
Project no.004758

GORDA

Open Replication of Databases

Specific targeted Research Project

Software and Services

GORDA Wide-area protocols report

GORDA Deliverable D3.1

Due date of deliverable: 2006/03/31

Actual submission date: 2006/10/01

Start date of the project: 1 October 2004 Duration: 36 Months

University of Lugano

Contents

1 Scope 2

2 Snapshot Isolated Database State Machine 3

2.1 Readsets-free certification . 3

2.2 Snapshot Isolated DBSM . 4

3 The WICE protocol 6

3.1 System model . 6

3.2 The protocol . 7

3.3 Failure handling . 10

1

1 Scope

This document describes GORDA database replication protocols for wide area networks.

Since the amount of information shared among users worldwide grows, replication protocols

in wide area networks are more and more demanded. Unfortunately, scaling existing cluster

based replication protocols to wide area network is troublesome. Some key points to obtain

acceptable performance across wide area networks are to reduce communication overhead

as much as possible, to overlap execution with message delay, and to relax consistency

requirements.

Hereafter we present two protocols: in Section 2 we describe the Database State Machine

[11] replication with weaker consistency criterion – the Snapshot Isolated Database State

Machine; Section 3 presents WICE [7], a replication protocol targeted at multiple clusters

interconnected by wide area network.

2

2 Snapshot Isolated Database State Machine

Of particular relevance for the performance of the Database State Machine (DBSM) repli-

cation [11] is its dependency on transaction readsets needed for certification. First, if the

considered readset is larger than the set of tuples actually read by the transaction, spurious

aborts may arise; if the readset does not contain the tuples actually read, then serializability

may be compromised. Second, in the DBSM the size of readset may have a serious impact

on the network bandwidth.

If weaker consistency criterion is considered (snapshot isolation), the protocol could be sim-

plified. For example, to satisfy snapshot isolation, certification does not need to check for

read-write conflicts and thus the transaction readsets are not required. Therefore the proto-

col can be simplified by not propagating the readsets and using a simpler certification test.

Such an alternative has also a benign impact on the performance of DBSM, since it reduces

the number of aborted transactions [8].

2.1 Readsets-free certification

The basic idea of the DBSM remains the same: read-only transactions are processed locally

at some database replica; update transactions do not require any synchronization between

replicas until commit time. During commit the outcome of update transactions execution

is broadcast to all the replicas for certification. To ensure that each replica converges to

the same state, each server has to reach the same decision when certifying transactions and

guarantee that conflicting transactions are applied to the database in the same order. These

requirements are enforced by an atomic broadcast primitive and a deterministic certifica-

tion test. In contrast to the original DBSM, transactions are executed locally under the

multi-version concurrency control (e.g., snapshot isolation) and when an update transaction

requests a commit, only its updates and writesets are broadcast to the other sites. Cer-

tification checks whether the writesets of concurrent transactions intersect; if they do, the

transaction is aborted. Transaction ti passes certification at the replica site si if the following

condition holds:

3

 ∀tj committed at si :

tj → ti ∨ (writesets(tj) ∩ writesets(ti) = ∅)

where → is a precedence relation between transactions ti and tj. If ti and tj execute on

the same replica si, then tj → ti only if tj enters the committing state at si before ti enters

the committing state at si. If ti and tj execute on different replicas si and sj, respectivelly,

then tj → ti only if tj is committed at si before ti enters the committing state at si [11].

2.2 Snapshot Isolated DBSM

Snapshot isolation (SI) is a multi-version concurrency control algorithm introduced in [6].

SI does not provide serializability, but is still attractive and used in commercial and open-

source database engines, such as Oracle and PostgreSQL. Under SI a transaction ti sees the

database state produced by all the transactions that committed before ti started. Thus, if

ti and tj are concurrent, neither will see the effects of the other. According to the first-

committer-wins rule, ti will successfully commit only if no other concurrent transaction tj

that has already committed writes to data items that ti intends to write.

Although specific workloads will not be serializable under SI, such cases seem to be rare in

practice. Fairly complex transaction mixes, such as the TPC-C benchmark, are serializable

under SI. Moreover, there are different ways to achieve serializability from SI [1, 2].

In Snapshot Isolated DBSM transactions executing in the same database replica are

snapshot isolated. Are global transactions also snapshot isolated? It turns out that the

answer to this question is yes. First, notice that any two concurrent transactions executing

at different replicas are isolated from one another in the Snapshot Isolated DBSM: one

transaction does not see any changes performed by the other (before commit). Second, the

Snapshot Isolated DBSM’s certification test provides the first-committer-wins behavior of

SI since the first transaction to be delivered for certification commits and later transactions

abort.

A similar approach to Snapshot Isolated DBSM is taken in [9]. The authors propose

SI-Rep - a hybrid, update everywhere replication protocol. Transactions are first executed

at a local database replica providing SI. At the end of the execution the updated records

are extracted. After retrieving the writesets, SI-Rep performs a validation to check for

4

write/write conflicts with transactions that executed at other replicas and have already

validated. If validation succeeds, the transaction commits at the local replica and the writeset

is applied at the remote replicas in a lazy fashion. The proposed protocol is evaluated in a

local area network.

5

3 The WICE protocol

WICE is a database replication protocol based on group communication that targets inter-

connected clusters [7]. In contrast with previous proposals, it uses a separate multicast group

for each cluster and thus does not impose any additional requirements on group communi-

cation, easing implementation and deployment in a real setting. Nonetheless, the protocol

ensures one-copy equivalence while allowing all sites to execute update transactions.

3.1 System model

The database is a collection of named data items which have values [10]. The combined

values of the data items at any given moment is the database state. No assumptions are

made on the granularity of data items.

A database site is modeled as a sequential process. In detail, the execution of each site is

modeled as a sequence of steps that may change the site’s state. Namely, the database state

is manipulated by executing read(x) and write(x) steps, where x represents a database

tuple. A transaction is a sequence of read and write operations followed by a commit(t) or

abort(t) operation. Each site contains a complete copy of the database and is responsible

for ensuring local concurrency control.

The database sites communicate through a fully connected network. Both computation

and communication are asynchronous. Sites may fail only by crashing and do not recover,

thus stopping to execute database operations, or send or deliver further messages.

Database sites are organized in clusters. Within a cluster we assume a primary component

group membership service that provides current and consistent views of the sites believed

to be up [4]. The failure of an entire cluster is reliably detected at the other sites. Among

sites within the same cluster, a group communication toolkit is available providing reliable

point-to-point communication and FIFO uniform view-synchronous multicast [4]. Among

clusters, messages are exchanged through a point-to-point FIFO reliable channel.

6

3.2 The protocol

The WICE protocol adopts an optimistic concurrency control policy. Transactions are ex-

ecuted optimistically at any site and then, just before commit, certified against concurrent

transactions. WICE borrows from protocols such as Postgres-R [3] and DBSM [11] often

called certification based protocols. These protocols share two fundamental characteristics:

(1) each database site is assumed to store the whole database and transactions can be ex-

ecuted at any site, and (2) all update transactions are certified and, if valid, committed in

the same order at all sites.

This total order allows the use of a simple optimistic certification procedure to pro-

vide one-copy serializability (1-SR). As discussed in [5] and [12], we can gain scalability in

multi-version database systems if we instead apply one-copy snapshot isolation (1-SI). The

certification procedure is the same, but read-operations are never considered as each trans-

action T is assumed to read from a snapshot defined by all committed transaction when T

entered execution[6].

The fundamental difference between the three protocols is when and where the certifi-

cation is performed. Both Postgres-R and DBSM use a total order broadcast primitive and

certify each transaction once the totally ordered message is delivered. In Postgres-R, each

transaction is certified at the site that executed it and the outcome of the certification is then

sent to all the other sites. In the DBSM, the read and write sets of the transaction are sent

to all sites allowing the certification to be carried at all sites avoiding the last communication

step of Postgres-R.

WICE does not make use of a total order primitive, instead ordering is explicitly im-

plemented by the protocol. In WICE, one of the sites plays the role of certifier, it totally

orders and certifies all transactions. Each valid transaction is then broadcast together with

its commit order and updates. This allows to leverage the knowledge about the system’s

topology and make optimizations that would not be possible otherwise.

In a nutshell, the protocol handles transactions as follows. Consider a system consisting

of two clusters A and B. Each cluster has a designated delegate responsible for handling the

communication with the other cluster. The delegate of cluster A, site s2 is also responsible

for certifying all executed transactions. When an update transaction T is submitted to site

7

s1 (T ’s initiator), it is readily executed and sent to the certifier. If it succeeds, then the

certifier propagates T ’s updates and commit order, both locally and to cluster’s B delegate.

The latter, in turn, propagates T locally. Once a delegate is certain that all sites in its

cluster delivered T ’s data it acknowledges the fact to the other cluster’s delegate. This

acknowledgement is multicast locally by each delegate. Once a database site knows T ’s data

has been delivered everywhere and all previous transactions had been committed, then it

commits T . The initiator of T can then reply to its client.

The detailed protocol algorithm is presented in Figure 1. It is composed of a set of

handlers that deal with events triggered by the database engine (“Events at the initiator”

and “Transaction commit”) and with message delivery. We assume that every database site

knows the current system’s certifier through a function certifier(). The local concurrency

control strategy of a given site, which is either snapshot isolation (SI) or strict two-phase

locking (S2PL), is given by the function localCC(). Each cluster delegate can find the

other participating clusters through a function remoteClusters() as well as identifying some

delegate’s cluster through function cluster(). Further, the function delegate() is used to

determine whether the current site is the delegate of its cluster or not.

Global site variables Each database site manages four sets containing transactions known

to be certified, locally updated, locally commited and remotely stable. It keeps track of the

number of locally executed transactions in variable lts. The certifier keeps track of the

number of certified transactions in variable gts.

Events at the initiator Before a transaction tid executes its first operation, the onExecut-

ing handler is invoked. The version of the database seen by tid is required for the validation

procedure, and for sites running snapshot isolation, this is equal to the number of committed

transactions when tid begins execution. For sites using two-phase locking, the version must

instead be recorded at the end of the execution, i.e. in the onCommitting-handler.

If the transaction at any time aborts locally, onAborting() is invoked and the transac-

tion is simply forgotten by the protocol. On the contrary, if tid succeeds execution then

onCommitting() is invoked. If local consistency is S2PL, the database version is recorded

here. Then, tid’s read set, write set and written values (rs, ws and wv) provided by the

8

database are reliably sent to the certifier along with the version of the database on which the

transaction executed. The transaction’s execution is left suspended until it is certified and

its outcome known. If tid ends up committing then continueCommitting(tid) will be called,

otherwise the initiator receives an (ABORT, tid) message from the certifier and forces the

transaction to abort locally.

Certification Upon delivering an update transaction to certify — (CERTIFY, tid, ts, rs,

ws, wv) — from some initiator site the certifier performs the certification of tid against its

concurrent transactions. For every certified transaction (but not necessarily committed yet)

ctid with timestamp equal or greater than tid’s, a certification function is called with ctid’s

write set and tid’s read and write sets. When preserving 1-SR the certification function

checks tid’s read and write sets against ctid’s write set. If 1-SI is the adopted consistency

criterion then only the write sets of both transactions are compared. In both cases, if there

is a non empty intersection then the certification fails and an abort message is sent back to

tid’s initiator.

When tid’s passes the certification test then the certifier’s sequence number is incremented

and tid added to its set of certified transactions. The transaction’s id, commit order, write

set and written values are then sent to all other replicas. Locally, tid is sent using the

FIFO uniform view-synchronous multicast primitive as a (UPDATE LOC, tid, gts, ws, wv)

message. Remotely, it is sent using the FIFO reliable point-to-point primitive to each remote

cluster as a (UPDATE REM, tid, gts, ws, wv) message.

Remote delivery of updates Once a cluster delegate delivers a transaction from the

certifier it simply forwards the message to the local replicas using the FIFO uniform view-

synchronous multicast primitive.

Local delivery of updates When a replica delivers a transaction tid it signals the fact

adding it to its set of updated transactions. The use of a uniform primitive ensures that

once the transaction is delivered at the current replica it is eventually delivered at all non

faulty replicas in the cluster. Therefore, if the replica is a cluster delegate it acknowledges

the fact that tid became stable at the cluster to all clusters. The just delivered updates are

9

applied. If the replica is the tid’s initiator then it just needs to proceed with continueCom-

mitting(tid). Although tid does not hold high priority locks at the initiator, the fact that it

passed certification means that between its execution and the given commit order, no other

certified transaction conflicted with it, and consequently, tid will not be aborted by another

transaction requesting high-priority locks at tid’s initiator. For all other sites, db update is

invoked.

Delivery of remote acks Each time a delegate delivers a stability acknowledgment for

transaction tid from some cluster, the pair (tid, cluster) is added to its acks set. When tid has

been acknowledged by all remote clusters, then the delegate locally declares the transaction

remotely stable using the (non- uniform) view-synchronous multicast primitive — (STA-

BLE REM, tid). When this message is delivered each replica adds tid to its remotestable

set.

Transaction commit Here, each site handles the onCommitted callback. When onCom-

mitted (tid) is invoked the site just increments its local database version lts and adds tid to

its committed set. Since all tid locks have been released then any new transaction can read

from tid and therefore from a more recent version of the database. When tid is known to be

commited locally and stable everywhere the database is then allowed to reply to the client,

which happens after continueCommitted(tid).

3.3 Failure handling

The WICE algorithm tolerates both the failure of single database sites as well as the failure

of whole clusters. Locally, each cluster is governed by a group membership service and

local communication rests on view-synchronous multicast primitives. This definitely eases

failure handling locally. In the event of a site been expelled from the group (because it was

taken down, has fail, became unreachable, etc.) every other site in the group eventually

becomes aware of the fact by installing a new view of the group. This allows each site

to deterministically determine the cluster’s delegate should the former failed. Moreover,

view-synchrony ensures that all sites surviving the previous view delivered the same set of

10

Global site variables
local = ts = []1
certified = updated = ()2
commited = remotestable = acks =3
{}
gts = lts = 04

Events at the initator
upon onExecuting(tid)5

if localCC() == SI then6
local[tid]=lts7

continueExecuting(tid)8

end9

upon onComitting(tid, rs, ws, wv,10
type)

if localCC() == S2PL then11
local[tid]=lts12

rsend(CERTIFY, tid, local[tid],13
rs, ws, wv) to certifier()

end14

upon onAborting(tid)15
continueAborting(tid)16

end17

upon rdeliver(ABORT, tid) from i18
db abort(tid)19

end20

(1) Certification
upon rdeliver(CERTIFY, tid, ts, rs,21
ws, wv) from initiator

foreach (ctid, cts, cws, cwv) in22
certified do

if cts ≥ ts and23
!certification(cws, rs, ws)

then

r send(ABORT, tid)24
to initiator

return25

gts = gts + 126
enqueue (tid, gts, ws, wv) to27
certified

fifo u vscast(UPDATE LOC,28
tid, gts, ws, wv)

foreach cluster in29
remoteClusters() do

fifo r send(UPDATE REM,30
tid, gts, ws, wv) to cluster

end31

(2) Remote delivery of updates
upon fifo r deliver(UPDATE REM,32
tid, ts, ws, wv) from certifier

fifo u vscast(UPDATE LOC,33
tid, ts, ws, wv)

end34

(3) Local delivery of updates
upon fifo u vsdeliver(UPDATE LOC,35
tid, ts, ws, wv)

ts[tid] = ts36
enqueue (tid, ts, ws, wv) to37
updated

if delegate() then38
foreach cluster in39
remoteClusters() do

r send(ACK REM,40
tid) to cluster

if local[tid] then41
continueCommitting(tid)42

else43
db update(tid, ws, wv)44

end45

(4 and 5) Delivery of remote acks
upon r deliver(ACK REM, tid) from46
cluster

acked = {}47
add (tid, cluster) to acks48
foreach (tid, c) in acks do49

add c to acked50
if remoteClusters() ⊆ acked51
then

u vscast(STABLE REM,52
tid)

end53

upon vsdeliver(STABLE REM, tid)54
add (tid) to remotestable55

end56

Transaction commit
upon onCommitted(tid) and ts[tid] =57
lts + 1

lts = lts + 158
add tid to commited59

end60

upon (tid) in commited and (tid) in61
remotestable

continueCommitted(tid)62
end63

Figure 1: WICE protocol

messages, thus not requiring any synchronization among them. As a result, no particular

procedure is required on the failure or an ordinary site.

The detailed algorithms for the cluster’s delegate and certifier failover are presented in

[7]. In short, on a view change when the delegate fails, site d becomes aware it is the new

cluster’s delegate. To ensure that no transactions are blocked, d must rerun all transaction

updates and acknowledgements received from remote clusters that may have been incom-

11

pletely processed by the previous delegate. The most serious single server failure is when the

current system’s certifier becomes unavailable. When initialized, the new certifier advertises

itself to all delegates. There may be previously certified transactions not yet known to new

certifier so a state synchronization is due.

The WICE protocol shall tolerate situations where multiple servers or entire clusters can

fail abruptly. Most failure scenarios can be handled using a combination of the procedure

for single servers. To avoid blocking during synchronization, we assume that all running

synchronization routines are restarted if a delegate fails. The only scenario which requires

special treatment is the loss of an entire cluster. In that case, the other clusters must be

informed as soon as possible to allow blocking current and future transactions to become

stable.

12

References

[1] A.Fekete. Serialisability and snapshot isolation. In Proceedings of the Australian

Database Conference, Auckland, New Zealand, January 1999.

[2] A.Fekete, D.Liarokapis, E.O’Neil, P.O’Neil, and D.Shasha. Making snapshot isolation

serializable. ACM Transactions on Database Systems, 2005.

[3] B.Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new way to

implement database replication. In Proceedings of the 26th International Conference on

Very Large Data Bases, 2000.

[4] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a

comprehensive study. ACM Computing Surveys, 2001.

[5] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication using generalized

snapshot isolation. In Proceedings of the 24th IEEE Symposium on Reliable Distributed

Systems, 2005.

[6] H.Berenson, P.Bernstein, J.Gray, J.Melton, E. O’Neil, and P.O’Neil. A critique of ANSI

SQL isolation levels. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, 1995.

[7] J.Grov, L.Soares, A.Correia Jr., J.Pereira, R. Oliveira, and F. Pedone. A pragmatic

protocol for database replication in interconnected clusters. In Proceedings of IEEE

International Symposium on Pacific Rim Dependable Computing, 2006.

[8] A. Correia Jr., A. Sousa, L. Soares, J. Pereira, R. Oliveira, and F. Moura. Group-

based replication of on-line transaction processing servers. In Proceedings of Dependable

Computing: Second Latin-American Symposium (LADC’05), 2005.

[9] Y. Lin, B. Kemme, M. Patino-Mart́ınez, and R. Jiménez-Peris. Middleware based data

replication providing snapshot isolation. In Proceedings of the 2005 ACM SIGMOD

International Conference on Management of Data, 2005.

13

[10] P.Bernstein, V.Hadzilacos, and N.Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, 1987.

[11] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. Journal

of Distributed and Parallel Databases and Technology, 14:71–98, 2002.

[12] S. Wu and B. Kemme. Postgres-R(SI):combining replica control with concurrency con-

trol based on snapshot isolation. In Proceedings of the IEEE International Conference

on Data Engineering, 2005.

14

