
    
 
 
 
 

Project no. 004758 
 

GORDA 
 

Open Replication Of Databases 
 
 
Specific Targeted Research Project 
 
Software and Services 
 
 
 
 

Replication modules reference implementation 
GORDA Deliverable D3.3 

 
 
 
 

Due date of deliverable: 2006/09/30 
Actual submission date: 2006/09/30 

Revision date: 2006/12/30 
 
 
 
 
 
 
 
 
Start date of project: 1 October 2004   Duration:  36 Months 
 
 
Universidade do Minho 

   Revision 1.1 
 

Project co-funded by the European Commission within the Sixth Framework 
Programme (2002-2006) 

Dissemination Level  
PU Public X 
PP Restricted to other programme participants (including the Commission Services)  
RE Restricted to a group specified by the consortium (including the Commission Services)  
CO Confidential, only for members of the consortium (including the Commission Services)  



Contributors

Alfrânio Correia Júnior
José Pereira
Ricardo Vilaça
Rui Oliveira

——————————————————
(C) 2006 GORDA Consortium. Some rights reserved.

This work is licensed under the Attribution-NonCommercial-NoDerivs 2.5
Creative Commons License. See

http://creativecommons.org/licenses/by-nc-nd/2.5/legalcode for details.



Abstract

This document describes the ESCADA Toolkit, a modular reference implementa-
tion of replication protocols built on the GORDA Architecture and Programming
Interfaces. The ESCADA Toolkit can be configured to provide both optimistically
as well as conservatively synchronized protocols, with different consistency crite-
ria, and exploiting optimizations for different environments.



Chapter 1

Architecture

The ESCADA Toolkit provides the means to assemble the target replication pro-
tocols from a set of common components. By combining this toolkit with a GAPI
provider, such as PostgreSQL/G or Derby/G, a complete replicated DBMS solution
is achieved.

In detail, the ESCADA Toolkit provides a concurrency control mechanism, a
communication infra-structure, fault tolerance, recovery and configuration strate-
gies. In particular, group communication primitives such as reliable and atomic
broadcast are used as building blocks even for replication protocols that are not
originally based on group communication. By doing this, we ease the reasoning
on protocols and their development as issues such as failure detection and retrans-
mission are delegated to the group communication abstraction. To further ease the
development, we use an event-driven architecture in which both downward and
upward communication between any pair of layers is done exchanging events [17].
This event-driven architecture enables better software design that facilitates reuse,
loose coupling, and easy testing of software components. In addition, we use the
inversion of control pattern to glue the layers together [8]. Specifically, this pattern
is used to instantiate each layer and to register for events. Even internally in each
layer, the objects are combined by means of the inversion control pattern.

Figure 1.1 depicts the architecture used by the ESCADA Toolkit. The database
engine implements the GAPI [7], which allows to transparently develop different
replication protocols suited to different application semantics. The jGCS layer [4]
enables the use of any Group Communication Toolkit providing another generic
interface in which a replication protocol might rely on to synchronize information
among replicas. The Group Communication layer [2] is responsible for propagat-
ing information among replicas.

In what follows, we detail this event-driven architecture focusing on the ES-
CADA Toolkit. Further details on the GAPI or its PostgreSQL or Derby rendering
can be found at [1].
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1.1 GAPI Layer

The GAPI defines five contexts: (i) database management system, (ii) database,
(iii) connection, (v) transaction and (iv) request. The database management sys-
tem, or simply dbms, identifies an instance of an application which might have
different databases such as a human resource database and a marketing database.
Databases allow clients to connect to, retrieve and change information. Clients
are identified for a set of connection properties where among them, one can find
user identification, password and encoding information. For transactional systems,
a set of interactions between clients and servers are guarded in the context of a
transaction and inherits the following properties: (a) atomicity, (c) consistency, (i)
isolation and (d) durability. Each interaction is identified by a request. For in-
stance, if a client sends a batch to be processed, the set of statements in the batch
are in the scope of the same request.

A request passes through different phases organized as a pipeline. First, a
request is split into one or more statements which are individually sent to the next
phases, to be parsed, optimized and executed. Results from an execution can be
directly observed in a logical or physical format. In the former case, updates might
be easily transferred among different operating systems and databases. In the latter
case, updates from different transactions might be grouped and are represented in
a machine dependent format.

Different events are generated for each context and phase, triggering notifica-
tions, which are handled by components registered for receiving them. In the ES-
CADA Toolkit, the capture process receives the GAPI notifications and forwards
them as described as follows.

1.2 Processes

A process represents a container that allows to interconnect different pieces of code
in order to build a replication protocol. Five canonical processes are used to do this
task: (i) capture process, (ii) kernel process, which is usually known as distribution
process, (iii) apply process, (iv) recovery process and (v) configure and monitor
process.

In particular, different protocols require different implementations of the cap-
ture, kernel and apply processes. Our current prototype handles the DBSM and the
Primary Backup protocols while the Conservative and State Machine approaches
are being tested.

1.2.1 Capture Process

The capture process receives events from the GAPI, converts them to appropriate
events in the ESCADA Toolkit and notifies the other process. In particular for the
DBSM (Database State Machine), it receives a transaction begin request and reg-
isters the current transaction context. Before sending a commit request, the GAPI
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should send an ObjectSet which has updates and for some consistency criteria reads
too. The capture process gathers such information and upon a commit request con-
structs an internal transaction event that carries the transaction identification along
with updates and reads. Then it notifies the kernel process which is responsible for
implementing the concurrency control mechanism.

The class CaptureKernel captures events on behalf of all protocols.

1.2.2 Kernel Process

The kernel process is usually known as the distribution process, but in the ES-
CADA Toolkit, we name it differently as it also provides core functions with re-
spect to a replication protocol. In other words, the kernel process is the core of
the ESCADA Toolkit as it directly implements the code that propagates informa-
tion among replicas and guarantees a consistency criterion. In particular for the
DBSM, it certifies a transaction deciding its outcome. In detail, it receives notifi-
cations from the capture process, propagates them among replicas by means of the
jGCS and, after certifying a transaction, notifies the apply process.

There are three variations of the DBSM protocol. The first variation is im-
plemented by the class DbmsKernel, provides snapshot isolation as a consis-
tency criterion and does not exploit optimistic delivery. In contrast, the class Opt-
misticDbmsKernel exploits optimistic delivery. The class SerializabilityKernel
provides serializability while at the same time exploits optimistic delivery.

There are two different classes implementing the Primary Backup protocol.
The class AsyncPbKernel provides asynchronous primary backup replication while
the SyncPbKernel provides synchronous replication.

The Active protocol is implemented by the class ActiveKernel and the Con-
servative protocol is currently under development.

In order to ease development and testing, the Toolkit has a Loopback protocol
that does not use network and is implemented by the class LoopBackKernel.

1.2.3 Apply Process

The apply process is a key component to the performance of replication protocols
built on the GAPI and must address the issues of parallel execution and transac-
tion priority. Succinctly, it has two different strategies according to a transaction’s
outcome: abort or commit. In particular for the DBSM, when an abort is received,
at the initiator replica (i.e., the site that received the client request), the transac-
tion that were blocked is canceled, and at a remote replica it is disregarded. When
a commit is received, this process groups operations from different transactions
and execute them as a batch. If a batch that is being processed does not conflict
with other batches being created, they are executed in parallel. Otherwise, they
are executed as soon as the conflicting batch is finished. At the initiator replica,
the execution consists on issuing a continue request. At a remote replica, the ap-
ply process uses a JDBC interface to execute remote operations. The GORDA
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API assumes the existence of a server-side JDBC API that should be used to inject
operations in a database.

The apply process is implemented by the class ApplyKernel for the DBSM,
Primary Backup and Conservative Protocols. In particular, the Active protocol
requires a different implementation as it applies statements and is currently under
development.

1.2.4 Recovery Process

The recovery process executes when a replica joins the group and exploits the
group membership properties exposed by the jGCS as follows. Every time a replica
joins a group, a blocking notification is sent by the jGCS indicating this fact. When
a replica receives this notification, it should stop sending and receiving messages,
putting them into buffers. Meanwhile, a new notification is sent by the jGCS in-
forming that messages that were sent while the new replica was joining the group
were delivered and which is the new replica. Right after this information, the
buffered messages should be processed as well as any new message. 1

Unfortunately, the new replica may not be able to process transactions as its
database may have a non-updated state. Considering so, the recovery process in
the joined replica chooses an other replica as a database source and carries out a
state transfer.

To easier the development of different recovery protocols we developed an
abstract Recovery Kernel RecoveryKernel that have the common infrastructure to
any recovery protocol. Then we implement three different recovery protocols:

• Transfer of the entire database using some mechanism provided by the database
engine, reflected by the Database context of the GAPI. To use this protocol
the class RecoveryKernelDBImage should be used as the RecoveryKernel.

• Transfer of the missed updates to joining replicas using middleware logging.
To use this protocol the class RecoveryKernelUpdates should be used as
the RecoveryKernel.

• Transfer of the last version of changed objects. This implements the pro-
tocol Lazy Data Transfer presented in [11]. To use this protocol the class
RecoveryKernelLazy should be used as the RecoveryKernel.

Furthermore, the chosen replica needs not only to transfer the database state
but also information regarding the used replication protocol. In the case of DBSM
we need to transfer the information stored in buffers. This is necessary to run the
certification at the new replica. Otherwise, the joined replica would decide different
on a transaction’s outcome as its certification buffer is empty.

1The recovery process and the kernel process are sequential.
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1.2.5 Configuring and Monitoring

This process provides the ability to negotiate services among distributed replicas
such as consistency criterion and which replica should be the master in a primary-
backup replication and to act as a monitor by inspecting resources and important
variables in the system. For instance, it is possible to check information on storage,
memory, cpu and network usage and specific information on replication such as
number of transactions being applied in parallel and transactions waiting to be ap-
plied. It is worth noticing that detail information on these module shall be provided
in an other document specifically designated for configuration and monitoring.

Configuring

The negotiation of services currently supports master election, needed for primary-
backup protocol and recovery purposes. We are working on more services namely
on consistency criterion and certification type.

Monitoring

The monitor is built on JMX (Java Management Extensions) which provides the
means for configuring and monitoring distributed applications. There are two
types of resources to be monitored. One that requires an interaction with the
operating system to be monitored and others that can be directly monitored by
inspecting some variables in the Java code. In both cases, the Escada Toolkit is
instrumented with JMX components which export properties associated with the
resources. These components are Managed Bean objects, or simply MBeans, with
get() methods to retrieve properties, set() methods to set properties when appropri-
ate and operations that are used to perform tasks. The MBeans are registered in a
management server that provides a set of services in order to make them available
to remote management applications.

The storage, memory, cpu and network resources are mapped to MBean objects
through a JNI (Java Native Interface). The Escada Toolkit and the group communi-
cation, in particular, by means of the jGCS provide additional information that can
be monitored. In our architecture, the MBean component is know as a sensor and
exports a set of properties known as attributes which are made available to remote
management applications through a custom BSD socket-based protocol:

• LIST SENSORS retrieves which sensors are available.

• LIST SENSORS ATTRIBUTES sensorId retrieves which attributes might
be monitored for a sensor.

• GET sensorId attrId gets value for an specific sensor attribute.

• SET sensorId attrId value sets value for an specific sensor attribute.
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• OPERATIONS sensorId retrieves the operations that can be invoked on
behalf of a sensor.

• INVOKE SENSOR operationId invokes an operation.

• CREATE REPLICA replicaId adds a new replica to a cluster from what
this management application is running.

• STOP REPLICA replicaId removes a replica from a cluster.

• PAUSE REPLICA replicaId pauses execution of a replica.

• CONTINUE REPLICA replicaId resumes execution of a replica.

• REGISTER LISTENER sensorId registers for notification events which
are triggered whenever a attribute changes.

• UNREGISTER LISTENER sensorId unregister for notification events.

• NOTIFY sensorId attrId value is issued whenever a notification event is
sent to a listener.

We are working on designing more operations besides the stop, pause and con-
tinue. Most likely this process should provide an interface to the configuration
features described in the previous section. For instance, it shall be possible to de-
fine which replica should be a master in primary backup scenario.

1.3 Event Layer

This layer is a set of components and interfaces that enables processes to exchanged
information. If a process a is interested in receiving information from a process b
the following should be done. First process a should implement an interface that
allows it to receive such information. There are different interfaces for different
events matching the GAPI’s contexts and phases. Then it should register in a no-
tifier to receive notifications. Discovering a notifier involves getting in touch with
process b that informs for an event in which notifier process b should be registered.

Its current implementation invokes methods in the same Virtual Java Machine
(i.e., in the same address space) due to performance reasons, but it might be easily
extended to provide communication among process in distinct Virtual Java Ma-
chines without changing the other layers. For instance, one might use a JRMI
(Java Remote Method Invocation) to invoke operations on other address spaces.

1.4 Communication Layer

This layer is built on the jGCS augmenting it and provides multiplexing and de-
multiplexing of messages. In other words, this is done to enable sending messages
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from a process and delivering them to the counterparts processes, i.e., a process
that has a channel with the same identification. For instance, when a message is
sent from the kernel process, through a channel with identification c, it is delivered
only by channels with the same identification. Most likely to the kernel processes
distributed among replicas, if such channels are correctly configured.

Membership, block and view messages from the jGCS are delivered to all chan-
nels. This is done as these messages represent special notifications on the group
communication, most likely affecting the behavior of all process. For instance, the
kernel process while receiving a block notification should temporarily stop sending
messages and thus queuing them. Messages being delivered should also be put in
a queue. Only after receiving a view message, it should restart its normal behavior.

This layer provides point-to-point communication too. This feature is used by
the recovery process to exchanging information between recovering and recoverer
replicas.

1.5 jGCS Layer

The jGCS layer provides a generic interface for Group Communication. This in-
terface can be used by applications that need primitives from simple IP Multicast
group communication to virtual synchrony or atomic broadcast. Its a common
interface to several existing toolkits that provide different APIs.

jGCS implements also a new concept of providing a group communication
service. Using the notion of inversion of control pattern, this service provides the
separation of configuration and use. Provides also modularity, since applications
use a common API that can be implemented using different solutions. The solution
that will be used by an application is defined on configuration time.
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Figure 1.1: ESCADA Toolkit Architecture
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Chapter 2

Protocol Implementation

This section describes how the Escada Toolkit provides certification-based and
conservatively synchronized replication protocols. As an introduction, we start
by showing also how simple state-machine and primary-backup are implemented.

2.1 Primary-Backup

Overview In the primary-backup approach to replication, also called passive
replication [13], update transactions are executed at a single master site under the
control of local concurrency control mechanisms. Updates are then captured and
propagated to other sites. Asynchronous primary-backup is the standard replica-
tion in most DBMSs and third-party offers. An example is the Slony-I package for
PostgreSQL [19].

Implementations of the primary-backup approach differ whether propagation
occurs synchronously within the boundaries of the transaction or, most likely, is
deferred and done asynchronously. The later provides optimum performance when
synchronous update is not required, as multiple updates can be batched and sent in
the background. It also tolerates extended periods of disconnected operation.

The main advantage of this approach is that it can easily cope with non-deterministic
servers. A major drawback is that all updates are centralized at the primary and lit-
tle scalability is gained, even if read-only transactions may execute at the backups.
It can only be extended to multi-master by partitioning data or defining reconcilia-
tion rules for conflicting updates.

Reflector Components Used Synchronous primary-backup replication requires
the component that reflects the Transaction context to capture the instant where the
transaction starts executing, commits, or rollbacks at the primary. It also needs the
object set provided by the Execution stage to extract the write set of a transaction
from the primary and to insert it at the backup replicas.
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Events The Escada Toolkit assemblies the Capture, Apply and Kernel process by
sending commit and abort notifications that carry information on transactions such
as ids and read and write sets. The main classes used to do this are: CaptureK-
ernel, ApplyKernel and AsyncPbKernel or SyncPbKernel for asynchronous or
synchronous primary backup replication, respectively.

Process Execution The execution of a primary-backup replicator is depicted in
Figure 2.1. We start by describing the synchronous variant. It consists of the
following steps:

Step 1: Clients send their requests to the primary replica.

Step 2: When a transaction begins, the Capture at the primary is notified, registers
information about this event, and allows the primary replica to proceed.

Step 3: Right after processing a SQL command the DBMS server notifies the Cap-
ture through the Execution stage component sending an ObjectSet. For op-
timization, one might store the write set in an in-memory structure inside
the DBMS server, gathering all updates in the context of a transaction and
transmit them to the Capture process when the commit is requested.

Step 4: When a transaction is ready to commit, the Transaction Context compo-
nent notifies the Capture process which notifies the Kernel and then the gath-
ered updates are atomically broadcasted to all backup replicas (this broadcast
should be uniform [6]).

Step 5: The write set is delivered at all replicas whereby the Kernel notifies the
Apply process. On the primary, the Apply allows the transaction to commit.
On the backups, the it injects the changes into the DBMS.

Final Step: After the transaction execution, the primary replies to the client.

An asynchronous variant of the algorithm can be achieved by postponing Step
4 (and, consequently, Step 5) for a tunable amount of time.

2.2 State-machine

Overview The state-machine approach, also called active replication [13], is a
decentralized replication technique. Consistency is achieved by starting all replicas
with the same initial state and, subsequently, receiving and processing the same
exact sequence of client requests. Examples of this approach are provided by the
Sequoia [5, 18] and PGCluster [16] middleware packages.

The main advantage of this approach is its simplicity and failure transparency,
since if a replica fails the requests are still processed by the others. It also trivially
handles Data Definition Language (DDL) statements without any special require-
ments.
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On the other hand, the state machine operates correctly only under the assump-
tion that requests are processed in a deterministic way, i.e., when provided with the
same sequence of requests, replicas produce the same sequence of output and have
the same final state. To start with, this requires that the original SQL command is
rewritten to remove non-deterministic expressions and functions such as now().

A second source of non-determinism is the scheduling of concurrently exe-
cuting conflicting transactions, namely, the order by which locks are acquired is
hard to predict. To overcome this problem, it is common to have an external global
scheduler that manages which SQL commands can be concurrently processed with-
out undermining the determinism requirement. This introduces additional com-
plexity and may overly restrict concurrency in update-intensive workloads.

The state-machine protocol requires that all replicas receive and process the
same sequence of client requests producing a deterministic outcome. To accom-
plish this, we need to intercept client requests before they are processed enforcing
deterministic executions. Specifically, begin, commit and rollback commands, im-
plicitly or explicitly sent, and every SQL command should be intercepted. One
possible solution is depicted in Figure 2.2.

Reflector Components Used State-machine replication requires the use of the
Transaction context component and Parsing Stage component. On one hand, the
transaction component is used to capture the moment where the transaction starts to
execute, commits, or rollbacks at one replica. On the other hand, the Parsing Stage
component is used to capture and start the execution of transaction statements.

Events The Escada Toolkit assemblies the Capture, Apply and Kernel process
by sending begin, execution, commit and abort notifications that carry informa-
tion on transactions such as ids and statements. The main classes used to do this
are: CaptureKernel, ActiveKernel and ApplyStatementKernel, where the class
ApplyStatementKernel is currently under development.

Process Execution The execution of a state-machine replicator is depicted in
Figure 2.2. It consists of the following steps:

Step 1: Clients send their requests to one of the replicas. This replica is called the
delegate replica.

Step 2: Using the Transaction component the Capture process at the delegate replica
is notified of the beginning of the transaction. Then the Capture process no-
tifies the Kernel process which uses a totally ordered broadcast to propagate
this notification to all other replicas.

Step 3: All replicators deliver the notification in the same order. The transaction
is started in the remote replicas and resumed in the delegate replica by the
Apply process.
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Step 4: The transaction is executed at the delegate replica. Every time a new com-
mand starts the Capture process is notified through the Parsing Stage com-
ponent of the DBMS server. Then the Capture process notifies the Kernel
process which uses a totally ordered broadcast to propagate this notification
to all other replicas.

Step 5: The parsed statement is delivered at all Kernel process which notifies the
Apply process. The Apply process must implement a deterministic sched-
uler: each Apply process must ensure that no two concurrent conflicting
parsed statements are handled to the underlying DBMS. If such conflict ex-
ists, the parsed-statement is kept on hold. Otherwise it is handled to the
DBMS at all replicas. It is worth noting two aspects related to this strategy.
First, with this approach deadlocks may happen and the replicator should
resolve them. Second, should a statement be used instead of a parsed state-
ment, then the replicator would also need to parse it in order to extract infor-
mation on the tables.

Further steps: Steps 4 and 5 above are repeated.

Step 6: Using the Transaction context component the Capture process at the dele-
gate replica is notified when the transaction is about to commit or rollback.
This notification is sent to the Kernel process which broadcasts in total order
to all replicas.

Step 7: Upon receiving a commit or rollback notification, remote replicas notify
the Apply process which executes the proper command and the delegate
replica allows it to proceed.

Final step: Once the processing is completed, the delegate replica replies to the
client.

2.3 Certification Based

Overview Certification based approaches operate by letting transactions execute
optimistically in a single replica and, at commit time, run a coordinated certifi-
cation procedure to enforce global consistency. Typically, global coordination is
achieved with the help of a total order broadcast communication primitive, that
establishes a global total order among concurrent transactions [10, 15, 12, 20].

Multiple variants of the certification based approach have been proposed. Here
we briefly describe an approach providing snapshot-isolation [12, 20]. At the time
a transaction is initiated, a replica is chosen to execute the transaction (usually, the
closest replica to the client which is called the delegate replica). When a transaction
intends to commit, its identification, database version read, and the write set are
broadcast to all replicas in total order. Right after being delivered, all replicas verify
if the received transaction has the same version as the database. If so, it should
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commit. Otherwise, one needs to check if previously committed transactions do
not conflict with it. There is no conflict if previously committed transactions have
not updated the same items. If a conflict is detected, the transaction is aborted.
Otherwise, it is committed. Since this procedure is deterministic and all replicas,
including the delegate replica, receive transactions by the same order, all replicas
reach the same decision about the outcome of the transaction. The delegate replica
can now inform the client application about the final outcome of the transaction.

This can be extended to serializability by considering also the read-set and then
detecting read-write conflicts during certification [10, 15]. Although this might
have some impact in performance [9], it is desirable for DBMS in which the con-
sistency criterion is similar. Note also that certification based approaches do not
require the entire database operation to be deterministic: Only the certification
phase has to be processed in a deterministic manner. Furthermore, they allow dif-
ferent update transactions to be executed concurrently in different replicas. If the
number of conflicts is relatively small, certification based approaches can provide
both fault-tolerance and scalability.

Certification based approaches operate by letting a transaction to execute opti-
mistically in a single replica and, at commit time, execute a coordinated certifica-
tion procedure to enforce global consistency.

Reflector Components Used Given its similarity to the Primary-Backup ap-
proach, the Certification based replication requires the use of the same components,
explicitly the Transaction context and Parsing Stage components.

Events The Escada Toolkit assembles the Capture, Apply and Kernel process by
sending commit and abort notifications that carry information on transactions such
as ids and read and write sets. The main classes used to do this are: CaptureK-
ernel, ApplyKernel and DbmsKernel. In order to test serializability, the class
SerializabiltyDbmsKernel was created but we intend to integrate both classes the
DbmsKernel and SerializabilityDbmsKernel in a near feature.

Process Execution The execution of a certification-based replicator is depicted
in Figure 2.3. It consists of the following steps:

Step 1-4: Same as in the Primary-Backup solution presented before.

Step 5: Upon receiving the write set, each replica certifies the transaction and de-
cides its outcome: commit or abort. The Kernel process notifies the Apply
process its decision. If it is an abort, the delegate replica through the transac-
tion context component cancels the commit and the remote replicas discard
it. If it is a commit, the delegate replica allows it to continue and the remote
replicas inject updates into the DBMS.

Final Step: The delegate replica returns the response to the client.
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2.4 Conservative Replication

Overview In the conservative approach, data is a priori partitioned in conflict
classes, not necessarily disjoint. Each transaction has an associated set of conflict
classes (the data partitions it accesses) which are assumed to be known in advance.
While the conflict classes for a transaction could be determined at runtime, this
would require to know the whole transaction before its execution precluding the
processing of interactive transactions.

When a transaction is submitted, its id and conflict classes are atomically mul-
ticast to all replicas obtaining a total order position. Each replica has a queue
associated with each conflict class and, once delivered, a transaction is classified
according to its conflict classes and enqueued in all corresponding queues. As soon
as a transaction reaches the head of all of its conflict class queues it is executed.
Transactions are executed by the replica to which they are submitted.1

Conflicting transactions are executed sequentially. Clearly, the conflict classes
have a direct impact on the performance. The lesser the number of transactions
with overlapping conflict classes, the better the interleave among transactions.
Conflict classes are usually defined at the table level but can have a finer grain
at the expense of a non-trivial validation process to ensure that a transaction does
not access conflict classes that were not previously specified.

When the commit request is received, the outcome of the transaction is reli-
ably multicast to all replicas along with the replica’s state changes and a reply is
sent to the client. Each replica applies the remote transaction’s updates with the
parallelism allowed by the initially established total order of the transaction.

It is worth noting that, despite the use of a multi-version database engine, since
conflicting transactions are totally ordered and executed sequentially, the protocol
ensures 1-copy-serializability as long as transactions are correctly classified by the
application. Relaxing the correctness criterion to snapshot-isolation would simple
require the reclassification of the transactions by the application.

Reflector Components Used Given its similarity to the Primary-Backup ap-
proach and the Certification based replication, it requires the use of the same com-
ponents, explicitly the Transaction context and Execution Stage components.

Events The Escada Toolkit assemblies the Capture, Apply and Kernel process
by sending begin, commit and abort notifications that carry information on trans-
actions such as ids, read and write sets. The classes used to do so are: CaptureKer-
nel, ApplyKernel and ConservativeKernel which is currently under development.

Process Execution The execution of a primary-backup replicator is depicted in
Figure 2.4. We start by describing the synchronous variant. It consists of the

1When isolated conflict classes exist, dedicating a distinguished replica to the execution of all
transactions of such classes, results in a faster processing of those transactions [14].
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following steps:

Step 1: Clients send their requests to the delegate replica.

Step 2: When a transaction begins, a begin trigger is fired and a notification is
sent to the replicator at the primary, which registers information about this
event. Right after, an uniform atomic broadcast is sent and upon being de-
livered the transaction is classified according to its conflict classes. At the
delegate replica, when the transaction gets its turn to execute (i.e. when the
transaction is at the head of all its conflict classes) the replicator allows it to
continue. At remote replicas, nothing is done.

Step 3: Similar to the Primary-Backup.

Step 4: When a transaction is ready to commit, the Capture process notifies the
Kernel process which reliably broadcasts the gathered updates to all backup
replicas (this broadcast should be uniform [6]).

Step 5: The write set is delivered at all replicas through the Kernel process which
notifies the Apply. On the delegate, the Apply process allows the transaction
to commit. On the others, the Apply injects the changes into the DBMS.

Final Step: After the transaction execution, the primary replies to the client.
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Chapter 3

Configuration

This chapter shows how the Escada Toolkit should be configured to implement
different replication protocols. To configure the replication engine, we should edit
an XML file that specifies information on which databases are replicated, on group
communication configuration and on processes. The configuration file have an
XML tag to configure each component presented before. In what follows, we shall
present details in order to enable the DBSM replication protocol.

3.1 Replica Information

The following excerpt specifies information on a database engine and its databases.

<replica>
<id>0</id>
<class>gorda.reflector.postgresql.PostgreSQLFactory</class>
<ccriteria>ww</ccriteria>
<params>

<binPath>/usr/local/pgsql/bin/</binPath>
</params>
<database>

<id>0</id>
<params>

<pool>10</pool>
<uri>jdbc:PostgreSQLG://127.0.0.1:5432/tpcc</uri>
<user>repmanager</user>
<password></password>
<binary>true</binary>

</params>
</database>

</replica>
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Each replica should have a unique identification that is assigned through the
tag “id”. Note that it is not necessary to have all replicas defined in the configura-
tion file, although this is recommend for documentation purpose. The tag “class”
defines a factory that is used to start up the database engine but for some database
engines such as PostgreSQL, the factory is only responsible for initiating a ren-
dering of the GAPI as the database engine is started aside. Tags “binPath” and
“binary” are used for recovery purposes, defining, respectively, the path for binary
tools and the format to be used for data transfer. Tag “ccriteria” defines if read
operations should be used to enforce a strong consistency criterion such as Serial-
izability1.

3.2 Communication Infra-structure

The following excerpt shows the configuration that defines the communication
infra-structure that will be used by the DBSM:

<jgcs>
<protocol>

<class>net.sf.jgcs.appia.AppiaProtocolFactory</class>
<param></param>

</protocol>
<group>

<class>net.sf.jgcs.appia.AppiaGroup</class>
<param>/jgcsappia.properties</param>

</group>
<services>

<class>net.sf.jgcs.appia.AppiaService</class>
<optimistic>seto_total_order</optimistic>
<regular>regular_total_order</regular>
<uniform>uniform_total_order</uniform>

</services>
<channel>

<id>0</id>
<reference>total-distribution</reference>
<service>vsc+total+services</service>

</channel>
<channel>

<id>1</id>
<reference>reliable-distribution</reference>
<service>vsc+total+services</service>

</channel>
<channel>

1It is only available snapshot isolation level among replicas.
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<id>2</id>
<reference>total-recovery</reference>
<service>vsc+total+services</service>

</channel>
</jgcs>

The tag “protocol” specifies a factory that serves as an interface entry point and
triggers the initialization of runtime instances. The “group” encapsulates the ad-
dress that can be used to open a communication channel that subsequently allows
messages to be sent or received, or the membership to be observed. The “service”
encapsulates a specification of the possible guarantees to be enforced on a chan-
nel. 2 Then, it is possible to define different channels that provide different service
qualities. It is worth noticing that a message sent by a channel is delivered by the
same channel in the sender process and its remote counterparts. The “id” and the
“reference” should be unique. The former is used internally by the communication
infra-structure while the latter is used by processes to get a reference to a channel.

3.3 Process configuration

The other elements of the files “replication*.xml” configure processes.

<process>
<id>capture-process</id>
<class>escada.replicator.process.capture
.CaptureProcess</class>
<start>true</start>
<params>

<recovery>true</recovery>
</params>
<notifier>

<class>escada.interfaces.process.notifiers
.ComponentTransactionNotifier</class>
<notify>

<url>escada.interfaces.process.notifiers</url>
<pipeline>Transaction</pipeline>

</notify>
</notifier>
<listener>

<class>escada.replicator.process
.capture.CaptureKernel</class>
<listen>

2Please, do not try to change this information for now. You are working with the developers of
the JGCS and APPIA to improve this configuration and easy its use.
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<url>escada.interfaces.process.listeners</url>
<pipeline>Transaction</pipeline>

</listen>
<listen>

<url>escada.interfaces.process.listeners</url>
<pipeline>ObjectSet</pipeline>

</listen>
<listen>

<url>escada.interfaces.process.listeners</url>
<pipeline>Recovery</pipeline>

</listen>
</listener>
<accept>

<notifications>
<from>replica</from>
<id>0</id>
<pipeline>Transaction</pipeline>
<url>gorda.reflector.interfaces.context
.transaction</url>
<event wait = "false">Begin</event>
<event wait = "true">Finish</event>
<processor>gorda.reflector.postgresql
.PostgreSQLTransactionProcessor</processor>

</notifications>
<notifications>

<from>process</from>
<id>recovery-process</id>
<pipeline>Recovery</pipeline>
<url>escada.interfaces.process.listeners</url>
<event>StartRecovery</event>
<event>StopRecovery</event>

</notifications>
</accept>

For each process, one should define generic information such as an “id”, which
“class” implements it, parameters (“params”) and if it should be started in a new
thread (“start”). Then, one should specify information on events. Specifically,
which components in a process are responsible for notifying events and listening
to them. Furthermore, it is required to define which events a process should re-
ceive. The events are organized in pipelines and it is possible to define a different
“listener” or a different “notifier” for different pipelines. It is important to note
that a “url” defines a Java path to a “pipeline” that defines an event. Furthermore,
a process should register into other processes or into a database to receive their
notifications and this should be done per pipeline. In this phase, it is possible to
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specify which are the events that a process is interested in. In particular for events
from a database, it is possible to define if a database should wait for a confirmation
from a process in order to proceed with its execution or not (“wait”).

The tag “recovery” is used by any process to determine if it is necessary to the
recovery or not. For instance, this should be used for the first database as there
is no other database from which it might retrieve its state. Of course, this might
be used by an administrator to avoid on-line recovery when it knows for sure that
replicas are synchronized. In other words, if one wants to do recovery define it as
true, otherwise, as false.

Some process have specific parameters that are described as follows:

• Capture process If a primary backup replication is used, one should define
this flag in slave replicas as true.

<params>
<recovery>true</recovery>
<slave>false</slave>

</params>

• Distribution process The recovery parameter define if a process recovery is
defined in this configuration.

<params>
<recovery>true</recovery>

</params>

• Apply process

The tag “GroupRemoteCommit” defines the size of the batch of remote
transactions. The tag “GroupLocalCommit” defines the size of the batch
of local transactions . The tag “GroupRollback” defines the size of the batch
of transactions to do rollback . The tag “ConcurrentRemoteCommit” defines
the number of concurrent threads applying updates of remote transactions..
The tag “ConcurrentLocalCommit” defines the number of concurrent threads
applying updates of local transaction . The tag “ ConcurrentRollback” de-
fines the number of concurrent threads doing rollback of transactions.

<params>
<GroupRemoteCommit>6</GroupRemoteCommit>
<GroupLocalCommit>6</GroupLocalCommit>
<GroupRollback>6</GroupRollback>
<ConcurrentRemoteCommit>6</ConcurrentRemoteCommit>
<ConcurrentLocalCommit>1</ConcurrentLocalCommit>
<ConcurrentRollback>1</ConcurrentRollback>

</params>
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• Recovery process The tag “port” identifies which port is used to transfer
information among replicas during recovery and the tag “peers” defines how
may concurrent replicas should be used during a recovering.

<params>
<recovery>true</recovery>
<port>5000</port>
<peers>3</peers>

</params>
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Chapter 4

Issues and Future Work

Our current prototype does not provide the following features:

Replicating meta information Our current prototype does not handle replication
of meta information. Thus, if one wants to put a new replica on-line, it should
be configured as described in [3].

Grouping local commit Please do not group local commit as this feature might
introduce inconsistency into the database.

Serializing transactions from different databases Our current prototype is seri-
alizing transactions from different databases. We are currently working with
the jGCS developers in order to fix this.
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