
INTERACT – Interactive Manual Assembly Operations for

the Human-Centered Workplaces of the Future

Grant Agreement Number : 611007

 : INTERACT

Project Start Date : 1st October, 2013

Consortium : DAIMLER AG (DAIMLER)- Project Coordinator

 ELECTROLUX ITALIA S.P.A. (ELECTROLUX)

 INTRASOFT INTERNATIONAL SA (INTRASOFT)

 IMK AUTOMOTIVE GMBH (IMK)

 EMPHASIS TELEMATICS AE (EMPHASIS)

 HADATAP SP ZOO (HADATAP)

 UNIVERSITY OF PATRAS (LMS)

 UNIVERSITAET ULM (IMI)

 DEUTSCHES FORSCHUNGSZENTRUM FUER KUENSTLICHE

INTELLIGENZ GMBH (DFKI)

Title : Deliverable 2.1.1 - Manual assembly simulation design and data formats

Reference : D2.1.1

Availability : public

Date : 31.07.2014

Author/s : IMK, DFKI, DAIMLER, LMS

Circulation : EU, consortium

Summary:

The content of this document is the description of the progress in developing the INTERACT

software prototype. The main purpose is the presentation of the considered architecture, the

technologies used, the progress in the development and the identification of further development steps

and strategies.

D2.1.1 is the main outcome of Task 2.1 and is mainly based on the requirements of the deliverable

1.1.1.

INTERACT

INTERACT 611007

Contents

1. EXECUTIVE SUMMARY ... 2

2. INTRODUCTION ... 3

3. MOTION SYNTHESIS DESIGN OVERVIEW .. 4

4. CNL TO EXPLICIT TASK DESCRIPTION ... 5

5. MOTION SYNTHESIS .. 7

5.1. Preprocessing ... 7

5.2. Morphable Graphs Modelling .. 8

5.3. Control .. 8

6. COLLISION AVOIDANCE ... 9

6.1. Methodology .. 9

7. VIEWER/3D SCENE MANIPULATOR .. 10

7.1. XML3D and Xflow .. 10

7.2. COMPASS and FiVES .. 10

8. ABBREVIATIONS ... 11

9. REFERENCES .. 12

INTERACT 611007

1. EXECUTIVE SUMMARY

The content of this document is the description of the progress in developing the INTERACT

software prototype. The main purpose is to present the architecture considered, the technologies used,

the progress of the development and the identification of further development steps and strategies.

D2.1.1 is the main outcome of Task 2.1 and is mainly based on the requirements of the deliverable

D1.1.1.

Deliverable D1.1.1 states three general requirements on a future human assembly task simulation tool:

 Improvement of the realism of the digital models of manual assembly operations, as well as

increased confidence in the simulation results.

 Improvement of the performance of the planned assembly processes (for example in terms of

ergonomics, throughput and utilization).

 Reduction of the time required to build digital models of assembly processes.

Section 2 and 3 provide an overview of the main ideas and definitions of the earlier deliverables and

the transfer to the actual topic. The high level architecture of the software is presented, as it is planned

up to this point. Furthermore, a description of the individual components including the functionality,

methodological basics and a brief description of used algorithms, used technology and data formats in

the sections 4 to 7.

INTERACT 611007

2. INTRODUCTION

Work package 2 carries some of the core functionalities of the project as it is related to the motion

synthesis. Up to this point of the project, the focus of the development has been on the logical

concept, respectively the high level structure of the motion synthesis. Following Kruchtens’

architectural view model (see Figure 1), the project shifts from the logical and therewith user-centered

view to the development and process perspective. From the user-centered perspective, the basic

structure of the software consists of input, motion synthesis, visualization, assessment and

manipulation (see Figure 2). These modules work in a loop, regarded to the iterative character of the

workshop use case (see D1.1.1).

The next chapter will give a software overview to shift the perspective to a more development

oriented view. The subsequent chapters will describe the main components of the motion simulation

modules individually.

Figure 1: ‘4+1’ architectural view model

(Kruchten, 1995)

Figure 2: Logical overview from user perspective

INTERACT 611007

3. MOTION SYNTHESIS DESIGN OVERVIEW

Motion synthesis in the INTERACT project is based on three key features:

 Input through controlled natural language (CNL)

 Motion synthesis with Motion graphs++

 Generation of alternative simulations in a workshop scenario

These features are the starting point for the development of a comprehensive motion synthesis

module. These key features try to meet the three general requirements mentioned above. Next to these

core technologies, there are several modules necessary to get to a comprehensive motion synthesis

system. It is not possible to solely feed the Motion graphs++ algorithms with the semantic task

description of the CNL. Motion graphs ++ requires geometric constraints (e.g. end effector positions)

as input. Therefore, the CNL task description has to be interpreted and assigned to the virtual

environment and the task relevant geometry. This pre-processing step requires an explicit object

representation of all relevant geometry. After the assignment of relevant objects, references and

positions in the observed process, in a constraint building step, the constraints for Motion graphs ++

are generated. The Motion graphs ++ step follows the procedure of graph modelling. The resulting

graph comprises motion primitives as vertices and transition models as edges. This initial motion

synthesis is followed by a collision avoidance component. This component consists of collision

detection, the calculation of collision free trajectories and the extraction of a new updated constraint

set for Motion graphs ++ motion generation. These steps try to ensure a natural looking collision free

and consistent visualization of the planned work tasks.

The key feature of quick adaptation of motion simulations consists of motion capture, manual input

and sensor data input. All three ways of changing the simulation generate a set of constraints as input

to the preprocessing module, the geometry or the constraint building, where they have to be integrated

and synchronized.

Figure 3: Motion synthesis overview

INTERACT 611007

4. CNL TO EXPLICIT TASK DESCRIPTION

The Controlled Natural Language (CNL) in INTERACT is characterized by a very limited set of

English words describing assembly tasks. Basically it consists of more or less complex verb phrases,

as shown in example (1). To describe a task in this CNL, the user selects the activity (tighten), the

individual components (arm support, cordless screw driver, middle console) and their roles in the

phrase (object, tool, goal) using a menu-based interface.

(1) Tighten arm support with cordless screw driver on middle console

To visualize the semantics and pragmatics of a CNL expression, a breakdown into terms of

elementary movement actions such as PICK, WALK, PLACE, SCREW etc.1 is required, representing

the scenario specific needs of the avatar getting hold of the screw driver, the screws and the arm

support, which may involve various instances of walking, picking, etc.

Obviously many parameters influence the generation of a precise sequence of elementary actions to

be visualized. Some parameters depend on the objects at stake. For instance, a screw is picked up

differently than an arm support (one vs. both hands). The knowledge about each object being grasped

by an avatar is depicted in the ontology. Other parameters are based on the state of the scenario at the

point of time when the action is carried out. They include the positions of the avatar and of the objects

at stake.

It is assumed that the INTERACT system has complete information of all objects that may be

involved in assembly operations at any time. Thus it is possible to organize the breakdown into

elementary movement actions by “asking” the environment. We define:

 pos(x) to be the position of x at a given state of the system;

 near(x) to be a predicate stating whether the position of the avatar is close enough to x so that

it can PICK x or do some work, such as tighten something;2

 holds(x) is a predicate stating whether contact is established between x and one or both of the

hands of the avatar.

This way it is possible to state whether, for instance, the avatar holds the screw driver, whether it can

pick it, or whether it needs to walk near it in order to pick it.

The breakdown is implemented as a production system of condition-action rules with post-conditions

representing the changes a rule has caused. Each CNL assembly task description – like (1) – is

analyzed to match a semantic pattern associated with a set of condition-action rules describing all

possible breakdowns within the scope of defined parameter values.

Let’s look at an example to illustrate the techniques employed. The linguistic analysis (1) may result

into the semantic representation (2). A generalizing pattern covering tightening actions is given in (3).

Note that the class of the tool is restrained to the class screw_drv since only screw drivers imply that

screws are needed.

(2) [PRED tighten, THEME arm_suppt, TOOL cdless_drv, GOAL mico]

(3) [PRED tighten, THEME theme:thing, TOOL tool:screw_drv, GOAL goal:thing]

The activity (2) requires, among other things, the avatar to get hold of the screw driver, the screws and

the arm support. This can be described in terms of the following generic rules about picking, carrying

and placing things. The post-conditions are prefixed by the “->” sign.

(4) ;;pickrule(object) - if successful, holds holds as a post-condition.

1 See Deliverable 1.1.1 for a complete list of elementary actions.

2 “near” can be defined further in terms of the positions of the object and the avatar. NOT(near()) triggers a

WALK, as shown below.

INTERACT 611007

IF NOT(holds(object))

THEN IF NOT(near(object)) THEN (WALK(near(object)); PICK(object))

-> holds(object), …

(5) ;;Carry(object, goal)

IF holds(object) THEN IF NOT(near(goal)) THEN WALK(near(goal))

-> pos(object) = near(goal)

(6) ;;placerule(object, goal)

IF holds(object) THEN IF near(goal) THEN PLACE(object, goal)

-> pos(object) = on(goal)3

Getting hold of the objects, as required by (2), can now be expressed as sequences of pickrule-carry-

placerule activities for the screw driver, the screws, and the arm support.4 The arguments are called

by value using the template (3), which is instantiated by the semantic representation (2). Note that at

this level, only elementary actions, logical connectives and functions “asking the environment” are

needed. At the same time, implicit activities such as walking or fetching the screws, are taken care of.

The rules are interpreted to derive an optimum sequence of elementary actions. Parameter settings,

which are not shown here in full, may allow for more than one solution. An optimum solution can be

derived on statistical grounds if no further selection criteria are available. The algorithm is based on

the three-step cycle of matching, selecting and firing a rule as known from the production system

literature [2]. Post-conditions modify the modeled state of the system.

The result of the breakdown is a sequence of elementary actions that will guide the visualization

processes. This action sequence is accompanied by a set of motion constraints, e.g. if a screw driver is

going to be picked then a constraint for the hand joint position is derived from the screwdriver hand

attachment tag.

The breakdown is represented as a feature structure5 in an XML format of choice.

3 Assuming that PLACE knows a default position depending on the classes of its arguments.

4 Obviously, in order to minimize WALK events, things may be carried jointly. Corresponding rules must be

defined additionally.

5 A feature structure is recursively defined as a tree structure, in which each node either represents a feature-

value pair, or a feature structure.

INTERACT 611007

5. MOTION SYNTHESIS

The goal of motion synthesis is the automatic generation of realistic or believable animations of a

virtual human character for a large repertoire of behaviors controlled by user input and environmental

constraints. In the INTERACT project the motion synthesis is based on the data-driven approach

Motion graphs++ [3].

In general, the implementation of this approach uses motion data (here BVH files [4]) as input,

performs dimension reduction and trains a set of statistical models on the reduced motion parameters

for different motion primitives, e.g. left step and right step. A set of statistical models is then formed

into a graph based on reasonable transitions between them. Transitions themselves are also

represented using statistical models. This graph effectively forms a large “motion space”, which can

be sampled to synthesize new animations satisfying user specified and environmental constraints, e.g.

a constraint on the hand position.

As shown in Figure 4, the Motion graphs++ algorithm consists of three parts: preprocessing,

modelling of the morphable graph and the actual motion synthesis.

5.1. Preprocessing

As the first step of the preprocessing, a set of motion files is decomposed into segments of structurally

similar motion primitives. This motion decomposition is done automatically based on the detection of

user defined key frames. In addition to key frames, feature detection can also be used for the

segmentation. Currently, a solution for the detection of walking primitives that is based on the

distance between the feet has been developed.

For each motion primitive one example segment is selected as reference motion to define a canonical

timeline. All the other examples of each motion primitive are then aligned to their reference motion

segment based on Dynamic Time Warping (DTW) and a pose distance measure. The resulting aligned

motion segments and time warping functions are suitable for generative statistical modeling.

Figure 4: Workflow of Motion Graphs++

Morphable Model

INTERACT 611007

5.2. Morphable Graphs Modelling

For the aligned motion data and separately for the time warping functions Principal Component

Analysis (PCA) is applied to encode the kinematic and time variation into a linear combination of

their principal components. This results in a dimension reduction of the motion parameters. Then a

Gaussian Mixture Model (GMM) is trained for each motion primitive to model the distribution of

these motion parameters in the original examples. This statistical model is called a morphable model.

The morphable graph is then manually defined as a directed graph of these models and Gaussian

Process (GP) regression is applied to model the transition distribution for all known transitions

between nodes in the graph. Known correspondences between parameters from subsequent examples

from the preprocessing step are used as training data for the GP.

5.3. Control

The problem of controlled motion synthesis is formulated as an optimization problem, where user

specified and environmental constraints form an error function that needs to be minimized while

maximizing the likelihood of the statistical model of the original examples.

This problem is solved in two steps: First an optimal graph walk is found based on randomly sampled

motion parameters and the enumeration of every possible graph walk of a user specified length. Then

a gradient based optimization approach is applied to find the optimal motion parameters for this graph

walk. Currently only the optimization of kinematic constraints is implemented.

INTERACT 611007

6. COLLISION AVOIDANCE

In daily life people consciously or unconsciously avoid collisions. On the other hand in some cases

people allow collision; this can be due to the fact that without collision it is not possible to execute the

task, for example working in a cluttered environment. In a typical assembly line, the collision between

the operator and the external objects should be avoided to improve the shop-floor safety, ergonomics

and productivity. Digital human models (DHMs) are nowadays used to assess the ergonomics of the

shop-floor proactively. The DHM simulation is used to design the shop-floor, plan the activities,

modify the tasks etc.

Collision avoidance is a well-studied field in various domains such as computer graphics, robotics,

animation etc. Many closed form and iterative algorithms are available in literature [5,6,7,8].

6.1. Methodology

In INTERACT, collision avoidance will be realized by adding collision constraints for the Motion

graphs ++ algorithm. This approach differentiates walking / carrying activities, in which 2D collision

avoidance is employed and other activities.

It is assumed that in assembly scenarios walking / carrying collisions are mainly created by obstacles

and that the height of the obstacle is not important as the walk path are computed using the points

projected onto the X-Y plane. Therefore, collision constraints are pre-processed before any trajectory

is derived from Motion graphs ++. It is planned to employ a standard algorithm for walk path

planning. The algorithm A* [9] is considered a good candidate to compute the shortest collision free

path that exists between the initial position of the DHM and the target position. In the project, an

approach to realistically smooth results based on Motion Capture data and to derive a minimum set of

constraints has been developed. Algorithmic details of the developed approach have been published in

[10].

For other activities, collision constraints are derived in an iterative process: First, a trajectory is

sampled based on constraints that result from the explicit task description (see section 4) as well as the

above described walk / carry constraints. This motion is likely to exhibit collisions. These collisions

are addressed locally. First, collisions are detected and mapped onto motion primitives. Therefore, the

motion primitives between which the collisions happens and themselves do not exhibiting collisions,

are detected. Thus, it is possible to find out the border motion primitives and the in-between motion

primitives that exhibit collision. These borders are used as start and end points for an algorithm that

yields as few as possible new constraints that resolve the respective collision. The resulting collision

constraints are checked for consistency with existing ones. Then a new trajectory is sampled from

Motion graphs ++ using all constraints. The new trajectory is again checked for collisions and so on

until either the path is collision free or a time limit is exceeded.

INTERACT 611007

7. VIEWER/3D SCENE MANIPULATOR

In order to setup 3D environments for the motion synthesis algorithm and to visualize the results, a

3D user interface is going to be implemented by DFKI as a web application based on its XML3D

technology. The development time of this component can be reduced by building on top of existing

applications developed by DFKI.

7.1. XML3D and Xflow

XML3D is designed as an extension of HTML5 to make the 3D capabilities of web browsers

provided by the WebGL API accessible to web developers via JavaScript. Therefore the 3D

viewer/scene manipulator will be accessible in any web browser supporting the WebGL standard. For

the scene definition and event handling XML3D makes use of the Document Object Model (DOM) of

a web page by extending HTML5 with new elements for 3D graphics (geometry, materials, lightning,

etc). 3D geometry can also be retrieved from distributed sources via URIs and semantic annotations of

objects is also supported out-of-the-box via RDFa.

With Xflow XML3D also integrates a declarative data processing language that can be used to

implement data intensive tasks specified as network flows. In the context of INTERACT Xflow is

used for the implementation of mesh animations based on a skinning for a skeleton provided in a

custom JSON-based format. An already existing Xflow-skinning for the RocketBox-skeleton can be

reused from earlier Xflow demos developed by DFKI (Figure 5 shows an example Xflow animation).

7.2. COMPASS and FiVES

In order to make the scene be synchronously viewed and edited on multiple clients, for example

during the INTERACT assembly workshop, COMPASS (Collaborative Modular Prototyping And

Simulation Server) is going to be used to manage the scene model. COMPASS is a web-client-server

framework developed by the DFKI that is built on top of the JBoss middleware [11]. Access to the

scene and other functions of the server is provided using REST-based web services with role based

access control. In addition to that clients can communicate with each other via the “Extensible

Messaging and Presence Protocol” (XMPP), which allows P2P sessions.

Furthermore, the extension of the COMPASS application server with the “Flexible Virtual

Environment Server” (FiVES) enables collaborative work on dynamic scenes with animations as

required for INTERACT. The motion synthesis server can then be integrated into this framework as

an external Web service or directly as a plugin of COMPASS that has local access to the scene. Each

frame of an animation generated by the motion synthesis server will then automatically be send to all

connected clients.

Figure 5: Playback of a multi-video performance capture in XML3D using Xflow

INTERACT 611007

8. ABBREVIATIONS

CNL Controlled Natural Language

COMPASS Collaborative Modular Prototyping And

Simulation Server

DHM Digital Human Modeling

DTW Dynamic Time Warping

FiVES Flexible Virtual Environment Server

GMM Gaussian Mixture Model

GP Gaussian Process

JSON JavaScript Object Notation

OBB Oriented Bounding Box

P2P Peer-to-Peer

PCA Principal Component Analysis

RDFa Resource Description Framework in Attributes

URI Uniform Resource Identifier

WebGL Web Graphics Library

XML3D Extensible Markup Language 3D Graphics

XMPP Extensible Messaging and Presence Protocol

INTERACT 611007

9. REFERENCES

1. Kruchten, P. B.: The 4+1 View Model of architecture. In: IEEE Software. 12, Nr. 6,

S. 42–50, doi:10.1109/52.469759 (1995)

2. Davis and King. “An overview over production systems”. In: Eclock/Michie (1977)

3. MIN, J., and CHAI, J. Motion Graphs++: A Compact Generative Model for Semantic

Motion Analysis and Synthesis. In ACM Transactions on Graphics, 31(6) (2012)

4. Meredith, M. and Maddock, S.: Motion Capture File Formats Explained. Department of

Computer Science, Sheffield. http://www.dcs.shef.ac.uk/~. (2001)

5. J.C. Latombe: Robot Motion Planning. Kluwer Academic Publishers, Boston, MA (1991)

6. LaValle, Steven M.: “Planning Algorithms.”

http://ebooks.cambridge.org/ref/id/CBO9780511546877 (2006)

7. Conkur, E.S.: “Path planning using potential fields for highly redundant manipulators”.

Robotics and Autonomous Systems 52. 209–228. (2005)

8. Udupa, Shirram M. :“Collision detection and avoidance in computer controlled

manipulators.” (1999)

9. Hart, P. E.; Nilsson, N. J.; Raphael, B. "A Formal Basis for the Heuristic Determination of

Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2):

100–107 (1968)

10. Manns, M. and Arteaga: Automated DHM Modeling for Integrated Alpha-Numeric and

Geometric Assembly Planning, M. Abramovici and R. Stark (Eds.): Smart Product

Engineering, LNPE, DOI: 10.1007/978-3-642-30817-8_32, pp. 325–334 (2013)

11. Jbosshttp://www.jboss.org (2014)

