

Project no. 004758

GORDA

Open Replication Of Databases

Specific Targeted Research Project

Software and Services

Cluster Oriented Protocols Report

GORDA Deliverable D3.2

Due date of deliverable: 2006/03/31
Actual submission date: 2006/10/01

Revision 1.1 date: 2007/04/15

Start date of project: 1 October 2004 Duration: 42 Months

UNISI

 Revision 1.1

Project co-funded by the European Commission within the Sixth Framework
Programme (2002-2006)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Contributors

Fernando Pedone, U. Lugano
Vaide Zuikeviciute, U. Lugano

——————————————————
(C) 2006 GORDA Consortium. Some rights reserved.

This work is licensed under the Attribution-NonCommercial-NoDerivs 2.5 Creative Commons License.
See http://creativecommons.org/licenses/by-nc-nd/2.5/legalcode for details.

Abstract

This document reports on the work that has been performed on the evaluation, selection and devel-
opment of strong consistent, group based, database replication protocols suited for cluster settings. We
chose to select protocols representative of three different categories: the Database State Machine protocol
and a novel extension, the NOn-Disjoint conflict classes and Optimistic Multicast, and the Sequoia (pre-
viously known as C-JDBC) protocols. In this report we describe each protocol in detail, with particular
attention to the vDBSM extension to DBSM which has been designed in the context of the project.

Together with the description of the vDBSM and load balancing techniques that boost the perfor-
mance of the DBSM-like protocols, we present a preliminary performance evaluation of these tech-
niques. Current work is considering a more detailed protocol implementation of the vDBSM as well as
the development of a novel hybrid protocol aimed at gracefully handling specific subsets of real-world
workloads. These results will soon be presented as an addendum to this report.

Contents

1 Introduction 2
1.1 Objectives . 2
1.2 Relationship With Other Deliverables . 3

2 Database State Machine 4
2.1 System and database considerations . 4
2.2 DBSM . 4
2.3 vDBSM . 5

3 Conflict-aware load balancing 7
3.1 Minimizing Conflicts First (MCF) . 7
3.2 Maximizing Parallelism First (MPF) . 8

3.2.1 Static load balancing . 8
3.3 Static vs. dynamic load balancing . 9
3.4 Preliminary performance evaluation . 10

3.4.1 Analysis of the TPC-C benchmark . 10
3.4.2 Prototype overview . 12
3.4.3 Static vs. dynamic load balancing . 13
3.4.4 Abort rate breakdown . 13
3.4.5 The impact of failures and reconfigurations . 15

4 NOn-Disjoint conflict classes and Optimistic multicast 16
4.1 System model . 16
4.2 NODO protocol . 17

5 Sequoia 19
5.1 Functionality and key components . 19
5.2 Fault tolerance and scalability . 20

1

Chapter 1

Introduction

This document describes GORDA strong consistent database replication protocols for databases con-
nected within a cluster. The main goal of this deliverable is to present and discuss state-of-the-art
solutions that aim at both performance and high-availability. We focus, in the following sections, on
group communication based cluster protocols representative of three different categories of replication
techniques. First we consider certification-based protocols which execute transactions optimistically and
follow the passive replication approach (each transactions is executed by one replica and the state updates
then propagated to the others), then we describe a conservative execution protocol also embodying the
passive replication approach, and finally a conservative execution protocol where all replicas are called
to execute the transactions (active replication).

Two new developments of GORDA applicable to certification-based protocols are presented:

• Multiversion Database State Machine (vDBSM). The vDBSM is an extension of the original
DBSM. Its design was driven by simplicity, requiring minimal modifications to the internals of
a database. Any database complying to the GORDA API can be used to implement the vDBSM.

• Conflict-aware load balancing. While load balancing in general is not a replication protocol in
itself, the techniques developed here are important because they show how the performance of
a DBSM-like protocol—the main model adopted in GORDA—can be boosted by taking concur-
rency control issues into account when scheduling transactions for execution.

The remainder of this document is structured as follows: Chapter 2 presents the Database State
Machine and its extension, the Multiversion Database State Machine, Chapter 3 introduces conflict-
aware load balancing. Chapter 4 reviews the NODO protocol and Chapter 4 the Sequoia protocol.

1.1 Objectives

The goals of the work reported in this document are as follows:

• Evaluate and select synchronous database replication protocols suited for cluster settings;

• Design appropriate protocols targeting specific workloads or addressing existing protocols draw-
backs;

• Predict the performance of the new protocols.

2

1.2 Relationship With Other Deliverables

This deliverable departs from the work on D1.1 - State of the Art Report and, to some extent, the choices
herein are influenced by D1.2 - User Requirements Report. It is instrumental on shaping the work to be
delivered with D3.3 - Replication Modules Reference Implementation. The current deliverable has two
companion reports: D3.1 - Wide-Area Protocols Report and D3.5 - Group Communication Protocols.1

1Albeit not present in the actual DoW of the project, the role of group communication in supporting reliable, ordered and
secure communication to all the developed protocols and the large effort devoted to the APPIA toolkit, justifies a report on its
own.

3

Chapter 2

Database State Machine

This section focuses on the Database State Machine (DBSM) approach [9] and introduce the Multiversion
Database State Machine (vDBSM) [13]. In the following, we first describe the system and database
model considered, then we introduce the original DBSM and afterwards we present our approach.

2.1 System and database considerations

We consider an asynchronous distributed system composed of database clients, c1, c2, ..., cm, and servers,
S1, S2, ..., Sn. Communication is by message passing. Servers can also interact by means of a total-order
broadcast, described below. Servers can fail by crashing and subsequently recover. If a server crashes
and never recovers, then operational servers eventually detect the crash.

Total-order broadcast is defined by the primitives broadcast(m) and deliver(m), and guarantees that
(a) if a server delivers a message m then every server delivers m; (b) no two servers deliver any two
messages in different orders; and (c) if a server broadcasts message m and does not fail, then every
server eventually delivers m.

Each server has a full copy of the database. Servers execute transactions according to strict two-phase
locking (2PL)[3]. Transactions are sequences of read and write operations followed by a commit or an
abort operation. A transaction is called read-only if it does not contain any write operation; otherwise it
is called an update transaction.

The database workload is composed of a set of transactions T = {T1, T2, ...}. To account for the
computational resources needed to execute different transactions, each transaction Ti in the workload
can be assigned a weight wi. For example, simple transactions could have less weight than complex
transactions.

2.2 DBSM

The state-machine approach is a non-centralized replication technique [11]. Its key concept is that all
replicas receive and process the same sequence of requests in the same order. Consistency is guaranteed
if replicas behave deterministically, that is, when provided with the same input (e.g., a request) each
replica will produce the same output (e.g., state change).

The Database State Machine uses the state-machine approach to implement deferred update replica-
tion. Each transaction is executed locally on some server and during the execution there is no interaction
between replicas. Read-only transactions are committed locally. Update transactions are broadcast to all
replicas for certification. If the transaction passes certification, it is committed; otherwise it is aborted.
Certification ensures that the execution is one-copy serializable (1SR), that is, every concurrent execution
is equivalent to some serial execution of the same transactions using a single copy of the database.

4

At certification, the transaction’s readsets, writesets, and updates are broadcast to all replicas. The
readsets and the writesets identify the data items read and written by the transactions; they do not contain
the values read and written. The transaction’s updates can be its redo logs or the rows it modified and
created. All servers deliver the same transactions in the same order and certify the transactions determin-
istically. Notice that the DBSM does not require the execution of transactions to be deterministic; only
the certification test and the application of the transaction updates to the database are implemented as a
state machine.

Transactions pass through well-defined states while being processed. Transactions start in the exe-
cuting state, during which their read and write operations are performed. When the commit operation is
requested, the transaction passes to the committing state and remains in it until its fate is decided by the
database server; depending on the decision, the transaction passes to the committed or the aborted state.
The committed and the aborted states are final.

The DBSM has several advantages when compared to existing replication schemes. In contrast
to lazy replication techniques, the DBSM provides strong consistency (i.e., serializability) and fault
tolerance. When compared with primary-backup replication, it allows transaction execution to be done in
parallel on several replicas, which is ideal for workloads populated by a large number of non-conflicting
update transactions. By avoiding distributed locking used in synchronous replication, the DBSM scales
to a larger number of nodes. Finally, when compared to active replication, it allows better usage of
resources because each transaction is executed by a single node.

2.3 vDBSM

The DBSM depends on transaction readsets and writesets, needed for certification. Extracting read-
sets usually implies changing the database internals or parsing SQL statements outside the database;
extracting writesets is easier: writesets tend to be much smaller than readsets and can be obtained dur-
ing transaction processing (e.g., using triggers). In this work we explore alternative ways to implement
the DBSM model without requiring readsets and writesets, and present the Multiversion Database State
Machine, a replication protocol that can be implemented on top of any database that complies with the
GORDA API, but without requiring readsets and writesets.

The vDBSM assumes pre-defined, parameterized transactions. The particular data items accessed
by the transaction depend on the transactions type and the parameters provided by the application pro-
gram, when the transaction is instantiated. Predefined transactions are common in many current database
applications. By estimating the data items accessed by transactions before their execution, even if conser-
vatively, the replication protocol is spared from extracting readsets and writesets during the execution. In
the case of vDBSM, this has also resulted in a certification test simpler than the one used by the original
DBSM.

We denote the replica where Ti executes, its readset, and its writeset by server(Ti), readset(Ti),
and writeset(Ti), respectively. The vDBSM protocol works as follows:

1. We assign to each data item in the database a version number. Thus, besides storing a full copy of
the database, each replica Sk also has a vector Vk of version numbers. The current version of data
item dx at Sk is denoted by Vk[x].

2. Read-only or update transactions can execute on any replica.

3. During the execution, the versions of the data items read by an update transaction are collected.
We denote by V (Ti)[x] the version of each data item dx read by Ti. The versions of the data items
read by Ti are broadcast to all replicas together with its readset, writeset, and updates at commit
time. Ti’s updates are its SQL update statements.

5

4. Upon delivery, update transactions are certified. Transaction Ti passes certification if all data
items it read during its execution are still up-to-date at certification time. More formally, Ti passes
certification if the following condition holds:

∀dx ∈ readset(Ti) : Vk[x] = V (Ti)[x]

5. If Ti passes certification, its update SQL statements are submitted to the database, and the version
numbers of the data items it wrote are incremented. Replicas must ensure that transactions commit
in the same order.

We say that two transactions Ti and Tj conflict, denoted Ti ∼ Tj , if they access some common data
item, and one transaction reads the item and the other writes it. If Ti and Tj conflict and are executed
concurrently on different servers, certification may abort one of them. If they execute on the same replica,
however, the replica’s scheduler will order Ti and Tj appropriately, and thus, both can commit.

Therefore, if transactions with similar access patterns execute on the same server, the local replica’s
scheduler will serialize conflicting transactions and decrease the number of aborts. Based on the trans-
action types, their parameters and the conflict relation, we assign transactions to preferred servers.

The vDBSM ensures consistency (i.e., one-copy serializability) regardless of the server chosen for
the execution of a transaction. However, executing update transactions on their preferred servers can
reduce the number of certification aborts.

6

Chapter 3

Conflict-aware load balancing

Assigning transactions to preferred servers is an optimization problem. It consists in distributing the
transactions over the replicas S1, S2, ..., Sn. When assigning transactions to database servers, we aim to
(a) minimize the number of conflicting transactions in distinct replicas, and (b) maximize the parallelism
between transactions. These are opposite requirements. While the first can be satisfied by concentrat-
ing transactions on few database servers, the second is fulfilled by spreading transactions on multiple
replicas. In Sections 3.1 and 3.2, we present two greedy algorithms that assign transactions to preferred
servers. Each one prioritizes a different requirement.

Our load-balancing algorithms can be executed statically, before transactions are submitted to the
system, or dynamically, during transaction processing, for each transaction when it is submitted. Static
load balancing requires knowledge of the transaction types, the conflict relation, and the weight of trans-
actions. Dynamic load balancing further requires information about which transactions are in execution
on the servers.

3.1 Minimizing Conflicts First (MCF)

MCF attempts to minimize the number of conflicting transactions assigned to different replicas. The
algorithm initially tries to assign each transaction Ti in the workload to the replica containing conflicting
transactions with Ti. If more than one option exists, the algorithm strives to distribute the load among
the replicas equitably, maximizing parallelism.

1. Consider replicas S1, S2, ..., Sn. With an abuse of notation, we say that transaction Ti belongs to
St

k at time t, Ti ∈ St
k, if at time t Ti is assigned to execute on server Sk.

2. For each transaction Ti in the workload, to assign Ti to some server at time t execute step 3, if Ti

is an update transaction, or step 4, if Ti is a read-only transaction.

3. Let C(Ti, t) be the set of replicas containing transactions conflicting with Ti at time t, defined as
C(Ti, t) = {Sk | ∃Tj ∈ St

k such that Ti ∼ Tj}.

(a) If |C(Ti, t)| = 0 then assign Ti to the replica Sk with the lowest aggregated weight w(Sk, t)
at time t, where w(Sk, t) =

∑
Tj∈St

k
wj .

(b) If |C(Ti, t)| = 1, assign Ti to the replica in C(Ti, t).

(c) If |C(Ti, t)| > 1, then assign Ti to the replica in C(Ti, t) with the highest aggregated weight
of transactions conflicting with Ti; if several replicas in C(Ti, t) satisfy this condition, assign
Ti to any one of these.

7

More formally, let CTi(S
t
k) be the subset of St

k containing conflicting transactions with Ti

only: CTi(S
t
k) = {Tj | Tj ∈ St

k ∧ Tj ∼ Ti}. Assign Ti to the replica Sk in C(Ti, t) with the
greatest aggregated weight w(CTi(S

t
k)) =

∑
Tj∈CTi

(St
k) wj .

4. Assign read-only transaction Ti to the replica Sk with the lowest aggregated weight w(Sk, t) at
time t, where w(Sk, t) is defined as in step 3(a).

3.2 Maximizing Parallelism First (MPF)

MPF prioritizes parallelism between transactions. Consequently, it initially tries to assign transactions in
order to keep the servers’ load even. If more than one option exists, the algorithm attempts to minimize
conflicts. The load of a server is given by the aggregated weight of the transactions assigned to it at
some given time. To compare the load of two servers, we use factor f, 0 < f ≤ 1. We denote MPF
with a factor f as MPF f . Servers Si and Sj have similar load at time t if the following condition holds:
f ≤ w(Si, t)/w(Sj , t) ≤ 1 or f ≤ w(Sj , t)/w(Si, t) ≤ 1.

1. Consider replicas S1, S2, ..., Sn. To assign each transaction Ti in the workload to some server at
time t execute steps 2–4, if Ti is an update transaction, or step 5, if Ti is a read-only transaction.

2. Let W (t) = {Sk | w(Sk, t) ∗ f ≤ minl∈1..n w(Sl, t)} be the set of replicas with minimal load at
time t, where w(Sl, t) has been defined in step 3(a) in Section 3.1.

3. If |W (t)| = 1 then assign Ti to the replica in W (t).

4. If |W (t)| > 1 then let CW (Ti, t) be the set of replicas containing conflicting transactions with Ti

in W (t): CW (Ti, t) = {Sk | Sk ∈ W (t) and ∃Tj ∈ Sk such that Ti ∼ Tj}.

(a) If |CW (Ti, t)| = 0, assign Ti to the Sk in W (t) with the lowest aggregated weight w(Sk, t).

(b) If |CW (Ti, t)| = 1, assign Ti to the replica in CW (Ti, t).

(c) If |CW (Ti, t)|>1, assign Ti to the replica Sk in CW (Ti, t) with the highest aggregated weight
w(CTi(S

t
k)) counting only transactions conflicting with Ti, w(CTi(S

t
k)) is formally defined

in step 3 in Section 3.1; if several replicas in CW (Ti, t) satisfy this condition, assign Ti to
any one of these.

5. Assign read-only transaction Ti to the replica Sk with the lowest aggregated weight w(Sk, t) at
time t.

Notice that the MCF algorithm is a special case of MPF with a factor f = 0.

3.2.1 Static load balancing

A static load balancer executes MCF and MPF offline, considering each transaction in the workload at
a time in some order—for example, transactions can be considered in decreasing order of weight, or
according to some time distribution, if available. Since the assignments are pre-computed, during the
execution there is no need for the replicas to send feedback information to the load balancer. The main
drawback of this approach is that it can potentially make poor assignment decisions.

We now illustrate static load balancing of MCF and MPF. Consider a workload with 10 transactions,
T1, T2, ..., T10, running in a system with 4 replicas. Transactions with odd index conflict with transactions
with odd index; transactions with even index conflict with transactions with even index. Each transaction
Ti has weight w(Ti) = i.

8

By considering transactions in decreasing order of weight, MCF will assign transactions T10, T8, T6, T4,
and T2 to S1; T9, T7, T5, T3, and T1 to S2; and no transactions to S3 and S4. MPF 1 will assign T10, T3,
and T2 to S1; T9, T4, and T1 to S2; T8 and T5 to S3; and T7 and T6 to S4. MPF 0.8 will assign T10, T4,
and T2 to S1; T9 and T3 to S2; T8 and T6 to S3; and T7, T5, and T1 to S4.

MPF 1 creates a balanced assignment of transactions. The resulting scheme is such that w(S1) =
15, w(S2) = 14, w(S3) = 13, and w(S4) = 13. Conflicting transactions are assigned to all servers
however. MCF completely concentrates conflicting transactions on distinct servers, S1 and S2, but the
aggregated weight distribution is poor: w(S1) = 30, w(S2) = 25, w(S3) = 0, and w(S4) = 0, that is,
two replicas would be idle. MPF 0.8 is a compromise between the previous schemes. Even transactions
are assigned to S1 and S3, and odd transactions to S2 and S4. The aggregated weight is fairly balanced:
w(S1) = 16, w(S2) = 12, w(S3) = 14, and w(S4) = 13.

Dynamic load balancing
Dynamic load balancing can potentially outperform static load balancing by taking into account in-

formation about the execution of transactions when making assignment choices. Moreover, the approach
does not require any pre-processing since transactions are assigned to replicas on-the-fly, as they are
submitted. As a disadvantage, a dynamic scheme requires feedback from the replicas with information
about the execution of transactions. Receiving and analyzing this information may introduce overheads.
MCF and MPF can be implemented in a dynamic load balancer as follows: The load balancer keeps a
local data structure S[1..n] with information about the current assignment of transactions to each server.
Each transaction in the workload is considered at a time, when it is submitted by the client, and assigned
to a server according to MCF or MPF. When a replica Sk finishes the execution of a transaction Ti, com-
mitting or aborting it, Sk notifies the load balancer. Upon receiving the notification of termination from
Sk, the load balancer removes Ti from S[k].

3.3 Static vs. dynamic load balancing

A key difference between static and dynamic load balancing is that the former will only be effective if
transactions are pre-processed in a way that resembles the real execution. For example, assume that a
static assignment considers that all transactions are uniformly distributed over a period of time, but in
reality some transaction types only occur in the first half of the period and the other types in the second
half. Obviously, this is not an issue with dynamic load balancing.

Another aspect that distinguishes static and dynamic load balancing is membership changes, that is,
a new replica joins the system or an existent one leaves the system (e.g., due to a crash). Membership
changes invalidate the assignments of transactions to servers. Until MCF and MPF are updated with the
current membership, no transaction will be assigned to a new replica joining the system, for example.
Therefore, with static load balancing, the assignment of preferred servers has to be recalculated whenever
the membership changes. Notice that adapting to a new membership is done for performance, and not
consistency since the certification test of the vDBSM does not rely on transaction assignment information
to ensure one-copy serializability; the consistency of the system is always guaranteed, even though out
of date transaction assignment information is used.

Adjusting MCF and MPF to a new system membership using a dynamic load balancer is straight-
forward: as soon as the the new membership is known by the load balancer, it can update the number
of replicas in either MCF or MPF and start assigning transactions correctly. With static load balancing,
a new membership requires executing MCF or MPF again for the complete workload, which may take
some time. To speed up the calculation, transaction assignments for configurations with different num-
ber of “virtual replicas” can be done offline. Therefore, if one replica fails, the system switches to a
pre-calculated assignment with one replica less. Only the mapping between virtual replicas to real ones
has to be done online.

9

3.4 Preliminary performance evaluation

3.4.1 Analysis of the TPC-C benchmark

In this section we overview the TPC-C benchmark, show how it can be mapped to our transactional
model, and provide some preliminary results of vDBSM using MCF and MPF.

TPC-C is an industry standard benchmark for online transaction processing (OLTP) [12]. It repre-
sents a generic wholesale supplier workload. The benchmark’s database consists of a number of ware-
houses, each one composed of ten districts and maintaining a stock of 100000 items; each district serves
3000 customers. All the data is stored in a set of 9 relations: Warehouse, District, Customer, Item, Stock,
Orders, Order Line, New Order, and History.

TPC-C defines five transaction types: New Order, Payment, Delivery, Order Status and Stock Level.
Order Status and Stock Level are read-only transactions; the others are update transactions. Since only
update transactions count for conflicts—read-only transactions execute at preferred servers just to bal-
ance the load—there are only three update transaction types to consider: Delivery (D), Payment (P), and
New Order (NO). These three transaction types compose 92% of TPC-C workload.

In the following we define the workload of update transactions as:

T = {Di, Pijkm, NOijS | i, k ∈ 1..#WH;
j,m ∈ 1..10;
S ⊆ {1, ...,#WH}}

where #WH is the number of warehouses considered. Di stands for a Delivery transaction accessing
districts in warehouse i. Pijkm relates to a Payment transaction which reflects the payment and sales
statistics on the district j and warehouse i and updates the customer’s balance. In 15% of the cases, the
customer is chosen from a remote warehouse k and district m. Thus, for 85% of transactions of type
Pijkm: (k = i) ∧ (m = j). NOijS is a New Order transaction referring to a customer assigned to
warehouse i and district j. For an order to complete, some items must be chosen: 99% of the time the
item chosen is from the home warehouse i and 1% of the time from a remote warehouse. S is a set of
remote warehouses.

To assign a particular update transaction to a replica, we have to analyze the conflicts between trans-
action types. Our analysis is based on the warehouse and district numbers only. For example, New Order
and Payment transactions might conflict if they operate on the same warehouse. We define the conflict
relation ∼ between transaction types as follows:

∼ = {(Di, Dx) | (x = i)} ∪
{(Di, Pxykm) | (k = i)} ∪
{(Di, NOxyS) | (x = i) ∨ (i ∈ S)} ∪
{(Pijkm, Pxyzq) | (x = i) ∨ ((z = k) ∧ (q = m))} ∪
{(NOijS , NOxyZ) |
((x = i) ∧ (y = j)) ∨ (S ∩ Z 6= ∅)} ∪
{(NOijS , Pxyzq) | (x = i) ∨ ((z = i) ∧ (q = j))}

For example, two Delivery transactions conflict if they access the same warehouse.
Notice that we do not have to consider every transaction that may happen in the workload in order to

define the conflict relation between transactions. Only the transaction types and how they relate to each
other should be taken into account. To keep our characterization simple, we will assume that the weights
associated with the workload represent the frequency in which transactions of some type may occur in a
run of the benchmark.

We are interested in the system’s load distribution and the number of conflicting transactions execut-
ing on different replicas. To measure the load, we use the aggregated weight of all transactions assigned
to each replica. To measure the conflicts, we use the overlapping ratio OR(Si, Sj) between database
servers Si and Sj , defined as the ratio between the aggregated weight of update transactions assigned to

10

Random MCF MPF(f=0.1)
0

10

20

30

40

50

60

70

80

90

100

T
ra

n
s
a
c
ti

o
n

s
 (

%
)

Figure 3.1: Load distribution over 8 replicas

Si that conflict with update transactions assigned to Sj , and the aggregated weight of all update transac-
tions assigned to Si. For example, consider that T1, T2, and T3 are assigned to Si, and T4, T5, T6, and T7

are assigned to Sj . T1 conflicts with T4, and T2 conflicts with T6. Then the overlapping ratio for these
replicas is calculated as OR(Si, Sj) = w(T1)+w(T2)

w(T1)+w(T2)+w(T3) and OR(Sj , Si) = w(T4)+w(T6)
w(T4)+w(T5)+w(T6)+w(T7) .

Notice that since our analysis here is static, the overlapping ratio gives a measure of “potential aborts";
real aborts will only happen if conflicting transactions are executed concurrently on different servers.
Clearly, a high risk of abort translates into more real aborts during the execution.

We have considered 4 warehouses (i.e., #WH = 4) and 8 database replicas in our static analysis. We
compared the results of MCF, MPF 1 and MPF 0.1 with a random assignment of transactions to replicas
(dubbed Random).

Random results in a fair load distribution (see Figure 3.1), but has very high overlapping ratio (see
Figure 3.2). MPF 1 (not shown in the graphs) behaves similarly to Random: it distributes the load
equitably over the replicas, but has high overlapping ratio.

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0

20

40

60

80

100

Replicas

Replicas

O
v

e
rl

a
p

p
in

g
 r

a
ti

o

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0

20

40

60

80

100

Replicas

Replicas

O
v

e
rl

a
p

p
in

g
 r

a
ti

o

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0

20

40

60

80

100

Replicas

Replicas

O
v

e
rl

a
p

p
in

g
 r

a
ti

o

(a) (b) (c)

Figure 3.2: Overlapping ratio, (a) Random (b) MCF (c) MPF 0.1

MCF minimizes significantly the number of conflicts, but update transactions are distributed over 4
replicas only; the other 4 replicas execute just read-only transactions (see Figure 3.1). This is a conse-
quence of TPC-C and the 4 warehouses considered. Even if more replicas were available, MCF would

11

still strive to minimize the overlapping ratio, assigning update transactions to only 4 replicas.
A compromise between maximizing parallelism and minimizing conflicts can be achieved by varying

the f factor of the MPF algorithm. With f = 0.1 the overlap ratio is much lower than Random (and
MPF 1), for example.

3.4.2 Prototype overview

We have implemented a preliminary prototype of the vDBSM in Java v.1.5.0 using both static and dy-
namic load balancing. Our intent at this point is to better understand the tradeoffs and bottlenecks of the
proposed protocols. Ongoing work is refining this prototype.

Client applications interact with the replicated compound by submitting SQL statements through a
customized JDBC-like interface. Application requests are sent directly to a database server, in case of
static load balancing, or first to the load balancer and then re-directed to a server. A replication module
in each server is responsible for executing transactions against the local database, and certifying and
applying them in case of commit. Every transaction received by the replication module is submitted to
the database through the standard JDBC interface.

On delivery the transaction is enqueued for certification. While transactions execute concurrently
in the database, their certification and possible commitment are sequential. The current versions of the
data items are kept in main memory to speed up the certification process; however, for persistency, every
row in the database is extended with a version number. If a transaction passes the certification test, its
updates are applied to the database and the versions of the data items written are incremented both in the
database, as part of the committing transaction, and in main memory.

To ensure that all replicas commit transactions in the same order, before applying Ti’s updates, the
server aborts every locally executing conflicting transaction Tj . To see why this is done, assume that Ti

and Tj write the same data item dx, each one executes on a different server, Ti is delivered first, and
both pass certification test. Tj already has a lock on dx at server(Tj), but Ti should update dx first. We
ensure correct commit order by aborting Tj on server(Tj) and re-executing its updates later. If Tj keeps
a read lock on dx, it is a doomed transaction, and in any case it would be aborted by the certification test
later.

In the case of static load balancing, the assignment of transactions to replicas is done by the repli-
cation modules and sent to the customized JDBC interface upon the first application connect. Therefore
when the application submits a transaction, it sends it directly to the replica responsible for that trans-
action type. The dynamic load balancer is interposed between the client applications and the replication
modules. The assignment of submitted transactions is computed on-the-fly based on currently executing
transactions. The load balancer keeps track of each transaction’s execution and completion status at the
replicas. Since all application requests are routed through the load balancer, no additional information
exchange is needed between replication modules and the load balancer. The load balancer does not need
to know when a transaction commits at each replica, but only at the replica where the transaction was
executed.

We perform worst case analysis concentrating only on update transactions for load balancing, i.e.
Stock Level and Order Status transactions are assigned randomly to the replicas for execution. We eval-
uated the algorithms varying the number of servers from 2 to 8. Each server stores a TPC-C database,
populated with data for 4 warehouses (≈ 400MB database). The workload is created by a full-fledged
implementation of TPC-C. According to TPC-C, each warehouse must support 10 emulated clients, thus
throughout the experiments the workload is submitted by 40 concurrent clients. TPC-C specifies that
between transactions, each client should have a mean think time between 5 and 12 seconds.

Experiments have two phases: the warm-up phase when the load is injected but no measurements
are taken, and the measurement phase when the data is collected.

12

3.4.3 Static vs. dynamic load balancing

Figure 3.3 shows the number of update transactions assigned to each server during executions of the
benchmark with a static load balancer and different scheduling techniques.

Random MCF MPF (f=1) MPF (f=0.1)

10

20

30

40

50

60

70

80

90

100

U
p

d
a

te
 t

ra
n

s
a

c
ti

o
n

s
 (

%
)

2servers

4servers

6servers

8servers

Figure 3.3: Real load distribution (static)

MCF and MPF 0.1 implemented with a static load balancer suffer from poor load distribution over
the replicas. MCF distributes transactions over four replicas only, even when more replicas are available.
MPF 0.1 achieves better load balancing than MCF with 6 and 8 replicas. Random and MPF 1 result in a
fair load distribution.

Figure 3.4 shows the achieved throughput of committed transactions versus the response time for
both static and dynamic load balancers. For each curve in both static and dynamic schemes the increased
throughput is obtained by adding replicas to the system. From both graphs, scheduling transactions
based mainly on replica load, MPF 1, results in slightly better throughput than Random, while keeping
the response time constant. Prioritizing conflicts has a more noticeable effect on load balancing. With
static and dynamic load balancing, MCF, which primarily takes conflicts into consideration, achieves
higher throughput, but at the expense of increased response times. A hybrid load-balancing technique,
such as MPF 0.1, which considers both conflicts between transactions and the load over the replicas,
improves transaction throughput and only slightly increases response times with respect to Random and
MPF 1.

Since in static load balancing MCF uses the same transaction assignment for 4, 6 and 8 replicas (see
Figure 3.3), the throughput does not increase by adding replicas, and that is why MCF in Figure 3.4 (a)
only contains two points, one for 2 replicas (2R) and another one for 4, 6 and 8 replicas (4R, 6R, 8R).
Static MCF strives to minimize conflicts between replicas and assigns transactions to the same 4 servers.
In this case, dynamic load balancing clearly outperforms the static one, since all available replicas are
used. Finally, the results also show that except for dynamic MPF 0.1, the system is overloaded with 2
servers.

3.4.4 Abort rate breakdown

In this section we consider the abort rate breakdown for both dynamic and static load balancing (see
Figure 3.5). There are three main reasons for a transaction to abort: (i) it fails the certification test, (ii) it
holds locks that conflict with a committing transaction (see Section 3.4.2), and (iii) it times out after
waiting for too long. Notice that aborts due to conflicts are similar in nature to certification aborts, in that
they both happen due to the lack of synchronization between transactions during the execution. Thus, a
transaction will never be involved in aborts of type (i) or (ii) due to another transaction executing on the
same replica.

13

125 130 135 140 145 150 155 160 165
100

150

200

250

300

350

400

450

500

Throughput (tpm)

R
e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

Random

MCF

MPF 1

MPF 0.12R

2R

2R 2R

4R

4R

4R

4R, 6R, 8R

6R

6R

6R

8R
8R

8R

125 130 135 140 145 150 155 160 165
100

150

200

250

300

350

400

450

500

Throughput (tpm)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

Random

MCF

MPF 1

MPF 0.1

2R

2R

2R2R

4R

4R

4R

4R

6R

6R

6R

6R 8R

8R

8R

8R

(a) (b)

Figure 3.4: Throughput vs. response time (a) static load balancing (b) dynamic load balancing

Random MPF (f=1) MPF (f=0.1) MCF
0

5

10

15

20

25

30

A
b

o
rt

 r
a
te

 (
%

)

Certification

Conflicts

Timeouts2R

2R

2R

2R

4R

4R

4R

4R

6R

6R

6R

6R

8R

8R

8R

8R

Random MPF (f=1) MPF (f=0.1) MCF
0

5

10

15

20

25

30

A
b

o
rt

 r
a

te
 (

%
)

Certification

Conflicts

Timeouts2R 4R

6R

8R

4R

4R

4R

6R

6R

6R

8R

8R

8R

2R

2R

2R

(a) (b)

Figure 3.5: Abort rates (a) static load balancing (b) dynamic load balancing

14

In both static and dynamic strategies with more than 2 replicas, Random and MPF 1 result in more
aborts than MCF and MPF 0.1. Random and MPF 1 lead to aborts due to conflicts and certification,
whereas aborts in MCF and MPF 0.1 are primarily caused by timeouts.

MCF reduces certification aborts from ≈ 20% to ≈ 3%. However, MCF, especially with a static load
balancer, results in many timeouts caused by conflicting transactions waiting for execution. MPF 0.1
with a static load balancer suffers mostly from unfair load distribution over the servers, while with a
dynamic load balancing MPF 0.1 is between MPF 1 and MCF: reduced certification aborts, if compared
to the former, and reduced timeouts, if compared to the latter. In the end, MCF and MPF 0.1 win because
local aborts introduce lower overhead in the system than certification aborts.

3.4.5 The impact of failures and reconfigurations

We now consider the impact of membership changes due to failures in the dynamic load-balancing
scheme. The scenario is that of a system with 4 replicas and one of them fails. Until the failure is
detected, the load balancer continues to schedule transactions (using MPF 1 in this case) to all repli-
cas, including the failed one. After 20 seconds, the time that it takes for the load balancer to detect the
failure, only the operational three replicas receive transactions. Figure 3.6 shows the replica’s failure im-

0 100 200 300 400 500 600

200

400

600

Time (sec)

T
h

ro
u

g
h

p
u

t
(t

p
m

)

failure of
one server

algorithm
reconfiguration

Figure 3.6: Algorithm reconfiguration

pact on committed transactions throughput with MPF 1. The solid horizontal line represents the average
throughput when 4 replicas are processing transactions before the failure, during the failure, and after the
failure is detected. The horizontal dashed line shows the average number of committed transactions per
one-minute intervals. The throughput decreases significantly during the failure, but after the failure is
detected, the load-balancing algorithm adapts to the system reconfiguration and the throughput improves.
However, only 3 replicas continue functioning, so the throughput is lower than the one with 4 replicas.
Our detection time of 20 seconds has been chosen to highlight the effects of failures. In practice smaller
timeout values would be more adequate.

15

Chapter 4

NOn-Disjoint conflict classes and
Optimistic multicast

This section presents a protocol introduced in [8]. The protocol’s goal is to achieve the generality of
a replication engine external to the database while still being able to exploit certain database specific
optimizations. That way, the authors combine the best of both approaches, kernel- and middleware-
based, to achieve generality and a wider flexibility in terms of performance and applications.

4.1 System model

The protocol assumes an asynchronous system extended with (possible unreliable) failure detectors in
which reliable multicast with strong virtual synchrony can be implemented. The system consists of a
group of sites N = {N1, N2, ...Nn}, also called nodes, which communicate by exchanging messages.
Sites only fail by crashing (Byzantine failures are excluded). There is at least one site that never crashes.
Each such site is denoted as an available site. Each site contains a middleware layer and a database layer.
The client submits its requests to the middleware layer which performs according operations on the
database. The middleware layer instances on the different sites communicate with each other for replica
control purposes. The database systems do not perform any communication. Sites are provided with a
group communication system supporting strong virtual synchrony. Strong virtual synchrony ensures that
messages are delivered in the same view (current connected and active sites) they were sent and that two
sites transiting to a new view have delivered the same set of messages in the previous view.

Additionally, the replication protocol requires an optimistic total order multicast protocol specially
tailored for transaction processing [6, 7, 10]. This optimistic multicast is defined by three primitives:

1. TO-Multicast(m) multicasts the message m to all the sites in the system;

2. OPT-deliver(m) delivers message m optimistically to the application with the same semantics as a
simple reliable multicast (no ordering guarantees);

3. TO-deliver(m) delivers m definitively to the application with the same semantics as a total order
uniform reliable multicast. That is, messages can be OPT-delivered in a different order at each
available site, but are TO-delivered in the same total order at all available sites. Furthermore, this
optimistic multicast primitive ensures that no site TO-delivers a message before OPT-delivering it.

A sequence of OPT-delivered messages is a tentative order. A sequence of TO-delivered messages is the
definitive order or total order.

Clients interact with the system middleware by issuing application-oriented functions. Each of these
functions is a pre-implemented application program consisting of several database operations. At the

16

time the request is submitted with a given set of parameters, both the set of operations to be executed,
and the data items to be accessed within these operations is known. Such execution model reflects quite
well the current use of application servers. Each application program is executed within the context of a
transaction.

The authors consider one-copy serializability as the system’s correctness criterion. To achieve global
serializability the concurrency control for update transactions is based on conflict classes. A basic conflict
class represents a partition of the data. How to partition the data is application dependent. In a simple
case, there could be a class per table. If the application is well structured, other granularities are possible.
Transactions accessing the same conflict class have a high probability of conflicts, as they can access the
same data, while transactions in different partitions do not conflict and can be executed concurrently.
Transaction can access a single basic conflict class or a compound conflict class. The authors denote as
CT T ’s conflict class (either basic or compound), and assume that CT is known in advance (as mentioned
above).

The middleware layer implements the above concurrency control. At each site there is a queue
associated to each basic conflict class. When a transaction is delivered to a site, it is added to the
queue(s) of the basic conflict class(es) it accesses. Each conflict class (basic or compound) has a master
site. Transaction T is local to the master site of its conflict class, and is remote to the rest of the sites.
Conflict classes are statically assigned to sites, but in case of failures, they are reassigned to different
sites.

4.2 NODO protocol

The client submits a transaction T to any site using uniform reliable multicast. Then optimistic multi-
cast is used to immediately forward the message to all the other sites. The idea is to start transaction
execution upon optimistic delivery, but to use the total order established by the total order delivery as
a guideline to serialize transactions. All sites see the same total order for update transactions. Thus, to
guarantee correctness, it suffices for a site to ensure that conflicting transactions are ordered according to
the definitive order. Since the execution order is not important for non-conflicting transactions, they can
be executed in different orders (or in parallel) at different sites.

When a transaction T is optimistic delivered at site N , it is added to the queues of all basic conflict
classes accessed by CT . Only the master site of CT executes T : whenever T is at the head of all of
its queues the transaction is submitted for execution. When a transaction T is total order delivered at
N , N checks whether the definitive and tentative orders agree. If they agree, T can be committed after
its execution has completed. If they do not agree, there are several cases to consider. The first one
is when the lack of agreement is on non-conflicting transactions. In that case, the ordering mismatch
can be ignored. If the mismatch is on conflicting transactions, there are two possible scenarios. If no
local transactions are involved, T can be simply rescheduled in the queues before the transactions that are
only optimistic delivered but not yet total order delivered (that is the queue is reordered to reflect the total
order determined by total order delivery). If local transactions are involved, the procedure is similar but
a local pending transaction T ′ that might already have started execution (it is the first in its queue), must
be aborted. Note that the algorithm does not wait to reschedule until the abort is complete but schedules
T immediately before T ′. Hence, T might be submitted to the database before T ′ has completed the
abort. However, since the database has its own concurrency control, we have the guarantee that T cannot
access any data item T ′ has written before T ′ undoes the change. An aborted transaction can only be
resubmitted for execution once the abort is complete. Once a transaction is total order delivered and
completely executed the local site multicasts the commit message including the writeset using simple,
reliable multicast.

Hence, the commit message can arrive to other sites before the transaction has been total order

17

delivered at that site. In that case, the definitive order is not yet known, and hence, the transaction
cannot commit at that site to prevent conflicting serialization orders. For this reason the processing of
the commit message at a remote site is delayed until the corresponding transaction has been total order
delivered at that site. Later, when the transaction has been total order delivered and it is at the head of its
queues, the writeset is applied to the database and the transaction committed. Read-only transactions are
only executed at the site they are submitted to.

In order for the middleware to send and apply writesets, the authors assume that the underlying
database provides two services. One to obtain the writeset of a transaction and another one to apply the
writeset. Executing local transactions and applying the updates of remote transactions must be controlled
such as to guarantee one-copy-serializability. In particular, transactions can execute concurrently if they
do not have any common basic conflict class, however, as soon as they share one basic conflict class
the execution of the two transactions will be serial according to their order in the corresponding queue.
Note that deadlocks cannot occur since a transaction is appended to all basic conflict classes it accesses
at transaction start.

18

Chapter 5

Sequoia

Sequoia [5] (former C-JDBC [4]) is an open-source solution for database clustering on a shared-nothing
architecture built with commodity hardware. Sequoia hides the complexity of the cluster and offers
a single database view to the application. The client application does not need to be modified and
transparently accesses a database cluster as if it was a centralized database. Sequoia works with any
database that provides a JDBC driver.

5.1 Functionality and key components

Sequoia provides a generic JDBC driver to be used by the clients. This driver forwards the SQL requests
to the Sequoia controller that balances them on a cluster of databases (reads are load balanced and writes
are broadcast).

The Sequoia controller is a regular Java application made of several components that implement the
logic of a RAIDb (Redundant Array of Inexpensive Databases). The controller exposes a single database
view, called a virtual database, to the JDBC driver and thus to the application. Multiple virtual databases
can be hosted by a controller. Each virtual database has its own request manager that defines its requests
scheduling, caching and load balancing. The database backends are accessed through their native JDBC
drivers.

The virtual database contains the following components:

• authentication manager: it matches the virtual database login/password (provided by the applica-
tion to the Sequoia driver) with the real login/password to use on each backend. The authentication
manager is only involved at connection establishment time.

• backup manager: manages a list of generic or database specific Backupers that are in charge of
performing database dump and restore operation. Backupers should also take care of transferring
dumps from one controller to another.

• request manager: it contains the core functionality of Sequoia controller, it handles the requests
coming from a connection with a Sequoia driver. The request manager is composed of several
components:

– scheduler: it is responsible for scheduling the requests. Each RAIDb level has its own sched-
uler.

– request caches: these are optional components that can cache query parsing, the result set
and result metadata of queries.

– load balancer: it balances the load on the underlying backends according to the chosen
RAIDb level configuration.

19

– recovery log: it handles checkpoints and allows backends to dynamically recover from a
failure or to be dynamically added to a running cluster.

• database backend: it represents the real database backend running the RDBMS engine. A connec-
tion manager mainly provides connection pooling on top of the database JDBC native driver.

When a request arrives from a Sequoia driver, it is routed to the request manager associated with the
virtual database. Begin transaction, commit and abort operations are sent to all backends. Reads are sent
to a single backend. Updates are sent to all backends where the affected tables reside. Depending on
whether full or partial replication is used this may be one, several or all database backends. All operations
are synchronous with respect to the client.

The request manager waits until it has received responses from all backends involved in the operation
before it returns a response to the client. If a backend executing an update, a commit or an abort fails,
it is disabled. In particular, Sequoia does not use a two-phase commit protocol. Instead, it provides
tools to automatically re-integrate failed backends into a virtual database (see 5.2). At any given time
only a single update, commit or abort is in progress on a particular virtual database. Multiple reads from
different transactions can be going on at the same time. Updates, commits and aborts are sent to all
backends in the same order.

Sequoia offers various load balancers according to the degree of replication the user wants. Full
replication is easy to handle. It does not require request parsing since every database backend can handle
any query. Database updates, however, need to be sent to all nodes, and performance suffers from the
need to broadcast updates when the number of backends increases. To address this problem, Sequoia
provides partial replication in which the user can define database replication on a per-table basis. Load
balancers supporting partial replication must parse the incoming queries and need to know the database
schema of each backend. The schema information is dynamically gathered. When a backend is enabled,
the appropriate methods are called on the JDBC database Metadata information of the backend native
driver. Database schemas can also be specified statically by using a configuration file. The schema is
updated dynamically on each create or drop SQL statement to accurately reflect each backend. Among
the backends that can treat a read request (all of them with full replication), one is selected according to
the load balancing algorithm. Currently implemented algorithms are round robin, weighted round robin
and least pending requests first (the request is sent to the node that has the least pending queries).

5.2 Fault tolerance and scalability

To allow a database backend to recover after a failure or bring new backends into the system Sequoia
uses checkpoints and recovery logs. A checkpoint of a virtual database can be performed at any point
in time. Checkpointing can be manually triggered by the administrator or automated based on temporal
rules. Taking a snapshot of a backend while the system is online requires disabling this backend so that
no updates occur on it during the backup. The other backends remain enabled to answer client requests.
The checkpoint procedure starts by inserting a checkpoint marker in the recovery log. Next, the database
content is dumped. Then, the updates that occurred during the dump are replayed from the recovery log
to the backend, starting at the checkpoint marker. Once all updates have been replayed, the backend is
enabled again.
A recovery log records a log entry for each begin transaction, commit, abort and update statement. A log
entry consists of the user identification, the transaction identifier and the SQL statement. The log can be
stored in a flat file, but also in a database using JDBC. A fault-tolerant log can then be created by sending
the log updates to a virtual Sequoia database with fault tolerance enabled.

To prevent the Sequoia controller from being a single point of failure, Sequoia provides controller
replication also called horizontal scalability. A virtual database can be replicated in several controllers

20

that can be added dynamically at runtime. Controllers need group communication middleware to syn-
chronize updates in a distributed way. By default, controller communication is implemented using the
Appia group communication library [1], although any jGCS compliant group communication protocol
[2] can be used. When a virtual database is loaded in a controller, a group name can be assigned to the
virtual database. This group name is used to communicate with other controllers hosting the same virtual
database. At initialization time, the controllers exchange their respective backend configurations. If a
controller fails, only the backend attached to it has to be resynchronized.

To support a large number of database backends, Sequoia also provides vertical scalability that en-
ables building a hierarchy of database backends. Furthermore, combinations of vertical and horizontal
scalability are also possible.

21

Bibliography

[1] Appia. http://appia.di.fc.ul.pt.

[2] jGCS. http://jgcs.sourceforge.net.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[4] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database clustering middleware.
In Proceedings of USENIX Annual Technical Conference, Freenix track, 2004.

[5] Continuent.org. Sequoia project. http://sequoia.continuent.org.

[6] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann. Using optimistic atomic broad-
cast in transaction processing systems. IEEE Transactions on Knowledge and Data Engineering,
15(4):1018–1032, July 2003.

[7] J. Mocito, A. Respicio, and L. Rodrigues. On statistically estimated optimistic delivery in wide-
area total order protocols. In Proceedings of the 12th IEEE International Symposium Pacific Rim
Dependable Computing, 2006.

[8] M. Patino-Martínez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Consistent Database Replication
at the Middleware Level. ACM Transactions on Computer Systems (TOCS), 2005.

[9] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. Journal of Dis-
tributed and Parallel Databases and Technology, 14:71–98, 2002.

[10] L. Rodrigues, J. Mocito, and N. Carvalho. From spontaneous total order to uniform total order:
different degrees of optimistic delivery. In Proceedings of the ACM Symposium on Applied Com-
puting, 2006.

[11] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4):299–319, 1990.

[12] Transaction Proccesing Performance Council (TPC). TPC benchmark C. Standard Specification,
2005. http://www.tpc.org/tpcc/spec/.

[13] V. Zuikeviciute and F. Pedone. Conflict-Aware Load-Balancing Techniques for Database
Replication. Technical Report 2006/01, University of Lugano, 2006. Available at
http://www.inf.unisi.ch/publications/pub.php?id=10.

22

