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1 Introduction

The present document contains the requirement analysis, design and implementation plan for
DFS and VBS, undertaken by ICCS as part of the Grid4All 12th month deliverable D3.1, and
a short report presenting the prototype implementation developed by ICCS for the 12th month
Grid4All deliverable D3.2.

Task 3.1 defines VBS as a distributed block store on top of which DFS operates as a form of
distributed filesystem.

VBS stands for Virtual Block Store. VBS is a software system that aggregates storage re-
sources from internet peers into a single raw storage image that can be used by other systems,
typically a file system, to allocate and access storage space.

DFS stands for Distributed File Services. DFS is a software system that hosts a file names-
pace on every peer. We use the term file namespace instead of file system because DFS stores
only the hierarchical structure and metadata of files but not the file contents. Instead, pointers to
VBS storage locations where the file contents are included with the metadata. DFS thus users
the VBS layer for storing file contents. File namespaces are interlinked and a web of files is cre-
ated over the internet — a unique approach to a distributed file system, that answers to many of
the challenges of the Grid4All vision. The web of files does not possess a global root and peers
choose their own entry point that leads to a different view.

VBS and DFS together provide a storage substrate for VOFS (VO-aware File System, Task3.2)
and Semantic Store (Task3.3). Initially, the VBS and DFS were described as separate layers that
would benefit from existing technologies put together to deliver the expected result. The initial
ideas where substantially developed and this deliverable presents a unified architectural design
that covers both DFS and VBS, since the two systems have a great deal to share in mechanism
and functionality. Both need peering capabilities, authentication and authorisation mechanisms,
and access to local resources.

Therefore, the design now specifies a unified VBS+DFS architecture, which will be referred
to as the DFS Architecture, throughout this document. The DFS architecture features generic
mechanisms that create peers capable of communication, access local storage resources and
implement protocols for peer-to-peer services. The design includes two protocols. One is for
namespace and metadata serving, the MDDB protocol, and the other is for storage serving, the
VBS protocol. The VBS layer is thus included in the overall DFS architecture.

Because of the unified VBS+DFS architecture, the D3.2 deliverable prototype implementa-
tion includes much of the DFS functionality, in addition to the VBS functionality that was initially
planned.

The most prominent features of the DFS architecture are:

• Filesystem servers and clients as peers on the Internet

• Peer-to-peer filesystem access through symbolic linking between namespaces

• Explicit separation of file hierarchy and metadata against file data storage

• Operation while disconnected from the network

• Integration (mounting) with the local OS filesystem hierarchy

• Global index of peers over a structured peer-to-peer network

• Authentication and authorisation by public-private key cryptography

Grid4All Public D 3.2 – Page 9
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In summary, the Grid4All vision poses mainly two scenarios as challenges to the storage
substrate:

• Users must be able to find and allocate distributed resources to enable application func-
tionality, because their own resources don’t suffice.

• Users must be able to share distributed resources to enable collaboration among them.

For both these scenarios, users create task-oriented Virtual Organisations (VOs), in order
to manage the tasks of finding and sharing resources. The DFS architecture provides support
in that respect both to the VOFS, that interfaces with the VOs, and the Semantic Store, that
interfaces with the applications.

The DFS architecture design philosophy can be expressed by two important principles:

• Total resource control for resource owners.

This means that resource owners can enforce their own policy for access to their resources,
no matter prior negotiation or policy arrangements from third parties.

• Semantic and functional independence among peers and views of the peer network.

There does not exist a single global view of the peer network and its resources. Views and
operations may be conflicting among the peers without damaging core mechanisms; peers
can survive any conflict or remote failure falling back to their local view. The general term
view refers to the state of remote objects as it is registered locally at a particular peer.

The structure of this document is as follows:
Section 2 presents a wide range of storage systems that are relevant to the DFS and VBS

design and implementation. The design incorporates many of the techniques, concepts and
experience of presented state of the art.

Section 3 discusses the requirements that the general Grid4All scenarios have on the DFS
architecture as a storage substrate.

Section 4 presents the DFS architecture, including the VBS layer.
Section 5 presents the DFS+VBS prototype implementation.
Section 6 describes detailed usage scenarios.
Section 7 details the connections of this work with other tasks of the project.

Grid4All Public D 3.2 – Page 10
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2 State of the Art

2.1 Block Storage

2.1.1 iSCSI

iSCSI ([06]) defines a transfer protocol for SCSI over typical TCP/IP networks. iSCSI was devel-
oped as a cost effective solution, because unlike other alternatives such as Fibre Channel ([08]) it
can be used over ubiquitous TCP/IP networks. iSCSI initiators can be implemented completely in
software using common NICs. Modern Operating Systems such as Linux and windows support
this kind of functionality. In practice, however, in order to achieve better performance a part of
the desired functionality can be implemented in hardware and specifically in the network card.
Examples are TCP Offload Engines (TOE) which implement the TCP/IP protocol in the NIC and
iSCSI Host Bus Adapters (HBAs) which implement the full iSCSI protocol and expose themselves
as a SCSI HBA to the operating system.

2.1.2 ATA over Ethernet

ATA over Ethernet (AoE) ([09]) is a lightweight protocol similar to iSCSI, designed for accessing
ATA storage devices over Ethernet networks. Unlike iSCSI, AoE does not use the TCP/IP protocol
stack, which enables the protocol to achieve good performance without the use of expensive
adapters. The downside of this design decision is that the AoE protocol can apparently be used
only in Ethernet LANs. There is also a protocol that supports transportation of SCSI commands
using raw Ethernet packets which is called HyperSCSI ([12]).

Network Block Device (NBD) is a block device driver for the Linux operating system. NBD
implements a virtual block device that forwards all requests to a userspace server over a TCP/IP
network. The server handles the requests and sends the result back to the client. NBD, allows
only a client at a time for each storage device exported by the server. There are various expanded
versions of NBD that provide additional functionality. ENBD, which stands for Enhanced Network
Block Device, provides additional features such as: multichannel communication, internal failover
and automatic balancing between the channels, encryption and authentication. As noted in the
webpage of the ENBD project: “The intended use for ENBD in particular is for RAID over the net”.
Relate work includes [10] which discusses implementation issues in order to use nbd for data
replication (RAID1) and [11] which evaluates performance of a distributed RAID5 implementation
based on NBD and concludes that in most cases performance of distributed RAID is noticeable
better than that of a single disk system. Additionally, there is also GNBD, which is part of the
GFS Filesystem and stands for GFS Network Block Device. The difference between GNBD and
NBD is that GNBD supports multiple clients on a server, all accessing the same exported storage
resource.

2.1.3 Petal

Petal [14] was a research project at Compaq’s System Research Centre. Petal consists of a
pool of distributed storage servers that cooperatively implement a single, block-level storage sys-
tem. The system provide high-available large abstract containers, called virtual disks. Global
state information is maintained among the server nodes by an algorithm which is based on Leslie
Lamport’s Paxos, or “part-time parliament” algorithm [15] for implementing distributed, replicated
state machines. The petal system provides a mapping from <virtual-disk-id,offset> to
<server-id,disk-id,disk-offset>, based on a 3-level mapping table structure, of which
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the first 2-levels must be global (replicated to all servers). Petal supports a redundancy tech-
nique called Chained Declustering [16] which is similar to RAID, incremental reconfiguration and
automated backup and restore capabilities.

2.1.4 NASD

Network Attached Secure Disks (NASD) as presented in [13] was a research project at Carnegie
Mellon University which aimed to mitigate the scalability problems of typical NAS architectures
such as NFS. NASD eliminates the unique server bottleneck by enabling storage devices to
transfer data directly to clients. Storage devices export variable length objects instead of fixed-
sized blocks as an interface. The higher-level semantics (such security, metadata) are handled
by the central file manager.

2.1.5 FAB

FAB (Federated Array of Bricks) as presented in [20] is a distributed disk system built on bricks,
which are commodity systems containing disks, CPU, NVRAM, and NICs. The interface provided
by bricks, to the storage clients is [06]. Clients send an iSCSI request to a brick, which acts as
a coordinator and forwards the request to the appropriate storage bricks based on the technique
used. FABs support specific replication and erasure-coding algorithms [21], which are both based
on voting: Each request makes progress only after receiving replies from a (random) quorum1

of bricks. As in the case of the Petal global metadata are kept on all bricks using Paxos [15]. A
group of bricks, called seggroup is mapped to the logical offset of a device at segment granularity.
A large segment size value (256MB) is chosen to reduce the global metadata management
overhead. The local mapping on each brick has smaller (8MB) granularity (page). Timestamps
are used for the various consistency protocols.

There are also various other attempts similar to build highly-efficient and highly-available stor-
age systems based on bricks. An example is self-* storage [19], which explores the design and
implementation of self-organising, self-configuring, self-tuning, self-healing, self-managing sys-
tems storage systems based on bricks, borrowing ideas from AI and corporate theory [18] . The
target of this project is to “develop and deploy a large-scale (1 PB) storage constellation, called
Ursa Major, with capacity provided to research groups (e.g., in data mining and scientific visual-
isation) around Carnegie Mellon who rely on large quantities of storage for their work. There is
also an IBM project called Intelligent Bricks (Intelligent Bricks Hardware, Intelligent Bricks Soft-
ware, [22]).

2.1.6 Unclassified

[17, Semantically-Smart Disk Systems] presents an approach where smart disks operate based
on some knowledge about the upper layer (gray-box approach), which in most cases is the filesys-
tem. This knowledge is acquired by a fingerprinting tool that automatically discovers file-system
layout through probes and observations.

2.2 Globally Distributed Storage Systems

Globally distributed storage systems share a lot of properties and design issues with LAN Storage
Systems, but there are also some inherent differences among them:

• On globally distributed storage systems connectivity of a large number of nodes is inter-
mittent.
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• Network Latencies can be very high, and one can’t assume a high speed network inter-
connection among nodes.

• When data distribution is global, there are more security issues that need to be resolved.
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client / server Ethernet NO NO NO fixed

NBD client / server TCP NO NO NO fixed

Petal∗ distributed ATM
Chained
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ing

NO NO fixed

NASD distributed UDP RAID-like YES Capabi-
lities

variable

FAB∗ distributed iSCSI
replicas /
erasure-
coding

NO NO fixed

∗ Requires NVRAM

Table 1: Qualitative comparison of networked block storage systems

2.3 Filesystems

2.3.1 Log Structured Filesystems

A log structured filesystem (LFS) [34] treats the storage device (e.g. disk) as an append-only log.
New data (either by creation of new files, or by modification of existent) and their corresponding
metadata are batched together and written to the end of the log in large sequential transfers.
LFS performs well when writing small files and translates temporal data locality to spatial storage
locality: data that where written at the same time are stored together and can be retrieved effi-
ciently. Typical filesystems, such as [33], translate logical data locality to spatial storage locality
by storing together data that are close in the filesystem namespace. LFS provides a segment
cleaner, which is responsible for garbage-collecting the free space and coalescing it into large
contiguous regions. LFS also is also able to recover from a crash more quickly than most file sys-
tems, because its append-only nature ensures that only the tail of the log needs to be checked
for inconsistencies. LFS has two features that render it well-suited for RAID-like storage devices:
It operates with large transfers (no partial stripe writes) and easy recovery.

2.4 Network File Systems

Network File Systems, are the most popular implementation of the NAS architecture. The server
exports a local filesystem to various clients via a specific protocol. The client uses this protocol
to provide users with a file system interface for the remote storage that is exported by the server.
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2.4.1 NFS

The most common Network File System in UNIX and UNIX-like operating systems is NFS, which
was originally developed by Sun. There are various versions of NFS ([03], [04], [05]). Versions
2 and 3 use UDP as a transfer protocol, although it is possible to use TCP from version 3.
Version 3 includes various performance modifications such as support for asynchronous writes
on the server, security enhancements by allowing support for an access check to be done on the
server and extensions to allow 64 bit file sizes and offsets. Version 4 implements a stateful NFS
protocol, which allows file locking to be integrated in the protocol and not implemented outside.
Additionally, Version 4 of the NFS protocols includes support for strong security, client caching,
compound operations and internationalisation.

Another wide-spread network filesystem is SMB (Server Message Block), which was origi-
nally developed by IBM. SMB was later extended by Microsoft which renamed into CIFS (Com-
mon Internet File System)

2.5 Shared Disk File Systems

Shared disk filesystems are special-purpose filesystems for nodes that have access to a shared
storage pool. When multiple nodes are accessing the shared storage a common filesystem won’t
suffice, because consistency can’t be maintained.

2.5.1 Global File System

Global File System (GFS) ([23] , [24] ) is the most popular shared-disk filesystem. Originally,
GFS was developed for the IRIX Operating System, although now it is most commonly used in
Linux systems. GFS is fully distributed, in the sense that there aren’t special nodes, all operations
can be equally performed by every node. All data and meta-data of the filesystems are equally
distributed on all storage devices.

Initially, the synchronisation between the nodes of the filesystem was implemented with spe-
cial SCSI commands during the writing of metadata information to the storage devices. For
devices that did not support those operations, an additional layer was added, which supported
the synchronisation of nodes via a central server. The special SCSI commands were not sup-
ported by many vendors, so the centralised synchronisation scheme prevailed. This posed a
performance and reliability problem so Distributed Locking Mechanisms (DLM) were developed,
to protect the data and meta-data of the filesystem.

2.6 Distributed File Systems

Distributed File Systems are filesystems that provide a unified filesystem view, supporting multiple
clients and possibly multiple storage servers. The main difference with Network File Systems is
that the latter support only one storage server.

2.6.1 AFS

Andrew File System (AFS) is a distributed file system developed initially by Carnegie Mellon
University. AFS clients use a persistent (on disk) cache that caches both file and directory data.
In order to support this caching scheme, servers notify clients with a callback to discard data, if
data have changed. These changes are propagated when a file is closed and not when is written,
as in typical Unix systems. The servers provide a common namespace for all clients, so a file
is always identified by its location. AFS provides improved security features such as the use of
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the kerberos protocol for user authentication and an ACL based protection scheme. Read-only
replication of data between servers is also possible. AFS finally supports wide-area operation.

Coda [25] is a filesystem that was based on AFS. Coda supports disconnected operation via
operation logging and data replication via a read one/write all model and versioning of individual
replicas. InterMezzo filesystem was inspired by Coda, and was coded from scratch, targeting in
much smaller implementation size.

2.6.2 Zebra

The Zebra stripped network filesystem [35] is a filesystem that stripes file data across its servers,
in order to provide a scalable storage system. Zebra is build on two basic technologies: RAID and
Log Structured Filesystems. The Zebra filesystem uses log-based stripping (instead of file-based
stripping) and as LFS uses the logging approach at the interface between a file server and its
disks, Zebra uses the logging approach at the interface between a client and its servers. Zebra
performs the parity computations on the clients. One of the most important features of Zebra is
that it updates file blocks by writing new copies, rather than updating the existing copies. This
approach has several advantages: It allows the clients to batch together blocks from different files
and write them to the servers in a single transfer and several clients simultaneously modify data
without synchronisation. To allow clients not only to store, but also to share data a centralised file
manager is provided, which manages the metadata for locating data and for consistency issues.
Another scalability problem for Zebra is that Zebra, like LFS, relies on a single cleaner to create
empty segments.

2.6.3 xFS

xFS [37] is a serverless network filesystem in which all nodes cooperate as peers to provide all file
system services. xFS distributes control processing across nodes on a file granularity, distributes
storage data using a software RAID mechanism based on log-based network striping similar to
that implemented in Zebra and implements cooperative caching, where portions of client memory
are used as a large global file cache and data requests can be satisfied by data cached on other
machines [36]. xFS is one of the first fully-distributed peer-to-peer systems, although its intended
use was for fast-access LANs and not for large global networks.

For each file there exists a manager, which controls two sets of information about it, cache
consistency state and disk location. There are four mappings data structures for locating dis-
tributed data and metadata in a xFS system: the manager map maps files to managers and its
globally distributed among nodes, the imap maps file data to on-disk log locations and its located
on the manager of a specific file, the file directories map file names to inodes and stripe group
map, which maps disk log address to list of storage servers and its globally replicated. xFS, also
distributes cleaning operations among nodes of the system.

2.6.4 Lustre

Lustre ([26] , [27]) is a POSIX compliant distributed filesystem that scales to tens of thousands of
nodes and petabytes of storage. Lustre is open source and its name its an amalgam of the terms
“Linux” and “Clusters”. There are three different entities in a Lustre environment:

• Clients that use the storage space provided by the filesystem

• Metadata Servers (MDSs) which hold the metadata for the filesystem (directory layout,
permissions and extended attributes)
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• Object Storage Targets (OSTs) which are responsible for the storage and transfer of
actual file data.

Lustre is a system that is designed around object protocols, where storage devices provide
an object interface instead of a block address space. This technique allows for internal metadata
to be handled on OSTs and thus provides better scalability. There are also a number of other
approaches that utilise object storage such as: [13], [28], [29] . Lustre’s network layers uses a
simple message passing interface called Portals [30] and supports a large number of modern
interconnection networks such as Quadrics, Myrinet, Infiniband [07] and TCP/IP. Lustre uses it’s
own Distributed Lock Manager (DLM), which among other things supports intent locking, a way for
allowing the lock manager to choose between different modes depending on its view of resource
contention.

2.6.5 PVFS

PVFS (Parallel Virtual File System ) [31] is a distributed filesystem for clusters and its primary goal
is to provide high-speed access to file data for parallel scientific applications. After the release
of the first version, the second version of PVFS [32] is now developed. A basic design decision
in PVFS2 is that it does not provide POSIX semantics, but defines a more relaxed consistency
scheme. PVFS2 protocol is stateless and locks not are used as a part of client - server interaction.
PVFS2 provides two different interfaces for applications: a typical UNIX I/O interface and an MPI-
IO interface, to better leverage the capabilities of MPI-IO to perform efficient access in a PVFS2
system. Other features of PVFS2 include support for distributed metadata, data and metadata
redundancy, tunable filesystem semantics and flexible and extensible data distribution modules.

2.6.6 Eliot

Eliot [39] is a distributed filesystem over a peer-to-peer network. File data are kept in an im-
mutable content-hashed peer-to-peer block store while the rest of the filesystem is kept in repli-
cated metadata servers. With immutable hashed file contents, data become easily cached and
fakes are easily detected. On the other hand, having a centralised (although replicated) metadata
server, the filesystem gains performance and manageability. Mass queries and operations can
be applied at once, while the administrators of the servers can enforce strong security control.
The idea that a centralised (or, more centralised) metadata server boosts performance and man-
ageability can be found in the design of the Lustre high-performance cluster filesystem too [27].
Eliot implements open-close consistency like AFS.
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3 Requirements analysis

Grid4All’s main objective is to produce the necessary infrastructure that will enable domestic
users, non-profit organisations such as schools, and small enterprises to participate in a massive
resource sharing network over the Internet. The vision of the project is a “democratic” Grid
where inexpensive resources are cooperatively pooled in a dynamic and scalable fashion. Even
small-scale users that do not have the necessary computing and storage assets to participate in
current Grid deployments should be able to contribute their resources and in turn be able to utilise
the unified substrate. All services implemented in such an environment face great challenges
regarding security, support for multiple administrative and management authorities, on-demand
resource allocation, heterogeneity and fault-tolerance.

Most relevant issues have already been addressed in the context of peer-to-peer data shar-
ing and resource location networks — most, except administration and authority, which contradict
the purpose the majority of such systems have been designed for. In classic peer-to-peer over-
lay designs, participants agree on the protocol to be used, which in turn enforces the policy of
resource allocation and usage. Peers donate their storage resources to a common pool which
is then managed by the network itself. Of course, one can refuse to implement the complete
protocol semantics or process selective commands in an arbitrary way, although the correspond-
ing results of such behaviour are ambiguous. On the other hand, the design proposed in this
document takes into account a peer-to-peer environment where:

• Peers have direct control of their resources. Each peer may administer its own storage and
file objects and perform operations on them independently of their location and usage in
the network.

• Peers have control of how their resources are used. Each peer may authorise specific
peers to certain actions. Also, each peer may define its own sharing policy.

The DFS architecture assumes that users who own resources, also run peers that provide
access to those resources. Local control of peers makes policy enforcement possible
while cryptographic identification of each peer and resource allows peers to specify access
policies. Therefore, as long as communication among peers is authenticated, peers have
total control over their resources. For details, see Section 4.1.

• Peers should be able to allocate and use resources they do not physically possess. This
can be achieved either by pooling of resources or sharing, as long as the process complies
with the previous requirements.

Details about pooling storage resources and allocating on demand can be found in Sec-
tions 4.5.11, 5.6, 7.2

• All actions should be accountable. Every transaction in the network should be traceable to
a named peer, resource or combination of two. See Section 4.1

• The network’s capacity should grow as more nodes join it, in a typical peer-to-peer fashion.
Moreover, well connected and well resourced nodes should be exploited when needed and
if they allow so.

Concerning files, this is largely a matter of policy and content and cannot be addressed at
the level of mechanism much beyond offering peer-to-peer facilities. However, raw storage
can be pooled in peer-to-peer networks, thus exploitng the distributed resources. VBS can
implemented using a such a peer to peer network. See Section 5.6 for a presentation of a
prototype implementation and Section 6.3 for a relevant scenario.

Grid4All Public D 3.2 – Page 17



VBS+DFS ARCHITECTURE & PROTOTYPE

Grid4All–034567
20th June 2007

Moreover, the Grid environment we target has imposed special requirements, including:

• Shared namespaces. In addition to sharing file contents, participants should be able to
agree on common collections or clusters of files. This is traditionally achieved through
distributed filesystem designs where numerous peers agree on a common namespace of
data. The storage subsystem should allow equal functionality, additionally supporting the
ad-hoc creation and management of multiple such views.

The DFS architecture provides this functionality with its filesystem to filesystem links (met-
alinks, see section 4.2.1). With metalinks, shared directories become shared namespaces
since peers can logically link their resources there, while maintaining the control of their
resources. For a relevant scenario see section 6.1

• Support for multiple storage types. As we presume cooperation among new and already
deployed file services, we should provide mechanisms for merging existing data exported
via GridFTP, FTP, HTTP, etc. into the same distributed namespace and allow seamless
access to objects disregarding the transfer protocol or location.

• Support for special file types. Data contained in files may have special semantics, and
as so require or support special operations beyond access, move, copy, delete, etc. For
example log files may provide special mechanisms to append entries or files storing exper-
imental results from scientific measurements may contain special metadata.

• Support for disconnected and offline operations. Network failures and mobility of users are
expected to often make peers unreachable or disconnected from the main network. Users
must be able to survive this without unnecessary loss of functionality or data.
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4 DFS+VBS Architecture

4.1 Generals

The DFS architecture architecture (DFS) enables distributed access and management of files
and storage resources in a peer-to-peer environment while retaining full local control and allowing
accountability of corresponding actions. In essence, it is a peer-to-peer service-oriented architec-
ture for distributed file operations that allows us to synthesise the diversity, scale and dynamicity
of a typical peer-to-peer network with the control and accounting features. DFS allows users of
the system to administer file metadata and actual data as two distinct entities, independently of
each other.

Users of the system create and control peers that participate in a network of namespaces
and storage. Through their peers, users are enabled in

• Exporting files and storage to other users.

• Creation of shared namespaces where each user can export existing files under whatever
name they choose.

• Creation and management of shared files.

• Aggregation of multiple users’ files under a single namespace. This enables distributed
resources to be authenticated as "official" under the authority of this single namespace.

• Disconnected operation on their critical data.

The DFS Architecture is based on the following principles:

• Cryptographic User IDentification CUID

DFS mechanisms identify users by a Cryptographic User IDentification (CUID) token. A
cryptographic certificate is retrievable from the CUID, which will authenticate the CUID.
Users are named, authenticated, authorised, accounted, attributed an action or associated
with each other and external entities, all with the use of CUIDs.

CUIDs may be created arbitrarily by users, but policy may require certification from author-
ities or other associations, such as inclusion in white lists or high scores in peer-to-peer
reputation systems.

• Any resource is identified by a single authority, a single CUID

Any resource and policy concerning resources is identified by and submitted to the uncon-
ditional authority of a unique DFS CUID. This has two main benefits. This makes mech-
anisms resistant to negotiation or reconciliation failures, since the authority can always
provide a sound and enforceable resolution to any matter.

The simplest way to handle conflicting operations on resources is to serialise all operations
before execution at the site of the single authority. In the cases this best effort consistency
is not sufficient, the applications must use their own mechanism to synchronise. External
mechanism can be supported by special privitive operations if needed.

• Any action upon a resource is attributable to a single CUID

The agent of any action concerning resources is ultimately identified by a single CUID.
This facilitates the accountability of users for their actions and simplifies resource access
control.
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Combining the two previous principles we can see that any action upon a resource is
essentially a transaction between two CUIDs, an agent and an authority. The agent must
acquire the permission of the authority in order to successfully perform the action.

4.2 Resources

The proposed DFS architecture explicitly distinguishes between two kinds of resources, the
filesystem data and the actual storage space. The first kind of resource will be called the FileSys-
tem resource and it refers to the usage and manipulation of the information stored in a filesystem.
The second kind will be called the Storage resource.

4.2.1 Filesystem Resource

The filesystem resource refers to a namespace and its data, as in computer filesystems. It
should be noted that only the information content belongs to the resources — storage space
for file data belongs to the storage resource, defined next. Of course, the filesystem metadata
require storage space too. This storage space is considered part of the filesystem resource.

Follows a list with the basic features of filesystem resources.

• Three constituents: path to file, file metadata, file data

The filesystem resource constitutes of three parts: path, metadata and data.

The path represents a file, including directories or other special file types. The path is
important because it names the file data. For example, the list of users that can login in
a unix system is maintained in the file under the path /etc/passwd . All programs that
implement relevant functionality, trust that this path points to authoritative data. The ability
and act of making data accessible under a certain name is essential part of the filesystem
resource. The resulting hierarchy of names will be often referred to as the filesystem
structure.

The metadata encode the policy according to which both filesystem structure and file data
can be manipulated. A simple model is adopted: there is a list of operations and there
are Access Controls Lists (ACLs) for mapping CUIDs to their permissible operations. It is
noted that permission from the filesystem is not in principle capable to grant a user access
to the data because the actual data storage belongs to a different resource. This filesystem
to storage delegation is discussed later on.

Data belong to the filesystem resource as a storage pointer. The actual data is not (in
principle) included in the filesystem resource but is instead linked to. This is dictated by
the principle of explicit filesystem and storage resource separation. It offers flexibility, as
the producer and owner of information need not logically be the host. In fact it is often the
case that more storage is needed than available or, conversely, more storage is available
than needed. The interaction between the resources is discussed after the user roles are
defined.

• URI identification. A file as a resource is identified by a URI of the form:

dfs://Owner:fs/Path

Owner is the identification of the owner of the filesystem (see section Roles Definition).
Path is the path within the filesystem. The dfs:// prefix stands for the entire protocol
family within a DFS network, while the service specification :fs denotes the specific target
service.
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• Metalinks from namespace to namespace

A special type of file exists, the metalink, that points to an arbitrary filesystem URI. In that
way, it links its path to the pointed URI providing the ability to link filesystems arbitrarily
together, forming simple or more complex structures. The parent filesystem cannot control
the structure of its descendants. This feature is very useful in the formation of peer to peer
filesystem structures that combine resources from different CUIDs to be shared. Metalinks
in the DFS network can be considered as an extension of the traditional filesystem symbolic
links.

DFS Peer

DFS Peer

Inodes

MetaLinks

...

Figure 1: Filesystem Metalinks

4.2.2 Storage Resource

The storage resource refers to the actual storage of content, such as file data. Filesystem re-
sources are used to associate data with users and policies whereas storage resources are con-
sumed to store data and make them available for retrieval over the network. Data blocks are the
units of storage allocation and are identified by URIs of the form:

dfs://<provider>:storage.<protocol>/<handle>

The URI includes the providing CUID, the specific protocol that may be used to access data, and
a handle that is used by the provider to identifies the data block. This implies that storage is
allocated.

In the DFS Network, the size of data blocks is not assumed to be uniform or constant. This
allows data blocks to closely resemble regular files. Therefore, clients who only need storage
may directly use Storage Resources, if the storage provider supports mutable and resizeable
data blocks.
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4.3 Roles

According the principle, each action upon a resource is essentially a transaction between an
authority CUID who owns the resource and an agent CUID who performs the action. The authority
has to give its permission for the agent to complete the action. Taking into account the given
resource definition, three roles for users are defined to represent the authority and the agent for
each action. These roles are shaped such as to address the needs for DFS resource access and
management. The roles provide an abstract framework that guides the DFS software component
design and implementation, as well as the interface of the whole DFS subsystem to the other
layers.

It must be stressed that any CUID can play all of these roles.

4.3.1 File Owner

Each CUID in the network is entitled to its own namespace and files. Conceptually, file hierar-
chies are not physical resources in the sense that they are just information. Owners can either
authoritatively serve their file resources through authenticated communication channels or cryp-
tographically protect their content when hosted at untrusted sites.

Of course, a hierarchy of files as information, has to be placed in physical storage. The
storage space for file hierarchy and metadata are served by the Owner. The file contents are
served by providers of storage resources. It is the Owner’s responsibility to find providers of
storage for its files.

4.3.2 Storage Provider

As with files, each CUID can own storage resources. Storage Providers can serve requests for
storage allocation and access after they authenticate their peers and authorise their requests.
Providers can contribute storage to other Providers, so a big part of their role is to make contact
with others and establish a peer-to-peer storage network. Aggregation of storage essentially
means that a Provider can present for storage management a single virtual image of storage
space that is arbitrarily distributed and has been registered with it as contributions.

The storage contribution and aggregation patterns are policy that is prescribed by the users
in control of the CUID. It is expected that most Owners will utilise their own storage resources for
their files.

Providers can serve storage from any underlying storage system they need, as long as they
conform to the specific protocols. This makes data managemet flexible. Of course, the choice of
lower level storage can limit the available operations and services. For example, an alternative
storage device is planned as a peer-to-peer block store where each peer can provide storage in
a DFS network.

4.3.3 Resource Consumer

The third role is that of the Consumer of the resources. This is straightforward, as each peer can
contact any other to request access to any resource. Consumers are expected to be controlled
by client applications.

4.4 Component Definition

The software component architecture of the DFS describes how the abstract roles framework is
to be implemented in software. The first concern is the definition of the interface among the vari-
ous such components. Secondly, implementation alternatives for each component are presented.
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The main goal for each component is to employ existing technologies and software, coordinated
by a thin layer that interfaces with the other components according to the architecture specifica-
tion.

4.4.1 DFS Architectural Objects

Resources, data and other conceptual entities that exist in the DFS Architecture, need concrete
representation in storage and communications protocols. For this reason, all the software compo-
nents are required to represent their data at interface and protocol context with a well defined set
of architectural objects. Each architectural object has a predefined set of possible attributes.
Each attribute has a name and a type. The type must be another architectural object type. This
hierarchy ends with basic types for numbers, text, etc.

The architectural objects have two forms of representation. One abstract, as object constructs
of the programming language and one concrete, a serialised string representation. For some
objects, such as the DFS URI, the serialised form is well known as part of the user interface and
directly appear in the input or output of the software.

Object instances may include only a subset of their possible attributes when they are used
to refer only to those attributes. In this way, for example, one can overwrite a single attribute of
an object without having to retrieve it first. In more complicated uses, several attributes can be
implied by the context and therefore partial reference to the object contents is necessary.

The architectural objects are part of the lowest level interface to the DFS. Peers that can han-
dle these objects can participate in a DFS Network irrespective of their specific software origin.
However, standard clients will be provided that will export a higher-level POSIX-like interface for
applications that do not need to extend existing DFS mechanisms.

Follows a description of the higher level object types. Attributes that are not described are
labeled with a type opaque. Object instances may not include all attributes when they are used
to refer to some stored object, or when some fields are unknown or implied elsewhere. This
way, one can selectively refer to specific object fields when issuing a store, retrieve or search
operation.

DFS URI The DFS URI is a string that is comprised of some mandatory and some optional compo-
nents with proper separators.

dfs://<user>:<service>.<protocol>/<path>
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Attribute Description

<user>
The key that identifies the Owner of the resource. This attribute is
of type DFS CUID.

<service>

Type DFS Service, together with the <protocol> attribute. The
identifier of the resource type. There are two types of resources,
filesystem resources with an identifier fs and storage resources
with an identifier storage. If a service is not specified, then the
default is fs

<protocol>
This field is used as a parameter to the service specification Spec-
ifies service specific parameters

<path>

This is the local identifier of the resource. For filesystem resources
this path is parsed and traversed. For storage resources it is used
as an internal handle for an object, such as a filename, or as an
identifying string for a specific block, such as a block’s content
hash in a P2P block store.

Figure 2: Schematic representation of a URI object

DFS CUID A DFS CUID object is actually a cryptographic certificate (or an alias for it that can be used
to verify the authenticity of the users’ requests and data. Text aliases can be used in order
make handling more convenient.

DFS Service The DFS Service object is a text identifier of a protocol and optionally arguments to the
protocol. For example, fs identifies a filesystem service while store.p2p identifies a
storage service and specifies a particular protocol ‘p2p’ for its access.
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DFS Path The DFS Path object resembles a conventional path string. It can be broken to components
that will be traversed successively, as part of a DFS filesystem URI, or can be used as a
handle to an internal storage object (e.g. a filename) as part of a DFS storage URI.

Container A Container is a special object that can contain an arbitrary collection of named DFS
Objects. The objects are storable and retrievable by their name. Containers can be used
as object holders in protocol messages or other objects with dynamic structure, such as
Inodes.

DFS Inode Inode:{<uri>, <metadata>, <data>}

Attribute Description

<uri> Type DFS URI. This is the identifying URI of the Inode

<metadata> Opaque. Represents the files’ metadata

<data>

Of type Container. The container represents the file’s data. Ac-
cording to the inode type, the container may contain objects of
different types.

The DFS Inode object is the central object of the software interface to the file services. Its
name is historical; i-node stands for internal node. Filesystems are trees with file data in the
leaves and internal nodes that hierarchically contain them. The Inode object represents a
DFS FileSystem Resource. That is to any given filesystem URI (i.e. one with an ‘fs’
service) corresponds exactly one Inode object that describes this resource. The URI under
which an Inode was created by its Owner is reflected in the uri field. Note that the Owner
of the inode is included in the uri field. The metadata field contains information about the
inode type (file, directory, etc), attributes, access control lists (ACL), etc. The data field
contains objects referenced by the Inode’s metadata, such as pointers to data storage,
directory entries, access list objects, or other special objects.

Special Inode types Apart from regular data files and directories, special inode types
can be defined. Because of the flexibility that the Container offers, Inode types can be
made opaque to the file service’s servers and Inode objects be interpreted by clients ac-
cording to arbitrary protocols.

Metalinks An important special Inode type in the DFS is the metalink. A metalink re-
sembles a traditional filesystem symbolic link in that it specifies another file as the target file
to be retrieved instead of itself. But the metalink gives a full FileSystem URI specification
for its target, thus linking directly within (potentially) another filesystem in the DFS Network,
served by another peer. With the use of metalinks, the DFS peer network can structure its
namespace in arbitrary ways, much like the world wide web does.

DFS Message Message:{<verb>, <arglist>, <container>}
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Attribute Description

<verb> A text string of protocol specific semantics

<arglist> A list of text strings as arguments to the verb

<container> A container of objects referenced by the verb or its arguments

DFS Messages are exchanged among DFS Peers to transfer request and reply data ac-
cording to the various DFS Protocols. Each message has a verb field, that corresponds to
a request or a reply. For example, a verb 'RETR' may represent a request for a file from
a file service. As another example, a verb 'ACK' may represent an acknowledgement and
successful reply of such a request. Additional text arguments may follow. For example,

- 'RETR 717 /opt/example/file'

- 'ERR 717 404, File does not exist'

The container of the message holds whatever architectural objects are referenced by the
arguments and are needed to be transferred as part of the request or reply.

DFS protocols specify their own verbs and message contents, but they all are required to
use this common message format.

DFS Protocols The DFS Message structure suggests a generic layout for protocols. A protocol message
includes a VERB that defines the request, along with its arguments. The VERB and the
arguments can implicitly or explicitly refer by name to objects stored in the message Con-
tainer. This provides a simple but powerful mechanism for easy protocol creation. To create
or extend a protocol, one has to define the Verbs, and implement their handling and any
additional object types. The common message format permits clients to ignore protocols or
protocol extensions they do not support or even to partially or abstractly parse messages.

All protocols use some common verbs with well known semantics so that even if the con-
tents of the messages exchanged are not understood, the communication is always man-
ageable. Examples of common verbs are ACK, ERR that report success or failure, and
those for session management and authorisation.

4.4.2 DFS Peers

DFS Peers are software components that operate as communication endpoints for a DFS Proto-
col. They are identified as peers by a URI that includes their owner and their service identification.

Each role in a DFS Network is implemented by a peer to peer software component. The
respective software components for the roles of Owner, Provider and Consumer are the MetaData
DataBase (MDDB), the Storage Pool and the DFS Client. The Storage Pool incorporates the
Virtual Block Store layer that manages storage allocation.

4.4.3 MetaData DataBase (MDDB)

MetaData DataBase (MDDB) peers implement the filesystem resource. MDDBs store names-
pace hierarchy and file metadata including authorisation information into a local database. Part
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of the file metadata are the storage pointers that point to the storage peers that contain file
data. Metalinks from namespace to namespace link MDDBs together creating a web of files.
This functionality is essential as it allows the creation, management and authentication of shared
workspaces where distributed resources can be linked in.

Each CUID is entitled to its own filesystem hierarchy which can be authenticated cryptograph-
ically. Normally, an MDDB peer will be created with the same CUID, to serve the filesystem, but
an MDDB may host filesystems of more than one CUIDs. This helps when users cannot create
and administer their own MDDB peers. Of course, since each resource has a single authority,
there cannot be two MDDB peer with different CUIDs serving the same filesystem.

4.4.4 Storage Pool (SP) and Virtual Block Store (VBS)

Storage Pools implement the storage resource. A Storage Pool peer has access to raw block
storage which exports via the Virtual Block Store (VBS) protocol. The storage unit will be called
storage block, but unlike the traditional usage of the term, block size may be dynamic or static at
any value. In this sense, a storage block resembles a regular file, only it has another (limited) set
of metadata. The variable block size does not introduce any problems because the DFS is a high-
level systems that benefits from the low level storage management already established systems
offer. These lower level systems take care of physical blocks (systems like disk filesystems or
peer-to-peer block stores).

Storage Pools incorporate a Virtual Block Store layer (VBS) that handles storage allocation
requests from peers. A VBS protocol is used for that purpose. The VBS protocol enables Storage
Pools to logically aggregate several other Storage Pools’ resources under their disposal. MDDBs
are always associated with a Storage Pool were they can seek storage space when the MDDB
clients don’t provide their own.

4.4.5 Distributed File Service (DFS) Client

A DFS client is a peer that can access file and storage resources in a DFS network. DFS clients
are controlled by users, directly via a local filesystem interface or indirectly, from inside a DFS-
enabled application. Clients complete complex tasks like path walking, retrieval, caching and
updating remote resources through a posix like interface, either integrated with the Operating
System or in the form of a library. Clients also handle disconnected operation according to the
users’ settings.

4.4.6 Local FS Exporter

An important facility that promotes the value and usability of the architecture is exporting locally
available filesystems and not having to copy them or create new ones. For this to be possible, the
MDDB and the VBS must serve file metadata and data directly from the local filesystem, mapping
local structures to DFS structures. Therefore a Local FS Exporter component includes an MDDB,
a VBS and a local file access module, which all cooperate with each other.

4.5 Basic Functionality, Services and Features

This section describes the basic functionality and services provided by the DFS framework.

4.5.1 Overview

A DFS network consists of a number of DFS capable peers over the internet. There are three
basic types of peers: MDDB’s, Storage Pools, and DFS Clients. Each MDDB maintains its own
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filesystem namespaces and file metadata. MDDB contains pointers to the actual data storage.
Each Storage Pool can be contacted for file data retrieval. DFS Clients access MDDB’s and
Storage Pools in the network in order to expose DFS resources to their local applications.

Figure 3: Participant components in a DFS network

4.5.2 Setting up an MDDB

A file system exists within the DFS network because an MDDB hosts it. Hosting a filesystem
involves hosting the filesystem structure and file metadata, as well as serving filesystem access
requests from other peers. Each filesystem has to be uniquely identified by an Owner, which
essentially means that a new cryptographic certificate has to be created. This certificate grants
unlimited access to the filesystem through the MDDB protocol.

To summarise, a filesystems comes into existence when someone:

• Spawns an MDDB daemon (or contacts a running one)

• Submits the filesystem Owner’s certificate to the MDDB, or derivative delegation token.

4.5.3 Finding storage for the filesystem data

Setting up an MDDB may bring a filesystem to life, but the filesystem will be empty. In order to
populate the filesystems, files must be created. Recall that the MDDB does not store file data but
pointers to it1. In addition to file creation, data storage has to be allocated too. This is done via
the VBS layer.

The VBS layer maintains a list of Storage Pools that have agreed to provide storage to it.

1Actually file data can be stored as “fake” metadata within the MDDB and then referenced via a special Storage
Protocol
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Figure 4: Schematic representation of a DFS network

4.5.4 Linking to other filesystems

Instead of pointers to file data the MDDB may contain a pointer to another file in the same, or
different filesystem in the DFS network. This feature can be used to link from one filesystem to
an other, much like the World Wide Web is interlinked. The most anticipated use of this linking is
the aggregation of files from different peers under a single filesystem location.

4.5.5 Mounting DFS into local filesystem hierarchy

Mounting a remote filesystem resource means making that resource available within the local
filesystem hierarchy. This involves contacting the remote source and retrieve the filesystem infor-
mation and then present it to the local system via the native filesystem interface. The software
components that are needed for this task are:

• A DFS Client for accessing remote DFS filesystem resources

• A native FS interface for presenting these resources to the native system.

When a DFS filesystem resource is mounted, the resource’s URI is stored and all subsequent
requests for files under the root of the mountpoint are prefixed with this URI. Each file is repre-
sented by a data structured specified in the MDDB protocol, called inode. Additional specified
data structure may complete the representation of a filesystem and its data. The DFS Client con-
tacts the remote MDDB peers and acquires copies of these structures. These copies are then
handled to the local FS interface for presentation to the applications.

4.5.6 Path walking

Once the DFS Client receives a root URI for mounting, it needs to contact the responsible MDDB
for that URI. The filesystem URI contains the identity of the Owner of the filesystem. This identity
is resolved to a network contact point through a global (or not global) index of users. This index
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may be a distributed hash table, that maps DFS CUIDs to network contact points. A ubiquitous
file system operation will be this:

– Given a filesystem URI, retrieve the corresponding inode object.

MDDB1

a

b

c
d

dfs://MDDB1/a/b/c/d/f/g/h
REQ

(METADATA)
ACK

dfs://MDDB2/E/f/g/h
REQ

(/a/b/c/d, dfs://MDDB2/E)
REDIRECT

f

g

h

E

DFS
Peer

MDDB2

METALINK

Figure 5: MDDB Path Walk

The inode object resides within some MDDB but because each filesystem can arbitrarily link to
others, this MDDB is not known. What is known is the MDDB that maintains the filesystem of
the Owner that is mentioned in the URI. With this MDDB as a starting point, the DFS Client
asks for the inode corresponding to the whole path. The MDDB replies with an inode if it exists
within its database, or with one path and one URI. The first path is the deepest path found within
the database, while the URI specifies a link to another filesystem where the search for the inode
should be continued. The DFS Client appends the unresolved path component of the original URI
to the link URI and then, recursively, contacts the next MDDB. Eventually, the complete path has
been resolved and the inode data can be retrieved. It should be noted that successive accesses
to different MDDBs are completely independent as two different MDDB accesses.

4.5.7 Data Retrieval

After the inode data of a file is retrieved and are locally available, the file data can be retrieved
using the storage pointers contained within the inode data. This involves successively resolving
the storage URIs and contacting the corresponding storage Providers. From the retrieved data
the contents of the file are reconstructed and saved locally.
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(FileSystem Resources)

(Storage Resources)
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Figure 6: Data Retrieval

4.5.8 Data Modification

Because data storage is a separate resource from the filesystem, data can generally be read,
written or modified regardless of any file association. File data are visible through the storage
pointers in the inode data. Thus one can store somewhere one’s data and subsequently modify
the inode to update the storage pointers. But the system can be configured to accept only autho-
rised storage providers and/or via a specific allocation process, possibly involving the local VBS
layer of the MDDB. There are pros and cons for each approach:

i. DFS Client handles storage without asking for the MDDB’s VBS’s intervention

+ Huge amounts of data can be copied or created in arbitrary filesystems without any
data transfers.

- The DFS Client has more management overhead and has to have access to storage
Providers.

ii. DFS Client requests storage allocation from the MDDB’s VBS.

+ Clients are not burdened with the storage allocation overhead

- Data have to be transferred

4.5.9 Local presentation of DFS

Local presentation of a DFS filesystem resource is really about integration with the OS. This
typically involves implementing a virtual filesystem volume that can be mounted into the filesystem
hierarchy. The OS file requests are translated into DFS Protocol requests and the results are
properly reported back to the OS. The DFS Network is a peer-to-peer network because peers
can arbitrarily link among them. There aren’t any special resources – any URI can be mounted.
The local filesystem interface, all it needs to do is store this URI to “pin down” it’s view of the DFS
Network using the URI as its root.
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4.5.10 Exporting local filesystems to the DFS network

There are two basic approaches:

i. Local filesystem is copied to the local MDDB server and the two filesystems are strictly
or loosely synchronised according to the needs. While the MDDB server is running, the
MDDB version of the filesystem can be mounted over the original local filesystem. The
local directory is hidden from the OS until MDDB is unmounted, when appropriate syn-
chronisation happens.

ii. A special server, an Exporter exposes the local hierarchy in the network via the MDDB
protocol but it directly uses the local filesystem for metadata and data storage. The MDDB
version of the filesystem should also be mounted because the exporter will need to inter-
cept all local accesses as well.

4.5.11 Pooling VBS resources

The VBS protocol allows VBS peers to accept registrations from remote storage providers. Each
registration specifies the storage capacity provided and various storage attributes (e.g. quality)
as well as the available access methods for it. VBS peers then aggregate resources registered to
them by serving incoming storage allocation requests using any of the remote storage providers,
in a way specified by policy (e.g. in a round robin fashion).

Remote providers may be VBS peers or other non DFS-aware types of storage services,
such as FTP. VBS-to-VBS registration allows hierarchical management of storage resrources
distributed accross a very large number of providers.

4.5.12 Allocation of storage in DFS

Allocation of storage is the responsibility of the file creator, since he controls the storage pointers
within the file metadata. Nevertheless, the filesystem owner may want to arrange for specific
allocation policy or quality, or just facilitate storage allocation on behalf of the users. For this
reason, a VBS peer, the Primary VBS, is always associated with any MDDB peer that serves a
filesystem. Clients that cannot allocate their own storage can request storage from the primary
VBS peer.

4.5.13 Contributing storage to specific users

Storage allocation is done via the VBS layer of the Storage Pool component. The VBS layer
accepts registrations from other Storage Pools and maintains a contact list. Upon registering, a
foreign Storage Pool submits information about the volume and the type of storage services they
are willing to offer. The local VBS layer will allocate storage from its registered contacts to meet
its own storage allocation needs.

If a user wants to contribute storage to another user, then it instructs his Storage Pool peer
to register with its offering to the Storage Pool of the other user. Since each filesystem is always
associated with a Storage Pool, for transparent file storage allocation, one can easily choose to
contribute storage to a specific filesystem.

4.5.14 Contributing storage anonymously

Users wishing to openly contribute storage can register with a well known catalog of users that
may be part of a VO resource management framework. Alternatively, the users can instruct their
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VBS peers to participate in a global scale peer-to-peer block store network. See Section 6.3 for
a relevant scenario.

4.5.15 Direct VBS access by applications

Applications that only need storage space for private use may allocate and access data directly
from VBS peers, without having to use the allocated storage for any file An application may even
share these storage pointers in its own arbitrary way.

4.6 Publish-Subscribe services

DFS Peers can subscribe to any object addressable by a URI and asynchronously be notified
when events associated with the object occur. Event notifications can be reliably propagated and
their delivery is deferred by the online status of a Peer.

There are two kinds of subscriptions to an object. The one delivers a notice about an event
that occurred, creating a local event, or an activity log of the remote object. The other kind for-
wards the very actions received by the remote object, enabling a kind of selective state replication
by locally executing them on an associated object.

4.6.1 Notification Subscriptions

A DFS Peer can subscribe to a remote object and receive notifications for actions that are re-
ceived by the remote object or events that it undergoes. These notifications can be consumed to
create arbitrary local events or be locally associated with an object that will log the activity.

4.6.2 Action Subscriptions

Action subscriptions are like notification subscriptions, but instead of delivering a short notifica-
tion, the complete action that was received by the remote object is forwarded. The actions can be
locally associated with an object that will selectively mirror the remote object’s state. If the action
semantics can be different for the two objects so that their state is not replicated but paralleled.

DFS Peer

DFS Peer

DFS Peer

DFS Peer

2 PUBLISH

1 SUBSCRIBE

3 NOTIFY

a

b

c

(root)

2

1

33

1

Figure 7: Notification mechanism
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4.7 Replication

Replication in the DFS architecture may be found in several forms.

i. DFS Caching Replication refers to the local caching of remote files and objects that is
performed by the DFS Clients in order to make the files faster to access and more available,
even when disconnected. A Client that opens a file may subscribe for notifications so that
its local copy eventually becomes synchronised with the remote file. The cached objects
are not separate DFS resources and are not addressable from the DFS Network. The
replicas of this type will be referred to as Local replicas.

ii. DFS File Replication refers to the replication of a DFS file to other DFS files via the Action
Subscription mechanism described earlier. The replicas are separate, addressable DFS
files that can be independently administered. These DFS files will also be replicated in the
Clients’ local cache when opened. The replicas of this type will be referred to as Owned
replicas

iii. Anonymous Replication refers to the replication of resources that is performed in most
DHT-like peer-to-peer networks. In this scheme, all replicas represent the same resource
and are collectively addressable. DFS does not include such type of replication but under-
lying storage layers for VBS may replicate file data in this way.

For example, VBS can operate on top of a peer-to-peer block store system that addresses
a replicated block with its contents’ hash. In this case, file contents are replicated in the
storage layer resulting in increased file availability. Note that file metadata are not replicated
in this way, but clients can retrieve the block lists from their cached local copies of remote
files.

The following table summarises the features of the discussed forms of replication.

Replication form Addressable Separate Resource

Caching No No
DFS File Yes Yes

Anonymous Yes No

Table 2: Different forms of replication in the DFS architecture

4.8 Concurrency

Concurrent operations are serialised by the resource authority. Semantic conflicts are not han-
dled by DFS, peers resolve these externally, maybe with the help of metadata stored in DFS.
Locks and other exclusion mechanisms may be present to facilitate safety.

4.9 Disconnected operation

The DFS protocol mechanisms do not make any assumptions about the remote peer availability.
Locally cached and modified objects, as well as communication messages persist until their syn-
chronisation or delivery is acknowledged. The operations to the local state are unaffected by the
disconnected status of the client.
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4.9.1 Online files

Online files are files that use the publish-subscribe mechanism to selectively log or replicate
remote file activity, or conversely, be logged or replicated.
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5 The DFS+VBS Prototype

We have developed a DFS+VBS prototype that includes proof of concept implementations of the
following features according to the DFS architecture previously presented:

– MDDB, VBS, and Client peers

– POSIX interface integrated (mounted) under Linux OS

– Regular files, metalinks, virtual files

– Publish-subscribe services

– Update notifications on open files

– Disconnected operation (including update propagation) based on persistent caching

5.1 Overview

Most of the design has been realised as software components that closely resemble distinct
mechanisms and functionalities described in the architectural overview. The core of our imple-
mentation framework is the DFS Peer which provides the generic protocol handling functions
in order to implement network communication endpoints. The DFS Peer manages and deploys
software modules that implement services, depending on the role of the respective user in the
DFS network. Such roles include:

• Filesystem resource ownership and provision, handled by the MetaData DataBase (MDDB)
component. DFS users use their MDDB to host and export namespace structures to the
overlay. Corresponding file name and metadata entries - including ACLs, pointers to stor-
age facilities, etc. - may be physically stored at the host filesystem or a local SQL database
server.

• Storage resource ownership and provision, handled by the Virtual Block Store (VBS) com-
ponent. A VBS peer manages and exports locally attached raw block storage in behalf of a
DFS user. It also handles remote allocation requests and logically aggregates all the local
and/or distributed storage resources under the respective user’s disposal.

• Resource consumption, through a DFS Client Library that provides external software the
ability to access the DFS network of resources.

Peer inter-communication is achieved via generic DFS Messages that comply to either the
MDDB or the VBS protocol. The DFS Message structure suggests a generic layout for protocols,
based on request/reply verbs and corresponding arguments. MDDB and VBS protocols differ in
the semantics of associated verbs and the handling mechanisms implemented in each compo-
nent. The common message format permits peers to ignore protocols or protocol extensions they
do not support or even to partially or abstractly parse messages.

DFS users materialise in the network as their corresponding roles are handled by service
components deployed in DFS Peers. Services, named by URIs which include users’ CUID iden-
tification and protocol description directives, can be located via the global DHT index.

Services in the DFS network are named by corresponding URIs, which include DFS User
and service identification directives and can be located via the global DHT index. Each physical
machine may host numerous DFS Peers in the same sense that each physical user may possess
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multiple DFS User identifiers (certificates). Some users may only provide storage, thus appear
as a VBS-enabled peer in the network, while others may export files, storage and access the
network — all through a single DFS Peer hosting all necessary components. Note that a user
not owning resources may only use the Client Library, although deploying an MDDB and VBS will
result in imposing authority to corresponding namespace entries and flexibility in the management
of remote storage offerings.

The whole software architecture of the DFS prototype is based on the implementation of the
DFS architectural objects. These objects can be handled within any software module and can be
easily encoded to and from a serialised from.

Figure 8 visualises the software components of the prototype.

Figure 8: Anatomy of the DFS+VBS prototype implementation

5.1.1 The DFS Peer

The DFS peer operates in a context of its own. It communicates with any other software module
through message queues. Message queues provide easy and dynamic interfacing with other
software modules, and also facilitate serialisation of requests and isolation. The peer’s message
queue is an important part of the mechanism because it is the boundary of the context of the
authority behind the peer.

The peer module implements a generic protocol engine. This engine can schedule requests
for remote delivery and match their replies. This involves resolving the destination URIs, con-
tacting remote peers and establishing sessions with them. The peer also maintains a persistent
cache for pending requests. The protocol engine also accepts protocol handlers that implement
peer to peer services like MDDB and VBS.

5.1.2 Network Sessions

The DFS peer communicates with other peers at session layer. These sessions are provided
by a separate module that establishes sessions with remote peers over TCP/IP networking. A
session can send and receive data asynchronously and it also provides notification of events and
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errors happening beneath, such as network disconnection or session loss. Sessions may also
hold privately associated data.

5.1.3 Storage back ends

The DFS prototype needs to allocate and temporarily or persistently store various objects, such
as file inodes (metadata), file data and protocol requests. There are several storage back ends
that handle this. Back ends can be divided into two categories, those for storing inodes and
the general purpose ones. All architectural objects can be stored in the general purpose back
ends but inodes are better handled separately because of their hierarchical organisation and their
direct correspondence to files.

Filesystem back ends Most of the storage back ends use a POSIX filesystem to store objects.
General purpose ones hash the object’s identifier to obtain a path and then they store the objects
contents in the file’s contents. Inode storage back ends use the inode’s URI converted to a path.

Special filesystem exporter back end A special filesystem exporter inode back end was de-
veloped to enable the exporting of existing locally available filesystems into the DFS network.
In this scheme, file hierarchy and some other relevant attributes are encoded in the underlying
POSIX filesystem’s metadata, while the remaining DFS-specific attributes are stored like with the
normal inode stores. The normal inode store is kept in another filesystem hierarchy so that the
exported filesystem remains untouched by the DFS prototype.

SQL back end For storing the MDDB metadata, an SQL back end was developed, while not as
versatile as the filesystem back ends, it offers superior performance and complexity in querying
the hierarchy and other metadata.

5.1.4 Cache

On top of the storage back ends, a caching layer was implemented so that remote objects can
be locally available. The cache has a persistent option that is used for disconnected operations.
There are also lru options for replacing objects in the cache. The cache normally keeps volatile
(non-persistent) objects in memory with the exception of file data which are stored in disk due to
their size. Fast access is still available for on-disk objects because the operating system caches
disk accesses independently.

These caches are not intended to be consistent with remote states. Their purpose is to make
documents available for speed and disconnected operations. However, with proper subscriptions
to remote files, these caches will be updated from the remote files in a best effort manner.

5.1.5 Operating system integration

The DFS Peer’s Client Library exposes a high-level API that presents the peer-to-peer names-
pace and storage through traditional POSIX-like calls. Additionally, we have implemented a FUSE
filesystem [43] that uses this API and allows “mounting” an MDDB hierarchy alongside local files
in a Linux system. Normal applications can then transparently access the DFS Network via a file
interface regardless of whether those files and their corresponding data is local or remote.

When viewing DFS through FUSE, metalinks appear as regular symbolic links, only with
special naming semantics. The mounted DFS namespace, rooted at the local filesystem path
specified at mounting time, includes a specific MDDB’s hierarchy. Nevertheless, it also provides
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access to any other URI in the DFS Network through special paths. A virtual directory, named ‘@’,
is present in every FUSE directory, enabling the creation of metalinks via symlinks with the idiom
@/URI as their target. Thus clients can navigate freely throughout the DFS network. Request for
@/URI-like paths anywhere in the FUSE filesystem will dereference the URI and access it directly
over the network. Likewise, local filesystem symbolic links can refer to any DFS file by prefixing
the URI with the FUSE mountpoint and the @ directory.

The @ directory is actually a special case of a virtual file. Virtual files are special files that
are not part of DFS file data or metadata; their contents are computed on demand. They are
used to access file metadata and unique operations of the DFS implementation through the
traditional filesystem API (provided by the FUSE layer). Virtual files are formatted as: <base

path>@<virtual path>. The <base path> signifies the actual (non-virtual) path that the vir-
tual file is associated with. The <virtual path> can either be a name (if the virtual file is a
plain file), or a whole hierarchy (in the case the virtual file is a directory). For example, informa-
tion about the DFS-specific status of a file is accessible via file@status. Writable virtual files
can be used to input data such as configuration options or DFS-specific commands. For exam-
ple, the file@config file can be used to manipulate many aspects of a file’s status. Virtual files
in the current prototype implementation are used mainly for managing caching and disconnected
operation and providing interface to special communnications and file monitoring functionality.
The visibility of virtual files is also configurable.

MDDB VBS

Local Directory

(shared)

stored / default

MDDB attributes

Client

Figure 9: Exporting existing filesystems

5.2 POSIX interface

The application interface to the DFS prototype is a POSIX-like filesystem, mounted locally under
the Linux operating system. The filesystem is enhanced with virtual files, that provide access to
information and functionality specific to the DFS. Virtual files are artifacts of the interface and do
not represent DFS resources.

The mounted DFS namespace will appear as a normal filesystem. All common file opera-
tions will be transparently translated to DFS operations. The tables 5.2 and 5.2 list some of the
common POSIX calls that applications may use. Note that the lists are not final.

Grid4All Public D 3.2 – Page 39



VBS+DFS ARCHITECTURE & PROTOTYPE

Grid4All–034567
20th June 2007

? open()

The filesystem creates a handle for the open file. This handle is associated with networking
connections, cached file data and other DFS objects (e.g. credentials)

? close()

The filesystem destroys the handle for the open file after writing back any modified cached
data and objects.

? read()

Data are read from the network and returned to the user. Data may be cached or prefetched
for performance reasons.

? write()

Data are written to the file. The remote file may not be updated until a close() or flush()
call.

? lseek()

The file pointer is moved to the specified offset.

? opendir()

The filesystem creates a handle for the open directory. This handle is associated with
networking connections, cached file data and other DFS objects (e.g. credentials)

? closedir()

The filesystem destroys the handle for the open directory after writing back any modified
cached data and objects.

? readdir()

Reads the contents of the opened directory. Data may be cached or prefetched for perfor-
mance reasons.

? flush()

Causes locally modified data to be sent to the network.

Table 3: POSIX calls for file access.

? mkdir()

The filesystem creates a new directory.

? rmdir()

Removes a directory from the filesystem.

? symlink()

Creates a Metalink DFS Object.

? creat()

Creates a new file.

? unlink()

Removes a file or directory from the filesystem.
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? stat()

Get a file status. Data may be cached or prefetched for performance reasons.

? statvfs()

Returns file system information.

Table 4: POSIX calls for filesystem manipulation.

5.3 VBS Lower Programming Interface for storage drivers

The VBS module can accept arbitrary storage layer beneath it. The current implementations in-
clude a disk storage driver and a peer-to-peer block store driver. Storage drivers are run within
the context of the DFS Peer module and thus can access all peer facilities for sending and re-
ceiving messages to other peers. Therefore, to implement a storage driver for VBS it suffices to
implement handlers for the VBS protocol requests.
The VBS protocol is outlined here:

? RETR <block> [<offset>] [<size>]

Retrieves a storage block.

Parameter Description

<block> Identifies the storage block to be retrieved. Mandatory.

<offset>
Specifies the offset of the data to be retrieved. Optional. If the
block is seekable the default value is the current seek position
else the default is zero.

<size>
Specifies the size of the data to be retrieved. Optional. The default
value is the remaining size of data beyond the offset.

? STORE <block> <data> [<offset>]

Stores a storage block.

Parameter Description

<block> Identifies the storage block to be stored. Mandatory.

<data>
A container encapsulating the data to be stored inside the storage
block. Mandatory.

<offset>

Specifies the offset inside the storage block for the data to be
stored. Optional. If the block is seekable the default value is the
current seek position else the default is zero.
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? ALLOC <size> [<options>]

Allocates space for a storage block.

Parameter Description

<size>
Specifies the size of the storage block that is requested to be allo-
cated. Mandatory.

<options>
Options passed to the VBS Server to define special allocation
properties. Optional.

? DEL <block>

Releases space previously allocated for a storage block.

Parameter Description

<block> Specifies the storage block to be deallocated. Mandatory.

? REGISTER <contact> <size> [<options>]

Registers a VBS Server as a Provider for another VBS Server.

Parameter Description

<contact> The contact of the VBS Server acting as Provider. Mandatory

<size> The size of space provided by the VBS Server. Mandatory

<options> Options to define special registration properties. Optional.

? UNREGISTER <contact> [<options>]

Unregisters a VBS Server previously acting as a Provider.

Parameter Description

<contact> The contact of the VBS Server willing to unregister. Mandatory

<options> Options to define special registration properties. Optional.

? ACK [<return value>]

Acknowledges the successful execution of a command.
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Parameter Description

<return value>

A container encapsulating the value returned from a previous
command. In the case of a RETR it contains the data of the re-
quested block. In the case of alloc it contains the handle of the
allocated storage block. Optional.

? ERR [<description>]

Signifies erroneous execution of a previous command.

Parameter Description

<description> A description of the error. Optional.

VBS VBS

VBS

VBS VBS

VBS

Peer

1

2

3

VBS VBS

VBS

Peer

Registration Allocation Retrieve / Store

Figure 10: VBS registration and storage allocation

5.4 Functionality

DFS Peers include a cache component to temporarily store frequently-accessed remote objects
(file metadata and contents). Users may also explicitly request that certain files remain cached
through the client API or a virtual file (when using the FUSE filesystem). By exploiting the cache
module we also have an initial implementation of a disconnected operations component. To
support disconnected operations, DFS protocol mechanisms do not make any assumptions re-
garding remote peer availability. Locally cached and modified objects, as well as communication
messages remain in pending state until their synchronisation or delivery is acknowledged. Also,
a persistent storage module allows such objects to survive peer downtime.

DFS Peers can also subscribe to any object addressable by a URI and be notified asyn-
chronously when events associated with the object occur. Event notifications can be reliably
propagated and their delivery is deferred by the online status of a peer. There are two kinds of
subscriptions to an object. One delivers a notice about an event that occurred, creating a local
event, or activity log of the remote object. The other forwards the very actions received by the
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remote object, enabling a kind of selective state replication by locally executing the same ac-
tions on an associated object. File replicas, whose consistency is maintained through the action
notification mechanism, are called online files.

5.4.1 Virtual files

Virtual files are special files that exist only as part of the DFS POSIX interface and provide access
to DFS-specific functionality.

The @/ directory
This special directory is accessible within any non-virtual directory. It appears empty but
all paths below it are interpreted as URIs that provide direct access to remote destinations.

@ state

Displays the current client-side state of file. There are several aspects of this state such as
disconnected, persistent states.

@ config

Receives configuration commands for the client-side state that is reported via the state

file.

@ info

Reports various low level attributes about resources, including storage locations where the
file data are stored. This differs from the status virtual file in that it gives information about
the corresponding DFS resource and not about the client-side state of accessing it.

@ attr

Receives configuration commands for low level attributes that are reported via the attr

file.

@ disconnected

This file is not for reading or writing. It is used to alert the user that the current directory is
disconnected. If a directory becomes disconnected (after a timeout), then this file appears.
Removing it instructs the system to try and reconnect. Normally, attempts to reconnect will
be scheduled at exponentially growing intervals.

@ publish

Provides a communications channel among the subscribers of a file for broadcasting pri-
vate messages.

@ notify/

This special directory includes a control file, ctl that is used to create and configure new
virtual files for receiving notifications in a specialised way

Table 5: Virtual files with their description.

5.4.2 Monitoring files

Monitoring files is achieved through a virtual file interface. Through a file’s @notify/ctl virtual
file, an application may setup to receive a signal every time an event has occured. Applications
supply a list of events to be selected for notification.
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5.4.3 Disconnected operation

Clients access remote resources through their local cache. This means that files can remain
accessible when disconnected as long as they are cached. Caches use an LRU policy for content
replacement but not all files are candidates for eviction from cache. Caches will not evict critical
files, such as modified files that have not been written back or files that are explicitly marked as
persistent. Moreover, critical files will always be stored persistently so that they can survive a
system restart and possibly a failure.

5.5 Authentication and Authorisation

While internal structures and mechanisms have been designed with authorisation in mind, no
detailed design or support in the prototype exists. The main issue is that Authentication and
Authorisation are tightly coupled with VO management. Therefore, design and implementation
of authentication and authorisation were planned to start after VO management has produced
relevant specifications.
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5.6 A peer-to-peer block store implementation of VBS

To experiment with the scenario of implementing VBS with a peer-to-peer block store (see Sec-
tion 6.3), a Kademlia [44] distributed hash table implementation was adapted and used as a
special storage subsystem that can be used by a VBS peer in place of its local storage. The VBS
peer spawns a Kademlia peer that in turn joins the Kademlia network. The VBS peer translates
access to storage pointers in the VBS protocol, into access to content-hash blocks in the Kadem-
lia DHT. VBS peers of this type contribute storage and provide access to the shared distributed
storage pool created by the Kademlia DHT.

6 Usage Scenarios

6.1 A VO scenario – Creating policy over DFS

This section proposes a solution for VO Filesystem management over the Distributed File Ser-
vices architecture.

There are several kinds of users involved:

• VO users are the members of a Virtual Organisation. They are identified via cryptographic
certificates.

• DFS users are those who operate DFS Peers. They are cryptographically identified by
their CUIDs.

• Local users are users of the Operating Systems or applications. They are identified with
application-specific credentials.

Users in any of these systems can be created and destroyed. Local users are completely
in local control while VO and DFS are controlled by whoever owns their identifying private/public
key pair. The following requirements are posed by the nature of large peer-to-peer networks:

1. Local users can and do completely control their local resources and policies – Independent
administrative domains

2. Local users need to participate in larger groups pursuing a common goal – A need to form
Virtual Organisations

3. Groups of users have their own policies and resources, created from peer resources upon
agreement – A need to aggregate and manage VO resources

4. In order to be true peers, local users must be able to control their resources and the au-
thenticity of their content inside and outside the user groups they are members – A need
to control their own identity in the network

GRID solutions historically tend to sacrifice peer freedom in order to enforce policy and safe-
guard collective goals. Peer-to-peer solutions, on the other hand, traditionally emphasise peer
freedom. The DFS architecture proposes an effective combination of the two, that seems intu-
itively appropriate from a Grid4All perspective:

• Each peer has its own local authority over its filesystem resources.

• Each filesystem has the ability to directly link to other peer’s filesystems
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• When a group needs a central authority, for example a VO, a new peer is created and
managed (outside of the DFS Network). This VO peer is now the authority of the group’s
filesystem resource. Local administrative control is preserved because peer contents re-
main local while central authority is established because the authoritative VO peer, links
into is member’s resources to form the aggregate VO filesystem.

As a more concrete example consider this scenario, that is graphically presented in figure 11

Figure 11: Authoritative and Free Paths in the DFS Network

• KTH, ICCS and INRIA decide to form a VO named ’G4A’

• KTH and ICCS have their profile documents in their DFS filesystems,
ICCS:fs/profiles/g4a/iccs.pdf and
KTH:fs/grid4all/profile/kth.pdf

• As a VO resource, these documents (or rather, the directories that contain them) are listed
under the G4A filesystem as
G4A:fs/profiles/iccs and
G4a:fs/profiles/kth

• ICCS and KTH maintain the authority over their profiles while, through the links from the
authoritative peer G4a, their documents are officially recognised as the G4A ICCS and
KTH profiles.

• A third party, INRIA can also link to the same files from its filesystems’ bookmark directory.
These links are fully functional but they lack the authenticity of the G4A. Only the G4A peer
controls what is to be linked as official VO resource and only the Owner of this resource
can author its contents.

• Content may be available through ad-hoc free paths in the DFS network, while official and
authentic content can be reached through authoritative paths
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• Effectively, DFS provides flexible mechanisms for constructing a peer-to-peer distributed
system with the capability for central authorities.

6.2 Multilogs over DFS

This section presents two similar approaches to the implementation of multilogs over DFS and
describes how the requirements from the various usage scenarios can be satisfied. Both ap-
proaches use the same DFS mechanisms. The difference lies in the layer that implements the
POSIX interface.

6.2.1 Concepts and terms

Event and Action Notifications. Via a publish-subscribe mechanism, a DFS Client can sub-
scribe to receive notifications when an event happens on a remote object.

• Event Notifications signify that a particular event has happened on the remote object.

• Action Notifications deliver the specific action that was performed to the remote object.
Actions are defined by the DFS Protocol in effect. The actions semantics are defined by
the receiving DFS Object. The objects’ state is changed by the actions that the various
agents perform upon them.

Disconnected Operation. Disconnected operation refers to the ability of the DFS Client to
operate normally when the network is unavailable. The disconnected operation essentially is an
extreme case of latency tolerant operation, when the latency may be indefinite.

Online files. Online files are files that use the publish-subscribe mechanism to selectively log
or replicate remote file activity, or conversely, be logged or replicated.

Replication. Replication may have many forms in this context. The following list differentiates
among the various forms that will be discussed in this section.

• DFS Caching Replication refers to the local caching of remote files that is performed
by the DFS Clients in order to make the files faster to access and more available, even
when offline. A Client that opens a file may subscribe for notifications so that its local copy
eventually becomes synchronised with the remote file. The cached files are not separate
DFS resources and are not addressable from the DFS Network. The replicas of this type
will be referred to as Local replicas.

• DFS File Replication refers to the replication of a DFS file to other DFS files via the Action
Notification mechanism. The replicas are separate, addressable DFS files that can be
independently administered. These DFS files will also be replicated in the Clients’ local
cache when opened. The replicas of this type will be referred to as Own replicas

• Anonymous Replication refers to the replication of resources that is performed in most
DHT-like peer-to-peer networks. In this scheme, all replicas represent the same resource
and are addressable. DFS does not include such type of replication.

The following table summarises the features of the presented forms of replication.
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Replication form Addressable Separate Resource

Caching No No
DFS File Yes Yes

Anonymous Yes No

Table 6: Different forms of replication

Multilog. The multilog is a special type of file that represents a logical document concurrently
edited by several users via the Semantic Store layer. From the viewpoint of the Semantic Store
application, the multilog is a set of logs, one for every editor of the document. Each user writes
to his own log and reads from all the others. The application may associate more files with the
logical document, but these files are private to each user.

Communication Channel. The internal communications device that is used to broadcast up-
dates to all the editors of a multilog document will be exposed to the interface so that applications
can broadcast and receive private messages. This facility will be called the communication
channel of the multilog.

6.2.2 Multilog replication

A multilog file is shared by several editors. Each editor must have copies of all the others’ logs
locally available. This can be implemented with both DFS replication forms discussed – the
Caching Replication and the File Replication. In the first case, the multilog is a set of regular DFS
files. In the second case, the logs are DFS online files. The following paragraphs list the main
features of a multilog implementation according to each one of two available replication forms.

6.2.3 The multilog as a set of regular DFS files.

• it can be replicated to all its editors’ local machines with the DFS file replication mechanism

• the application will be able to access the multilog’s files even when offline and all updates
to the editors’ logs will be visible via automatic notification subscription upon file opening.

• Per-editor files can be located in editors’ directories below the multilog root and as long as
an editor can edit only his own files, there will be no consistency problem.

• The authoritative multilog version is rooted at the specific peer that hosts the multilog’s
URI. Using links, editor files can be hosted anywhere.

• All file operations are sent to the host of the file and then propagated to all peers that have
opened it.

• A user can access the multilog files from anywhere as long as the peers that host it remain
online. In this scenario, both replication forms are identical.

Figure 12 displays a scenario for implementing a multilog over regular DFS files using DFS
virtual files for special purpose operations.
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Figure 12: A possible implementation of multilogs on DFS

6.2.4 The multilog as a set of online DFS files.

This approach introduces another level of redirection and makes the multilog files replicated in
the filesystem level:

• Each editor owns his own replica for each one of the other editors’ logs.

• The shared namespace is used to list by linking to each editors’ multilog hierarchy.

• The per-editor replicas are implemented with DFS online files. These files are connected
via the publish/subscribe system to their authoritative sources within the other editors’ mul-
tilog roots. This brings the replication to the DFS level. Local replicas become Own replicas
and refer to different DFS resources. Own replicas can be made persistent by hosting them
in a highly available peer.

• Local replicas of Own/persistent replicas are still created in the local machine of an editor
when he accesses his multilog. He can edit his multilog offline. When back online, he will
update his multilog and update his local replicas of its file. Because his multilog’s file are
online and connected with the other multilogs’ files, updates will be propagated to all. The
editors’ multilog itself may become offline and then come back online to receive and send
updates. In general, any part of the system can become offline without causing disruption.

The added benefits of this approach are:

• Multilog replicas are addressable as separate DFS resources.

• Each user can completely control his multilog.

In the first scenario, if a user deletes his log, then it becomes unavailable to all others. It
could still be accessible via the local replicas but that would introduce a semantic prob-
lem, since the local replica refers to a resource that has been destroyed so it has to be
destroyed, too. If we would like the replica to persist then we have to disengage it from the
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DFS resource it refers to. That means that we have to create a separate resource, just like
the second implementation does.

In the second scenario, a user controls the applicable modifications to his multilog. He may
choose to accept all append operations but to allow none other. Even other users become
hostile against him they cannot affect the view of the multilog he has already attained.

• Multilog replicas as DFS resources allow the user to use the DFS for the storage provision
and allocation he needs for working.

• A generally more peer to peer approach for multilogs. For example, a peer can allow any
editor into his multilog even if the multilog administration does not permit it, or even know
about it. There is no physical centralised entity that implements the multilog.

6.2.5 Disconnected operation

DFS Clients locally cache remote resources that are accessed by the applications and use this
mechanism to provide disconnected operation. The application can continue to work with the
resources as long as they do not require an acknowledgement for the update of any remote
resources.

6.2.6 Availability

Availability of files in the DFS Network is by design dependent on the availability of the serving
Peer. A user requiring availability that his resources cannot provide must host his files in a highly
available server that will be provided as part of the policy of the system.

6.2.7 Mobility

The mobility requirement is a combination of disconnected operation and availability. Discon-
nected operation is always available. If a user requires mobility, his files must be hosted by a
highly available peer.

6.2.8 Moving files

[Moving files in DFS generally has the expected results but there are several subtleties. The
sources of these subtleties are the identification of the files by their URI and the non-conventional,
distributed nature of the DFS. Semantics have not been defined yet but almost any desirable
behaviour can be emulated.]

6.2.9 Sharing multilogs

If multilogs are implemented as a set of regular DFS files, then sharing is straightforward. The
normal mechanisms provide access to all files in the network. If multilogs are implemented with
online files, then an index has to be maintained in order for the editors to be able to identify each
other. This index can well be standard DFS directory with links to the editors’ multilog replicas.

6.3 Peer-to-peer block store under VBS

In this scenario, a group of users wishes to aggregate their storage resources in a reliable and
available pool. From that pool, each one will privately allocate and access storage according to
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his needs that may exceed those of any single user’s capability. The users need this storage to
be available and tolerant to individual network or storage failures.

Therefore, they form a Virtual Organisation that includes a peer to peer block store network.
Then they instruct their VBS Peers to contribute to and request storage from the block store.
Thereafter, requests to the VBS Peers for storage allocation and access Peers may be served
from the peer-to-peer block store. The DFS system inherits the storage availability and scalability
of the peer-to-peer block store while it maintains the ability to allocate storage in the normal way.

Furthermore, external users that are not members of the task force but wish to contribute
storage for the VOs cause, can just join the block store network.

Another extension to this scenario is that of a global peer to peer block store that can support
storage needs for a vast DFS network consisting of many independent groupd and individuals
that all want to anonymously contribute to the global storage pool.

VBSVBS

Peer

Peer

P2P Block Store

Figure 13: VBS over peer-to-peer block store
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7 Relationship with other tasks

This section references dependencies and other issues regarding task 3.1 and other tasks.

7.1 T1.1: Overlay Services

The DFS architecture needs a naming service — a global CUID index — so that URIs are resolv-
able to actual authentication and network location data. Using a DHT is an appropriate solution in
terms of resilience, availability and scalability of this index. Task 1.1 plans basic key-value lookup,
membership and message delivery services as part of their overlay services infrastructure. These
services may be used to implement the global CUID index, which would help integrate DFS better
to the rest of the Grid4All middleware, as well as help exploit the capabilities of the developed
overlay infrastructure.

7.2 T2.2: Market Based Resource Management

Task 2.2 is to create a market based resource management infrastructure. VBS peers are the
storage providers for file data. VBS peers themselves aggregate storage resources from other
VBS peers or external storage providers (see Section 4.5.11). In the context of Task 2.2, this
scheme corresponds to a storage market where VBS peers can seek to buy storage from other
VBS peers or external storage providers. Therefore, it is planned to use Task 2.2 marketplaces
for trading storage, as this will add significant value to the DFS substrate.

7.3 T3.3: Semantic Store

Task 3.3 enhances regular file storage with semantic functionality that allows applications to de-
fine constraints within and accross documents and then manage and resolve conflicts that occur
from shared use of these. Semantic Store will use DFS to implement a special type of file, the
multilog, that will represent those documents. There has been extensive collaboration between
T3.3 and T3.1 so that all required functionality is available through the POSIX interface of the
DFS. Details of a multilog scenario can be found in Section 6.2.

7.4 WP4: Applications

Work Package 4 is about applications that will be developed to use the Grid4All environment.
Applications require storage for files in a distributed environment, possibly with the option to au-
tomatically search and allocate storage resources. Work Package 3 plans to offer distributed
storage of regular files through DFS combined with the more sophisticated document types of
the Semantic Store. The POSIX interface makes the use of DFS from the applications, straight-
forward. Semantic Store files are also easily accessible because they are implemented within the
POSIX interface of the DFS.
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Level of confidentiality and dissemination

By default, each document created within Grid4All is c© Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months implemen-
tation plan, all deliverables listed in Section 7.7 have a specific dissemination level. This dissemination
level shall be mentioned in the document (a specific section for this is included in the template, both on the
cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public.
PP = Restricted to other programme participants (including the EC services).
RE = Restricted to a group specified by the Consortium (including the EC services).
CO = Confidential, only for members of the Consortium (including the EC services).
INT = Internal, only for members of the Consortium (excluding the EC services).

This level typically applies to internal working documents, meeting minutes etc., and cannot be used for
contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case,
a new document code should be given so as to distinguish between the different versions.
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