

Project no. 004758

GORDA

Open Replication Of Databases

Specific Targeted Research Project

Software and Services

GORDA Interfaces Definition
GORDA Deliverable 2.3

Due date of deliverable: 2006/03/31
Actual submission date: 2006/04/24

Start date of project: 1 October 2004 Duration: 36 Months

Fundação da Faculdade de Ciências da Universidade de Lisboa

 Revision 1.0

Project co-funded by the European Commission within the Sixth Framework

Programme (2002-2006)
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Contents
1 Scope .. 3

2 Assumptions and Approach... 4

2.1 Database architecture ... 4
2.2 Relevant standards ... 5

2.3 Design principles.. 5
3 Programming Interfaces .. 6

3.1 Client Interfaces ... 6
3.2 Database Interfaces .. 6

3.3 Recovery interfaces .. 18
3.4 Management interfaces... 19

3.5 Group communication interfaces .. 23
3.6 Support for View Synchrony and Extended View Synchrony 26

3.7 Support for Optimistic and Semantic Protocols... 27
3.8 Threading... 28

4 Use cases .. 29
4.1 Asynchronous replication ... 29

4.2 Synchronous replication ... 30
4.3 Replicas recovery ... 30

4.4 Managing Replicas... 31
4.5 Group communication.. 34

1 Scope
This document describes the GORDA Programming Interface (GPI), which enables
independent development of database management systems (DBMS) and database
replication systems.
The GPI provides the means for efficiently intercepting, observing, and modifying
transaction processing in a DBMS independent fashion. Generic interfaces for
management and communication are also provided, respectively, to support autonomic
management and group communication.
In detail, this document is structured as follows:

• Section 2 summarizes concepts and assumptions, referring to available standards
where appropriate.

• Section Error! Reference source not found. describes GORDA Programming
Interfaces exhibited by each component.

• Section 4 illustrates the usefulness of the GPI by showing how it can be used to
implement various replication protocols.

This document does not include information on database management systems,
communication protocols, or tools themselves and how these meet the proposed
interfaces.
A rendering of these interfaces in the Java programming language and detailed
documentation is provided in the companion document “GORDA PI in Java – D2.3
Annex” for reference.

2 Assumptions and Approach

2.1 Database architecture

Figure 1 - Generic database replication architecture

The GORDA replication architecture is shown in the Figure 1 and builds on the following
main components:

• The Application, which might be the end-user application or a tier in a multi-
tiered application.

• The Driver provides a standard call-level interface (CLI) for the application and
remotely accesses the database itself using a communication mechanism. The
communication protocol is hidden from the application and can be proprietary.

• The DBMS holds the database content and handles remote requests expressed in
standard SQL to query and modify data.

• Management tools are able to control the Driver and DBMS components
independently from the Application using a mixture of standard and proprietary
interfaces.

• The reflector provides the means for intercepting, observing and modifying
transaction processing by exposing the path through which a transaction passes.

• The replicator captures events associated to a transaction processing (e.g, begin,
commit, updates, statements being processed) in a database by using the reflector,
propagates them among other databases and also by means of the reflector applies
the events remotely captured. In order to receive such events, the replicator
registers callbacks in the reflector.

• The group communication is the transport mechanism used to send events among
databases.

Further assumptions on these systems are that:

• The call-level interface and SQL should not be changed, and cannot be changed at
all in a backward incompatible manner.

• Some DBMS implementations can be modified in a backward compatible
manner, but some others cannot be modified at all.

• The remote database access protocol should not be changed to maintain
compatibility with third party tools.

• The driver can easily be changed with minor impact.
This simple architecture can easily be mapped to a Java system, using JDBC as the call-
level interface and driver specification, any remote database access protocol encapsulated
by the driver and a DBMS, and an external configuration tool for the JDBC driver.

2.2 Relevant standards
The GORDA Programming Interface (GPI) is based on existing data management
standards. Namely:

• ISO/IEC 9075-3:1995 - Call Level Interface (SQL/CLI) and X/Open XA
Distributed Transaction Processing (DTP) specify client interfaces.

The rendering of interfaces in the Java language is therefore based on existing
implementations of such standards in the Java platform, in particular, in Java Enterprise
Edition (JEE).

2.3 Design principles
The design of the GORDA Programming Interfaces stands on the following general
principles:

• Independence of operation and configuration (Inversion of Control pattern). All
configuration interfaces are assumed to be out of the scope of the present
specification. Configuration of components and relevant parameters is available
by means of an embedded directory service and the factory design pattern.

• Variable geometry interfaces. Each implementer is free to provide only a subset
of the whole GPI that is adequate for each situation. Each component should
therefore explicitly state requirements and check for the availability of all
requirements. This is however part of configuration and thus out of the scope of
this specification.

Facade interfaces that allow manipulation of the internal state of the DBMS without
forward and backward format conversions. Conversion to a DBMS independent
representation is achieved by adding an optional layer on basic interfaces.

3 Programming Interfaces

GORDA Programming Interfaces are provided for each of the components of GORDA
Architecture in order to allow reusable components. Although these interfaces are
presented as a call-level interface, they can be implemented as a remote invocation and in
a variety of languages by selecting an appropriate interoperability standard such as
CORBA.

3.1 Client Interfaces
Client interfaces allow applications to query and modify replication metadata through the
standard call-level and SQL interfaces. However, it is out of the scope of this document
to define metadata regarding replication.

3.2 Database Interfaces
Database interfaces provided by GORDA allows replication components to inspect and
modify transaction processing. Figure 2 maps such interfaces to the execution flow of a
transaction and Figure 3 to Figure 11 present in detail each interface.

Figure 2 – Transaction processing model

The context layers provide the means to uniquely identify the events exposed by the
interfaces. There are five distinct contexts that together form a hierarchy:

• Dbms Context: identifies the database management system.

• Database Context: identifies a database with its users, tables, triggers, etc. The
Dbms has at least one Database.

• Connection Context: identifies a user accessing a database and multiple users
may access a Database simultaneously.

• Transaction: Groups a set of requests sent by a user into a logical unit that can be
committed or aborted. It should be created together with the first Request sent by
a user.

• Request: identifies a request sent by a user in the context of a Transaction.

Requests sent by a user are processed by the abstract pipeline presented in Figure 2. The
StatementProcessor allows replication components to intercept a request before it is
parsed. The other stages work as follows. The ParsedStatementProcessor intercepts a
parsed statement before it is optimized. The ExecutionPlanProcessor intercepts a
optimized execution plan before it is executed. The ObjectSetProcessor intercepts read
and written information. The LoggerObjectSetProcessor intercepts only written
information right before it is ready to be flushed to disk.

Interfaces in each context and pipeline have three basic elements: processors, events and
listeners. Processors are used to register callbacks and provides methods to continue or
cancel executions associated with events. Listeners defines the callbacks methods. While
registering listeners, it is possible to define if a database should proceed in parallel
without waiting that a listener handles an event (i.e., wait equals true) or not (i.e., wait
equals false). This configuration information is available through this interface, instead of
being delegated to a directory service, as it has direct impact on the ability to handle
events.

Figure 3 – Dbms Context

The Dbms context is built on the set of interfaces depicted in Figure 3. The
DbmsProcessor enables the replication component to register callbacks for the startup
and shutdown events. While handling the startup event, the replication component is
enabled to continue or cancel it. Dbms interface provides access to an id, meta
information, processor interface and to all databases available.

Figure 4 – Database Context

The Database context is depicted in Figure 4. It is quite similar to the Dbms, but there are
important differences that should be described. The Database context defines meta
information based on the DatabaseMetadata from the java.sql package. This meta
information should be used to configure the replication component and should provide
whatever information it is necessary. However, the information available is
implementation dependent. This context also enables access to all connections available.
It has the ability through the DatabaseProcessor to put a database in a panic state. The
panic method should be used if a database for some reason becomes inconsistent. For
instance, if a remote update fails the panic method should be called in order to avoid that
unprivileged users have access to the database defining that it should only be accessed by
an administrator in order to fix problems. It allows the replication component by means
of the addIgnoreDatabase to define if its events should be notified or not.

Figure 5 – Connection Context

The Connection context is depicted in Figure 5. It is used to catch startup and shutdown
events associated to a connection. Regarding this context, it is worth mentioning its
ability to cancel connections through the ConnectionProcessor interface. For instance, it
could be possible to inspect and cancel connection events from specific users (e.g., non-
administrator users) while other users are allowed to proceed (e.g., administrator users). It
also provides the ability to identify which connections should not generate events by
using the addIgnoreConnection method. This is particular interesting when one needs to
execute queries and updates from the replication component and does not want that such
events are capture by the interface.

Figure 6 – Transaction Context

The Transaction context groups requests from a single-threaded user application. It is
depicted in Figure 6. Similar to previous contexts, it provides the ability to disregard
events, in this case, events associated to a transaction. It allows to define callbacks on a
begin transaction, commit and rollback. If a coordinated transaction is executed (e.g.,
2PC or 3PC), it is also possible to defines call backs on a prepare transaction, commit
prepared or rollback prepared. To handle save points, it provides the getTransaction
method available which returns the outer-transaction if there is one.

Figure 7 – Request Context

The Request context is depicted in Figure 7 and it may have several statements. This
context provides a simple way to identify each request sent by a user in the context of a
transaction.

Figure 8 – Statement Phase

Figure 8 depicts the first stage of the pipeline. It intercepts single statements and allows
one to inspect and modify them. If a request has several statements, the
StatementProcessor sends a notification for each statement.

Figure 9 – Parsed Statement Phase

When a statement is parsed, this information is exposed by the second stage of the
pipeline which is depicted in Figure 9. By using this interface it is possible to identify and
modify parameters in a statement that could be changed during an execution. For
instance, if a cached plan or an ordinary parse-statement is about to be processed, it

would be possible to redefine input parameters in order to guarantee determinism. This
interface is similar to the PrepareStatement provided by the JDBC. However, it is worth
noticing that the latter does not provide access to output parameter and does not provide
methods to execute statements.

Figure 10 – Execution Plan Phase

Figure 10 depicts the pipeline stage that provides access to execution plan information. It
defines CPU, I/O cost, number of tuples and tuple's width associated to a statement
execution. It is important to notice that a rendering of this interface should configure such
information with values that are valid among distinct replicas as a variety of machines
and dbms(s) may be used.

Figure 11 – Result Set Phase

Figure 11 presents an interface that provides access to result sets by means of an interface
that extends the ResultSet interface provided by JDBC. The result of queries, updates and
other set of statements can be retrieved by using this interface. The result however
depends on the implementation. For instance, it could be rendered in a binary format with
one tuple and one column in the result set, with multiple tuples and columns or as a lock
set.

Figure 12 – Logger Phase

Figure 12 depicts the LoggerObjectSetProcessor stage, which groups updates from
different transactions in order to put themn in a stable storage. Most likely the
information provided this stage depends on the architecture of the machine at which the
database is running. However, one could transform this information to an independent
form and this decision is an implementation detail.

It is worth mentioning that, when a replication component wants to submit queries or
updates to the database, it should use a server-side interface to do that. In this document,
we suggest that this interface should be based on the JDBC and we provide a
DriverManager class depicted in Figure 13 that allows us to get access to it. The Driver
interface is an abstraction that follows the pattern proposed by the JDBC but in a server-
side scenario, it is not necessary as it is possible to send statements or other objects to be
directly processed by a database. For instance, we could use this interface to insert log
information in a metadata table.

Figure 13 – Server-Side JDBC access

3.3 Recovery interfaces
Database recovery interfaces (Figure 14) provide operations to gather and apply the data
required for consistent replica recovery.
The RecoveryManager interface exposes methods to orchestrate the recovery scenario
chosen:

• setRecoveryStrategy – chooses recovery strategy.
• selectPeerHost – selects one or several active replicas to participate in the

recovery.
The ImageCapturer interface provides operations for the recovery scenario that uses
database image transfer:

• getDatabaseImage – retrieves database image from a selected peer replica.
• installDatabaseImage – installs the given image at the recovering database server.

The LoggerObjectSetRecovery contains operations required for the recovery strategy that
uses database updates log:

• getTransactions – retrieves updates from the log that satisfy specified conditions.
• getLastCommittedTransaction - retrieves the last committed transaction from the

recovering database log
• installLostUpdates – applies missed updates to the recovering database.

• getLogSize – retrieves the size of the log.
• decideTransactionStatus – when a database is recovering and finds entries in a log

referencing "prepared transaction commands", a notification has to be sent to a
listener, that will decide automatically or by human intervention on the
transaction fate: commit or abort.

The TransactionRecovery extends Transaction Interface to extract additional
transactions information required for recovery protocols.

Figure 14 - Recovery Interfaces

3.4 Management interfaces
Management interfaces allow interoperability of management tools and other system
components. These include:

• The GORDA Management Interface (GMI)
• The Database Management Interface (DBMI)

• The sensor interfaces (for QoS and failure sensors)
• The actuator interfaces

• The Autonomic Manager interface

Figure 15 outlines the relationship between the GMS and the DB cluster, via DBMI. It
conveys the aggregation-type association between the GMS instance and DBMS
instances that implement the DBMI interface. This implies that a GMS will communicate
with a set of DBMS for management purposes. The figure also illustrates that the GMS
contains a list of references to available and running replicas, identified by generic
objects that are not manageable DBMS entities. These replicas can be used to host a
deployed DBMS, as shown in the diagram.

Figure 15. Relationship between GMS and DBMI

The GORDA Management System (GMS) exposes the GMI interface to external
operators (humans or third-party systems). This allows the specification of different
management policies and in some cases, the overriding of particular autonomic
management operations performed by the GMS.

• retrieve_performance_data: retrieves a snapshot of the system’s performance
which can be useful for creating or altering management policies.

• add_db_instance: instructs the manager to add a new DB replica to the cluster.

• remove_db_instance: instructs the manager to remove a DB replica from the
cluster.

• set_recovery_policy: configures the recovery policies used by the GMS in case of
failures.

• set_QoS_parameter: specifies the value of a particular QoS parameter (such as
performance thresholds).

The Database Management Interface (DBMI) contains operations that the GORDA
Management System uses for managing individual DB servers.

• get_property: returns the requested DB server configuration property.

• set_property: sets a given property of the DB servers. For instance, it resets the
file-system location of the DB server configuration (used when deploying the
required packages onto a newly added replica) or adds a new database (including
the structure and the content of the tables) to the DB server configuration.

• start: instruct this DB instance to start serving requests.

• stop: instructs this DB instance to stop its execution.

• prepare: instructs this DB instance to get ready for a future start (this might imply
synchronizing its state with the other replicas).

• add_replica: adds a new replica to the cluster of DB replicas.

• remove_replica: instructs the cluster to remove a given replica from the set of DB
instances.

The DBMS is a sample class that implements the DBMI interface and it is used to
showcase management functionality.

The Replica corresponds to the physical replica entity and provides replica control
operations. This does NOT represent a manageable DB instance, rather a representation
of a machine that can be used in different purposes by autonomic managers. It has an
attribute which holds its name in the GMS namespace.

In Figure 16, the basic management loop is illustrated with the entities available in the
API. The GMS is shown interacting with autonomic managers via the
AutonomicManager interface. In turn, all managers implementing this interface will
subscribe to a set of sensors and will control the DB instances via actuators.

Figure 16. Autonomic Management Loop

The AutonomicManager is the super class of all autonomic managers. It provides
common operations such as registering sensors.

The Sensor interface will be implemented by sensor classes used by autonomic managers.
It has operations related to sensor and listener setup.

• addListener: adds a notification listener for events originating from this sensor.

• removeListener: removes a previously added listener, thus preventing it from
receiving further notifications.

• setSamplingInterval: instructs the sensor to consider the new interval when
checking the state of the monitored resource (DB instance).

• getSamplingInterval: returns the sampling interval currently in consideration by
the sensor.

The SensorListener interface must be implemented by specific sensor listeners. Its
handleEvent method acts as a callback method from the sensor, to notify that a
measurement has occurred.

The Actuator interface must be implemented by all the actuators corresponding to the
autonomic managers. Its implementation is very “manager-specific” and the actuators
may have direct hooks for the DB instances. The core actuators, however, can use the
DBMI interface to perform management operations.
The core autonomic managers to be provided in the reference implementation, together
with their actuators and sensors, are illustrated in Figure 17. This puts their actual
implementations into the context of the management APIs.

Figure 17. Core Autonomic Managers, Actuators and Sensors

3.5 Group communication interfaces
Communication interfaces, shown from the Figure 18 to the Figure 21, allow replication
and management components to interact in a distributed system. Interfaces are provided

both for point-to-point and multicast communication. These can be provided by stand-
alone communication toolkits or embedded within a distributed DBMS or clustering
toolkit. This interface was built to be generic and can be implemented using several
existing solutions.

Although configuration of Quality of Service (QoS) implementations is out of the scope
of the specification, generic interfaces are provided such that pre-configured QoS can be
selected when sending and receiving messages. Protocol specific information on
messages (e.g. for content based optimization) can be provided.

Figure 18 - Protocol creation interfaces.

Communication sessions are previously configured and available on execution time with
several types of QoS. A session can be created through a Directory and Naming interface
(e.g. JNDI) and exposes methods to send messages and register message listeners. To use
the communication interfaces, the user must first obtain instances of two classes: a
ProtocolFactory and a Group. The ProtocolFactory creates instances of protocols (class
Protocol) with a given configuration that is defined by the Group object. The Protocol is
an instance of the solution used to provide group communication. From the Protocol the
user can create instances of DataSession and ControlSession. The Figure 18 shows the
described interfaces. The DataSession is used to send and receive messages and the
ControlSession is used to join and leave the group and to receive notifications about other
members (failure or explicit leaving and joining).

Figure 19 - Data handling interfaces.

Using the DataSession, messages can be sent to the group (multicast) or just to one
member of the group (send). To receive messages, the programmer must register a
listener (MessageListener) on this session. The DataSession exposes the following
interface:

• createMessage – used to create empty messages to fill in the payload and send it;
• multicast – used to send a message to the group;

• send – used to send a message to a specific member of the group;
• close – closes this session. After this call, no messages can be send or received;
• setMessageListener – sets a listener to asynchronously receive messages from the

group;
• setExceptionListener – set a listener to receive exceptions that can occur upon

message reception;

• setServiceListener – sets a listener to receive future notifications of services
guaranteed by the protocol. This functionality is detailed on Session 3.7.

The Message class exposes the following interface:
• setPayload – sets the payload of the message;

• getPayload – upon reception, this method gets the payload of the message;
• getSenderAddress – gets the address of the sender of the message;

• setSenderAddress – sets the address of the sender, if needed.

Figure 20 - Simple group management interfaces.

The ControlSession is used to join and leave the group and receive notification about
other members. To receive these notifications, the programmer must register a
ControlListener in this session. This Session exposes the following interface:

• getLocalAddress – gets the address binded by the protocol that identifies the
member;

• isJoined – verifies if the member is joined or not;
• join – joins the group;

• leave – leaves the group;
• setControlListener – sets a listener to receive notifications about other members

(joining and leaving).

3.6 Support for View Synchrony and Extended View Synchrony
The Figure 21 depicts the extensions of the basic control session to provide virtual
synchrony and extended virtual synchrony. The MembershipSession extends the
ControlSession with methods that give information about the membership and a method
to register a listener to the membership. The BlockSession extends the
MembershipSession with the block functionality: before view change, the application is
notified to flush pending messages, using the previously registered BlockListener. The
application flushes all messages and notifies the membership service, invoking the
blockOk method. After this process, a view change is performed.

Figure 21 - Interface extensions for view synchrony.

3.7 Support for Optimistic and Semantic Protocols
As shown in the Figure 19, the group communication interfaces specification contains
two interfaces, namely the Service and the Annotation. (e.g. a message is non-uniformly
delivered and notified when the message is already uniform). This is provided by the
ServiceListener interface and the Service interface and a Context object. The
ServiceListener interface exposes the following method:

• serviceEnsured – notifies the system component that a previously delivered
message, identified by a context, has one certain service ensured.

The cookie object is provided by the application upon the delivery of the message.
Implementations of the Service interface must implement the compare method to define a
partial order between service guarantees.
A Message can be sent tagged with an Annotation which is semantic information that can
be used by content based optimization protocols.

3.8 Threading
Accommodating efficient transaction processing requires allowing concurrent operations.
This is done in first place by ensuring that all implementations of GORDA Programming
Interfaces are thread safe and can thus be invoked concurrently.

For each event, the detailed specification of the interfaces mentions also if multiple
notifications can be issued concurrently. This applies to all interfaces: DBMS,
management, and communication.
As an example, notifications of transaction commit are serialized to allow replication
code to determine serialization order. Notification of transactions starting can be issued
concurrently and is up to the handler to serialize execution of possible critical sections.

A second example is that a group communication protocol can concurrently issue
notifications for unordered message delivery but must serialize notification of totally
ordered messages.
Concrete implementations may provide additional serialization guarantees, always or as
configuration options. For instance, it may be relevant to serialize transaction start
notification with transaction commit to determine causality.

Additionally the DBMS reflector interfaces allow each stage to be configured to generate
events asynchronously without implicitly blocking the DBMS thread by means of the
Processor interface.

4 Use cases
In all the scenarios, the Reflector Interface enables a generic interface that allows the
configuration management and the replication tools to access metadata regarding the
replicated databases. A rendering of the ObjectSet Interface is used to represent the
information retrieved which is stored by using an independent representation enabling to
propagate the updates among different database vendors and architectures.
In general, the LoggerObjectSetProcessor is directly related to asynchronous replication.
The StatementProcessor, ParsedStatementProcessor and ExecutionPlanProcessor allow
state machine replication as the operations that update the database are intercepted. In
contrast, the ObjectSetProcessor propagates the changes itself.
The TransactionProcessor is used to notify events related to a transaction such as its
startup, commit or rollback. The concern with such events is related to the synchronous
replication protocols presented in this document. In the asynchronous replication
protocols, the transaction context is implicitly defined by using the attribute Transaction.
In what follows, we present use cases for asynchronous and synchronous protocols.

4.1 Asynchronous replication
The asynchronous replication eliminates the additional overhead that would be imposed
by the propagation of changes within a transaction’s execution. It decouples the update of
the replicas from the transaction that originated the changes. Basically, different
transactions handle the refreshment of the replicas.

Based on this assumption, different replication scenarios may be proposed.
We suggest using the LoggerObjectSetRecovery Interface which may be rendering
actively or passively. In the first case, an external component access the DBSM through
the interface provided to retrieve the last committed transactions in the log since the last
access. The interval between successive retrievals depends on the requirements imposed
by the application. In the second case, the data is retrieved from the log as soon as an
entry is produced by the DBSM. Unfortunately, uncommitted information may be read
and thus, transactions will abort in the replicas whenever they abort in the origin. It is
important to notice that this approach does not imply that the propagation must be
handled in the same thread that creates the entries into the log or that the updates must be
copied to an intermediate storage before being processed. Basically, the updates’ rate and
the number of threads used to propagate the changes will determine if it is necessary to
use an intermediate storage and if so, its size.
Probably, when combined with a synchronous replication protocol, the asynchronous
replication may use the ObjectSetProcessor. The idea is similar to the LoggerObjecSet
Processor used passively and further information will be provided in the next section.

Other pipeline’s stages, such as the ExecutionPlanProcessor, StatementProcessor or
ParsedStatementProcessor, could be used to provide information to the asynchronous
replication protocols. However, most likely, the LoggerObjectSetRecovery Interface is

the best solution in terms of performance, as it avoids any additional processing inside a
transaction’s execution and reduces duplicated information. In contrast to the
ExecutionPlanProcessor, StatementProcessor or ParsedStatementProcessor, it does not
have the determinism problem similar to the state machine approach, as it would be if the
other interfaces rather than the LoggerObjectSetProcessor would be used to develop an
asynchronous replication.

Once the changes are propagated to the replica, a component that renders a server-side
JDBC API applies the changes. This component may apply different transactions together
as a single transaction and may apply different transactions in parallel in order to improve
performance.

4.2 Synchronous replication
Synchronous replication attempts to ensure that when there are transaction commits the
replicas are already updated. The changes are propagated during the transaction’s
execution which means that an additional overhead is imposed to transactions.

During a transaction’s execution whenever a transaction begins, commits or aborts a
notification is sent by the TransactionProcessor Interface. The processor is allowed to
proceed when the listener allows that. If for some reason the listener wants to cancel the
execution, it calls the cancelTransactionExecution. This feature is enabled when a
listener is register and sets the parameter wait to true for the event., otherwise it is
ignored.
Furthermore, it is possible to notify the listener that for some reason a processor failed or
otherwise, it succeeded. This information is quite useful to the garbage collection and to
ensure that unprocessed events such as those related to the statements, parsed statements
and execution plans were correctly executed thus avoiding inconsistencies among the
replicas.

4.3 Replicas recovery
An essential aspect of replicated databases is the need to allow failed nodes to recover
and rejoin the system without interrupting the ongoing transaction processing on the
available nodes. In particular, before a joining site can execute transactions, an up-to-date
replica has to provide the current state of the data to the joining site. Traditionally, this is
done by copying the entire database state to a new or recovering site. This consumes
bandwidth and time, as normal update operations of the database system are interrupted.
If the amount of data to be copied is large, the availability requirements of the system
might be violated. Obviously it is impractical to perform data transfer as a single atomic
step. Furthermore, the database consistency must be ensured after transfer: if some
replicas are available for transactions processing during state transfer, the new or
recovering site might never be able to catch up with such nodes. Since this depends on
the update transactions ratio in the workload and the database size, one way to solve the
problem would be to consider the workload while designing a state transfer mechanism.
The suggested recovery scenarios can be divided depending on

• what is transferred between replicas
o missed updates.

If a recovering replica was offline for relatively short period of time or the
transaction workload is not writes intensive, only the changes made during
replica’s downtime need to be applied. In this case the
LoggerRecoveryInterface retrieves from the log the identifier of the last
committed transaction on the recovering site. The RecoveryManager
chooses one or more peer sites to participate in the recovery. The
LoggerRecoveryInterface extracts missed updates from the recoverer
replica’s log and applies them to the recovering database.

o an image of the whole database.
If a replica was offline for a long time and the transaction load is updates
intensive, it might take too long to apply the updates at the recovering site.
For such case and when a new replica is bootstrapped, an image of the
whole database is sent. In this case the typical recovery scenario is as
follows: GCS or GMS initiates recovery protocol. The RecoveryManager
selects an active replica to act as a peer site for the recovering replica.
ImageCapturer contacts the recoverer to get the database image and
installs it on the recovering site.

• how many up-to-date replicas participate in recovery procedure
o only one active replica
o several active replicas in the system. To avoid overloading a single active

node several up-to-date replicas participate in recovery: each node sends
only a part of updates or database image.

The system automatically chooses the recovery strategy that is expected to take less time
depending on the database size and the changes the joining site needs to install.
The recovery protocols can be triggered by system view changes provided by group
communication interfaces or by operations exposed by management interfaces (DBMI).

4.4 Managing Replicas
An autonomic manager can be built that uses the GORDA Management Interfaces to
dynamically orchestrate the allocation of replicas in the system at runtime, based on
varying performance and availability conditions.

The autonomic manager can register it self as a listener for events originating at instances
of sensors such as QoS_Sensor and Failure_Sensor implementations by calling their
respective add_listener methods. In addition to receiving events when a quality of service
agreement has been violated or when a replica has failed, the autonomic manager can
control the sensors to obtain this information with the required sampling rates. For this, it
can call the setSamplingInterval method of the sensors.

If the desired QoS is not maintained, the manager can decide to add a replica to the
cluster. This operation is illustrated in Figure 22 with a UML sequence diagram.

The manager first needs to obtain and setup an available replica in its set of managed
machines. It can then call the add_replica operation on any managed DB instance to
instruct the cluster to take the new replica into consideration. When the manager decides
that the need for the new replica to become active is incumbent, it can either “prepare”

the replica or directly “start” it by using the prepare and start operations respectively.
Note that when adding a DB replica, it is essential to synchronize the data of the new
replica with the data in the already running replicas. When preparing or starting a replica,
the Replicator will bring the newly activated replica up to date. As an example, when
using C-JDBC, the differential log file of all the SQL write statements can be replayed in
order to rebuild the state of the new replica to match the other replicas. This assumes that
the new replica contains an initial DB with most read-only data already in place. The start
operation also performs an “atomic” prepare operation so there is no need to precede start
operations by prepare operations. The advantage of having an explicit prepare operations
is that one can pre-emptively get a replica into an “almost-ready” state so that when it has
to become active it does not need to perform lengthy synchronization operations.
Similarly, when the QoS values are exceeded and the amount of resources currently in
use can be reduced, the manager can deactivate replicas and free them for use in other
applications. For this it calls the stop operation on the DBMI.

Figure 22. Adding a New Replica: UML Sequence Diagram.

Similarly to the above scenario, the manager may decide to add replicas to the system
when an existing replica fails, after receiving the appropriate event from the failure
sensor.

4.5 Group communication
A replication component uses the communication interfaces to join the group of
distributed replicas. Using these interfaces, the component must create a Protocol
through the ProtocolFactory and then create a DataSession and a ControlSession with a
given configuration using the Group interface. To receive messages of other members of
the distributed replication component, the replica must register a MessageListener in the
DataSession. To be notified of new joining, failure and leaving of replicas, it must
register a MembershipListener in the ControlSession.

When a replica finished these first steps, it can start broadcasting messages to all other
replicas and messages from other members are delivered in the MessageListener. When a
replica fails, all other replicas will be notified, receiving a notification on the onFailed
method.

If one replica wants to use optimistic deliveries on totally ordered messages, it must also
register in the channel using the ServiceListener interface. In this case, upon reception of
a message, the replica must return a cookie object (that will identify the message) to the
communication service and will be notified later when the order of the messages is
stabilised.

