
Project no. 034567

Grid4All
Specific Targeted Research Project (STREP)
Thematic Priority 2: Information Society Technologies

Specification and proof-of-concept adaptation
of a peer-to-peer file system (DFS) and
VO-aware file system (VOFS) on a fully

functional VBS.

Due date of deliverable: June, 2008.

Actual submission date: .

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: ICCS

Revision: final

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Table of Contents

1 Introduction 7

2 The VBS+DFS architecture 7
2.1 Overview . 7

2.1.1 A Filesystem Network . 7
2.1.2 Identity and Control . 8
2.1.3 Resources . 8
2.1.4 Federation . 10

2.2 Components . 11
2.2.1 Filesystem Service (MDDB) . 11
2.2.2 The Storage Service: Virtual Block Store (VBS) 12
2.2.3 The Storage Provider . 12
2.2.4 The Client Service . 12
2.2.5 The POSIX Interface to the Client 14

3 VOFS on DFS+VBS 14
3.1 Federation: Global VO Namespace . 14
3.2 Policy: Policy Enforcement Points . 15
3.3 Management: Configuration, Deployment 15

4 Grid4All integration and connection with other Tasks 16
4.1 The POSIX Client Interface for applications 16
4.2 The POSIX Client Interface for Semantic Store multilogs 16
4.3 The Global Identity Index . 17
4.4 Policy Enforcement Point for VOFS . 17
4.5 Market-Provided Storage . 17
4.6 WP1,WP2: Grid4All overlay infrastructure 18
4.7 Market Based Resource Management 18

4.7.1 Data relocation for storage withdrawal 18
4.8 T3.3: Semantic Store . 18
4.9 WP4: Applications . 19

5 Design and Implementation of the VBS+DFS prototype 19
5.1 Peering . 19

5.1.1 Communication Sessions . 19
5.1.2 Request Token Routing . 20
5.1.3 Consistency Considerations . 20

5.2 Storage and Caching . 20
5.2.1 The Local Store Component . 20
5.2.2 Storing files . 20
5.2.3 Primary Resource Storage . 20
5.2.4 Local Caching of Remote Resources 20
5.2.5 The Local Namespace . 21

Grid4All Public Page 1

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

5.3 Services . 21
5.3.1 Filesystem Service (MDDB) . 21
5.3.2 Storage Service (VBS) . 21
5.3.3 Client Service . 21

5.4 Operation and Usage . 22
5.4.1 Connected Operation . 22
5.4.2 Event Notifications . 22
5.4.3 Disconnected operation . 22

5.5 The POSIX interface to the Client . 22
5.5.1 Virtual Files . 23
5.5.2 Subscriptions and Notifications 23

5.6 Manipulating the filesystem . 23
5.6.1 Cache Management . 24
5.6.2 Storage Allocation . 24

5.7 Technology Used and other Implementation Details 24
5.7.1 Persistent Store Component . 25
5.7.2 Local Namespace . 25

A Semantic Store interface with VBS+DFS 26
A.1 The DFS Virtual Files . 26

A.1.1 Reading and writing Virtual Files 26
A.2 The Telex requirements for Multilogs . 26
A.3 A Java wrapper class . 26
A.4 Format of notification Messages . 27
A.5 Low level virtual file access . 28
A.6 Communication guarantees . 28

Grid4All Public Page 2

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

List of Figures

1 Schematic representation of a VBS+DFS network 8
2 Schematic representation of a URI construction 9
3 Federated resources remain under the control of their owners and the

owner of the namespace controls federation 9
4 VBS registration and storage allocation 10
5 VBS allocation of storage and storage access 11
6 State transitions for cached resources 13
7 Global VOFS namespace scenario using VBS+DFS federation features. . 15

Grid4All Public Page 3

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

List of Tables

1 Terminology for state transitions . 13
2 Software Requirements for VBS+DFS 24
3 Description of subscribable DFS events 25
4 Description of methods of the Java Telex-DFS interface 27

Grid4All Public Page 4

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Abbreviations used in this document

Abbreviation/acronym Description
DFS Distributed File Services
VBS Virtual Block Store, the peer implementing the Storage Ser-

vice
MDDB MetaData DataBase, the peer implementing the Filesystem

Service
VOFS Virtual Organisation-aware File System
PEP Policy Enforcement Point
PDP Policy Decision Point
PAP Policy Administratino Point

Grid4All Public Page 5

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Grid4All list of participants

Part.
Role Part. Participant name short Country

name
CO 1 France Telecom FT FR
CR 2 Institut National de Recherche en Informatique

en Automatique
INRIA FR

CR 3 The Royal Institute of technology KTH SWE
CR 4 Swedish Institute of Computer Science SICS SWE
CR 5 Institute of Communication and Computer Sys-

tems
ICCS GR

CR 6 University of Piraeus Research Center UPRC GR
CR 7 Universitat Politècnica de Catalunya UPC ES
CR 8 ANTARES Produccion & Distribution S.L. ANTARES ES

Grid4All Public Page 6

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

1 Introduction

This deliverable documents the VBS+DFS architecture and presents it as a base for
VOFS. It identifies further integration points of VOFS within Grid4All, and reports on
design and implementation status on each one.

DFS is a federative peer-to-peer filesystem with a flexible storage layer, VBS. VBS
and DFS were originally described as different systems but they were consolidated in
one, VBS+DFS.

Each VBS+DFS peer serves files and storage resources accross a global overlay
network. Distributed files can be linked together in a directory, distributed storage blocks
can be assembled into a file or aggregated in storage allocation pools.

VOFS is built by deploying VBS+DFS in a Grid4All environment. The Grid4All en-
vironment considered consists of Semantic Store, VO Security and User Management,
and Autonomic VO Management and Overlay Services. The deployed VBS+DFS is con-
nected to those components and services and becomes VO-aware, an instance of VOFS.

Integration with Semantic Store and Security have been designed and implemented
in prototype. Other integration points are in design phase, as their respective specifica-
tions and prototypes are implemented for Month 24.

This deliverable is affected but the deviation is documented in D3.2. VBS and DFS
are not independent layers and have been developed as a single system we refer to as
VBS+DFS. Since, the DFS architecture has already been introduced in D3.2 (instead of
D3.3), its description in this deliverable is a revision of D3.2.

The VOFS part of this deliverable is closely related with developments in other work
packages and the general effort for an integrated architecture. Therefore, designs and
scenarios presented are not final and may represent different alternatives.

The document starts with a general architectural view of VBS+DFS in Section 2.
In Section 3, VOFS is presented as VBS+DFS in a Grid4All scenario.
Section 4, identifies and discusses the integration points introduced by the VOFS

scenario.
Then proceeds, even if slightly overlapping, to present the detailed design and im-

plementation in Section 5.
Sections 4 and 3 presents how the VBS+DFS fits in with the rest of Grid4All. Specif-

ically, it describes how VOFS is built over VBS+DFS.

2 The VBS+DFS architecture

2.1 Overview

2.1.1 A Filesystem Network

The DFS+VBS layer is a network of peers that possess file hierarchies (or namespaces),
file data and raw storage, and share them according to the authoritative policy set by
their owners. Peers are instantiated as processes bound to a network address. Multiple
peers may be run in a single machine.

Grid4All Public Page 7

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Figure 1: Schematic representation of a VBS+DFS network

The DFS+VBS layer is a peer-to-peer web-like network (fig. 1) where each peer
serves its own file and storage. A peer may also possess links to foreign resources
among its files. Linking works much like the links in Web pages. Foreign and remote
resources can be made accessible from a single point by traversing those links.

2.1.2 Identity and Control

The identity of a peer is defined cryptographically by a public-private key pair by which
peers can authenticate themselves. They can also protect their data and their commu-
nication by encryption. The owner of the identity is a physical person who may delegate
authority to a software entity. Owners may set policy for access to the peer’s resources.

Peers own local resources, which they completely control. A resource is globally
identified by a URI (fig. 2) built from the identity of the peer owning the resource and
a local identification. The local identification can be a file path or a random string that
uniquely identifies the resource locally. URIs are references used to create peer-to-peer
links.

Returning to the web page analogy, owners can shape their (peers’) resources as
freely as they can edit their webpage. Owners can also link to foreign resources, but as in
the web, they cannot control the resources they link to. This is an important consideration
for the DFS+VBS architecture:
Only an owner can add links to foreign resources amongst its local resources, while
linked resources retain control over their resources. (Figure 3).

2.1.3 Resources

There are two types of resources; filesystem and storage. Filesystem resources are
hierarchical file namespaces including (logically) the content of files. Storage resources
refer to raw disk storage.

Grid4All Public Page 8

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Figure 2: Schematic representation of a URI construction

Figure 3: Federated resources remain under the control of their owners and the owner
of the namespace controls federation

Grid4All Public Page 9

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

VBS VBS

VBS

VBS VBS

VBS

Peer

1

2

3

VBS VBS

VBS

Peer

Registration Allocation Retrieve / Store

Figure 4: VBS registration and storage allocation

Requests to access resources must present request tokens. A request token always
includes identification of both the authority that owns the resource, and the agent that
requests the access. Resources are accessed at communication endpoints called Ser-
vices. A service in the context of VBS+DFS may either be a Filesystem Service or a
Storage Service.
A resource URI encodes the cryptographic Identity of the authority, the authority service
and a path or handle for local identification (for filesystem or storage resources, respec-
tively).

Request tokens can be filtered through a pluggable external filter, a Policy Enforce-
ment Point (PEP), which communicates with its own policy service to provide authorisa-
tion (see Section 4.4). Users may associate their credentials as extended attributes to
files (see Section 5.2.5), which are then included in the request tokens filtered through
the PEP. The PEP privately uses any credentials provided.

2.1.4 Federation

Federation occurs at two levels. Aggregation through cross-peer filesystem links logi-
cally brings remote files in a local directory. Similarly, remote Storage resources can be
logically joined together into a single, aggregated virtual image, a Storage Pool. When
creating or extending files, storage blocks are allocated from such pools. Every filesys-
tem service is associated with a primary storage service. Storage can be offered exclu-
sively to a peer for its own filesystems by registering storage resources to the specific
peer’s primary storage service (fig. 4). The storage service creates a storage pool with
the contributed resources.

Storage allocation is distinct from storage access. Allocation is performed by the
VBS, while access is requested by the VBS+DFS clients and is served by the actual
storage provider. VBS is the native storage provider but the architecture allows pluggable
modules that implement allocation and access for different storage systems, such as
HTTP, FTP, BitTorrent, or Grid-specific ones (see Fig. 5).

As client peers navigate through the network of links, they may cache remote re-
sources. Caching is controlled by policies set by client owners. Caching allows access
to resources even when network connectivity to remote peers is unavailable due to dis-

Grid4All Public Page 10

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Figure 5: VBS allocation of storage and storage access

connection of either side. Also, attempts to access remote resources can be configured
to be retried after network recovery or application restart.

DFS peering mechanisms include primitives for publish-subscribe communication
and remote event notification. The mechanisms are used to handle the significant asyn-
chrony in the network, which is further amplified by disconnected operation. Through the
DFS Client interface, applications can also access these primitives.

2.2 Components

2.2.1 Filesystem Service (MDDB)

The Filesystem Service manages filesystem resources; file hierarchies and correspond-
ing metadata. An entry, called Inode, in the file hierarchy may be a normal file, a directory
or a peer-to-peer link. File inodes contain a list of storage URIs that point to the actual
file data location. Inode metadata include general file properties and access policy. The
set of maintained metadata is extensible.

The Filesystem Service also offers a publish-subscribe-based mechanism to send
and receive file related events. Events may be either system-generated, such as file
creation, modification, deletion, or general messages published by clients. Events are
forwarded to a list of subscribers maintained in the inode metadata.

There may be many paths in the network to a given destination file, since many peers
on the network maintain links towards it. The path to a file is marked by the identity of
all peers encountered while traversing links. This enables file owners to authoritatively
appoint foreign files into specific roles (places). Clients must traverse this specific author-
itative path to retrieve appointed files. For example, an owner may link to a document
describing where is his next meeting, but the document itself may belong to another.
A client would have to go through the specific owner’s link to correctly identify the next
meeting place.

The Filesystem Service does allocate storage for file data. The clients are expected

Grid4All Public Page 11

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

to find and allocate the necessary storage. Files are created by putting the data URIs in
the file’s inode, via the Filesystem Service. Nevertheless, each Filesystem Service may
specify a primary Storage Service to accept storage contributions and to aid clients in
allocating storage for their files.

2.2.2 The Storage Service: Virtual Block Store (VBS)

The Virtual Block Store (VBS) server implements the Storage Service, which is the man-
aging authority for storage resources. The Storage Service accepts requests for storage
allocation, returning URIs pointing to allocated storage. The URIs can be used directly
as raw block storage, or can be put in a filesystem service inode metadata and be made
part of a file.

The Storage Service is in fact an aggregating service. It is Storage Providers that
own and provide storage to the Storage Service. Providers register storage (that they
are willing to serve) at Storage Service. The Storage Service aggregates contributions
into a pool and uses this pool to satisfy allocation requests. Once some storage has
been allocated by the storage service, clients may access it directly through the storage
provider. The storage provider identity is encoded in the storage URI. The URI also
includes the storage access protocol (such as FTP, etc). VBS by default acts both as
Storage Service and Storage Provider for itself. The VBS protocol is described in the
previous deliverable D3.1/D3.2

Two basic storage allocation strategies are considered. The first iterates over a list of
providers and the second traverses a prioritized queue of providers. Priorities are given
to the system along with the storage resources.

2.2.3 The Storage Provider

The Storage Provider is a server that is not necessarily part of the DFS+VBS layer. The
VBS server implements both the Storage Service and the Provider components, but the
Provider maybe an external system with its own protocol, as long as clients are able to
communicate with it.

2.2.4 The Client Service

The Client Service is a DFS peer along with a program that interfaces applications, mak-
ing resources offered in a DFS network available to the local system. The client han-
dles Filesystem, Storage and Provider protocols, walks Filesystem URIs by contacting
Filesystem Services and following links, allocates and accesses Storage URIs for files,
and subscribes to events or publishes to other subscribers — all as described in the
previous sections. Clients also cache remote resources (inodes and data) and provide
disconnected operation by serving requests from the local cache. Behaviour while dis-
connected is an important aspect of client functionality.

Cached resources at client side are governed by a protocol that handles serving file
access requests and replica synchronisation in such a way that users perceive no dis-
ruption from the lack of connectivity. The protocol is defined via transitions in a number
of states maintained for each cached file. Figure 6 documents these transitions. Termi-
nology for state transitions is defined in table 2.2.4.

Grid4All Public Page 12

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Term Definition
read, write refer to local client reads and writes.
downloading acquiring a fresh copy of the cached (or not-yet-cached) resource.
uploading updating the master copy of the cached resource with the local changes.
commit update cache contents and state after a successful upload or download.
notification is any message that implies the remote peer is online.
read while stale means to read a file that is in the stale state.

are several timeouts, triggering automatic state transitions,
safeguarding the liveliness of the system in absence of activity.

Any transition may be forced by policy logic.

Table 1: Terminology for state transitions

Figure 6: State transitions for cached resources

Grid4All Public Page 13

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

2.2.5 The POSIX Interface to the Client

The DFS+VBS layer includes a POSIX application interface to the Client, in the form
of a mountable view of the DFS Network. This mountable view is rooted at a specific
Filesystem Service, and paths below the mountpoint are translated as paths within the
root Filesystem Service. The application, however, is not restricted to this root. Spe-
cially constructed paths within the mountpoint directly translate Filesystem URIs (see
Section 5.5.1). Therefore any location in the DFS Network is accessible, regardless of
the mounted root.

Other special paths to virtual files, provide access to DFS-specific configuration, such
as the disconnected operation, and to facilities such as subscriptions, publications and
notifications. Additionally, applications may associate configuration and private key-value
data with any path within the mountpoint by reading and writing virtual files. These data
items are kept persistently within the Local Client Store, as opposed to the Network Client
Store, which caches remote resources. Data items for a specific path, if non-existent,
may be inherited from parent paths.

3 VOFS on DFS+VBS

In a Grid4All scenario, VO-awareness of VBS+DFS has three main aspects: i) federa-
tion of filesystems, ii) VO access policy compliance, and iii) deployment and resource
management.

The following subsections present scenarios describing how these aspects are in-
troduced to a VBS+DFS network to introduce such VO-awareness. We refer to such a
VO-aware VBS+DFS as VOFS.

3.1 Federation: Global VO Namespace

VOFS federates filesystems and storage resources by providing a global VO names-
pace. The global namespace is created as a DFS filesystem and may be administered
and controlled by the VO administration. Each member of the VO is entitled to a home
directory. Members may export files present in their own filesystems to their VO home di-
rectory. The global namespace may be further populated with other files. This depends
on the requirements of the VO and is managed by the VO administrators. The global
namespace may be populated with files exported to the VOFS, files newly created or
shared documents (see Section 4.8 for the specific semantics of shared documents).

Federation of filesystems is technically implemented using the DFS mechanism to
build cross-filesystem links (see Section 2.1.1). Storage pooling of contributed resources
is handled by the primary storage service of the global namespace (see Section 2.1.4).
Storage resources may be leased by trading at markets (see Section 4.7) and managed
by the core resource management framework. The core resource management services
are described within D2.2.

The global VO namespace scenario is demonstrated in Figure 7.

Grid4All Public Page 14

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Figure 7: Global VOFS namespace scenario using VBS+DFS federation features.

3.2 Policy: Policy Enforcement Points

The Grid4All security infrastructure ([01], Section 4.3.4) focuses on controlling access
to resources according to policies which can be administrated independently of the re-
sources. An important security component is the Policy Enforcement Point (PEP) through
which each access request is filtered. Such a PEP is installed within the VBS+DFS ser-
vices (see Section 4.4).

Policy creation and policy decisions are not handled by VBS+DFS. For decisions, a
Policy Decision Point (PDP) is contacted through the PEP. Policies are authored using
Policy Administration Points (PAP), by users or administrators.

User policies and credentials are stored in the local namespace (see Section 5.2.5)
during initialisation or after user commands. When needed, they are pushed through the
PEP as opaque objects.

3.3 Management: Configuration, Deployment

VOFS has to be included in the Grid4All middleware if its services are required for a VO.
Part of the deployment is the initialisation of a global VO namespace and the provision
of security information, such as Policy Decision Points (PDPs) and member credentials.
See Section 4.4 for more on security policies.

There are two types of VOFS deployments, one for VOs and one for users. From the
DFS point of view, VO peers are like any other. The main difference lies in additional
configuration for creating the VO-wide workspace and initialising the VO-wide storage
pool.

During VO lifetime, the VO peer has to be notified of important events such as mem-
bers joining a VO or storage resources joining or leaving. When a member joins, its
presence in the VO-wide workspace is set-up as a home directory under the new mem-
bers control. The VO-wide storage pool grows or shrinks according to joins and leaves

Grid4All Public Page 15

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

of offered storage resources.
The VBS layer is easily extensible and allows deployment of different underlying stor-

age systems with minimal effort. Therefore, adminstrators may choose and deploy spe-
cific storage technologies in order to benefit from their performance or manageability
properties.

4 Grid4All integration and connection with other Tasks

The DFS+VBS layer interfaces with the rest of the Grid4All architecture in these points:

1. The POSIX Client Interface, for applications and the Semantic Store.

2. The PEP authorisation module for external VO policy management.

3. The VBS Storage Provision layer, for external VO storage.

4. The Global Identity Index for locating users’ peers in the network.

5. The inteface with the VO management for configuration, deployment and self man-
agement.

4.1 The POSIX Client Interface for applications

Grid4All applications may use the POSIX client interface for navigation, file create and
storage, aggregation of distributed files into shared workspaces by linking, etc. as de-
scribed in Section 5.5. Applications also benefit from the disconnected operations, file
notifications and published message to subscribers. PEP credentials can be provided
through the Local Client Store, as described previously.

4.2 The POSIX Client Interface for Semantic Store multilogs

Semantic Store provides support for concurrent and distributed editing of shared docu-
ments. The shared document called multilog has a special structure. It consists of log
files and other files per editor. Each editor writes to its own log and reads from all oth-
ers. Editors broadcast messages to all (live) editors to handle conflicting accesses to
the shared document. Disconnected editors can continue to modify their local copy and
modifications will be propagated when the editor reconnects.

Using the POSIX interface to the local client service, the Semantic Store can create
a multilog document hierarchy which aggregates with links all the different editors’ files.
Each multilog instance also includes files private to each editor that need not be shared.
Subscriptions provide notifications for new or modified log files. The broadcast messag-
ing is handled by a publish-subscribe interface. Both notifications and publish-subscribe
messaging are accessed through the POSIX interface (details in Section 5.5.2)

Grid4All Public Page 16

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

4.3 The Global Identity Index

Peers have unique identities that are related to their owners cryptographic certificates as
members of a group or VO. These cryptographic identities are part of resource URIs, as
described in Section 2.1.3. VOFS needs to translate a peer’s identity into two pieces
of information: The network address of the peer, and a cryptographic certificate for
authenticating the peer’s identity. VOFS expects this functionality implemented by the
Global Identity Index module. This module is easy to implement on top of several estab-
lished technologies, such as a trusted centralised database, a hierarchically distributed
database (e.g. DNS), or a DHT. Peers always authenticate themselves in their commu-
nications so that no peer can fake its identity.

In a Grid4All setting, peers will use the VO membership service as the global identity
index.

4.4 Policy Enforcement Point for VOFS

DFS+VBS peers (Filesystem, Storage, Client) authorise requests before they execute
them on their resources. A request token always includes the identity of the requesting
agent and the full URI of the target resource. The access is described with a type, a
verb, a list of text arguments and a container of relevant serialised objects. There are
several authorisation checks that can be enabled on resources. To enable external policy
management required by VOFS (see Section 3), a call to an Policy Enforcement Point
(PEP) is included as one of the authorisation checks. The PEP, after processing external
to VOFS, responds with a positive or negative judgement, or a null one if the check is not
applicable. For details see Section 3.2. ([01], Section 4.3.4).

Since PEP authorisation (and authentication) is external, the requesting clients must
provide redentials for the PEP. These credentials are provided directly by the application
and are used by the VOFS peer in its transactions. Applications may also need to provide
different credentials depending on the authority they contact.

PEP credential collection is handled through the local namespace of the client (see Sec-
tion 5.2.5). The application stores the credentials in pre-defined keys which are asso-
ciated with the access controlled paths. The key-value pairs are inherited from parent
paths, reducing the cost of administration and storage of credentials. On the other side,
when the PEP is called during authorisation at the authority, the PEP is given the request
token along with any PEP credentials available.

4.5 Market-Provided Storage

The VBS pools storage resources and manages their allocations through the Storage
Service. Storage may be voluntarily donated to a specific VBS pool by VO members. In
this case, the donating member selects the destination VBS pool. Storage applications
may also request explicit allocation of storage resources to the Storage Service imple-
mented by an instance of VBS. This could be done using the core VO resource allocation
service.

In the case where applications are prepared to lease resources from the resource
market-place, applications are expected to use interfaces of the Reservation Manager

Grid4All Public Page 17

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

(documented in D2.2) to allocate storage and computational resources. Applications
should specify the quantity of storage, the number of storage units, the time-frame within
which they require the storage and a budget. The Reservation Manager will callback the
application when leased storage resources join the VO.

4.6 WP1,WP2: Grid4All overlay infrastructure

The integrated Grid4All infrastructure based on WP1 overlays and component framework
and on WP2 autonomic management is the basic environment for a VO. The infrastruc-
ture membership services will provide a global identity index for the VOFS (see Sec-
tion 4.3).

4.7 Market Based Resource Management

Task 2.2 develops a market based resource management infrastructure. Storage traded
in these markets can be allocated on behalf of users and registered to the VBS layer for
usage. If storage bought in markets enters the Grid4All resource management infras-
tructure discussed in Section 4.6, then VBS can use this channel to take advantage of
storage markets.

D2.3 has described the Grid4All market-place architecture. Leases to computational
and storage resources may be allocated at the resource market-place. In a previous
section, we have described that users should explicitly register storage providers to the
Storage Service. Such registered storage is aggregated in storage pools and managed
by its managing Storage Service. This mechanism permits smooth integration of storage
resources of different provenance. Users may register their own storage or may also
register storage that they have leased at resource markets.

A specific issue that needs to be addressed is that storage resources that are regis-
tered at the pool may be available only for limited time durations. When leases are about
to expire, data stored in the expiring blocks will need to be restored elsewhere within the
storage pool maintained by the Storage Service.

4.7.1 Data relocation for storage withdrawal

An important point is that in markets, storage is leased and therefore VBS must support
a graceful withdrawal of storage with no loss of data. Upon notification of lease expiration
the Filesystem Service responsible for the affected files must allocate new storage and
relocate the data. This operation should be available to the users as well. The func-
tionality can readily be implemented in a management logic unit with existing VBS+DFS
mechanisms.

4.8 T3.3: Semantic Store

Task 3.3 enhances regular file storage with semantic functionality that allows applications
to define constraints within and across documents and then manage conflicts that occur
from the shared use of these. Semantic Store uses DFS to implement a special file
structure, the multilog, that will represent those documents.

Grid4All Public Page 18

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Semantic Store integrates with VBS+DFS. For details regarding the API, see Ap-
pendix A

4.9 WP4: Applications

Applications require storage for files in a distributed environment, possibly with the op-
tion to automatically search and allocate storage resources. Work Package 3 offers
distributed storage of regular files through VOFS combined with the more sophisticated
document types of the Semantic Store. The POSIX interface makes the use of DFS
from the applications, straightforward. Semantic Store files are also easily accessible
because they are implemented within the POSIX interface of the VBS+DFS.

The simplest application scenario is global visibility of files. One instance of the
application creates a file that is then opened by another instance in a remote machine
(e.g. the gMovie application).

Applications like e-Meeting may use VOFS workspaces. In the e-Meeting scenario,
a tutor uses one workspace to collect and organize all his teaching material, his library,
and each virtual classroom uses each own workspace for material pertinent to the class.
The tutor is able to select material from his library and instantly populate classroom
workspaces using VOFS federation features. The tutor is able to control access to his
library, classroom workspaces and is able to allocate storage resources for classroom
assignments.

Finally, applications using Semantic Store, implicitly use VOFS via multilogs, the spe-
cial Semantic Store documents.

5 Design and Implementation of the VBS+DFS prototype

5.1 Peering

We use the term peer to designate nodes that participate in the DFS and/or VBS in-
frastructure. DFS and VBS use peer-to-peer protocols to implement their services. The
protocols and procedures for peer-to-peer communication in VBS+DFS are referred to
with the general term peering. The following subsections describe the main peering
mechanisms.

5.1.1 Communication Sessions

Peers establish stateful sessions in their communications to optimise performance, re-
source control and security. When required by policy, sessions are encrypted and au-
thenticated.

Inter-peer communication sessions are encrypted, authenticated and authorized if
the security policy demands this. To optimize the cost of session establishment, stateful
sessions are maintained between peers.

Cryptographic support is in prototype status.

Grid4All Public Page 19

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

5.1.2 Request Token Routing

Request to access resources should present a request token. This object includes a pair
of peer identities: the owning authority and the agent who requests access to the re-
source. Therefore, every resource access is attributed to a specific peer. The VBS+DFS
peering mechanism delivers the request token to the recipient authority, taking care of
URI translation and network connections. Replies to requests are also request them-
selves, and are routed through the same mechanisms back to the requesting agent,
where the replies are matched with pending requests.

5.1.3 Consistency Considerations

Each resource is owned by an authority which serves the authoritative (or master) version
of the resource. Requests are serialised by the serving authority. Sequential numbering
of resource versions help to detect conflicts when an update based on a non-current
copy is attempted. In a case of such a conflict, the users have to resolve it with exter-
nal coordination. The Semantic Store layer of WP3 provides powerful functionality to
address collaborative access to shared resources.

5.2 Storage and Caching

5.2.1 The Local Store Component

The VBS+DFS layer includes an internal database module where arbitrary objects can
be persistently stored and retrieved by a key. The next sections describe functionality
that is built on top of this local store. For implementation details see Section 5.7

5.2.2 Storing files

Files in the VBS+DFS network are data hosted on storage resources, along with meta-
data concerning the file. The URIs of the storage resources are considered part of file
metadata. The file hierarchy is part of metadata as well. File metadata are stored inter-
nally within VBS+DFS peers. File data are stored in the local filesystem as normal files
under the control of the VBS+DFS process.

5.2.3 Primary Resource Storage

The local store component of the VBS+DFS infrastructure is used by owner peers to
keep their resources, either file data or file metadata and hierarchy, persistently stored
and locally available.

5.2.4 Local Caching of Remote Resources

Remote resources, either file data or metadata, are never accessed directly by a client
application. Instead remote resources are first locally replicated in a cache, and then
accessed from cache. The VBS+DFS infrastructure attempts to keep those replicas syn-
chronised with their source, either by pulling fresher versions or pushing locally updated
versions. For consistency considerations see Section 5.1.3.

Grid4All Public Page 20

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

5.2.5 The Local Namespace

Distributed VOFS files are available locally to VOFS client machines at paths below the
VOFS mountpoint. The VBS+DFS infrastructure allows users to create extended at-
tributes to those files that are available only locally. The attributes are inherited from the
parent paths. This allows for flexibile configuration while greatly reducing storage over-
head and management complexity. An example usage of this namespace can be found
in the authorisation procedure with an external policy enforcement point as described in
Section 4.4.

5.3 Services

Services represent network endpoints that have authority over a certain type of resource:
filesystem, storage or client service.

5.3.1 Filesystem Service (MDDB)

Filesystem Service peers implement the filesystem resource. Using the MDDB protocol,
they serve file metadata including the hierarchical structure and the list of storage re-
sources holding file data. It is also the point where subscriptions to events are kept and
where notifications are generated and dispatched to subscribers.

Every user can create a filesystem service by creating an identity for it. Filesystem
resources, designated with URIs, have a unique filesystem service as an owner. The
owner’s identity is encoded in the URI itself.

As a convenience to clients, each filesystem service is associated with a primary
storage service, to handle storage management when clients cannot or will not do them-
selves. In the common course of events, clients obtain the primary storage service from
the filesystem service itself. Another important function of the primary storage service
is to accept contributions intended for a specific filesystem or his owner. Registering
contributions facilitates allocation, but does not enforce any policy. Policies are enforced
during any actual resource access.

5.3.2 Storage Service (VBS)

Storage services manage storage aggregation and subsequent allocation from the re-
sulting storage pool. The native VBS storage service will also serve the storage for read
or write access by clients. However, the actual serving of the storage is independent
from the allocation so that varying types of storage providers may be used (e.g. FTP,
HTTP, gridFTP, etc.)

A storage service may also act as a Storage Provider to another Storage Service
Storage offered to a pool is treated as allocated storage by the donor, while further
management is up to the Storage Service managing the pool.

5.3.3 Client Service

Client services represent the working environment of users, including their files and the
applications accessing them. As a peer, the service communicates with filesystem, stor-

Grid4All Public Page 21

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

age services and storage provides to retrieve all kinds of filesystem data. The client
service also subscribes for asynchronous notifications of modifications or user publica-
tions taking place on remote resources.

5.4 Operation and Usage

This section generally describes the various capabilities of the system as well as its
intended usage. For specifics about the POSIX interface see Section 5.5.

5.4.1 Connected Operation

In normal operation, that is, when all VBS+DFS peers are connected, the VBS+DFS
interface behaves like a traditional filesystem. The only abnormal situation is conflicting
concurrent modifications from several hosts to the same file. For more details see Sec-
tion 5.5

5.4.2 Event Notifications

Clients may subscribe to modifications happening to specific files accross the network,
including changes in file names and hierarchy. There is a special PUBLISH event that is
triggered explicitly by clients, used to implement per file publish-subscribe services.

5.4.3 Disconnected operation

Disconnected operation is possible owing to the local cache of each client. While discon-
nected, cached files remain available for read and write access but are not synchronised
with the authoritative sources. When the authority of a file cannot be contacted within
a certain timeout, the access timeout, the client considers itself disconnected from this
peer and all files of this authority gain the offline status. While accessing offline files, no
network access is attempted. This is necessary because otherwise every access to an
offline file would have to wait for the network timeout. However, after an other timeout
occurs, the offline timeout, the file loses its offline status and subsequent access will
result in contacting the authority over the network. To enhance flexibility, all timeouts are
configurable and files can be forced in and out of the offline status explicitly.

The local cache uses an LRU policy for replacement but not all files are candidates
for eviction from cache. Caches will not evict critical files, such as modified files that have
not been written back or files that are explicitly marked as persistent.

5.5 The POSIX interface to the Client

This section presents details about the POSIX interface to the client service of the
VBS+DFS system. The semantics of (a sufficiently large subset of) the POSIX API
are extended in an non-intrusive way in order to support an interface to the functionality
specific to the VBS+DFS. VBS+DFS is mountable in the local system like conventional
filesystems. While the system has a valid POSIX behaviour, applications may encounter
errors more frequently.

Grid4All Public Page 22

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

5.5.1 Virtual Files

Virtual files are special files that do not represent a DFS file, but their contents and
metadata are dynamically computed. They are artifacts that have been introduced to
support DFS filesystems in a POSIX-compliant way.

In order to preserve compatibility, virtual files are normally invisible to directory list-
ings. Nevertheless, they remain accessible, as if someone creates them the moment
before the access and deletes them the moment afterwards (this is valid behaviour in
conventional filesystem).

Paths to virtual files contain the reserved character ‘@’. This character cannot be
used in normal filenames. The character ‘@’ splits the path into two distinct paths:

<real path>@<virtual path>.

This way, every virtual path is associated with a real one.
The most important virtual file is named ‘@’ and it is present (linked, following the

conventional terminology) in every directory. The real path is ignored and its virtual
component is the empty string. It represents the Global Identity Index, as it allows access
to any peer in the network. By convention, the paths of the form ‘@/URI’ are redirected to
the filesystem service with identified by the URI component. Therefore, cross-filesystem
links are created as symbolic links to targets within this global virtual file:

ln -s @/Grid4All:fs/vo/workspace link-to-g4a-workspace

5.5.2 Subscriptions and Notifications

POSIX operations on files and directories within a file system hierarchy can be signalled
to remote peers.

Subscriptions are individually maintained but the in POSIX interface they are grouped
by the notification endpoint. A notification endpoint is a virtual file where notifications
appear.

Notification endpoints can be created by writing a configuration script to the global vir-
tual file ‘@subscribe’. 1 The endpoint appears in the global virtual directory ‘@notify/’,
while the configuration is accessible in an identically named file within the global virtual
directory ‘@subscriptions/’. The configuration script lists the name of the endpoint
and a list of specific subscriptions to add or remove. A subscription specifies a file and an
event name. Publications can be made by writing to the virtual file ‘@publish’. Notifica-
tion endpoints can be deleted by deleting their configuration files in the ‘@subscriptions/’
directory.

Processes that open the notification endpoint will be signalled with a POSIX SIGIO
signal whenever a new notification arrives. Table 5.7 lists the subscribable events. Sec-
tion A.5 details subscription configuration.

5.6 Manipulating the filesystem

DFS+VBS file systems may be manipulated in the same way as any POSIX file system.
However, special procedures are required for storage allocation and cache management.

1Global virtual files are independent of the real path; they are the same for all files

Grid4All Public Page 23

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Usage Software Version Comments
Implementation platform Python 2.5 extensions written in C
POSIX interface FUSE 2.7 Linux and OS X
Persistent store Berkeley DB 4.7

Table 2: Software Requirements for VBS+DFS

5.6.1 Cache Management

Caches maintain local copies of remote files and contents. Caches are monitored and
local copies are synchronized with their remote sources automatically. Locally modified
files are written back, or newer versions are pulled back from the remote source.

Cache management is based on a state transition system for every file in local cache.
There are two independent binary states:

• clean if it has not been locally modified or dirty, if it has

• fresh if it is considered to be up-to-date with the source, or stale if considered
otherwise.

Dirty files, are queued to be synchronised with their sources. Synchronisation is
started at regular time intervals.

Clean and dirty state transitions are due to local events and hence are easy to man-
age. Stale resources require communication with the remote source. DFS makes no
assumptions about network connectivity at any time, so it follows a best effort approach.
Stale resources are served immediately, but a background download is launched to
check for new versions. When a file is synchronised, it is marked as fresh and a new
timeout is armed. An access after the expiry of this timeout, causes the file to be com-
pared with its source for freshness. Asynchronous notifications may also force files into
stale status, regardless of timeouts.

Section 5.4.3 describes operation when a client node is disconnected from its peers.
Conflicts are detected when a file is both dirty and stale.

5.6.2 Storage Allocation

Clients are the ones that are responsible to allocate storage. To shake that burden off
unsophisticated or unwilling clients, each filesystem is associated with a primary storage
service that is normally willing to offer storage for files (see Section 2.2.1). Therefore,
the simplest solution to storage allocation is for each client to turn to the primary VBS of
the filesystem it has mounted, or the primary VBS of the filesystem where the new file
will be created.

Allocation customisation, that is, which VBS to contact, can be set up on a per file
basis, using the local namespace (Section 5.2.5).

5.7 Technology Used and other Implementation Details

This section presents details about the implementation of the VBS+DFS prototype.

Grid4All Public Page 24

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Event Description
CREATE A file was created in the subscribed directory
REMOVE A file that was deleted from the subscribed directory
RENAME A file that was moved from the subscribed directory
MODIFY Data or metadata of the subscribed file were modified
PUBLISH A user published a message on this file

Table 3: Description of subscribable DFS events

5.7.1 Persistent Store Component

This component has a generic modular interface to a low-level storage backend that sup-
ports transactions. Currently Berkeley DB is used as the back-end, but can be replaced
with minimal effort.

5.7.2 Local Namespace

The local namespace is actually a very generic interface to the system. One can re-
view the entire internal system state at any time and other than system-specific keys,
users can enter arbitrary key-value pairs. This namespace is also available through the
extended file attributes filesystem interface.

Grid4All Public Page 25

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

A Semantic Store interface with VBS+DFS

A.1 The DFS Virtual Files

The FUSE interface for the DFS extends normal filesystem semantics to include DFS-
specific operations. DFS functionality is available using POSIX calls to special, dynami-
cally generated files, called virtual files.

Virtual files are accessed with the use of a special character ‘@’. In every POSIX call
that includes a filename, the absolute path of the file is partitioned into two segments at
the rightmost ‘@’ character. The first segment represents the real path and the second a
virtual path which is associated with the real path given. If there is no ‘@’ character in the
path, then the path is real.

A.1.1 Reading and writing Virtual Files

The FUSE software intercepts system calls accessing the filesystem and then calls the
underlying DFS libraries to serve them. However, the calls made by FUSE to the under-
lying DFS library do not correspond (e.g. in offset-length arguments) to the system calls
that triggered them. System calls are translated by FUSE to page-filling requests, in way
similar to how the operating system translates clusters of individual writes to page-sized
disk writes. This significantly limits control over the POSIX behaviour of the file and re-
duces the flexibility for implementing virtual files. Therefore, most Virtual files are either
read-only or write-only.

Virtual files have dynamic contents that are determined upon opening the file. Writes
to a virtual file are not processed by DFS until the file is closed. In special cases, other
mechanisms may be used that have the same effect as closing and reopening the file,
such as seeking to the begining of the file.

A.2 The Telex requirements for Multilogs

Multilogs are documents in the form of a hierarchy of files, and are shared among many
editors. Each editor only writes to his own files and reads from all other editors’ log files.
Using the peer-to-peer linking capabilities of DFS, log files can be aggregated under a
single directory shared by all editors.

Telex needs two communication facilities from the DFS:

i. Telex needs to be notified when a log file has been modified or was added or
deleted.

ii. Telex needs to be able to broadcast private messages to all editors and receive
such messages.

A.3 A Java wrapper class

DFS Provides a wrapper Java class that implements this functionality by using virtual
files in a special way. The interface for this functionality is:

Grid4All Public Page 26

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Method Description
publish publish a message to subscribers of a path

subscribeFile add a subscription for a file
unsubscribeFile remove a subscription for a file

waitForNotification block execution until any notification arrives
update overridable callback for that receives notification

Table 4: Description of methods of the Java Telex-DFS interface

public interface IDFS

{

void publish(String path, byte[] message) throws IOException;

void subscribeFile(String path, String event) throws IOException;

void unsubscribeFile(String path, String event) throws IOException;

Vector waitForNotification() throws InterruptedException;

void update(final Vector msg);

}

Applications must instantiate one or more wrapper objects per multilog.
Using the subsribeFile() and unsubscribeFile() methods, callers subscribe

to events for specific files within the multilog.
The waitForNotification() method blocks until any subscribed notification for any
subscribed file arrives. Specifically:

• To monitor for new or deleted log files, the Telex application must subscribe for
‘CREATE, REMOVE’ notifications to the containing directory.

• To monitor for modifications to a file, the Telex application must subscribe for
‘MODIFY’ notifications to that file.

• To subscribe for private messages to a file, the Telex application must subscribe
for ‘PUBLISH’ notifications to that file.

• To broadcast a private message to all subscribers of a file, the Telex application
must publish the message to that file using the publish() method.

A.4 Format of notification Messages

The notification messages returned by the wrapper are composed of three fields, each
delimited with a byte ‘:’ (colon):

1. The first field contains a string identifying the event type
(e.g. ‘MODIFY’).

2. The second field contains a string identifying the path (relative to the DFS mount-
point) of the file the notification was destined for.

3. The third field contains a binary message as payload for the notification, or one or
more whitespace characters if there is no such payload.

Grid4All Public Page 27

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Messages for publication are submitted to the wrapper as they are, with no headers
or delimiters. The messages submitted will appear in the third field of the ‘PUBLISH’
notification.

A.5 Low level virtual file access

In order to subscribe for notifications, an application writes a configuration script in the
virtual file ‘@subscribe’. The text is delimited by newline characters. The first line
contains the name of a notification file to be created. All notifications that are subscribed
by this script will be delivered to that file. The notification file will reside in the virtual
‘@notify’ directory, which is global; this same virtual file is accessible at any directory
under a DFS mountpoint.

The remaining lines are of the form:

[-]〈EV ENT 〉:file:〈path/to/ f ile〉

For example,

CREATE:file:/docs/calendar/logs

Subsequent writes to the same notification endpoint file (specified in the first line)
will be applied on the contents already written by other writes. New lines cause new
notification subscriptions to be added to the existing, while prepending a ‘-’ to the line
unsubscribes an existing one.

There are various methods of waiting for notifications to appear in the notification
endpoint files. The safest and most compatible method is for the DFS client to send a
POSIX signal (‘SIGIO’) to the processes that maintain an open file descriptor to the noti-
fication endpoint file. The wrapper Java class hides these details so the implementation
may change.

A.6 Communication guarantees

Clients persistently cache resources, especially dirty ones. This persistent state allows
retrial of communication for an unspecified period of time, until the relevant accesses are
successful or aborted by the user. Therefore, while there are no guarantees from the
network, communication is eventually guaranteed by retrial.

References

[01] "Grid4All: Democratic Grids — Scenario and Architecture". Grid4All Deliverable
D4.6, 2008

Grid4All Public Page 28

SPECIFICATION AND PROOF-OF-CONCEPT

ADAPTATION OF A PEER-TO-PEER FILE SYSTEM

(DFS) AND VO-AWARE FILE SYSTEM (VOFS)
ON A FULLY FUNCTIONAL VBS.

Grid4All–034567
July 10, 2008

Level of confidentiality and dissemination

By default, each document created within Grid4All is c© Grid4All Consortium Members and
should be considered confidential. Corresponding legal mentions are included in the document
templates and should not be removed, unless a more restricted copyright applies (e.g. at subpro-
ject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months
implementation plan, all deliverables listed in Section 7.7 have a specific dissemination level. This
dissemination level shall be mentioned in the document (a specific section for this is included in
the template, both on the cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public.
PP = Restricted to other programme participants (including the EC services).
RE = Restricted to a group specified by the Consortium (including the EC services).
CO = Confidential, only for members of the Consortium (including the EC services).
INT = Internal, only for members of the Consortium (excluding the EC services).

This level typically applies to internal working documents, meeting minutes etc., and cannot be
used for contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition
that the owners of the restricted document agree collectively in writing to release this public
version. In this case, a new document code should be given so as to distinguish between the
different versions.

Grid4All Public Page 29

