
Project no. 034567

Grid4All

Specific Targeted Research Project (STREP)
Thematic Priority 2: Information Society Technologies

Deliverable 3.4: Design and Initial Prototype of Semantic
Store

Due date of deliverable: June, 2008.

Actual submission date: July, 2008.

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: INRIA Regal

Revision: Draft

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Contents

1 Introduction D 3.4–4

2 Telex overview D 3.4–5
2.1 User/application perspective . D 3.4–5
2.2 Formal perspective: actions and constraints . D 3.4–5
2.3 Engineering perspective: multi-logs and commitment D 3.4–6

3 Data structures D 3.4–7
3.1 Document storage . D 3.4–7

3.1.1 Multilog Design . D 3.4–8
3.1.2 Multilogs on VOFS . D 3.4–8
3.1.3 The Multilog Toolkit . D 3.4–9

3.2 Action and Constraint . D 3.4–9
3.3 Views . D 3.4–10
3.4 Snapshot . D 3.4–11

4 Telex architecture and operation D 3.4–11
4.1 Interactions . D 3.4–12
4.2 Scheduler . D 3.4–12

4.2.1 Cross-site constraint generation . D 3.4–12
4.2.2 Schedule generation . D 3.4–13
4.2.3 Bound documents . D 3.4–13

4.3 Replica reconciler . D 3.4–14
4.4 Access control . D 3.4–14

5 Applications D 3.4–15
5.1 Simple Replicated Dictionary . D 3.4–15

5.1.1 Sequential constraints . D 3.4–15
5.1.2 Concurrency constraints . D 3.4–16

5.2 Shared Calendar . D 3.4–16
5.2.1 SC logic . D 3.4–17
5.2.2 Use case . D 3.4–18

5.3 Shared wiki . D 3.4–19

6 Performance evaluation D 3.4–21
6.1 Multilog experiment . D 3.4–21

6.1.1 Evaluation summary . D 3.4–21
6.1.2 Detailed Results . D 3.4–21

6.2 Synthetic benchmarks . D 3.4–22
6.3 STMBench . D 3.4–22

7 Lessons learned D 3.4–23

8 Related work D 3.4–24

9 Conclusion D 3.4–25

Grid4All Public Page D 3.4–1

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Abbreviations used in this document

Abbreviation/acronym Description

ACG Action Constraint Graph
LWW Last-Writer-Wins
SCVO Shared Calendar application
SRDA Simple Replicated Dictionary Application
SWA Shared Wiki Application
VO Virtual Organization

VOFS VO-aware File System

Grid4All Public Page D 3.4–2

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Grid4All list of participants

Part.
Role Part. Participant name short Country

name
CO 1 France Telecom FT FR
CR 2 Institut National de Recherche en Informatique en

Automatique
INRIA FR

CR 3 The Royal Institute of technology KTH SWE
CR 4 Swedish Institute of Computer Science SICS SWE
CR 5 Institute of Communication and Computer Systems ICCS GR
CR 6 University of Piraeus Research Center UPRC GR
CR 7 Universitat Politècnica de Catalunya UPC ES
CR 8 ANTARES Produccion & Distribution S.L. ANTARES ES

The following persons contributed to this deliverable: Lamia Benmouffok (INRIA-Regal),
Jean-Michel Busca (INRIA-Regal), Abhishek Gupta (Indian Institute of Technology Guwahati),
Joan Manuel Marquès (Universitat Oberta de Catalunya), Zenon Perisé (Universitat Oberta de
Catalunya), Marc Shapiro (INRIA-Regal), Pierre Sutra (INRIA-Regal), Georgios Tsoukalas (Na-
tional Technical University of Athens).

Grid4All Public Page D 3.4–3

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Abstract

The Telex system is designed for sharing mutable data in a distributed environment,
particularly for collaborative applications. Users operate on their local, persistent replica of
shared documents; they can work disconnected and suffer no network latency. The Telex
approach to detect and correct conflicts is application independent, based on an action-
constraint graph (ACG) that summarises the concurrency semantics of applications. The
ACG is stored efficiently in a multilog structure that eliminates contention and is optimised
for locality. Telex supports multiple applications and multi-document updates. The Telex
system clearly separates system logic (which includes replication, views, undo, security,
consistency, conflicts, and commitment) from application logic. An example application is a
shared calendar for managing multi-user meetings; the system detects meeting conflicts and
resolves them consistently.

1 Introduction

The Telex system provides novel solutions for write-sharing data in co-operative and disconnected
work settings.

Existing approaches have severe limitations. For instance state machine replication [5] im-
poses high latency and does not support disconnected operation. The popular last-writer-wins
algorithm [11] does not ensure any high-level correctness guarantees.1 In contrast, Telex is
based on a principled approach that combines flexibility and correctness, and cleanly separates
application logic from system logic.

Application logic transmits to Telex actions (operations) and constraints (concurrency invari-
ants), and applies execution schedules transmitted by Telex. In return, Telex takes care of: repli-
cation, consistency, storage and access control; collecting, transmitting and persisting operations;
detecting conflicts and computing high-quality conflict-free schedules; forward execution and roll-
back; checkpointing; commitment; and access control. Telex supports multi-document updates
and cross-application scenarios out of the box.

Telex is based on a principled approach, the Action-Constraint Graph (ACG) [12]. We de-
signed the multilog data structure to store ACG-based documents in a distributed file system.
Multilogs eliminate write contention and promote locality.

We developed a number of demonstration applications above Telex. For instance, a shared
calendar application lets people organise their agenda collaboratively, arranging private events
and group meetings. Telex detects meeting conflicts and proposes possible solutions.

The contributions of this paper include: a novel approach to shared data replication that
is application independent yet application-aware, the ACG; the practical engineering of an ACG
system, in particular the document and multilog structures; design examples and lessons learned
for ACG-based applications; and some benchmarks and performance measurements.

This paper proceeds as follows. Section 2 is an overview. Section 3 explains the data
structures that Telex uses. Section 4 documents the Telex architecture and implementation. In
Section 5, we present some example applications. Section 6 evaluates the Telex performance.
We reflect on lessons learned in Section 7. Section 8 compares Telex with related work. Finally,
Section 9 concludes.

1 Section 8 analyses the state of the art in detail.

Grid4All Public Page D 3.4–4

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

a. App. reifies user op. as actions & constraints b. Remote action rcvd.: upcall for conflict constraints c. Compute schedule(s), execute, display

Figure 1: Telex interactions. (The circled numbers refer to Figure 5)

2 Telex overview

We give an overview of the Telex system from three complementary points of view.

2.1 User/application perspective

Telex supports participants, i.e., users working at disjoint sites, which may be widely distributed.
An authorised participant may replicate a shared document on his site.

A site operates optimistically [11]: it applies local actions (operations), sends them to other
sites, and eventually replays the actions it receives. Hence, applications are not slowed down by
remote synchronisation, network issues, or by remote failures.

A participant may work either connected or disconnected from others. Thus, each participant
has his own view of the current state of the shared document. Documents and views persist
across log-out/log-in and restarts. However, a view is only tentative and may have to roll back.

Telex, not applications, takes care of hard issues such as conflict detection, reconciliation,
and consistency. However, since a conflict is the violation of some application invariant, Telex
is parameterised by application-specific concurrency invariants called constraints. A constraint
relates two actions, either of the same or distinct documents. Hence, Telex maintains consistency
between documents.

Figure 1 illustrates the control structure of Telex with a Shared Calendar (SC) application.2

In this example, the participant creates an appointment, which conflicts (double booking) with
one created remotely. In Figure 1.a, the participant performs the appointment operation. The
SC application logs the corresponding actions and constraints to the local Telex dæmon (+action
appointment). In Figure 1.b, when the site receives a remote action (signal), it compares it to the
concurrent actions. If Telex suspects a conflict, it calls up to the application (getConstraint), which
replies with precise information (+constraint antagonism). Finally, as in Figure 1.c, Telex periodi-
cally sends schedules to the application, for execution and/or rollback. The application computes
and displays the corresponding views, in this example with a conflict indication (conflict).3

2.2 Formal perspective: actions and constraints

Telex is based on a formal model, the Action-Constraint Graph (ACG) [12]. The ACG is a labelled
graph whose nodes are the actions and edges are the constraints. The current view of a site is
the result of executing a sound schedule, i.e., an ordering of actions currently known at that site,

2 Elements of the figure not discussed here will be explained in later sections.
3 For the purpose of this paper, document state, view and schedule are synonymous. “View” emphasises that the

state is local and is not unique; “schedule” emphasises that it is computed by some ordering of available actions.

Grid4All Public Page D 3.4–5

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Name Notation Semantics
NotAfter A→ B A is never after B in any schedule
Enables A C B B in a schedule implies A in same schedule

NonCommuting A / B Must agree on A→ B or B→ A (conflict)

Atomic A
C
B B All or nothing

Causal A C→ B B depends causally on A
Antagonism A←→ B A and B never both in same schedule (conflict)

Table 1: Constraints

that obeys the safety constraints NotAfter and Enables. In effect, the ACG represents the set of
all legal views.

Table 1 presents briefly the constraints supported by Telex; for full details please refer to
the relevant publications [12]. The first three are primitive, the last three are combinations of the
primitives.4

These represent important classes of concurrency invariants. While they can approximate
the true application semantics only grossly, we have found that they are sufficiently expressive for
reconciliation purposes in several kinds of applications [9, 13].

Formally, eventual consistency requires that all schedules be sound, that they have a com-
mon stable sound prefix, that every action eventually be either aborted or in the prefix, and that
non-commuting actions that are in the prefix be ordered.5 The latter two items imply a global con-
sensus between sites. We call this consensus the commitment protocol. In Telex, commitment is
optimistic, i.e., it occurs in the background, not in the critical path of applications.

2.3 Engineering perspective: multi-logs and commitment

The design of Telex is motivated by some major requirements and challenges: (i) Persist and
replicate the ACG. (ii) Provide strong guarantees above a distributed file system with only best-
effort consistency. (iii) Integrate documents into the file system, with reasonable overhead and
scalability. (iv) Provide access control, without violating consistency. (v) Remove old ACG en-
tries from storage. (vi) Decentralised, peer-to-peer design, with support for casual disconnected
operation.

A document is a named entity in the file system. For locality, a document stores only the
portion of the ACG consisting of the actions operating on the document, and their constraints.

Telex documents coexist with ordinary files and directories in the file system. Using one or
the other is up to the application.

Telex relies on external mechanisms to store and replicate documents, and to propagate
changes to remote sites. To avoid file system bottlenecks and consistency issues, each par-
ticipant writes to a distinct append-only log within a document. To enable incremental garbage
collection, the log is broken down into successive chunk files. This structure is called multilog.

A log is a succession of actions and constraints in no particular order. We optimise for the
expected common case, where constraints are inside the same log; inter-log constraints within
the same document are slightly more expensive. Inter-document constraints are assumed to be
relatively rare and are more costly.

4 Atomic does not ensure transactional isolation; an isolation constraint will be added in the future. Currently, to
achieve isolation, the user must manually group operations into a single action.

5 Mutually-commuting actions may run in any relative order.

Grid4All Public Page D 3.4–6

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Figure 2: Storage of Telex document

Because of network delays and disconnections, and because of filtering and access control
(explained later), at any point in time, different participants may observe different ACGs. However,
each participant’s view is consistent, because it results from a sound schedule. Thus, if some
action A is not in a view, and A Enables B, then B is also not in that view.

The current view can be recorded in a snapshot. Snapshots name a view, speed up the
computation of later views, and help with garbage collection.

A decentralised, background commitment protocol ensures that the common prefix of sched-
ules makes progress. Each participant can vote for a schedule according, for instance, to user
preference. Voting is decentralised and peer-to-peer.

Committed log records may be deleted. However it may be advantageous to retain them for
auditing, recovery or selective undo (to be explained later).

3 Data structures

3.1 Document storage

Telex stores its documents in file systems with standard, best-effort consistency guarantees. The
storage design obeys some specific requirements. Documents should be seamlessly integrated
above a standard POSIX interface, with reasonable performance and scalability. They should
co-exist with classical files and directories. Participants must be able to work normally while dis-
connected. The system should scales well with the number of collaborating participants. Finally,
Participants’ data must be secured even when shared.

Grid4All Public Page D 3.4–7

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Figure 3: Implementation of multilogs over VOFS.

We implemented multilogs above the federative peer-to-peer file system VOFS [1]. VOFS
provides global access to files with best-effort consistency. It supports disconnected operations
via persistent replication, and notifications for file modifications on distributed files. A complete
description of VOFS is outside of the scope of this paper; here we focus on specific features
related to Telex integration.

3.1.1 Multilog Design

As illustrated in Figure 2, a Telex document is a structured directory of files. Applications and
Telex may store document-specific data within the document, such as filters and snapshots.
These data are local to a participant; only the multilog needs to be replicated.

A multilog is itself structured as a directory that contains an append-only log per participant.
Actions and constraints created by an application are appended to that participant’s log. Each
participant’s log is replicated at the other participants’ sites; VOFS propagates the updates to the
network. As each log has a single writer, is append-only, and local to a document, this avoids
write contention and scalability issues.

Propagation of a log through the network is asynchronous, i.e., a log replica may contain
only a prefix of its source, as indicated by the “sync” bar in the figure. Telex instances monitor the
logs for new updates. Eventually, all actions and constraints are known to all participants.

As time passes, an action eventually becomes committed and is not needed any more. To
enable removing such old records, a log is itself structured as a directory of chunk files. When
the size of the current chunk reaches a threshold, a new one is created. The name of a chunk
file includes a sequence number, making it convenient to read chunks in order, and to selectively
delete chunks. A chunk may be deleted when all the actions it contains are committed and there
is a later materialised snapshot. This is, however, a policy decision; a site may decide instead to
retain old chunks for auditing or recovery.

Grid4All Public Page D 3.4–8

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

3.1.2 Multilogs on VOFS

A document is stored by the Telex dæmon in the file system as a directory. The internal structure
of this directory is not meaningful to users, and is intended to be hidden by the user interface
(much like the “bundles” of MacOS).

In our deployed multilogs so far, we have used a centralised setup at a primary master site,
containing the authoritative version of all the logs in a document. Participants’ sites cache the
logs persistently, making them available for disconnected operation. The master site is a single
point of failure and a scalability bottleneck.

In the future, we plan to use a peer-to-peer configuration, using accross-network symbolic
links that VOFS provides. Here, each participant hosts the authoritative version of his own log on
his own site, as in Figure 3. As before, participants cache remote logs persistently. The master
site serves only to list all the logs using symbolic links. Any other method of distributing the list
could be used.

3.1.3 The Multilog Toolkit

VOFS is optimised for multilogs, which improves the user experience. However, multilogs can
be implemented above any ordinary distributed file system. We provide a toolkit implementation
of multilogs, as a set of simple programs and dæmons, providing simple and efficient multilog
management and access above an ordinary file system.

The implementation follows closely the design of Figure 2. More details are available in
Section 6.

3.2 Action and Constraint

An action represents an application operation. It is described by several attributes, of which some
are known to Telex and other are application-specific. Among the former, the most important is
a list of action keys. An action key indicates the document subset that this action targets; if two
actions have a common key, this indicates suspicion that the actions conflict (see Section 4.2.1
for more detail). An action belongs to only one document. It is uniquely identified by the triple
〈document, issuer, timestamp〉. Telex logs an action in the log of the participant who issues it.

A constraint reifies a semantic relation between two actions. It is defined by its type
(NonCommuting, NotAfter or Enables) and by the two actions it binds. A constraint is uniquely
identified by the triple 〈type, action1, action2〉. Telex logs a constraint in the log of the participant
who issues it.

Most often, a constraint binds two actions of the same document, whether issued by the
same participant or not. Such a constraint is called an intra-document constraint. However,
a constraint may bind actions of two distinct documents. Such a constraint is called a cross-
document constraint. It is then logged in both documents.

A constraint C references an action A by using one of the three following forms: (timestamp) if
A is issued by the same participant as C and belongs to the same document, (issuer, timestamp)
if A belongs to the same document as C and (docId, issuer, timestamp) otherwise. In the latter
form, docId is the id of the document that action A belongs to.

Figure 4 shows an example of the two types of constraint. Constraint C1 is an intra-document
constraint: it binds actions A1 and A2 of document OSDI paper. Constraint C1 is issued by Pierre

Grid4All Public Page D 3.4–9

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

JManuel

Georgios

A
1

C
1

fig
u
re
_
1

Pierre

Georgios

C
2

C
2

A
2

A
3

A
4

Pierre
O
S
D
I_
p
a
pe
r

A
5

A
6C

3

Figure 4: Two multilogs with their logs; note constraints within log, within document, and between
documents

and thus it is logged in Pierre’s log of OSDI paper. On the other hand, constraint C2 is a cross-
document constraint: it binds action A3 of document OSDI paper and action A4 of document
figure 1. Constraint C2 is issued by Georgios and thus it is logged in Georgios’s log of both
OSDI paper and figure 1.

3.3 Views

A desirable feature of replication in collaborative work is to enable different participants to have
their own view of a shared document. For instance a participant working on a given section of
a shared document may temporarily ignore updates to the same section by other participants.
Telex allows the participant to select a particular view of a document by means of action filters.
A filter defines which actions of the ACG Telex must exclude when computing sound schedules.
When applying a filter, Telex also exclude all actions that filtered actions enable. This ensures
that the view computed by filtering is always sound, i.e., document invariants are not violated.

A participant defines a filter by specifying its name and one or more filtering criteria involving
any attribute of an action. The participant may define several filters on a document and dynami-
cally add and remove them. Telex saves currently-defined filters as part of the persistent state of
a document.

Note that a filter may target a specific action of a document. By adding and removing the filter,
user may thus selectively undo and redo the corresponding action in his view of the document.
(To undo an action persistently, the participant must abort it. By convention, this is expressed by
marking the action as antagonistic with itself.)

Filters also provide a means to permanently exclude the operations of a participant who turns
out to be malicious, as in the Ivy file system [6]. Contrary to Ivy, Telex filters maintain correctness,
by excluding all actions that depends on the malicious participant’s actions.

Grid4All Public Page D 3.4–10

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Replica reconciler Scheduler

Transmitter Logger

remote
sites

Distributed
File System

send / receive
messages

read / write log records

T
el

ex
1

3

2

5 6

7

9 10 4

8

Telex application

Figure 5: Telex architecture

3.4 Snapshot

A snapshot records some view of the document. To define a snapshot, a participant specifies its
name and the schedule of actions whose execution yields the state being recorded. In addition,
the application may provide the corresponding binary state of the document. In this case, the
snapshot is said materialised. Materialised snapshots speed up the computation of a view and
are used as garbage collection points.

The participant may define any number of snapshots of interest to him, and later remove
those that are no longer useful. Telex saves the set of currently-defined snapshots as part the
persistent state of the document.

4 Telex architecture and operation

Figure 5 is a detailed view of Figure 1 which shows the overall architecture of Telex. An instance
of Telex runs at each site and communicates with remote sites.

On top of the figure are the applications using the services of Telex. Several such applica-
tions may run concurrently at the same site. In the middle of the figure is the Telex system. It is
composed of two main modules — the scheduler and the replica reconciler — layered on top of
two auxiliary modules — the transmitter and the logger. Arrows in the figure represent invocation
paths between Telex modules and to/from applications.

Each application may open one or more documents. For each open document, Telex creates
one instance of each module, which maintains the execution context of the document. The only
exception is when documents are bound by cross-document constraints, as described in sec-
tion 4.2.3. In this case, the bound documents share the same instance of the replica reconciler
and the scheduler.

Grid4All Public Page D 3.4–11

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

We describe next the interaction between a Telex instance and the outside world and then
detail the operation of the main modules.

4.1 Interactions

Telex-application interactions involve exchanging pieces of AC graphs (sets of actions and con-
straints downwards, sets of schedules upwards). The interaction cycle is as follows. The par-
ticipant acts upon the application, which translates his request into one or more actions and
constraints and passes them to Telex. In return, Telex computes a sound schedule from the set
of locally-known actions and constraints and hands the schedule to the application. The appli-
cation executes the schedule and presents the resulting state to the participant. If some actions
conflict, then several sounds schedules exist, each corresponding to a possible solution to the
conflict. The application presents the resulting states to the participant so that he can select the
solution he prefers.

Telex sites exchange actions and constraints through multilogs, and communicate with each
other in the commitment protocol. The logger module logs the actions and constraints submitted
by the local participant in the participant’s log. In return, the VOFS notifies the logger when remote
participant’s log are updated. The transmitter determines the set of peer sites and provides an
Atomic Multicast service among peer sites (arrows #9 and #10).

4.2 Scheduler

The role of the scheduler is twofold. First, it maintains the in-memory ACG that represents the
state of the document at the local site. Second, it periodically computes sets of sound schedules
from the ACG and proposes them to the application for execution. Actions and/or constraints are
added to the graph either by:

• The application (Figure 5, arrow #1), when the local participant updates the document.

• The logger (arrow #2), when it receives an update issued by a remote participant.

• The replica reconciler (arrow #3), when it commits a schedule.

The scheduler passes locally-submitted actions and constraints to the logger (arrow #4) to
log them on persistent storage.

4.2.1 Cross-site constraint generation

Actions logged independently by two participants may conflict; for instance in the shared calendar
application, a same user could be added to two parallel meetings. Telex ensures that conflicts
are reified by constraints as follows. When a site receives a new action, it compares it against
already-known, concurrent actions of the same document. If they have a common key, then Telex
invokes the corresponding application’s getConstraint upcall. If the actions really conflict, the
application responds by logging an appropriate constraint (arrow #5 in Figure 1.b or Figure 5).

Action keys are opaque to Telex, which tests them for equality only. Action keys serve as
a compact, but approximate, representation of the document subset that the action uses or up-
dates. Typically, an action key hashes the identifier of a parameter of the action. Multiple keys
have “or” semantics (Telex upcalls getConstraint if a key of one action equals any key of the
other). To implement “and” semantics (for instance, to get an upcall only if two given objects are

Grid4All Public Page D 3.4–12

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

involved) the application hashes the XOR of their identifiers into a single key. An action with no
keys conflicts with no other.

If two unrelated actions happens to have equal action keys, no harm is done, other than a
loss of performance.

4.2.2 Schedule generation

A large number of sound schedules exist for any given ACG in the general case. It is therefore
not feasible to compute all sound schedules beforehand and present them to the application.
Besides, the application may be interested only in a few or even just one schedule. For these
reasons, Telex generates sound schedules dynamically, upon application request (this is not
shown in Figure 5). The application may thus iterate through the proposed schedules and stops
when one or more appropriate schedules are found.

Telex generates the best schedules first, where the quality metric is the number of actions
included (implying fewer actions aborted). Optimal scheduling is NP-complete, therefore Telex
runs a heuristic inspired by IceCube [9]. Secondary goals of the heuristic are to give preference
to actions of the local participant in the case of a conflict, and to avoid returning a schedule
equivalent to one returned previously.

4.2.3 Bound documents

Two documents are said bound if there exists a constraint between an action of one and an action
of the other, and either action (or both) is not committed. For instance, if a participant wishes to
update two documents atomically, he sets an Enables constraint in each direction between the
updates.

The actions of a document may not be scheduled independently from those of the documents
it is bound to. Scheduling is optimised for the common case of non-bound documents, but we
provide special processing for this particular case. Note that bound documents may be handled
by distinct applications.

Telex processes bound document by merging them into a single shared ACG in order to
compute global schedules over all actions and constraints. Each global schedule generally con-
tains actions from all bound documents. Thus, in order to execute a global schedule, Telex first
projects the schedule on each document and passes each resulting sub-schedule to the rele-
vant application. The projection operation simply consists in retaining only those actions that
belong to the target document while preserving their order. Telex assigns the same identifier to
the sub-schedules deriving from the same global schedule. This way, the participant can identify
matching sub-schedules on each bound document.

4.3 Replica reconciler

Each Telex site proposes a set of constraints, a proposal, to remote sites. A proposal contains
decision to commit, abort or serialise actions. These proposals may differ, due to asynchronous
communication, filtering, differing local information, or user preference. The replica reconciler is
in charge of commitment, i.e., reaching agreement on a common schedule prefix. Commitment
occurs in the background, not within the critical path of applications. The committed proposal
appears as a prefix of the local schedules.

Grid4All Public Page D 3.4–13

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

We propose a plug-in replica reconciler architecture, providing different strategies according
to needs. A reconciler has four (asynchronous) phases.

1. Each sites compute a proposal, according to its local view, for instance based on the user’s
preferences (arrow #8 in Figure 5).

2. The transmitter atomic multicasts proposals to set of sites directly concerned (arrow #9)
by the agreement (in case of bound documents more than one replica group may be con-
cerned). Atomic multicast maintains liveness in presence of faults and network lags.

3. The transmitter forwards proposals it receives up to the replica reconciler (arrow #10).

4. According to the commitment algorithm (described next) the reconciler chooses a winning
proposal, and logs it (arrows #3 and #4).

Currently we propose two commitment algorithms. (i) A first-in first-out algorithm for applications
such as a distributed database. At each site the FIFO algorithm proposes to minimise the number
of dead actions according to its local view. When a site delivers a new proposal, the FIFO
algorithm checks the soundness of the proposal according to the previous winning proposals
(arrows #8 and #7). If the decision is sound, the reconciler adds it to the ACG, if not the decision
is discarded.

(ii) A voting algorithm that takes into account local preferences. A proposal is a vote spanning
one or multiple actions over one or more documents. A proposal is broken into sub-ACGs with
specific properties, called candidates. Candidates containing the same actions challenge each
other. A candidate may be elected only if its set of actions is transitively closed in the union of all
the ACGs across sites. This protocol is described in detail in a separate publication [15].

4.4 Access control

The Telex design includes access control at increasingly fine-grain levels, using a security frame-
work (whose description is out of scope of this document). This is indicated by the three arrows
marked check in Figure 1. (i) Access control at file granularity ensures that a single participant
writes a given log, and that only authorised users can read a log. (ii) The Telex dæmon checks
whether a user is allowed to access an individual log record.6 (iii) Applications may enforce fur-
ther control. For instance, in the SC application, a user might observe the times that another user
is busy, but not be allowed to see the other details of his meetings. As explained in Section 2.3,
access control does not violate consistency.

5 Applications

To provide insight on the issues involved in using the Telex system, this section presents some of
our example applications. We will return to the lessons learned in a later section.

6 This is not yet implemented in the current version.

Grid4All Public Page D 3.4–14

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

insert ∀ previous remi.TID :
remi.TID→ current ins.TID

remove ins.TID C→ current rem.TID

modify ins.TID C→ current mod.TID
∀ previous modi.TID.attr j :

modi → current mod

Table 2: Sequential execution constraints (Notation: ins = insert, mod = modify, rem = remove,
attr = attribute, TID = tupleID)

5.1 Simple Replicated Dictionary

We start with a simple example. Our Simple Replicated Dictionary Application (SRDA) manages
shared dictionaries. SRDA is intended as a building block for applications such as a shared
address book. Users can operate on a dictionary in either connected or disconnected mode.
Telex guarantees that, in spite of node arrivals, departures or failures, all instances of a given
dictionary converge.

A document contains tuples of the form 〈tupleID,attribute1,attribute2, . . .〉, for any number
of attributes. Each attribute is a 〈name, value〉 pair. SRDA provides these operations:

• insert(tupleID,attrs): inserts a new entry, with identifier tupleID and attributes attrs, into
the dictionary document.

• modify(tupleID,attrs): modifies attributes for the given tupleID.

• remove(tupleID): deletes the tuple corresponding to the given tupleID.

• read(tupleID): returns the attributes corresponding to the given tupleID.

In the first operation, the tupleID must be previously unused or removed; for all the others, a
tuple identified by tupleID must already exist. The modify operation assigns the listed attributes
if they already exist for the tuple, otherwise it adds them.

Insert, modify and remove operations translate to a Telex action. Because Telex does not
yet support isolated multi-operation transactions, we manage write dependencies in the write
operations, as explained shortly. Read operations are treated as local.

5.1.1 Sequential constraints

Table 2 summarises the sequential semantics of SRDA. SRDA logs these constraints at the same
time as it logs the right-hand action of the constraint.

In the Telex design, the application should log causal dependence only when the second
action truly depends on the first. Hence, a modify action, or a remove, is causally dependent on
the insert that created the tuple. Thus, if the insert aborts or fails, the dependent modify and
remove actions will be discarded from any sound schedule. Furthermore, we treat every write
operation as a read-compute-write transaction.

In order to ensure read-your-writes session guarantees [16], we set NotAfter constraints
between insert, modify and remove actions in the same user session, even between different
dictionary documents.

Grid4All Public Page D 3.4–15

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

ins2 mod2
ins1 ins1.TID = ins2.TID

⇒ ins1 / ins2 –
mod1.TID = mod2.TID∧

mod1 impossible attrs1.TIDs∩attrs2.TIDs 6= Ø
⇒ mod1 / mod2

Table 3: SRDA getConstraint

Finally, to ensure the correct scheduling of a remove followed by an insert with the same
tuple identifier, we make all previous remove with the same tuple-id NotAfter the current insert.
The SRDA application logs the above constraints in the multilog, at the same time as it logs the
right-hand action.

The SRDA application logs the above constraints in the multilog, at the same time as it logs
the right-hand action.

5.1.2 Concurrency constraints

Since it is illegal to insert the same identifier twice, two concurrent insert actions that refer
to the same identifier are NonCommuting. Otherwise, concurrent inserts commute. Similarly,
two concurrent modify operations with the same identifier and overlapping attributes are also
NonCommuting.

Those constraints are added by the application when Telex invokes its getConstraint method.
They are summarised in Table 3, where NonCommuting is noted /. In order to ensure that
Telex upcalls the getConstraint method as needed, insert and modify actions have an action key,
computed as a hash of the tupleID.

5.2 Shared Calendar

Our Shared Calendar (SC) application is representative of collaborative decision-making applica-
tions. SC illustrates the advantages of Telex for semantically-rich collaborative applications.

SC helps people organise private events and group meetings collaboratively, possibly in
disconnected and asynchronous mode. Contrary to existing calendar applications, SC detects
conflicts (such as double booking), proposes solutions, and ensures agreement and eventual
consistency.

This would be difficult to achieve without Telex support. Application logic (i.e., maintain-
ing the data structures and identifying constraints) is well separated from the system logic, i.e.,
persistence, replication, conflict detection and resolution, commitment, etc.

5.2.1 SC logic

Each user or location has an associated calendar document. Each event (e.g., a meeting) is a
separate document. A calendar may be read or updated by other users, who can (if so authorised)
create or manage events, invite people to an event, or identify conflicts and free time.

We use the following notations. An event e is unique, has a name e.name, and a datee.date,
and is materialised by a Telex document e.dox.

Grid4All Public Page D 3.4–16

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Figure 6: Execution scenario for the Shared Calendar application

A user A creates an event e by creating the document e.dox, and by logging an open-event
action in his own calendar and an invite(A) actions in e.dox. He also logs an enable-event action
in e.dox that symbolises the creation of the event. This action is used to specify constraints on
the event creation as shown next.

Later, user A may invite other users by logging an open-event action in his log within their
calendars, and a corresponding invite action in e.dox.

Once a user has opened an event document, he may invite more users. He also can cancel
the event or some user invitation by logging a cancel-event or a cancel-invitation action in e.dox.7

The action keys identify the event and its time-slots. Therefore, actions in the same calendar
for the same event, or for different events at the same time, will have overlapping keys, causing
Telex to invoke the getConstraint upcall interface of SC.

A calendar document action commutes with all other calendar document actions. Constraints
between event document actions are similar to the SRDA constraints, where enable-event,
cancel-event and invite (or cancel-invitation) are like like insert, remove and modify respectively.

To avoid double bookings, concurrent invite actions are antagonistic, if they concern the
same user at the same time but different events.

5.2.2 Use case

Consider the scenario in Figure 6. Users Jean-Michel, Lamia and Marc are working separately
and communicate only via the SC application.

Jean-Michel organises meeting Networking Seminar NS with Marc. He proposes two alter-
native dates, Monday and Tuesday (Operation 1 in the figure).

Lamia also organises a meeting Greek Lesson GL with Marc on Monday (Operation 2).

7 Currently it is not possible to collaboratively change the time of an event. This will require extensions to Telex to
associate the time updates with some user invitation to detect a double booking, which is future work.

Grid4All Public Page D 3.4–17

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

M
a

rc
's

 C
a
le

n
d
a
r

Marc

Lamia

JM

GL.dox
Monday

Name:GL

Lamia enable-event invite Lamia invite Marc

NS1.dox
Monday

Name: NS

JM enable-event invite JM invite Marc

Marc

Marc

 enables
!" antagonism

open-event NS1

open-event GL

open-event NS2

!"

NS2.dox
Tuesday

Name: NS
JM enable-event invite JM invite Marc

Marc

!"

Figure 7: Marc’s site at t3

SC creates the event documents and logs the actions and constraints to Telex, as detailed
in Figure 7, depicting the state of Marc’s site at time t3.

Lamia’s SC instance creates GL.dox document, imports Marc’s calendar, and logs the fol-
lowing actions:

• On Marc’s and Lamia’s calendar: open-event (e2).

• On GL.dox: A = enable-event,B = invite(Lamia),C = invite(Marc). SC groups them atom-

ically: A
C
B B∧B

C
B C.

To express the alternative Jean-Michel’s SC instance transparently creates two events NS1
and NS2 with conflicting enable-event actions. For both events, SC generates similar actions as
for the GL event.

Suppose that, at some point in time t1, Marc has received Jean-Michel’s actions, but not yet
Lamia’s. This may happen, for instance, if Lamia is working offline. Telex computes the schedules
corresponding to two possible solutions: (i) holding NS on Monday and aborting NS on Tuesday;
or (ii) holding NS on Tuesday, and aborting NS on Monday. Since the former solution contains
more actions, it will be proposed first.

Later, at t2 Marc knows Lamia’s actions. Telex checks the keys of Lamia’s actions with
Jean-Michel’s. C = invite(Marc) on GL.dox and E = invite(Marc) on NS1.dox both have a key
representing the Monday slot. Therefore, Telex asks SC for the corresponding constraints. SC

Grid4All Public Page D 3.4–18

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

returns an antagonism constraint C←→ E. This ensures that no view contains both C or E, and
that one or the other (or both) eventually abort.

Finally, Telex offers the two possible solutions: (i) NS on Tuesday and GL on Monday, abort-
ing NS on Monday; or (ii) NS on Monday, aborting GL on Monday and aborting NS on Tuesday.

Lamia is not invited to event NS, she may not read NS1.dox nor NS2.dox. Nevertheless,
Telex ensures that she eventually gets notified of a conflict occurrence that may abort GL. The
same goes for Jean-Michel. The reconciliation phase ensures that Marc, Lamia and Jean-Michel
eventually see a consistent state for GL and NS events.

5.3 Shared wiki

For lack of space, we describe our Shared Wiki Application (SWA) only briefly.

Each wiki page is a separate document. Every user currently editing it has a log in the
document. His site keeps a local replica of the wiki text, which the user modifies locally using
a standard text editor. Every time the user saves, the SWA computes the difference from the
previous version, and translates it into insert-line and delete-line actions. Modifying a line is
interpreted as an atomic grouping of delete-line and insert-line.

The SWA uses the WOOTO operational transformation algorithm [7] to ensure that concur-
rent edit operations commute. A delete-line action depends causally on the action that inserted
the line. Inserting a line between two other lines depends causally on the two corresponding line
insert operations.

Since all concurrent operations inside a document commute, there will never be any conflicts.
Therefore, edit actions carry no keys, and Telex never upcalls getConstraint to the SWA. Schedule
computation is trivial, since all schedules that are compatible with causal dependence order are
equivalent.

Existing wiki editors maintain the set of past versions of a page. Thanks to Telex, SWA can
reconstruct any past version, and additionally maintains the relations between versions. In the
future, we could extract more history information from the persistent multi-log, including page
splits and merges, and copy-paste between pages.

From the perspective a single page, Telex serves mainly to reliably broadcast actions and
replay them in causal order. One added value of Telex for SWA is the ability to perform multi-
document updates, e.g., a global replace through all wiki pages consistently. Telex also enables
multi-application scenarios, e.g., ensuring that a wiki page contain the details of a meeting agreed
in the shared calendar application.

6 Performance evaluation

6.1 Multilog experiment

The multilog toolkit is a simple set of tools and dæmons that create, access and connect logs in
multilogs. It is written in Python and uses TCP/IP for networking. It straightforwardly implements
the design illustrated in Figure 2.

There are four main utilities in the toolkit. LogServer monitors a log and propagate updates.
LogClient contacts a list of LogServers and locally replicates their logs. LogTool is a utility that

Grid4All Public Page D 3.4–19

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Config Name 1x8M 8x8M 1x8L 8x8L
Writers 1 8 1 8

Log size (MB) 50 50 5 5
RX limiting no no yes yes

runtime (sec) 3.4 9.3 306.48 309.31
avg RX+TX (B/s) 102.9M 75.3M 228.4K 226.3K

Table 4: Representative results for shared multilogs with 1 and 8 writers, with and without limiting
receiving traffic

0

1000000

2000000

3000000

4000000

5000000

0 20 40 60 80 100 120

L
o
g

 s
iz

e
 (

b
y
te

s
)

Time (seconds)

Log Propagation Progression: Site-3 view, 8 writers, 4 disconnect, reception limit

site-0
site-1
site-2
site-3
site-4
site-5
site-6
site-7

Figure 8: Multilog replication progression for 8 writers, throttled incoming traffic. 4 disconnect.

Grid4All Public Page D 3.4–20

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

can read or write a log. MultilogD is a simple dæmon that given a list of participants, combines
the log-tools to implement a multilog.

6.1.1 Evaluation summary

The multilog structure decouples reads and writes and promotes mostly-linear access patterns.
Therefore, the read/write performance of multilogs is dominated by the local filesystem and of
the network stack. The purpose of this evaluation is to demonstrate this fact; the results are
summarised in Table 4

Our performance goals are to scale to very large numbers of readers. The numbers of writers
for a single document is expected to remain relatively small, on the order of tens of participants.
This is typical for the internet society.

Efficient propagation from a small number of writers to a huge number of readers is possible
in peer-to-peer networks, where recipients of data propagate them further. The net effect of such
a solution is a high outgoing bandwidth and limited incoming bandwidth. In some of our exper-
iments, we emulate this effect by severely limiting incoming traffic of participants while leaving
outgoing traffic unlimited.

6.1.2 Detailed Results

The experimental setup involves one participant installed on each of 8 nodes interconnected with
Gigabit Ethernet. The scenario is simple; Either one or all 8 participants begin to log a specific
amount of data as fast as possible. At the same time, each participant reads his logs and records
its replication progression over time. The writers and readers are implemented with LogTool
instances, logs are served by LogServers and propagated updates are received and written to
replicas by LogClients.

Table 4 lists representative results for running 1 and 8 concurrent writers both with and
without limiting the incoming traffic. The average traffic is the sum of the incoming and outgoing
traffic combined.

Our conclusion is that, when there is no limit in effect, multilog propagation performance
is comparable to the maximum network bandwidth. When limits are in place, although overall
bandwidth drops as expected, we observe that varying the number of writers between 1 and 8
has no effect. Furthermore, in all the experiments, disconnection of a participant does not disrupt
the remaining ones, as illustrated in Figure 8.

6.2 Synthetic benchmarks

Sound schedules computation Telex computes sound schedules using the IceCube algo-
rithm [9]. For a randomly generated graph containning 10000 actions and 20000 constraints, our
algorithm computes a sound schedule in 200 ms. In running mode Telex uses incremental mode,
and the computation is around a millisecond.

Reconciliation time We test the time to decide newly proposed actions. During this experience
we compute a schedule every 100ms, and a proposal every 100ms. Each site submits 20 actions
per second. The average time to commit an action using the FIFO algorithm (see Section 4.3) is
64ms.

Grid4All Public Page D 3.4–21

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

6.3 STMBench

We run the STMBench7 benchmark [2], which emulates an application with a rich data structure
and many different operations. We chose STMBench7 mainly because it demonstrates con-
currency and conflicts. It also serves as an illustration of the use of Telex on a complex data
structure.

STMBench7 was developed to exercise software transactional memories, based on the pre-
vious OO7 benchmark for object-oriented databases. STMbench7 builds an object graph with
millions of objects and connected by numerous pointers. It contains 45 operations (21 read-only,
24 read-write) with various scope and complexity. We ported to Telex the read-write operations
only. They all operate in a similar manner: traverse the data structure, reading one or many
attributes of one or many objects, and modify an object.

An STMBench7 benchmark consists of two phases: creating a randomised object graph, and
invoking operations. We measure only the second phase. There are four four main categories of
operations:

• Long traversal: access large parts of the object graph, typically all “assemblies” and “atomic
parts”.

• Short traversals: access fewer objects, traversing the graph along a randomly chosen path.

• Short operations: choose a small number of objects, and perform an operation on these
objects or in their neighbourhood.

• Structure modifications: randomly create or delete objects, or create or delete pointers
between objects.

Each STMBench7 operations is mapped to a single action, hence will be isolated from con-
current operations.

Unexpectedly, in the original code, operations always commute, because the updates either
swap two shared pointers, or add 1 modulo 2 to a shared integer. We therefore modified the
benchmark so that, with some probability, updates either commute or do not commute.

Due to the large number of operations, we will not present a comprehensive list of con-
straints. Instead, we explain the rules we follow to define the constraints.

• Any modification to an object is causally dependent on the creation of the same object.

• Two actions that modify the same data are NonCommuting.

• If an action reads some data, and another action concurrent writes the same data, the
former is NotAfter the latter. This ensures that, at all sites, the read will see the value
before the write.

The results of the benchmark are shown in Table 5, executing the operations that modify
data (not the structure). Performance is independent of the number of sites.

7 Lessons learned

Experience with applications and benchmarks has given us useful feedback, both regarding the
implementation of Telex, as well as guidelines for application developers.

The current implementation of Telex suffers from excessive memory consumption. The ACG
can quickly reach sizes of several tens of thousands of nodes, and is accessed concurrently by

Grid4All Public Page D 3.4–22

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Number of sites Time to benchmark (s)
1 20
2 21
3 21
4 21
5 21
6 21

Table 5: STMBench7 results

many threads. For instance, the scheduler parses the ACG at the same time as local and remote
applications are modifying it. To avoid concurrency issues, the scheduler takes a full copy of the
current ACG, which both consumes memory and is slow (in Java). Similarly, forward execution
and rollback of applications involves copying their internal state, which can be very large. In both
cases, an obvious solution (and future work) is to copy-on-write instead.

Translating application semantics into actions and constraints is a skill that takes time to
acquire. We present some guidelines derived from our own experience. Note that these are not
hard rules, and even may be conflicting.

The most important suggestion is to leverage commutativity as much as possible. As noted
in the SWA, if all operations commute, consistency is trivial. The SWA example also shows that,
sometimes, operations that appear non-commuting intuitively, can be designed or transformed to
commute.

We learned that it is important to turn every piece of shared information into a separate
document. In the initial design of SC, calendars were the only documents, and events were
implicit in the calendars. This raised a number of problems, because there was no obvious way
to detect when a meeting conflict would impact another user indirectly. Separating out events as
distinct documents solved this.

It is important to distinguish the sequential constraints (mainly, NotAfter and Causal) from
the concurrency constraints (conflicts). The former are logged with their right-hand action; the
latter are logged in response to getConstraint. Concurrency constraints are derived from the
application invariants. For instance, in SRDA, the sequential specification forbids two tuples with
the same identifier; it follows that concurrent inserts with the same identifier are in Antagonism.

One lesson from STMBench7 is to reason about high-level operations rather than low-level
ones, in order to deal with fewer combinations. Furthermore, it is sometimes the case where
high-level operations commute (for instance, increment and decrement a shared integer) even
though their low-level implementations (e.g., reads and writes) do not.

However, in some cases, it may be simpler to reason about a small number of low-level
primitives when they may be combined into a large number of operations. Currently, this kind of
approach is complicated by the lack of support for transactional isolation, which is future work.

Constraints are hard to validate. We suggest two complementary approaches for future work.
A compiler could generate actions and constraints from a high-level specification, and a checker
could verify that all action-constraint combinations verify the application invariants.

Grid4All Public Page D 3.4–23

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

8 Related work

State-machine replication [5] is based a total order of operations. This ensures consistency and
correctness, but requires consensus at each operation, in the critical path of the application. In
contrast, Telex’s optimistic approach performs consensus in batches, in the background.

Optimistic replication [11] has been widely used, e.g., in replicated file systems (for instance,
Coda [3] or Roam [10]) and for collaborative work (e.g., Bayou [17]). In these systems, replicas
eventually converge, but they generally do not ensure any high-level correctness. For instance,
the widely-used “last-writer-wins” (LWW) loses updates when conflicts occur, and does not main-
tain consistency between objects. Our constraints additionally ensure that application invariants
are preserved.

Many replicated systems transmit new values or deltas (the state-based model). The
operation-based model used in Telex (i.e., the system stores, transmits and replays logs of oper-
ations) retains more useful information for reconciliation. This is especially advantageous when
high-level operations logically commute despite reading and writing the same physical data, as in
our SC and SWA applications.

The literature on computer-supported co-operative work is widely based on operational trans-
formation (OT) [14]. OT ensuring commutativity between concurrent operations by modifying
them at replay time. Combined with reliable causal-order broadcast, this ensures convergence
with no further concurrency control, but unfortunately OT appears limited to very simple text-
editing scenarios. Telex takes advantage of commutativity when it is available, and supports any
mix of commutative and non-commutative operations.

Coda’s application-specific resolvers [4] or Bayou [17] give applications full control over con-
flicts. However, this requires developers to have a deep understanding of distributed systems
issues. Instead, Telex requires stylised concurrency constraints from applications and takes care
of conflict resolution in an application-indendent manner.

Telex has many similarities with Bayou [17] and also many differences. Bayou is an
operation-based system that provides commitment; the committed state is guaranteed correct.
However, Bayou relies on a primary site for commitment and the committed schedule is unpre-
dictable. Furthermore, the system offers no help for reconciliation.

Constraints were used for reconciliation in the IceCube [9] system. IceCube relies on a
primary site for commitment. In Telex, each site runs an IceCube engine (or any alternative) to
propose schedules, and the commitment protocol ensures consensus based on these proposals.
IceCube supports a richer set of constraints and can extract them from the applications’ source
code [8].

The Ivy peer-to-peer file system [6] reconciles the current state of a file from single-writer,
append-only logs. There are several differences between Ivy and Telex. Ivy is designed for con-
nected operation. Ivy is state-based and reconciles using a per-byte LWW algorithm by default.
Whereas Telex localises logs per document, in Ivy there is a single global log for all the updates
of a given participant. Reading any file requires scanning all the logs in the system, which does
not scale well, although this is offset somewhat by caching. Ivy has no commitment protocol,
therefore a state may remain tentative indefinitely.

The Ivy authors suggest that malicious updates can be removed after the fact, by ignoring
the corresponding log. However, since Ivy does not record constraints, it cannot reconstruct
a correct state: for instance, an update by an innocent user that depends on a previous but
malicious update cannot be removed.

Grid4All Public Page D 3.4–24

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

9 Conclusion

We presented the Telex system for shared mutable documents in a distributed system. We pre-
sented our motivations, its formal principles, the engineering design and implementation, and a
number of prototypical applications. We also provided some performance measurements.

Our two main innovations are our principled approach based on action-constraint graph,
and the multilog structure. The former enables Telex to provide correctness guarantees while
maintaining application concurrency invariants. It also allows a clear separation between the
responsibilities of applications, and those of the system. Thanks to constraints, applications
specify precisely the level of consistency that they need, and the system enforces that level
efficiently, and no more.

Independently of the ACG, we argue that the multilog structure is better adapted to shared,
mutable documents than ordinary files, especially in a collaborative environment. A file system
may provide guarantees for directories, but generally only best-effort consistency for files. Fur-
thermore, the design goals of a file system are likely to be different from the needs of actual
applications.

The multilog structure decouples reads and writes, avoids contention, encourages locality,
and allows efficient linear access. Software at a higher level interprets the logs to reconstruct the
application state. In our case, this is Telex, but it could be the application directly. Multilogs do
not impose any unnecessarily limitations.

References

[1] Antony Chazapis, Georgios Tsoukalas, Georgios Verigakis, Kornilios Kourtis, Aristidis Sotiropoulos, and Nectarios Koziris.
Global-scale peer-to-peer file services with dfs. In GRID, pages 251–258, 2007.

[2] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: a benchmark for software transactional memory. In Euro. Conf.
on Comp. Sys. (EuroSys), pages 315–324, 2007.

[3] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM Trans. on Comp. Sys. (TOCS),
10(5):3–25, February 1992.

[4] Puneet Kumar and M. Satyanarayanan. Flexible and safe resolution of file conflicts. In Usenix Tech. Conf., New Orleans, LA,
USA, January 1995.

[5] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558–565,
July 1978.

[6] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write peer-to-peer file system. In Symp. on Op. Sys. Design and
Implementation (OSDI), Boston, MA, USA, December 2002. Usenix.

[7] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data consistency for P2P collaborative editing. In Int. Conf.
on Computer-Supported Cooperative Work (CSCW), pages 259–268, Banff, Alberta, Canada, November 2006. ACM Press.

[8] Nuno Preguiça, Marc Shapiro, and J. Legatheaux Martins. Automating semantics-based reconciliation for mobile transactions.
In CFSE’3 : conférence française sur les systèmes d’exploitation, pages 515–524, La-Colle-sur-Loup, France, October 2003.

[9] Nuno Preguiça, Marc Shapiro, and Caroline Matheson. Semantics-based reconciliation for collaborative and mobile environ-
ments. In Int. Conf. on Coop. Info. Sys. (CoopIS), volume 2888 of Lecture Notes in Comp. Sc., pages 38–55, Catania, Sicily,
Italy, November 2003. Springer-Verlag.

[10] Peter Reiher, John S. Heidemann, David Ratner, Gregory Skinner, and Gerald J. Popek. Resolving file conflicts in the Ficus file
system. In Usenix Conf. Usenix, June 1994.

[11] Yasushi Saito and Marc Shapiro. Optimistic replication. Computing Surveys, 37(1):42–81, March 2005.

[12] Marc Shapiro, Karthikeyan Bhargavan, and Nishith Krishna. A constraint-based formalism for consistency in replicated systems.
In Int. Conf. on Principles of Dist. Sys. (OPODIS), number 3544 in Lecture Notes in Comp. Sc., pages 331–345, Grenoble,
France, December 2004.

Grid4All Public Page D 3.4–25

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

[13] Marc Shapiro, Nuno Preguiça, and James O’Brien. Rufis: mobile data sharing using a generic constraint-oriented reconciler.
In Conf. on Mobile Data Management, pages 146–151, Berkeley, CA, USA, January 2004.

[14] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. Achieving convergence, causality preservation,
and intention preservation in real-time cooperative editing systems. Trans. on Comp.-Human Interaction, 5(1):63–108, March
1998.

[15] Pierre Sutra, João Barreto, and Marc Shapiro. Decentralised commitment for optimistic semantic replication. In Int. Conf. on
Coop. Info. Sys. (CoopIS), Vilamoura, Algarve, Portugal, November 2007.

[16] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer, and Brent B. Welch. Session guar-
antees for weakly consistent replicated data. In Int. Conf. on Para. and Dist. Info. Sys. (PDIS), pages 140–149, Austin, Texas,
USA, September 1994.

[17] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser. Managing
update conflicts in Bayou, a weakly connected replicated storage system. In 15th Symp. on Op. Sys. Principles (SOSP), pages
172–182, Copper Mountain, CO, USA, December 1995. ACM SIGOPS, ACM Press.

Grid4All Public Page D 3.4–26

DELIVERABLE 3.4: DESIGN AND INITIAL PROTOTYPE

OF SEMANTIC STORE

Grid4All–034567
13th June 2008

Level of confidentiality and dissemination

By default, each document created within Grid4All is c© Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months implemen-
tation plan, all deliverables listed in Section 7.7 have a specific dissemination level. This dissemination
level shall be mentioned in the document (a specific section for this is included in the template, both on the
cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public.
PP = Restricted to other programme participants (including the EC services).
RE = Restricted to a group specified by the Consortium (including the EC services).
CO = Confidential, only for members of the Consortium (including the EC services).
INT = Internal, only for members of the Consortium (excluding the EC services).

This level typically applies to internal working documents, meeting minutes etc., and cannot be used for
contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case,
a new document code should be given so as to distinguish between the different versions.

Grid4All Public Page D 3.4–27

	Introduction
	Telex overview
	User/application perspective
	Formal perspective: actions and constraints
	Engineering perspective: multi-logs and commitment

	Data structures
	Document storage
	Multilog Design
	Multilogs on VOFS
	The Multilog Toolkit

	Action and Constraint
	Views
	Snapshot

	Telex architecture and operation
	Interactions
	Scheduler
	Cross-site constraint generation
	Schedule generation
	Bound documents

	Replica reconciler
	Access control

	Applications
	Simple Replicated Dictionary
	Sequential constraints
	Concurrency constraints

	Shared Calendar
	SC logic
	Use case

	Shared wiki

	Performance evaluation
	Multilog experiment
	Evaluation summary
	Detailed Results

	Synthetic benchmarks
	STMBench

	Lessons learned
	Related work
	Conclusion

