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1 INTRODUCTION 

 
INTERACT aims to utilize workers’ knowledge on executing manual assembly tasks and include it in the 

digital tools used to support design, verification, validation, modification and continuous improvement of 

human-centered, flexible assembly workplaces. To achieve this goal INTERACT proposed a so-called best 

fit simulation which is able to simulate the execution of worker instructions for manual assembly tasks which 

are given in as controlled language input. 

The data-driven motion synthesis module represents the core component of this best fit simulation. For this 

purpose a statistical motion synthesis method based on existing work by Min et al. [1] was implemented and 

extended. We construct a statistical motion model from motion capture data of manual assembly tasks. At 

runtime new motions can then be generated by searching in the motion model based on user defined 

constraints. The method was integrated with a text based user interface that creates constraints based on a 

scene knowledge base. 

The rest of the document describes in detail the methodology for the construction of the statistical motion 

model and the constrained motion synthesis. Furthermore we describe important lessons learned from 

applying the statistical motion synthesis method in practice. 
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2 FINAL METHODOLOGY APPLIED 
 

Figure 1Fehler! Verweisquelle konnte nicht gefunden werden. shows an overview of the offline motion 

modeling and of the online motion synthesis pipelines. Using MoCap data as input a motion model is 

constructed offline. The motion generator module uses this motion model at runtime to generate a new 

motion fitting the input constraints. Section 2.1 describes the motion modeling pipeline in detail and Section 

2.2 describes the motion generator loop that converts constraints into a new motion and uses an independent 

service to generate constraints in order to avoid collision. 

 

2.1 Motion Model 

The goal of motion model is to construct a statistical human motion database from motion capture data to 

simulate animation in assembly workshop scenarios. In Best-fit simulation software prototype, motion model 

module provides input for motion generator to simulate a large amount of variant motions for different 

constraints.  

2.1.1 Motion Parameterization 

In order to provide a compact and scalable solution to model a large amount of motion capture data with rich 

variation in INTERACT, a highly structured motion data representation is applied (c. [1]). The assumption is 

that although human motion appears to have infinite variations, the fundamental high-level structures 

(motion primitives) are always finite. For example, normal walking can be regarded as a sequence of 

alternating left and right stances, and picking can be decomposed as reaching and retrieving. A directed 

Figure 1: Motion modeling pipeline overview. 



 

The INTERACT project (611007) is co-funded by the European Commission under the 7th Framework Programme. 

 

This document reflects only authors’ views. The European Commission is not liable for any use that may be done of the information contained 

therein. 

 

graph is employed to model motion primitives and the possible transitions between each other. Figure 2 

shows an example of high-level structures of normal walking. Long recorded motions are decoupled into 

small clips, and structurally similar motion clips are categorized into each note in the graph. A motion 

primitive is a statistical model, which describes the distribution of motion clips in one note. 

 

2.1.1.1 Motion Segmentation 

The previously captured motion data is decomposed into semantically and structurally meaningful clips to 

embed high-level semantic information like left step, right step and so on, into motion modeling. The 

segmentation is done by defining and extracting key frames in motion data. Key frames are instances with 

contact state transitions occurring (e.g. feet contact on ground) or with significant visual content changing 

(e.g. pick reaching and retrieving). In INTERACT, a rule-based approach is applied to automatically extract 

pre-defined key frames in motion data. However, for complex actions, such as inserting, screwing, manual 

work is still required to guarantee the good quality of segmentation. The key frames are taken as border 

frames to cut motion data into small clips. The motion clips which share the same starting and ending key 

frames are categorized into the same motion primitive. 

2.1.1.2 Low-level Semantic Annotation 

After motion segmentation, the high-level semantic information is embedded into motion primitives. For 

instance, samples in walk_leftStance motion primitive should be all one step walking with left leg moving. 

Besides the high-level semantic information, we are also interested in some low-level semantic information, 

for example, foot-ground contact for locomotion or hand-object contact for manipulation action. Although 

the high-level semantic information is the same for one motion primitive, however, the low-level semantic 

information varies for different motion clips. Similar as key frame extraction, we apply a rule-based 

approach to automatically annotate frames in motion capture data.   

2.1.1.3 Motion Alignment 

Motion clips which are within the same motion primitive, could have different root position, orientation and 

number of frames. For statistical learning, motion clips in one motion primitive should not only look similar, 

  

  

  

  

  right foot start 

left foot start 

right foot walk  

left foot walk  

left foot end  

right foot end  

Figure 2: High-level graph representation for elementary action walking. 
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but have similar data representation as well. Therefore, motion clips within the same motion primitive are 

normalized to have the same starting root position and orientation, and frames are aligned to a reference 

motion clip by using Dynamic Time Warping (DTW). The reference motion clip defines a canonical timeline 

for motion clips in one motion primitive. We choose the one with minimum average frame distance to other 

motion clips as reference. Figure 3 illustrates left toe height of walking leftStance before alignment and after 

alignment. After motion alignment, the original motion data is decomposed as warped motion clips and their 

corresponding time warping indices. 

 

2.1.1.4 Motion Parameterization 

The success of statistical learning approaches generally depends on the data representation. For motion 

capture data, an informative parameterization needs to address two properties: smoothness and similarity. 

Motion capture data is smooth, time-series data from observation, so the motion parameterization should be 

corresponding to this observation. Motion clips in the same motion primitive are similar after motion 

alignment, so data representation should be similar as well. In INTERACT, we represent motion capture data 

as root position and orientation, and orientation of joints in the skeleton. The orientation is parameterized as 

quaternion. The singularity issue caused by antipodal points in unit quaternion space is solved by smoothing 

quaternion values for each dimension (c. [6]). 

2.1.2 Functional Principal Component Analysis for Motion Data 

In general, motion capture data is high-dimensional because of high degree of freedom of human body. 

However, the data is redundant and the dimensionality can be reduced from two perspectives: the movement 

of each part of the body is highly coordinated and the adjacent frames are very similar due to high frame rate. 

Functional Principal Component Analysis (FPCA) [5] is applied to reduce the dimensionality of motion 

capture data from spatial and temporal domain. 

2.1.2.1 Functional Data Analysis 

The key idea of functional data analysis of motion data is to represent each motion clip as a vector of 

continuous functions rather than a sequence of frames. Each dimension of discrete motion data is 

interpolated by a linear combination of cubic B-spline functions. Each continuous function is parameterized 

as a vector of weights of B-spline functions.   

Figure 3: (Left) motion data before alignment; (Right) motion data after alignment. 
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The time warping indices and semantic annotations of motion capture data are convert from discrete data to 

functional data as well. An additional step for time warping indices is that in order to keep the monotonic 

increasing property, the Z transform (c. [1]) is employed on the functional data of time warping indices.  

2.1.2.2 Functional Principal Component Analysis 

Functional data analysis provides a compact representation to reduce the redundancy in temporal domain. 

We further reduce the dimensionality of data by applying Principal Component Analysis (PCA) on 

functional data, which consists of the weights of B-spline functions. The number of principal components is 

chosen by keeping 95% explained variance. For temporal and semantic functional data, PCA is applied to 

further reduce dimensionality as well. 

2.1.3 Motion Primitive Modeling 

In order to model the distribution of motion primitive in low dimensional space, we concatenate the low 

dimensional projections of spatial, temporal and semantic information of each motion clip as a vector, and 

model the distribution of motion clips using Gaussian Mixture Model (GMM). The parameters of GMM are 

estimated by applying Expectation-Maximization (EM) algorithm. The number of Gaussians is selected by 

empirically evaluating a set of values to maximize the Akaike Information Criterion (AIC)
1
 for training data. 

AIC calculates the sum of negative log likelihood of input samples, with a penalty of the complexity of the 

model. A low AIC score indicates the model is generative and fits training data well. A high AIC score 

indicates that either the model cannot fit the data well, or the model is over fitted due to insufficient number 

of training samples. 

2.1.4 Space partitioning  

We build a space partitioning data structure for each motion primitive by recursively applying the K-means 

algorithm on random samples from the statistical model. The optimal number of random samples is set to 

1000 and the number of subdivisions per level to 4 based on experimental results. The motivation is to 

accelerate the motion synthesis by quickly discarding a part of the latent space based on the observation that 

samples close in latent space resulting from FPCA are close in constrained space for interesting joints, e.g. 

the right hand in the pickRight motion primitive. 

                                                           

 

1
 https://en.wikipedia.org/wiki/Akaike_information_criterion 

Figure 4: Functional data representation for motion clip. A sequence of frames is represented as 

a set of continuous functions. 
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 DIVIDE (data, k): 

    children = [ ] 

    clusters = k-means-partition(data, k) 

    For c in clusters do  

 children.push(DIVIDE(c, k)) 

    return Node(mean(data), children) 

 

Algorithm 1: Recursive cluster tree construction 

2.2 Motion Generation 

Based on the motion primitive graph generate a new motion fitting input constraints in three steps: First, a 

graph walk through the graph of motion primitives is generated sequentially and the latent parameters of 

each motion primitive are optimized to fit the constraints. Then the motion primitives in the resulting graph 

walk are back projected into a motion splines and concatenated into a single spline. Finally the motion spline 

is discretized into a frame based representation that is edited using inverse kinematics to reach constraints 

outside of the range of the training data. In order to handle collisions with the environment we make use of a 

separate service that was developed that provides constraints that avoid collisions with the environment. 

2.2.1 Graph Walk Generation 

The motion synthesis supports two types of constraints: trajectory and key frame constraints. Trajectory 

constraints define the position of a joint during an entire elementary action. Key frame constraints allow to 

constrain the position or orientation of a joint on one frame of the motion. Furthermore, they can be used to 

constrain the time on which the constraint must be reached. For the definition of key frame constraints we 

semantically annotate the canonical timeline of motion primitives with semantic labels such as start_contact 

and find on runtime the frame that meets the semantic labels associated with the key frame constraint.  

The motion synthesis algorithm takes constraints on elementary action level and breaks them down to motion 

primitive level. The breakdown uses edges in a manually defined motion primitive graph and the annotation 

of motion primitive as start, transition or end primitives to create the graph walk. An overview of the 

sequential motion synthesis algorithm is shown in Algorithm 2. 

 Initialize empty graph walk 

For (action, constraints) in elementary action list do 

    While state is not end of action do 

        Transition to new state 

        Generate state constraints from action constraints  

        Optimize latent parameters of step 

        Check for collisions and re-estimate latent parameters if necessary   

        Add state with optimized parameters to graph walk 

    Optimize all steps of current elementary action  

Return graph walk 

Algorithm 2: Sequential motion synthesis algorithm. 

For motions that following trajectory constraints on the hip joint, such as walk and carry, we have generate 

constraints for each step until the end of the trajectory has been reached. The constraints of individual steps 

consist of the position and orientation of the projected hip joint at the end of each step and are generated 

based on a heuristic using the median step length of the motion primitive. Due to structural differences in the 

motion, we have to separate motion primitives such as sidestep and a standard step. In order to choose the 
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appropriate motion primitive at runtime, the path following algorithm can evaluate multiple options per step 

to select the best option given the current step constraints.  

In order to prevent collisions with the environment, each step is evaluated by a remote Collision Avoidance 

service. If the CA-service detects a collision, new constraints are generated and the latent parameters are 

modified in order to generate a motion that avoids the collision.  

After the generation of the graph walk with optimal low dimensional parameters, the low dimensional 

parameters of the graph walk are back projected into motion splines, concatenated and discretized into 

frames for visualization. During this discretization we generate an annotation of the key frames that is used 

in the Simulator for the scene manipulation. 

2.2.2 Latent Parameter Optimization 

Inside of the breakdown loop of Algorithm 2 the optimal parameters for each step are found using latent 

parameter optimization. First an initial guess is found by a search in the cluster tree of the motion primitive.  

During the search the mean of each node in the tree is evaluated using the following objective function that 

sums up the distance to the constraints. 

arg���
�

�‖
��
���� � ��‖�
�

���
 

 

(1) 

Here, � is the low dimensional parameter vector, � is the number of constraints, 
� is the forward 

kinematics function and 
 is the back projection from low dimensional parameters into a motion spline. For 

the search in the cluster tree we keep multiple candidates at each level of the tree to avoid getting stuck in 

local minima.  

The resulting parameter vector is then further optimized using the Levenberg-Marquardt algorithm. In order 

to prevent the algorithm to produce unnatural motions, equation (1) is extended with a naturalness term as 

shown in equation (2). 

		arg���
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(2) 

The likelihood term is the negative log likelihood of the motion primitive model 	����� constructed as a 

GMM.  

By minimizing the negative log likelihood of the distribution function, we can maximize the likelihood of the 

motion in respect to the original samples. In order to handle different value ranges for the kinematic error 

and the likelihood term we added weight factors to equation (2), that can be adapted based on the types of 

constraints.  

By optimizing the parameters, the natural motion that most likely fits the constraints can be estimated. 

Additionally, if a constraint is unreachable by the range defined in the original samples, the naturalness term 

prevents the optimization from producing unnatural parameters.  
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For elementary actions that follow a trajectory-constraint such as walk and carry further optimization over 

multiple steps is required to ensure that the end of the trajectory has been reached correctly. For this purpose 

we concatenate the latent space parameters of � steps into one long vector. 

		arg���
�…��

�
∑ !
� "
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The result of the step-wise optimization is used as an initial guess and the resulting parameters of the multi-

step optimization replaced in the graph walk. In our evaluation � is set to 3 steps based on experimental 

results. 

2.2.3 Collision Avoidance 

In order to avoid collisions, it is important to determine the points where the avatar collides with the scene 

geometries. Usually, collision detection is computationally expensive. In the present work the open source 

physics engine Bullet Physics Library
2
 is used for detecting the collisions. The collision detection module 

developed on top of the Bullet engine detects the collision in the input motion provided by the motion 

generator. It is decided by the consortium that the entire motion which is given as input to the collision 

avoidance module need not be modified. Only the frames in the input motion which exhibit collisions need 

to be modified. Continuous frames in the input motion which exhibits collision are defined as “Collision 

Island” in this work. A synthesized motion may comprise of several such collision islands. The collision 

avoiding constraints are generated only for these collision islands. 

Currently, the collision avoidance module provide positions of the end-effector (hand joint) for reach and 

place elementary actions for their single handed and two handed variant as constraints. A standard A Star 

algorithm is used for computing the constraints. The collision avoiding constraints are ensured to be within 

the reach space of the avatar. This is done by using the captured reach space data as the base. Position of 

generated constraints is checked against the captured reach space data. The constraints which are positioned 

out of the reach space data are disqualified to be considered as collision avoidance constraints.   

2.2.4 Motion Editing 

The range the training data of the motion models is limited, therefore user defined constraints can sometimes 

not be reached by the latent parameter optimization. In order to increase the reachability of constraints, we 

use inverse kinematics to edit pose parameters of individual frames of the discrete motion representation. 

The constraints used during the motion synthesis are reused for motion editing by mapping the semantic 

labels to frames of the discrete motion representation based on the same method that is also used for the 

generation of the frame annotation. We then directly optimize on the quaternion parameters of free joints in 

the kinematic chain influencing the constrained joints to reach those constraints using the L-BFGS-B 

algorithm. The free joints are defined manually for each end effector in a simple skeleton model. By using 

the pose parameters of the motion synthesis as initial guess for the optimization the result stays closes to the 

training data.  

                                                           

 

2
 http://bulletphysics.org/ 
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The modified frame parameters are then blended with the original frame parameters using Spherical Linear 

Interpolation (Slerp). We first synthetically create a smooth transition motion to and from the modified 

frame. This synthetic transition motion is then blended with the original motion using a sliding weight 

function.  

Due to the lack of hand motion models the hand motion is generated during motion editing. For this purpose 

predefined hand poses for open and closed hands are used to procedurally create the hand animations using 

Slerp. 
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3 LESSONS LEARNED 

3.1 Data Requirement Estimation for Statistical Modeling 

In general, the real distribution of motion capture data can be better modelled with sufficiently large amount 

of samples. However, motion capture and data preprocessing are time-consuming and costly. The connection 

between variation of synthesized data and required number of samples is not clearly stated in the MG++ 

approach [1], which is the basis of motion synthesis for INTERACT. So it is important to learn the required 

number and distribution of training samples for constructing a good statistical model. However, it is 

nontrivial to find out the necessary number of samples for good models, since the samples in different 

motion primitives have different number of dimensions, and the range of the variation in the motion is also 

different.  

Our experimental results lead to two conclusions. In principle, if the motion samples display large 

variation—for instance, several clusters in low dimensional space, in order to capture the distribution of the 

data—a complex model which contains several Gaussians is required to achieve a high likelihood of training 

samples. In this case, more samples are required to avoid overfitting the parameters of the model and to fill 

the gaps between clusters (c. [2]). The other case is when the motion is relatively complex, which requires 

more dimensions in low-dimensional space, in order to capture the same variation compared to simple 

motions. More training samples are preferred in this case to avoid overfitting the GMM model due to the 

curse of dimensionality. 

In INTERACT, AIC score (see Section 2.1.3) is employed as a measure of model quality to address the 

aforementioned observations. Table 1 in the appendix shows the evaluation of parts of the motion primitive 

models in INTERACT. The statistical evaluation results are corresponding to the user study of motion 

primitive models in D2.3.1. The models with a larger number of input data such as walk_leftStance, 

walk_rightStance, achieve very good model quality. For walk_sidestepLeft, although the average log 

likelihood is not low, the high AIC score indicates that the model is over fitted, since there are 5 Gaussians 

for 40 samples. 

3.2 Functional Data Analysis for Motion Data 

Many statistical motion modeling approaches take motion capture data as a sequence of frames, and 

parameterize it as a long vector. The smoothness and sequence order of frames cannot be represented well by 

this representation. An appealing property of statistical motion synthesis approach presented by Min et al. [1] 

is that they claim that they apply functional PCA to model motion, which can intrinsically address the 

smoothness of motion data. However, details about the functional representation and the use of FPCA are 

missing in the paper and the authors refer to their previous work [4], which clearly states PCA is used for 

dimensionality reduction of frame data. Furthermore the dissertation of the author [8], was not yet made 

available to the public. We therefore had to derive the details of the approach experimentally. 

Following the information given in the paper, we first evaluated the performance of applying PCA on frame-

wised motion capture data. We constructed a set of motion primitive models for walking, picking, carrying 

and placing using a frame-wise motion representation for M12 prototype.  However, in order to address the 

requirement of smoothness of the synthesized motion, different motion parameterizations (c. [6]) were 

evaluated and functional data analysis was explored. Based on previous research (e.g. [5], [7]), intensive 
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experimental efforts were made to evaluate different basis functions for spline interpolation and different 

choices of parameters to achieve a good representation for motion capture data. In the M18 prototype, the 

previous motion primitive models were replaced with cubic B-spline-based models. Furthermore, more 

elementary actions which are required in INTERACT were modeled successfully with functional data 

analysis in the following prototypes.   

Our results indicate that the cubic B-spline basis can offer a compact representation of our motion data. 

Figure 5 shows the reconstruction error between B-spline representation and original discrete data. The 

reconstruction error is measured by evaluating functional data at canonical frames compared to original data.  

Generally, we are interested in using less basis functions while keeping the functional data as close to the 

original data as possible. It seems that some complex motion, for instance picking and placing, require more 

basis functions to achieve the same reconstruction error, however, the number of canonical frames is 

different for different motion primitives. Usually the length of an aligned motion clip in a complex motion 

primitive is longer than in a simple motion. So the reduction rate of the functional representation is similar 

for most motions, which indicates that the cubic B-spline basis works well for our motion data. 

 

3.3 Transition Model  

Transition model between motion primitives is one of the main appealing properties of MG++ approach. In 

INTERACT, since M12, great efforts were deployed to investigate the implementation of transition model, 

and evaluate the performance of transition model, due to lacking implementation details in the original paper 

[1]. A test version of transition model based on Gaussian processes was implemented by the cooperation of 

Daimler and DFKI. In addition, a great number of experiments were done by DFKI and LMS to find the 

Figure 5: Evaluation of functional data representation for different motion. Root mean squared 

error (RMSE) between functional data and discrete data are measured in joint space. RMSE for 

each motion type is plot with increasing of number of basis functions K. 
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optimal parameters for the model. However, the results were not natural enough for practical usage and the 

variation of the generated model was not big enough for INTERACT. 

From our experiments, we found that for a good transition model, every motion clip should have a range of 

different styles as possible next transition. However, this is not supported by the design of motion capture in 

the INTERACT project, which has limited variation. Therefore, the transition model trained by our data also 

only displays a limited range of variation, so it fails to fulfill the requirement that the generated motion 

should support a rich set of constraints while keeping as natural as possible.   

3.4 Acceleration using Space Partitioning Data Structures 

The original paper by Min et al. [1] proposed random sampling to find a good guess that they use to initialize 

the optimization in latent space. Depending on the variation of a motion primitive and the number of 

evaluated random samples, this can end up in a guess that is far away from the global minimum. Instead of 

using random sampling a more stable result, that requires less sample evaluations, can be achieved by taking 

knowledge about clusters in the latent space into account. 

 

We therefore use a directed search inside of a space partitioning data structure constructed on the latent space 

to find an initial guess for the optimization. Experiments using the k-means algorithm for the clustering of 

Figure 6: Clusters that were found in latent space visualized using X, Y and Z coordinates of joints 

of 10.000 random samples. Green, light blue, orange and dark blue represent labels and red dots 

represent the projected centers of the four latent space clusters. For each motion primitive, a 

different joint is used for the visualization. For pickRight and placeRight the right hand for walk 

the hip and for screw the left hand is visualized. The clustering is not perfect but segments the 

space into overlapping regions. 



 

The INTERACT project (611007) is co-funded by the European Commission under the 7th Framework Programme. 

 

This document reflects only authors’ views. The European Commission is not liable for any use that may be done of the information contained 

therein. 

 

the latent space, showed that the search result can also come closer to the optimum than random sampling, 

which results in a reduced time needed for the optimization. However, the experiments were only successful 

for spatial constraints and only for constraints on joints that have high variation. For those joints clusters that 

were found in latent space resulting from the linear dimension reduction method can be mapped to clusters of 

the global positions and orientations of the joints. Figure 6 shows examples of clusters that were found in 

latent space visualized on joint positions sampled from the motion models. 

3.5 Reachability of Constraints 

In general the motion synthesis approach can reproduce variation in the motion capture data well. However, 

motion capturing and motion processing into motion primitive models is a time consuming task. Therefore, it 

is difficult to cover every possible scenario with training data and the available variation is limited.  

The motion synthesis integrated into the best-fit pipeline does not work well in practical user experiments 

because the available variation in the motion model is too limited and the constraint generation does not take 

the range of the training data into account so constraints outside of the reachability of the training data are 

generated. This problem, however, was only considered very late in the project after tests using the M24 

prototype. Daimler worked on the evaluation of the variation of the motion data. However, it was not 

possible to take it into account for the constraint generation due to limited resources very late in the project. 

One approach to increase the reliability of reaching constraints, that was tested in the INTERACT project, is 

the combination of the data-driven motion synthesis with procedural motion editing based on inverse 

kinematics. Inverse kinematics is a standard technique used to calculate the joint parameters directly based 

on constraints defined on the joint positions and/or orientations. Tests using a basic unconstrained 

implementation show that altering the motion using procedural methods does not necessarily destroy the 

naturalness of the motion, as long as the difference of the motion sampled from the motion model and the 

synthetic pose parameters resulting from inverse kinematics is small and blending is used to create a smooth 

transition. However, the motion loses the stylistic information, if constraints that are far away from the 

training data need to be reached. Motion editing was added very late to the pipeline after M24, therefore joint 

boundaries are missing in the existing implementation, which would improve the result. 

In general, a large variation in the training data is necessary to generate motions that reach constraints and 

have the quality that is required for the intended application area of ergonomic analysis. Therefore, an 

efficient, ideally automated, processing pipeline for training data is needed, to create models that cover the 

required variation for manual assembly tasks. 

3.6 Collision Avoidance Integration 

The original proposal for the integration of the separate Collision Avoidance module was to run the motion 

synthesis algorithm twice, once based on user constraints and then again with additional constraints that 

avoid collisions with the environment. A first version of the collision avoidance service became available 

after M18. Tests showed that this approach was problematic due to the not yet optimized implementation of 

the motion synthesis algorithm, which resulted in a long processing time. Furthermore, the constraints could 

only be provided on elementary action level. As a result the motion synthesis algorithm internally had to run 

multiple times in order to find the step in the graph walk that should be constrained based on the shortest 

distance and then modify this step. Additionally, due to the limited variation in the motion models, the 
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collision avoidance constraints could result in a changed path during trajectory following motions such as 

walk and carry. This can invalidate the following collision avoidance constraints for the same elementary 

action by making them unreachable. For example, by applying a collision avoidance constraint on the hand 

during a walk action in addition to the constraints on the hip joint can end up in changing the path, if the 

combination of constraints on the hand and hip joints lies outside of the range of the training data. If there 

was another collision in the following motion primitives, the corresponding collision avoidance constraints 

might not be reached anymore due to the changed path. Additionally, the modified motion can have new 

collisions.  

In order to correctly handle collisions during motion synthesis, using the available variation of the training 

data, the motion synthesis needs to directly react to a collision so the motion has to be generated only once. 

After M24, the collision avoidance module was therefore re-integrated using a direct connection inside of the 

motion synthesis loop. However, the change in the architecture was implemented very late in the project and 

could not be tested and improved sufficiently which results in a long run time. Due to the long time required 

to run the implementation, further optimizations need to be done before it can be applied in user tests.  

For future projects, the optimization of the runtime of the code should be given extra focus, when dealing 

with potentially computationally intensive tasks. Furthermore, the separation of work on closely coupled 

services such as the handling of collisions and the motion synthesis is problematic, because it requires close 

collaboration between partners in order to be successful. Based on experience with the speed-up of the core 

of the motion synthesis algorithmic structure, it could be already proved that significant further speed-up of 

the motion synthesis would be possible. However, this most likely would involve many or even multi-core 

hardware which would result in a complete redesign of the motion synthesis component. The creation of 

such an implementation would require deep expertise in many and/or multi core programming and can only 

be the last step of optimization in the design of a practical system because the effort for the implementation 

is very high and basically all algorithmic decisions need to be validated before. 
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4 CONCLUSIONS AND FUTURE WORK  

4.1 Summary and Conclusions 

In INTERACT, the core of the statistical motion synthesis method presented by Min et al. [1] was re-

engineered. It provides a generative, compact, semantic-aware representation for the large amount of motion 

capture data.  Because the PhD thesis [8] with details of the method was not made available to the public by 

the author, the implementation required more effort than initially planned. The functional representation and 

the FPCA implementation had to be derived experimentally and might differ from the paper. Furthermore, 

the transition model as described in the paper could not be successfully integrated into the motion synthesis 

pipeline despite of a lot of effort due to issues reaching constraints while keep the naturalness of the motion. 

A statistical human motion modeling pipeline was designed and implemented. Using this pipeline, a 

statistical motion database which contains 13 elementary actions was created: walking, two-hand carrying, 

single-hand carrying, two-hand picking, single-hand picking, two-hand placing, single-hand placing, 

retracting, sidestep, screwing, inserting, transferring and looking around, was constructed. The database is 

compact compared to the original motion capture data, requiring only 42MB for memory. However, the 

original motion capture data takes 4.2 GB for storage. Any number of motion variations with different styles 

can be efficiently generated by sampling the motion primitive model, and the quality of the generated motion 

clips is good in general according to an evaluation by users.  

Given a list of constraints for different elementary actions, such as walk and pick, a constrained motion can 

be synthesized. The controlled motion synthesis algorithm breaks down the constraints to motion primitive 

level in order to generate a sequence of motion primitives. The latent model parameters of each motion 

primitive are first optimized individually to fit the constraints. For path following motions, multiple steps are 

additionally optimized together. The optimization of individual steps is accelerated using space partitioning 

data structures in latent space of the statistical motion models. Furthermore, motion editing is applied in 

order to increase the variation of the generated motion outside of the range of the training data. 

Individual motion primitives can inherently generate realistic motions inside of the range of the training data. 

However, according to a user study that was conducted as part of the INTERACT project, the resulting 

motion of the synthesis algorithm was judged as not yet acceptable for the intended application of ergonomic 

analysis. There are issues regarding the motion quality when constraints outside of the training data need to 

be reached.  

Although problems to work on remain, like for example that paths cannot be followed close enough or given 

constraints break the naturalness of motions, the motion synthesis approach produces high quality motions 

for a significant number of tasks. 

4.2 Future Work 

Currently, our motion primitive modeling pipeline is not fully automatic. Our rule-based frame recognition 

approach uses geometric information of motion data, however, some key frames are semantically similar but 

quite different in geometry, especially for complex actions like screw, transfer. So for extracting key frames 

from complex actions, manual work is still required. This manual work can be very time-consuming due to 

the large number of samples in the motion data required for modeling. In order to make our motion synthesis 
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prototype more practical for industry usage, deep learning based human motion recognition approaches 

could be a promising option to investigate (e.g. [11], [12], [13]). The goal would be to extract structurally 

and semantically similar key frames from recorded motion sequences, so the motion primitive construction 

can be fully automatic. 

The statistical motion database constructed in INTERACT provides a compact representation for the 

variation in motion capture data.  Any number of motion variations with different styles can be efficiently 

generated by simply sampling the motion primitive models we construct. However, the variation in motion 

data differs for different motion parameterization. We found that the variations of poses in Euclidean space 

closely matched visually observed variations in the motion data. This observation should be included in 

motion modeling. For future improvements of motion primitives, we propose to reduce the dimensionality of 

motion data by minimizing the reconstruction error in the Euclidean space of joint positions, instead of the 

feature space. This can be achieved by applying a scaled version of Functional PCA. 

An important feature that is missing in the motion synthesis implementation is the Gaussian Process (GP) 

transition model described in the paper by Min et al. [1]. As a result the concatenated motion primitives are 

not very natural. To fix this problem further work investigating the transition model is necessary. One idea, 

described in [4], would be to investigate a frame wise (or in case of FPCA coefficient wise) optimization 

approach instead of optimizing the latent parameters once for the entire motion primitive. This way the GP 

could be used to predict smooth transitions and still have the entire variation of the motion primitive model 

to reach constraints without requiring too much training data. Another missing feature is the synthesis of 

parallel actions by different body parts. For this purpose, the extension of the motion primitive models into a 

hierarchical motion primitives models would need to be investigated. An interesting hierarchical dimension 

reduction approach for this purpose was proposed by Lawrence et al. [10]. Furthermore, in this context hand 

motion models need to be added. As basis for future work, the method presented by Zhao et al. [14] could be 

used. This is an extension of the motion model approach by Min et al. [1] with a physical model of the hand, 

which is used to handle the contact with objects correctly. 

In order to better reach constraints, it might be useful to investigate a separate foot step planning algorithm, 

before the actual motion synthesis process. A similar data-driven two-step approach was developed by 

Agrawal et al. [9], which could be combined with motion primitives. 

In order to handle contact with the environment correctly, a physical model of a skeleton in a simulation 

using forces could be used. This way collisions would be inherently detected and the motion would be 

inherently physically correct regarding balance and weight of manipulated objects. Furthermore, joint 

trajectories that avoid collisions outside of the variation of the training data could be generated using a 

particle filter based approach as proposed by [3]. In context of the physics integration another option for 

future work would be to evaluate a frame-based motion model, which can simplify the integration with a 

physics simulation because it reduces the differences in the update rate of the data driven motion synthesis 

and the physics engine. Furthermore this has the potential to increase the variation that can be generated 

from the available training data due to the larger possible combinations resulting from a concatenation of 

frames instead of motion primitives. 
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5 APPENDIX 

 

elementary 

action 
Motion primitive 

Number 

of input 

samples 

Length of 

low 

dimensional 

vector 

AIC score 

(the lower 

the better) 

Optimal 

number of 

Gaussians 

Average 

log 

likelihood 

of training 

data (the 

higher the 

better) 

walk 

beginLeftStance 123 33 -7488.9862 3 44.9470 

beginRightStance 123 33 -7490.2250 3 44.9521 

leftStance 1366 42 -74088.5716 8 59.2667 

rightStance 1366 44 -78710.4901 8 63.1164 

endLeftStance 182 32 -12227.2735 6 51.9462 

endRightStance 131 31 -7998.1986 5 50.9114 

sidestepLeft 40 15 24.9662 5 16.5485 

sidestepRight 40 16 -58.9246 3 12.1865 

turnRightLeftStance 15 12 112.4796 2 8.3173 

turnLeftRightStance 15 12 112.4796 2 8.3173 

Two-hand 

carry 

beginLeftStance 12 13 28.4221 1 7.4824 

beginRightStance 12 13 28.4221 1 7.4824 

leftStance 280 28 -12309.8280 6 31.2684 

rightStance 280 27 -11971.1889 6 29.7114 

endLeftStance 84 14 -176.1567 3 5.3223 

endRightStance 84 14 -176.1567 3 5.3223 

sidestepLeft 43 13 856.3731 2 -5.0973 

sidestepRight 43 13 933.8753 5 1.0359 

turnRightLeftStance 19 13 156.8395 3 12.3989 

turnLeftRightStance 19 13 156.8395 3 12.3989 
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Left-hand 

carry 

beginLeftStance 60 11 3.4619 2 2.5544 

leftStance 166 28 -8306.6932 2 30.2551 

rightStance 193 30 -9212.7247 2 29.0018 

endLeftStance 13 10 -22.1927 1 5.8535 

endRightStance 43 10 -433.8836 2 8.0916 

sidestepLeft 75 14 956.3415 5 1.6730 

sidestepRight 75 11 344.4085 2 -0.2293 

turnRightLeftStance 16 13 177.6495 2 7.5109 

turnLeftRightStance 63 23 241.6399 5 21.7318 

Right-hand 

carry 

beginRightStance 64 24 -2426.3558 1 24.0184 

leftStance 279 22 -2657.1714 2 10.3225 

rightStance 280 25 -12818.5436 4 27.9009 

endLeftStance 84 21 -2318.2464 3 22.8228 

endRightStance 55 18 -951.9676 3 18.9997 

sidestepLeft 75 23 -1639.1073 3 22.9140 

sidestepRight 75 23 -1880.6664 3 24.5244 

turnRightLeftStance 63 23 239.1885 5 21.8508 

turnLeftRIghtStance 16 13 177.6495 2 7.5109 

Two-hand 

pick 

reach 374 45 -22461.7969 7 50.5741 

retrieve 356 48 -22077.7663 7 56.2962 

Left-hand 

pick 

reach 29 15 63.9624 3 12.9316 

retrieve 31 16 182.0964 2 6.9016 

Right-hand 

pick 

reach 29 15 64.0411 3 12.9316 

retrieve 31 17 -329.1722 2 16.3092 

Two-hand 

place 

reach 182 37 -6204.8289 6 41.0388 

retrieve 180 37 -5516.8709 5 36.1137 
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Left-hand 

place 

reach 37 17 -348.1842 3 17.9834 

retrieve 38 18 -405.5442 2 15.3097 

Right-hand 

place 

reach 37 17 -306.8400 3 17.9843 

retrieve 38 18 -405.5442 2 15.3097 

LookAt LookAt 88 15 129.0858 10 10.8541 

Transfer transfer 82 22 -821.5554 5 21.2225 

Two-hand 

insert 

reach 54 17 -221.9901 5 17.8702 

retrieve 55 17 -61.6436 6 16.0876 

Right-hand 

insert 

reach 12 12 123.5129 2 9.9369 

retrieve 11 8 104.6566 3 7.4246 

Left-hand 

insert 

reach 12 12 123.5129 2 9.9369 

retrieve 11 8 104.6566 3 7.4246 

Left-hand 

screw 

reach 231 25 -98.5422 9 13.6356 

retrieve 229 29 -948.2564 8 18.3594 

transfer 79 20 393.2646 6 15.1911 

Right-hand 

screw 

reach 231 25 -185.0918 10 15.2924 

retrieve 229 29 -1070.6439 10 22.7935 

transfer 79 20 356.7561 6 15.2736 

Table 1: Evaluation of Motion Primitive Models 


