, in this section we provide a heuristic to calculate the delays to be applied to
each incoming message, that approximates the optimal solution. Our heuristic works
as follows. We incrementally build a network by adding one process at a time. The first
process to be added defines the first message in the total order

∏
, named π1. This first

process has complete freedom to set the delay it imposes on its own messages (which
may be zero).

Whenever another process is added to the network it tries to set itself as close as
possible to π1 in the total order

∏
, subject to the restrictions from equations (3.6) and

(3.7). Note that the later a process is inserted in the network, the larger the set of
constraints it has to satisfy; therefore, it is likely that later processes may be required
to add longer delays to their own messages.

A key point in the heuristic is the order by which processes are inserted in the
network. To define this order, we use the following insight. Consider process pk. When
process pk is added to the network, the delay that this process has to impose to its own
messages xk

k depends of the constraints imposed by processes p1, . . ., pk−1 previously
inserted. Consider now the next process to be added to the system pk+1 and ωk+1

k the
latency of the link between pk and pk+1. If xk

k > ωk+1
k , pk+1 will be forced to impose

a delay to its own messages of at least ωk+1
k − xk

k. This will happen if pk is very close
to pk+1 and is forced to impose a long delay to its own messages. This means that
the closer a process is to other processes, the more likely it is to influence the delays
imposed on the messages from those processes. Thus, processes that are closer to other
processes should impose the minimum delays to their own messages. Since processes
that are inserted earlier in the network are more likely to impose smaller delays (as
they have less constraints to satisfy), these processes should be the ones to be inserted
first. The heuristic described in the next paragraphs, uses a precise metric to capture
the fuzzy notion of “closeness” introduced here.

The paragraph above explains the negative impact of setting xk
k such that xk

k >
ωk+1

k . It is interesting to note however, that it may not be always desirable to set
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1: Initialization:
2: P ← p1, ..., pn {Process group}
3: delay[1..n]← 0 {Delay applied to messages}
4: tdelay[1..n]← 0 {Transmission delays to the process}
5: ctdelay[1..n][1..n]← 0 {Complete transmission delay matrix}

6: procedure computeDelays()
7: {computes delays using the solver or the heuristic}

8: upon R deliver(DELAY(new delay[]) do
9: if sender = seq then

10: ctdelay[new delay.sender] = new delay
11: else
12: delay = new delay

13: procedure updateDelays()
14: R unicast(seq,DELAY(tdelay))

15: upon allDelaysGathered() do
16: c delay ← computeDelays()
17: for all pi ∈ P do
18: R unicast(pi,DELAY(c delay[pi])

19: procedure TO multicast(m)
20: R multicast(DATA(m))

21: upon R deliver(DATA(m) do
22: R← R ∪ {(m, now + delay[m.sender])}

23: upon ∃(m, d, t, md) ∈ R : now ≥ t ∧m /∈ O ∧m /∈ F do
24: opt delivery(m)
25: O ← O ∪m
26: if p = seq then
27: g ← g + 1
28: R multicast(SEQ(m, g))

29: upon R deliver(SEQ(m, s)) do
30: S ← S ∪ {(m, s, now)}

31: upon ∃(m, d, o) ∈ R : (m, l + 1, t) ∈ S ∧m /∈ F do
32: fnl delivery(m)
33: l← l + 1
34: F ← F ∪ {m}

Figure 3.2: Fast SETO algorithm.

xk
k = 0. In fact, by setting xk

k = 0, we are forcing pk+1 to set xk+1
k+1 = ωk+1

k . So, there
is a trade-off between the delay process pk imposes on its own messages and the delay
that other processes will later have to impose on their own messages.

3.2 Protocol description
We now present an augment version of the SETO algorithm, that we have named

Fast SETO, that can work with the heuristic or by calling a solver to obtain the mini-
mum optimistic latency. The complete Fast SETO algorithm is specified in Figure 3.2.
The algorithm works in four steps. In the first step, every process collects round-trip
delays from all the other processes and estimates the corresponding transmission de-
lays. This step is omitted in the algorithm specification for clarity sake, given there are
multiple ways of collecting round-trip estimations and that procedure is orthogonal to
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the main algorithm. For instance, if TCP is used as the underlying transport protocol,
the round-trip estimation could be extracted from the TCP implementation without any
extra cost. In the second step, all processes send the gathered delay information to a
specific process. This process’s identity can be easily derived from the group member-
ship; for instance, it can be the process with the smallest identifier. The process gathers
all the delay information and computes the optimal delay when a solver is available, or
approximates the optimal solution using the heuristic described in the previous section
when the use of a solver is impractical. Finally, it sends to each process in the group the
corresponding line in the delay matrix, which holds the delays that must be enforced
by that specific process.

Our algorithm clearly differs from the original SETO algorithm by requiring com-
plete knowledge of the transmission delays between all processes, which translates
into the exchange of distance vectors between all nodes. The original SETO requires
no such information, making use of only local clock values to determine the artificial
delays. However, our proposal significantly improves the overall average latency of the
system, as will be shown in the next section.

3.3 Evaluation
In this section we evaluate our proposed algorithm against the optimal delay assign-
ment and the original SETO algorithm. The evaluation tests were performed in a sim-
ulated environment that consists of a network topology, transmission rates associated
with each node and three models that describe the three algorithms at stake: optimal
assignment, original SETO and Fast SETO using the heuristic. The network topologies
used were generated with BRITE [14]. The tests were performed in networks with 30
nodes (10 nodes for the last evaluation test) that where randomly placed in a topological
space.

3.3.1 Network plane size
We first compare the performance of the optimal assignment, original SETO and Fast
SETO when the network plane size is changed. BRITE allows for the definition of
the plane size by specifying the dimension of one side. In the experiments performed
we made this side vary between 1000 and 5000 units. For each space dimension 20
network topologies were generated, and the results shown are average values of the
observations on those networks. Also, in the original SETO algorithm a randomly
selected sequencer was used.

The results are depicted in Figure 3.3. The explanation for these results lies in
the way the original SETO algorithm determines the delay imposed by the sequencer
to its own messages, which is equal to the longest link that reaches the sequencer.
This value then conditions the adjustments in the remaining nodes and produces the
observed results. The results also show the improvements obtained by Fast SETO in
regard to the original algorithm and also its proximity to the optimal solution. In the
experiments, the original SETO algorithm was, on average, 66% to 114% worst than
the optimal assignment. Fast SETO with the heuristic was, on average, 16% to 33%
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Figure 3.3: Network diameter.

worst than the optimal assignment, which shows the significant gains obtained by using
our proposed algorithm.

3.3.2 Process transmission rates
We now compare the performance of the optimal assignment, original SETO and Fast
SETO when the transmission rates of the processes in the network are changed. This
time we set the topological space to a constant value. Each experiment consisted in
generating 20 different topologies where all nodes exhibited an average transmission
rate of 300 messages per second, with a predefined variance. The standard deviation of
the transmission rates for each experiment was made variable between 0% to 100%. As
in the previous experiment, the sequencer for the original SETO algorithm experiments
was randomly selected.

Figures 3.4(a) and 3.4(b) hold the results for both the experiments comparing the
original SETO with the optimal assignment and Fast SETO with also the optimal as-
signment, respectively. Each figure presents the results as differences from each al-
gorithm to the optimal assignment. The three lines presented in each figure are the
minimum, maximum and average values observed from all the 20 topologies for each
standard deviation value.

As expected, the average overall cost of the Fast SETO algorithm suffers less vari-
ation than the original SETO algorithm. The reason for this is that Fast SETO takes
into account the transmission rates when computing the artificial delays. The origi-
nal SETO algorithm makes no use of this information, which makes its results more
dependent of the specific topology where it is executing.

3.3.3 Sequencer position
The final evaluation compared the three algorithms: original SETO, Fast SETO and
optimal assignment, in regard to the sequencer position in the original SETO algo-
rithm. This “position” refers to the identifier of the node that performs the sequencer
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Figure 3.4: Relative rates.
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role. For the experiments we used a network of 10 nodes with transmission rates uni-
formly distributed by all nodes and varying from 0 to 100 messages per second. For
each sequencer position 20 network topologies where generated. The same 20 network
topologies where used in all tests for the different positions, and the average overall
cost of the 20 observations was used to produce the results presented in Figure 3.5.

The lines that represent the optimal assignment and the Fast SETO algorithm are
obviously straight lines, because both algorithms results are not dependent of the se-
quencer position. As for the original SETO line, it is quite irregular and varies from
little below 500ms to almost 700ms, and always stays above the other algorithms lines.
This clearly shows how the results of this algorithm depend on the sequencer position
for a given network topology.

For this, the first step of the heuristic we propose for the Fast SETO algorithm may
be quite useful for improving the results of the original SETO algorithm by helping to
choose the best sequencer location.
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Chapter 4

Improving the Appia toolkit

This section describes the work done in the Appia toolkit to fit the GORDA require-
ments. This includes a primary view protocol built on state of the art work, and several
issues about security and management.

4.1 Providing primary partitions
One important property that should be provided by group communication is the notion
of a primary partition. The composition of the group of replicas is dynamic. Sometimes
a replica need to be excluded due to failures and need to be integrated after repairs. A
group membership service tracks these changes and transforms them into views that
are agreed upon as defining the group’s current composition. Partitions in the group
of replicas can happen due to failures in the cluster (network, switching hardware,
among others). In asynchronous systems multiple views can also be the result of virtual
partitions indistinguishable from real ones. This kind of failures generates partitions in
the group of replicas.

A partitionable group membership service allows multiple views of the group, each
corresponding to a different partition, to co-exist and evolve concurrently [1, 9]. In the
context of database replication, this cannot happen if there are several replicas receiv-
ing and processing requests from the clients. A partition in the group membership can
easily lead to a phenomenon usually called split-brain: the state in different replicas
diverges and is not consistent any more. In contrast, a primary-partition group mem-
bership service maintains a single agreed view of the group at any given time. To
achieve this requirement in a partitionable system, a primary-partition group member-
ship service has to limit group membership changes to the primary partition and block
all processes in non primary partitions by not delivering them any views [21] or by
pretending that they have crashed so as to force rejoins after recovery.
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4.1.1 Protocol overview
To provide this property in the group communication toolkit used in the project1, we
have enriched it with a protocol that provides primary partitions. This protocol is based
on related literature [12, 2] and works as follows. Primary partitions are defined by
majority quorums.

To bootstrap the system, the primary partition is defined at configuration time by
assigning one element to be the primary. When the group membership changes due to
joining, leaving or failures, the new primary partition is recalculated on all members
and will be the one that contains a majority of processes from the previous primary
partition. This is deterministic and ensures that only one partition exists at a time.
Using this mechanism, a replica that belong to a primary partition can move to a non-
primary partition when a view changes. In this case, the replication protocol only
gets notified that the group has blocked and do not receive any view while it is not
reintegrated in a primary partition.

4.1.2 Allowing recovery
It can happen that the replica never joins again correctly in a primary partition, because
of intermediate views that could occur. These intermediate views could lead to other
primary partitions that provide the opportunity to make progress in the system state.
In this case, the replicas that lost this progress are forced to definitely leave the group.
With this notification, a replica can reinitiate a new join process that includes a recovery
process. The recovery process allows that the state of the replica can be updated with
the missing state. This is possible because the group communication avoids that the
state of the replicas diverges.

4.2 Management interfaces
In the scope of the project, the toolkit was improved with management interfaces that
should be used to monitor the group communication system and dynamically change
variables that will improve the system performance. The system performance can be
influenced by several protocols that compose the group communication. Appia exports
these features using the standard Java Management Extensions (JMX) programming
interface.

Several protocols can be changed by an external process using the management
interfaces. One of this protocols is the failure detection protocol that uses timeouts to
suspect other members. If these values are not correctly set, the toolkit can generate
false suspicions and generate unnecessary view changes that make the system unstable.
Another protocol that can be changed at runtime is the total order switching protocol,
in cases of network traffic changes. The primary partition protocol need also to be
managed by an external process in the case of network partitions. In some cases, the
protocol is unable to determine the primary partition and it blocks the system to avoid
that the overall state diverges in different replicas. The management interface is used

1According to the Deliverable D1.1, the group communication toolkit mainly used in the project is Appia.
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to define the processes that will continue to work (defining the next primary partition)
in the recovery process.

4.3 Notification of services ensured
Some protocols needed to be changed to fit the requirements imposed by the group
communication interface of the project2, regarding optimistic deliveries and service
notifications in general. The protocols that ensure total ordering of messages only de-
livered the messages to the application when the ordering was guaranteed. To use the
optimistic assumptions, the protocols needed to be changed in order to make earlier de-
liveries and later deliver some notification that defines that some guarantee is ensured.
This is mapped in the group communication interface using Services.

4.4 Communication security
The composition model adopted by the Appia group communication toolkit allows
that each protocol can be constructed independently and, if it respects the Appia ker-
nel interface, some protocol can be changed by another one that produces the same
guarantee. The class of protocols that Appia already has is the one that provides the
functionality of converting the events produced by the protocols to socket messages,
and make the opposite conversion when a message arrives from a socket. This allows
that the other protocols do not need to know about low level issues such as sockets
and byte arrays. This also allows that protocol stack can be configured to use several
solutions of the network.

One of the solutions that was provided in the scope of GORDA is an Appia proto-
col that uses Secure Socket Layer (SSL) instead of normal TCP or UDP sockets. This
means that the communication can be secure if the group communication toolkit is con-
figured to use this protocol. The protocol must be configured with the proper keys and
certificates using a certificate management utility. The protocol supports any algorithm
supplied by any of the registered cryptographic service providers, Such as the Digi-
tal Signature Algorithm (DSA) or the Rivest-Shamir-Adleman Encryption Algorithm
(RSA).

2The interface was defined in the WP2 and is described in the Deliverable D2.3 and in [4]. It is also
available in http://jgcs.sf.net.
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