Information Society
and MMedia

openreplication of databases-— -
g ot 2 Y T -

Project no. 004758
GORDA

Open Replication Of Databases

Specific Targeted Research Project

Software and Services

GORDA Architecture Definition

GORDA Deliverable 2.2

Due date of deliverable: 2006/03/31
Actual submission date: 2006/04/24
Revision 1.1 date: 2007/09/29

Start date of project: 1 October 2004 Duration: 36 Months

FFCUL

Revision 1.1

Project co-funded by the European Commission within the Sixth Framework
Programme (2002-2006)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)
Cco Confidential, only for members of the consortium (including the Commission Services)

Contributors

Sara Bouchenak, INRIA
Alfranio Correia Jr., U. Minho
Nuno Carvalho, U. Lisboa
Nuno A. Carvalho, U. Minho
Emmanuel Cecchet, Continuent
Susana Guedes, U. Lisboa
Adrian Mos, INRIA

Rui Oliveira, U. Minho

José Pereira, U. Minho

Luis Rodrigues, U. Lisboa
Luis Soares, U. Minho
Ricardo Vilaca, U. Minho

@080

(C) 2006 GORDA Consortium. Some rights reserved.
This work is licensed under the Attribution-NonCommercial-NoDerivs 2.5
Creative Commons License. See
http://creativecommons.org/licenses/by-nc-nd/2.5/legalcode for details.

Abstract

This document describes the GORDA Architecture, which enables independent
development of database management systems (DBMS) and database replication
systems. The architecture builds on the classic database management system’s
architecture with remote database access, a standard call-level interface and sup-
porting SQL requests. The proposed architecture models the system through two
articulated plans: one that reflects the standard transaction pipeline and the other
a set of contexts reflecting the scope of the various operations through the transac-
tion processing pipeline. The replicated database management system architecture
is complemented by a generic management architecture.

Contents

(I__Introduction| 2
|{1.1 ~ Relationship With Other Deliverables| 2

2 Assumptions and approach| 4
2.1 Generic database architecturel Lo 4
22 Relevantstandardsl 0000 5
2.3 Designprinciples| 6
i3__Architecturel 7
[3.1 Reflective architecture for replication|. 7
[3.1.1 Target Reflection Domain| 7

[3.1.2 Processing Stages|. 9

[3.1.3 Processing Contexts| 10

.14 Base-level and Meta-level Calls| 11

[3.1.5 Design Patterns| 12

[3.2 Generic architecture and composition scenarios| 12
[3.3 Architecture components and usage| 14
[3.3.1 Reflection and Replication| 14

[3.3.2 Management| 17

[3.3.3 Recovery and security aspects| 19

Chapter 1

Introduction

This document describes the GORDA Architecture, which enables independent
development of database management systems (DBMS) and database replication
systems.

The document is structured as follows. Chapter 2 summarizes concepts and
assumptions, referring to available standards where appropriate. This includes de-
scribing the architecture of a non-replicated DBMS that serves as a baseline for
comparison. Chapter 3 describes the generic GORDA Architecture, its compo-
nents and relations. It then describes several concrete refinements for different
implementation scenarios and shows how to use the presented architecture in a
specific use case scenario.

We do not include information on database management systems, communica-
tion protocols, or tools themselves.

1.1 Relationship With Other Deliverables

This document, along with its companion deliverable D2.3 - APIs Definition Re-
port, refines deliverable D2.1 - Preliminary Architecture and API and serves as the
basis for most of the development of workpackages 3 (Replication Protocols) and
4 (Database Support).

With respect to the preliminary report D2.1, it obsoletes its sections 2 and 3
(the companion document D2.3 does the same for the remaining sections 4 and 5).

Since the general architecture and guidelines proposed in D2.1 have been con-
sidered to be correct, the current document makes only minor updates that reflect
experience earned while implementing both the replication protocols and database
support components. Namely:

* A new processing context, Database Context, has been added to support mul-
tiple active databases within the same DBMS.

* The Statement Context has been renamed Request Context and its meaning
changed slightly to better handle different database implementations.

* The meaning of the Physical Storage Stage has been changed. While initially
it was supposed to allow synchronization of commit requests, it is now used
only to inspect logs after transaction commit. Synchronization with commit
requests is now done through the Transaction Context.

* The scope of processing contexts has been changed to be consistent with the
revised definition of the Physical Storage Stage.

Chapter 2

Assumptions and approach

2.1 Generic database architecture

Management

Application Driver “

Figure 2.1: Generic database architecture.

The GORDA Architecture builds on the assumption of the generic database
architecture with remote database access, a standard call-level interface, and SQL
as shown in the Figure

The main components of this model are:

* The Application, which might be the end-user application or a tier in a multi-

4

tiered application.

* The Driver provides a standard call-level interface (CLI) for the application
and remotely accesses the database itself using a communication mecha-
nism. The communication protocol is hidden from the application and can
be proprietary.

* The DBMS holds the database content and handles remote requests expressed
in standard SQL to query and modify data.

* Management tools are able to control the Driver and DBMS components
independently from the Application using a mixture of standard and propri-
etary interfaces.

Further assumptions on these systems are that:

* The call-level interface and SQL should not be changed, and cannot be
changed at all in a backward incompatible manner.

* Some DBMS implementations can be modified in a backward compatible
manner, but some others cannot be modified at all.

* The remote database access protocol should not be changed to maintain com-
patibility with third party tools.

* The driver can easily be changed with minor impact.

This simple architecture can easily be mapped to a Java system, using JDBC as the
call-level interface and driver specification, any remote database access protocol
encapsulated by the driver and a DBMS, and an external configuration tool for the
JDBC driver.

2.2 Relevant standards

The GORDA Architecture and Programming Interface (GAPI) are based on exist-
ing data management standards. Namely:

* ISO/IEC 10032:1995 - Reference Model of Data Management (RMDM)
specifies typical data management architectures and nomenclature.

* ISO/IEC 9075-3:1995 - Call Level Interface (SQL/CLI) and X/Open XA
Distributed Transaction Processing (DTP) specify client interfaces.

* ISO/IEC JTC1/SC32 working drafts on Distributed Database Access and
Schemas for client information.

The rendering of interfaces in the Java language is therefore based on existing
implementations of such standards in the Java platform, in particular, in Java En-
terprise Edition (JEE).

2.3 Design principles
The design of the GORDA Architecture stands on the following general principles:

* Independence of operation and configuration. All configuration interfaces
are assumed to be out of the scope of the present specification. Configu-
ration of components and relevant parameters is available by means of an
embedded directory service and the factory design patterns.

* Variable geometry interfaces. Each implementer is free to provide only a
subset of the whole GAPI that is adequate for each situation. Each compo-
nent should therefore explicitly state requirements and check for the avail-
ability of all requirements. This is however part of configuration and thus
out of the scope of this specification.

* Facade interfaces that allow manipulation of the internal state of the DBMS
without forward and backward format conversions. Conversion to a DBMS
independent representation if necessary is achieved by an optional layer on
basic interfaces.

Chapter 3

Architecture

The GORDA Architecture specifies the building blocks for a replicated DBMS.
At an abstract level, these building blocks can be mapped to existing monolithic
implementations regardless of the implementation. The GORDA Architecture is
however the basis for the definition of interfaces between such components that
allows them to be reused in different contexts.

This Section discusses the GORDA architecture. Implementation issues are
discussed in the Deliverables D4.3, D4.4 and D4.5 of the project.

3.1 Reflective architecture for replication

In this section we outline the reflection usage in the GORDA architecture, as well
as the underlying rationale. The GORDA architecture considers a multi-stage
model of transaction processing that can be replicated by observing and modify-
ing it through a reflector interface. The main intent of the reflection is to allow
the replication component to observe the state of the DBMS. Specifically, the re-
flector exposes transaction-processing concepts such as parse trees, write sets, or
transactions as first class entities in the target programming language. Replication
protocols can register for significant events to be notified of relevant state transi-
tions and call methods to alter the state.

3.1.1 Target Reflection Domain

Existing reflective facilities in database management systems are targeted at
application programmers using a relational model. Its domain is therefore the re-
lational model itself. With it, one can intercept operations that modify relations by
inserting, updating, or deleting tuples, observe the tuples being changed and then
enforce referential integrity by vetoing the operation (all at the meta-level) or by
issuing additional relational operations (base-level).

In contrast, a replication protocol is concerned with details that are not visible
in the relational model, such as modifying query text to remove non-deterministic
or the precise scheduling of updates to achieve a given isolation level. For instance,
one may be interested in intercepting a statement as it is submitted, whose text
can be inspected, modified (meta-level) and then re-executed, locally or remotely,
within some transactional context (base-level). Therefore, a more expressive target
domain is required. The fact that a series of activities (e.g. parsing) is taking place
on behalf of a transaction is reflected as a transaction object, which can be used
to inspect the transaction (e.g. wait for it to commit) or to act on it (e.g. force a
rollback). Meta-level code can register to be notified when specific events occur.
For instance, when a transaction commits a notification is issued, containing a
reference to the corresponding transaction object (meta-level). Actually, handling
notifications is the way that meta-level code dynamically acquires references to
meta-objects describing the on-going computation.

DEMS Context
Database Context
Connection Context
“Transaction Context
Request Context

\

Application |

Parsing Stage

Optimization Stage
Execution Stage
Logical Storage Stage

e e
Physical Storage Stage

Figure 3.1: Transaction processing model.

The transaction-processing pipeline assumed is shown in Figure [3.1] with the
following stages after acceptance of requests from a client, which includes dealing
with the appropriate call-level interface or most likely, a remote database access
protocol:

Parsing of the SQL statement received, resulting in a parse tree.

Optimization, in which the parse tree is transformed according to optimiza-
tion criteria and statistics. The result is an execution plan.

The execution stage executes the plan and produces write sets and result sets.
It might also produce lock-grabbed and lock-blocked sets in order to inform
which locks were acquired and which locks are blocking the execution re-
spectively. The format of the sets is highly dependent on the implementation.

The logical storage layer deals with access to logical objects.

The final physical storage stage allows asynchronous capture of updates to
the database and access to database logs for recovery.

Note that such stages are not mutually exclusive. It is likely that different parts of
the same transaction or even of the same statement are in different stages of the
pipeline.

All events and operations on transaction processing are provided in four nested

contexts:

DBMS Context identifies the reflector and thus the DBMS originating events.

Database Context (introduced in this Deliverable) identifies a specific database
within a DBMS. Multiple databases may be active within a DBMS.

Connection Context identifies a specific client within a Database. Multiple
connections may be active within a Database.

Transaction Context identifies a specific transaction within a Connection
Context. It is assumed that at most a single top-level transaction exists at
any given time within the same connection context.

Request (also introduced in this Deliverable) identifies a specific request
within a Transaction Context. It is assumed that at most a single request
exists at any given time within the same transaction context.

3.1.2 Processing Stages

The usefulness of the meta-level interface depends on what is exposed as meta-

objects. If a very fine granularity is chosen, the interface cannot be easily mapped
to different DBMSs and the resulting performance overhead is likely to be high.
On the other hand, if a very large granularity is chosen, the interface may expose
too little to be useful.

Therefore, we abstract transaction processing as a pipeline as it is commonly
accepted 3] (Figure[3.I). In detail, the Parsing stage parses raw statements re-
ceived thus producing a parse tree. The parse tree is transformed by the Optimiza-
tion stage according to various optimization criteria, heuristics and statistics to an
execution plan. The Execution stage executes the plan and produces object-sets.
The Logical Storage stage deals with mapping from logical objects to physical
storage. Finally, the Physical Storage stage deals with block input/output and syn-
chronization.

In general, one wants to issue notifications at the meta-level whenever compu-
tation proceeds from one stage to the next. For instance, when write-sets are issued
at the execution stage, a notification is issued such that they can be observed. The
interface thus exposes meta-objects for each stage and for data that moves between
them.

In contrast, previous approaches assume that reflection is achieved by wrapping
the server and intercepting requests as they are issued by clients [5]. By choosing
beforehand such implementation approach, one can only reflect computation at the
first stage, i.e. with a very large granularity. Exposing further details requires
rewriting large portions of DBMS functionality at the wrapper level. As an exam-
ple, Sequoia [1]] does additional parsing and scheduling stages at the middleware
level.

3.1.3 Processing Contexts

The meta-interface exposed by the processing pipeline is complemented by
nested context meta-objects, also shown in the Figure 2. These show on behalf
of whom some operation is being performed. In detail, the DBMS and Database
context interfaces expose metadata and allow notification of lifecycle events. Con-
nection contexts reflect existing client connections to databases. They can be used
to retrieve connection specific information, such as user authentication or the char-
acter set encoding used. The Transaction context is used to notify events related to
a transaction such as its startup, commit or rollback. Synchronous event handlers
available here are the key to the synchronous replication protocols presented in this
document. Finally, to ease the manipulation of the requests within a connection to
a database and the corresponding transactions one may use the Request context
interface.

Events fired by processing stages refer to the directly enclosing context. Each
context has then a reference to the next enclosing context and can enumerate all
enclosed contexts. This allows, for instance, determining all connections to a
database or which is the current active transaction in a specific connection. No-
tice that some contexts are not valid at the lowest abstraction levels. Namely, it is
not possible to determine on behalf of which transaction a specific disk block is
being flushed by the physical stage.

10

3.1.4 Base-level and Meta-level Calls

An advantage of reflection is that base- and meta-level code can be freely
mixed, as there is no inherent difference between base- and meta-objects. In detail,
the application programmer can force a direct call to meta-level code by registering
it as a native procedure and then using the CALL SQL statement. This causes a
call to the meta-level code to be issued from the base-level code within the Execute
stage. The target procedure can then retrieve a pointer to the enclosing Request
context and thus to all relevant meta-interfaces. The reason for allowing this only
from the Execute stage is simplicity, as this is inherently supported by any DBMS,
and does not seem to impact generality. A second reason is that this is where the
pipeline can be reentered, should the meta-level procedure need to callback into
the base-level.

Meta-level code can callback into base level in two different situations. The
first is within a direct call from base-level to issue statements in an existing en-
closing request context. This can be achieved using the JDBC client interface by
looking up the “jdbc:default:connection” driver, as is usually done in Java proce-
dures. The second option is to use the enclosing Database context to open a new
base-level connection to the database. The reason for allowing base-level to use the
JDBC interface is again simplicity, as this avoids the need to have interfaces that
build contexts and inject external data into internal structures. This may however
have an impact on performance, and is thus the subject of future work.

A second issue when considering base-level calls is whether these also get
reflected. The proposed option is to disable reflection on a case-by-case basis by
invoking an operation on context meta-objects. Therefore, meta-level code can
disable reflection for a given request, a transaction, a specific connection or even
an entire database. Actually this can be used on any context meta-object and thus
for performance optimization. For one, consider a replication protocol, which is
notified that a connection will only issue read-only operations, and thus ceases
monitoring them.

A third issue is how base-level calls issued by meta-level code interact with
regular transaction processing regarding concurrency control. Namely, how are
conflicts that require rollback resolved, namely, in multi-version concurrency con-
trol where the first commiter wins or, more generally, when resolving deadlocks.
The proposed interface solves this by ensuring that transactions issued by the meta-
level do not abort in face of conflicts with regular base-level transactions. Given
that replication code running at the meta-level has a precise control on which base-
level transactions are scheduled, and thus can prevent conflicts among those, has
been sufficient to solve all considered use cases. The simplicity of the solution
means that implementation within the DBMS resulted in a small set of localized
changes.

11

3.1.5 Design Patterns

The design of meta-level interfaces leverages patterns that have proven useful
in object oriented middleware. The first is the facade, which allows inspection of
diverse data structures through a common interface. A very well known example
is the ResultSet, which allows results to be stored in a DBMS native format. The
proposed architecture suggests using this for most of the data that is conveyed
between processing stages (e.g. object sets).

The second is the inversion-of-control pattern, which eases deployment of soft-
ware components. In detail, meta-objects such as transactions are exposed to an
object container, which is configured with replication components. The container
is then responsible for injecting the required meta-objects into each replication
component during initialization.

The third pattern is the container-managed concurrency. The container imple-
mentation schedules event notifications according to performance and correctness
criteria. For instance, by ensuring that no two transactions commit notifications are
issued concurrently, implicitly exposes a commit order. Notification of available
write-sets of two different transactions can be issued concurrently.

3.2 Generic architecture and composition scenarios

This section describes how the components can be used in several specialization
scenarios of the architecture. It overviews the components and shows their interac-
tion and roles in the architecture.

The generic replication architecture shown in Figure [3.2]extends the data man-
agement architecture with the following components:

* A Reflector is attached to each DBMS allowing inspection and modification
of the process. This is achieved by reflecting transaction processing concepts
to objects in the target language.

* A Replicator component attaches to multiple DBMS by means of reflector
interfaces and ensures their consistency. Most likely, this is a distributed
component which makes use of a communication service.

* Clients may not be directly attached to a single DBMS. Instead, they may
be dispatched dynamically and transparently by means of a load-balancer
component that intercepts client requests.

Specialization of the generic architecture provide direct mappings with possible or

actual replicated DBMS. Namely, multiple logical components can be provided by
a single physical component. What is required is that replication, communication,

12

‘ Management ’

1

Fi —
Application H:!‘ Driver

(Distributed) Group
Replicator Communication

Jaouejeg peo

Application !‘ Driver
\\\ —

i

Figure 3.2: Generic database replication.

‘ Management ’

Application H‘:" Driver Bi % Reflector
I
8
$ (Distributed) Group
© Replicator Communication
o
3 \
@
Application H‘:P‘ Driver % Reflector
—

Figure 3.3: Specialization for an in-core implementation.

13

and management components are portable and can therefore be combined with
different DBMS.

As an example, consider in Figure [3.3] the situation in which the reflector is
provided within the same physical component as the DBMS, where replication and
communication components can be installed to control replication.

[Management]
[Application B:[Driver 1 Virtual DBMS

Reflector
-
(Distributed) Group
Replicator Communication
_

Reflector

-/

J1s0uelRg PEOT]

[Application B:P{ Driver 1 Virtual DBMS
J

Figure 3.4: Specialization for a middleware-based architecture.

A DBMS independent implementation can be achieved strictly by intercepting
the remote database access interface as suggested in Figure In this situation,
clients connect to a virtual DBMS which implements the reflector interface. The
virtual DBMS is itself implemented by relying on client interfaces provided by the
real DBMS.

There is no need that each virtual DBMS directly maps to a backend DBMS
or that all virtual DBMS accept clients, or that at most a single reflector exists
in each physical package. This is the case of C-JDBC with a single controller
implementing RAIDDb protocols, which is depicted in Figure[3.5]

Note that the previous examples show how the GORDA Architecture maps
possible implementations but they do not specify exactly what the interfaces of the
reflector are or how these interfaces are implemented in concrete DBMS.

14

Management ’

Backend
Reflector

_——

Centralized
Replicator

Frontend
Reflector

‘ Application H:" Driver

Figure 3.5: Specialization for the single controller C-JDBC architecture.

15

3.3 Architecture components and usage

This Section describes the architecture components. We will give more focus on
the reflection, replication and Management components. The clients could be con-
nected directly to a single DBMS or they may be dispatched dynamically and trans-
parently by means of a load-balancer component that intercepts client requests. In
any case, its standard execution remains the same. The group communication is
used by the replication component and its interaction is described in that scope.

3.3.1 Reflection and Replication

These two components work together. The reflection component reflects the
execution of the DBMS as already described in this document. The reflected execu-
tion is used by the replication component to replicate the requests on all databases.
The group communication component is an important building block for the repli-
cation component, since it provides properties such as atomic broadcast in the mes-
sages that are exchanged by the several replication instances.

The execution of the replication component always use these other components
but with different behaviors, depending on the replication protocol used. To illus-
trate how the replication, reflection and group communication components can be
used in the architecture, we will use the primary-backup replication protocol. In the
primary-backup approach to replication, also called passive replication [4]], update
transactions are executed at a single master site under the control of local con-
currency control mechanisms. Updates are then captured and propagated to other
sites. Asynchronous primary-backup is the standard replication in most DBMSs
and third-party offers. An example is the Slony-I package for PostgreSQL [2]. Im-
plementations of the primary-backup approach differ whether propagation occurs
synchronously within the boundaries of the transaction or, most likely, is deferred
and done asynchronously. The latter provides optimum performance when syn-
chronous update is not required, as multiple updates can be batched and sent in
the background. The Primary-Backup protocol has a primary replica where all
transactions that update the database are executed.

Synchronous primary-backup replication requires the reflection component for
the Transaction context to capture the moment where the transaction starts execut-
ing, commits, or rollbacks at the primary. It will also need the object set provided
by the Execution stage to extract the write set of a transaction from the primary and
insert it at the backup replicas.

The execution of the primary-backup replication in the GORDA architecture
is depicted in the Figure We start by describing the synchronous variant. It
consists of the following steps:

1. Clients send their requests to the primary replica;

16

Local
DBMS

Local
Replicator

Step 5.1
deliverNotification

- - | |
I | |
I Step1 ! |
I —— I
| |Reaues Step 2.1 |
I | handleTxBegin() [T] Step 2.2
I I | |registerTx()
‘ ! Step 2.3 !
} : . allowTxBegin() :
! | —
L L Step 3.1 !
} || _handieObjectsety [+ Step 32
| | | jgatherObjectSet()
| | Step 3.3 |
I | allowObjectSet() I
I I 1]
| | |
‘ ' Step 4.1 '
I | ep 4. -
Step 4.2
1\ : handle [xCommit) : sendNotification
! : ! Step 5.1
\‘ | Step 5.2 | | deliverNotification
| | allowTxCommit() H
I | ——
| | I
| | I
I | |
I | I
| |Final Step] | |
I | Success | | |
| | 1
| i |
K v v

L

Step 5.2
createTx()

Step 5.3
injectObjectSet()|

Step 5.4
commitTx()

v

Figure 3.6: Primary backup using the GORDA architecture.

17

Group Remote Remote
ommunicatiop Replicators DBMSs
el

2. When a transaction begins, the replication component at the primary replica
is notified by the reflection component; registers information about this event,
and allows the primary replica to proceed;

3. Right after processing a SQL command the reflection component notifies
the replication component through the Execution stage with an ObjectSet.
Roughly, the ObjectSet provides an interface to iterate on a result set (e.g.,
write set). Specifically, in this case, it is used to retrieve statement’s updates
which are immediately stored in a in-memory structure with all other updates
from the same transaction context;

4. When a transaction is ready to commit, the reflection component notifies the
replication component of the primary replica. The replication component
uses the group communication component to atomically broadcast the gath-
ered updates to all backup replicas (this broadcast should be uniform); the
write set is received at all replicas. On the primary replica, the replication
component allows the transaction to commit. On the backups, the replication
component injects the changes in the DBMS;

5. (Final Step) After the transaction execution, the primary replica replies to
the client.

An asynchronous variant of the algorithm can be achieved by postponing Step 4
(and, consequently, Step 5) for a tunable amount of time.

3.3.2 Management

This Section overviews the architecture of the management component, focus-
ing in the management of a cluster instead of a single DBMS. The management
component should manage a cluster of DBMSs that were enriched with replication
components. The consistency of data, availability and failure detection/reaction are
key issues that must be taken into account in the management component.

Figure describes the generic GORDA Management Architecture (GMS)
and its main features and reconfiguration mechanisms, namely the QoS Manager
and the Failure Manager. Roughly speaking, both are based on a control loop with
the following components:

* First, sensors responsible for the detection of the occurrence of particular
events, such as database failures, or QoS requirement violations.

* Second, analysis/decision components that represent the actual reconfigura-
tion algorithm, e.g. replacing a failed database by a new one, or increasing
the number of resources in a cluster of replicated databases upon high load.

18

GMS QoS Manager

|Reconfigure |

Failure Manager

Repair

Software
repository

(e.g., MySQL DB server software,
Apache web server software)

Cluster
Manager

Deployment
Manager

Figure 3.7: Generic replicated database management architecture.

19

* Finally, actuators that represent the individual mechanisms necessary to im-
plement reconfiguration, e.g. allocation of a new node in a cluster.

The Failure Manager is used for self-repair. In a replication-based system, when a
replicated resource fails, the service remains available due to replication. However,
we aim at autonomously repairing the managed system by replacing the failed
replica by a new one. Our current goal is to deal with fail-stop faults. The proposed
repair policy rebuilds the failed managed system as it was prior to the occurrence of
the failure. Sensors are used to detect failures in the replicas (such as a node crash)
and decision policies are analyzed in order to determine the appropriate action to
be taken. Once an action has been decided, actuators are used to enforce it (i.e.
allocating a free node and deploying the appropriate software packages on it).

The QoS Manager is used for self-optimization. Self-optimization is an auto-
nomic behavior which aims at maximizing resource utilization to meet the end user
needs with no human intervention required. A classical pattern is when a given re-
source R is replicated statically at deployment time and a front-end proxy P acts
as a load balancer and distributes incoming requests among the replicas. GMS
aims at autonomously increasing/decreasing the number of resources used by the
application when the load increases/decreases. This has the effect of efficiently
adapting resource utilization (i.e. preventing resource overbooking). This can be
done at different levels:

* In a shared server, allocated resources such as connection pools and memory
buffers can be adjusted.

* In a cluster with shared storage, replicas can be migrated to servers with
appropriate capacity.

* In a cluster with virtualized storage, replicas can be provisioned and dis-
carded efficiently.

* In a wide area network, replicas and fragments can be repositioned to adjust
to traffic patterns.

The Deployment Manager automates and facilitates the initial deployment of the
managed system. For this purpose, the Deployment Manager makes use of two
other mechanisms in GMS: the Cluster Manager and the Software Repository.

The Cluster Manager is responsible for the management of the resources (i.e. nodes)
of the cluster on which the managed system is deployed. A node of the cluster is
initially free, and may then be used by an application component, or may have
failed. The Cluster Manager provides an API to allocate free nodes to the man-
aged system/release nodes after use. Once nodes are allocated to an application,
GMS deploys on those nodes the necessary software components that are used by
the managed system.

The Software Resource Repository allows the automatic retrieval of the soft-
ware resources involved in the managed application. For example, in case of an

20

e-business multi-tier JEE web application, the used software resources may be
a MySQL database server software, a JBoss enterprise server software, and an
Apache web server software.

Once nodes have been allocated by the Cluster Manager and software re-
sources necessary to an application retrieved from the Software Resource Repos-
itory, those resources are automatically deployed on the allocated nodes. This is
made possible due to the API provided by nodes managed by GMS, namely an API
for remotely deploying software resources on nodes.

3.3.3 Recovery and security aspects

Before a joining replica can start executing transactions, the state of its database
must be brought up-to-date with respect to the rest of the system. Site that crashes
and recovers will perform some clean-up on its copy of the database and then will
join the group again.

Recovery in the GORDA architecture is made at the replication component.
The replication component uses the interface provided by the reflection component
for retrieving the full database image implemented depending on the dump/restore
tools of the DBMS. It is also possible to use the GORDA pipelines to do logging
of missed transactions at the replication component.

One of the features provided by the group communication component is a fail-
ure detector and a mechanism to merge concurrent views in the system. This fea-
ture is used to detect joining/failure of replicas and for synchronizing the state
transfer with normal processing.

One final aspect that should be taken into account is how to maintain secu-
rity on the connections between the several components of the system. As this
document should focus on the replication architecture, we will not focus on the
security issues in the database management systems. Instead, we will focus on the
components that were added to support replication.

The connections between the several replicas of the system are maintained by
the group communication component. This component is responsible for creat-
ing and maintaining communication channels using sockets. The sockets are used
by the group communication protocols that ensure reliability, ordering guarantees,
failure detection and view synchrony. The toolkit that creates these sockets should
use the Secure Socket Layer (SSL), among with trusted certificates, when it’s nec-
essary to provide secure channels between the replicas in a GORDA compliant
system.

21

Bibliography

[1] Continuent. Sequoia version 2.9.
[2] PostgreSQL Global Development Group. Slony-i version 1.1.5.

[3] J. Ullman H. Garcia-Mollina and J. Widom. Database Systems: The Complete
Book. Prentice Hall, 2002.

[4] S. Mullender, editor. Distributed Systems. ACM Press, 1989.

[5] J. Salas, R. Jimenez-Peris, M. Patino-Martinez, and B. Kemme. Lightweight
reflection for middleware-based database replication. In SRDS '06: Proceed-
ings of the 25th IEEE Symposium on Reliable Distributed Systems (SRDS’06),
pages 377-390, Washington, DC, USA, 2006. IEEE Computer Society.

22

	Introduction
	Relationship With Other Deliverables

	Assumptions and approach
	Generic database architecture
	Relevant standards
	Design principles

	Architecture
	Reflective architecture for replication
	Target Reflection Domain
	Processing Stages
	Processing Contexts
	Base-level and Meta-level Calls
	Design Patterns

	Generic architecture and composition scenarios
	Architecture components and usage
	Reflection and Replication
	Management
	 Recovery and security aspects

