- GriddAll nformat

Project no. 034567

Grid4All

Specific Targeted Research Project (STREP)
Thematic Priority 2: Information Society Technologies

Start date of project: 1 June 2006

D 1.3 Specifications and Models for the
Actions-Constraints Framework

Due date of deliverable: January, 2009.

Actual submission date: January, 2009.

Organisation name of lead contractor for this deliverable: INRIA Regal

SOy

Duration: 30 months

Revision: 2

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU | Public v
PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential, only for members of the consortium (including the Commission Services)

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567

ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

Contents

1 Introduction 1

2 The Action-Constraint Framework 2

2.1 Actions, constraints and multilogs oo oo 2

2.1.1 Schedules of multilogs and classes of schedules 2

2.1.2 Particular subsets of multilogs and concept of soundness 3

2.2 Formalizing consistency in replicated systems 3

2.2.1 Site-multilogs and site-schedules oL 4

222 Eventualconsistency 4

2.3 Contribution e 5

3 Implementation of ACF in Telex 6

3.1 Implementation of the Multilog concept 6

3.2 Decidingamultilog 6

3.3 Caching featuresand splitmode 7

4 Using ACF 8

4.1 General considerations 8

4.1.1 Actions and sequential constraints L. 9

41.2 Concurrency andconstraints oo 9

4.1.3 Constraints and applicationdesign oL 9

4.2 Designing a collaborative text editorin ACF 9

4.3 Agreeingwhen collaborating L Lo o 13

4.4 Evaluation 14

5 Conclusion 15

Grid4All Public Page ii

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

Abbreviations and acronyms used in this document

Abbrev./acronymDef. Description
ACF Action-Constraint Framework
Grid4All The FP6 STREP project that aims to democratise access to the

Grid, through the use of peer-to-peer technologies. The co-
ordinator is France Télécom; the other partners are a SME from
Spain, and research labs from Greece, France, Spain, and Swe-
den.

Grid4All Public Page iii

D 1.3 SPECIFICATIONS AND MODELS FOR THE

Grid4All-034567

ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009
Grid4All list of participants
Part.
Role Part. Participant name short Country
name
CO | 1 | France Telecom FT FR
CR | 2 | Institut National de Recherche en Informatique en INRIA FR
Automatique
CR | 3 | The Royal Institute of technology KTH SWE
CR | 4 | Swedish Institute of Computer Science SICS SWE
CR | 5 | Institute of Communication and Computer Systems ICCS GR
CR | 6 | University of Piraeus Research Center UPRC GR
CR | 7 | Universitat Politecnica de Catalunya UPC ES
CR | 8 | ANTARES Produccion & Distribution S.L. ANTARES ES
Grid4All Public Page iv

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

1 Introduction

Maintaining consistency in a distributed system is a difficult and challenging task. The classical
approach is state machine replication (aka. Consensus [8]). In a system implementing Consen-
sus, every site replicates the same set of data items. When a client wants to access a shared
data item, it proposes an operation to the system. Consensus ensures that all replicas execute
the same set of proposed operations in the same order.

With state machine replication, every site must replicate everything. This schema does not scale
beyond a few tens of sites, and is not consequently appropriate for grids. Moreover Consensus
does not take into account the semantics of operations: if two proposed operations are commut-
ing, Consensus still pays to order them.

The Action-Constraint Framework [9]) leverages both partial replication and operation semantics.
ACF clarifies the understanding of consistency, makes it easier to compare protocols, and helps
with the design of new solutions. In ACF every site maintains a graph, where nodes are opera-
tions accessing shared data, and edges represent semantic links between them. The complexity
of the consistency problem is related to the shape of the graph. A consistency protocol is a
particular solution to a graph problem.

ACF was introduced by Shapiro et al. as a model to understand partial replication issues in
failure-free distributed systems [9]. In the context of Grid4All, we (i) extended ACF to the crash-
recovery model, (ii) applied it to database replication [15, 17], (iii) implemented it inside the Telex
semantic store [3], and (iv) used it both to design distributed applications [5], and concurrency
control protocols [11].

This paper presents the ACF model, its implementation in Telex, and illustrates how to use it.
Deliverable D3.4 describes in detail our Telex platform, and the applications we developed on top
of it.

We structure the rest of this document as follows: Section 2 presents ACF in details. Section 3
exposes our implementation of ACF in Telex. Section 4 is a tutorial on how applications use ACF
through an example of shared text editor.

Grid4All Public Page 1

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

2 The Action-Constraint Framework

The Action-Constraint Framework helps to write and implement a specification of distributed sys-
tem. ACF eases to determine the correctness and liveness conditions to build a consistent system
despite concurrent access to shared data.

2.1 Actions, constraints and multilogs

We postulate a universal set of actions A. A constraint is a relation over A x A. Five constraints
are of particular interest in our framework: 4+, —, —, <1 and «; respectively pronounced “commit,”
“abort,” “not after,” “enables” and “non-commuting.” The constraints + and — are unary relations
over A, —, <1 and + are binary. Their semantics will be explained shortly.

Our central structure in ACF is the multilog. A multilog is a sextuple (K,+,—,—,<1,#) where K
is a set of actions, and +, —, —, <, # are constraints over K.

We define union, intersection, difference, etc., between multilogs as component-wise operations.
For instance, let M = (K,+,—,—,<,n) and M’ = (K',+',—",—", <" «") be two multilogs.
Then, MUM' = (KUK',+U+ ,—U—",—U—", U< ,#U«"). By abuse of notation, we also
use the union operator to add an element to a single component, which should be clear from the
context. For instance, M U {a} adds o to the K component, i.e., MU {a} = (KU{a},+,—,—
,<1,#). Similarly MU {o. — B} adds {a,B} to K, and the pair (c,3) to the — component. The
notation o~ € M, or just (when clear from the context) o, is a shorthand for “(a, @) is in the —
component of M”.

2.1.1 Schedules of multilogs and classes of schedules

Let E be a subset of A. We call schedule a couple S = (E, <s) where <y is a strict total order
over E. We note S the universal set of schedules over A.

Given a multlog M = (K,+,—,—, <,#), we say that S = (E, <s), with E C K, is a schedule of
M, iff :
Vo,B e K
0O EM=ua¢E
oteM=oackE
odBeM=(PBEE=0€cE)
ao—BeM=(a,PeE=0<P)

We note (M) the set of schedules of M. The constraints: <i, —, + and —, restrict which
schedules may appear in X(M).

In contrast, + divides £(M) into equivalence classes of schedules. Let M = (K, +, —,—, <,#) be
a multilog. Two schedules S = (E,<s) and S’ = (E', <g) of £(M) are equivalent according to #,
S~ S, iff:
Ya,p € K,
acEsacE
{ onPeM=(a<sBpea<gpP)

We note X(M) . the quotient set of £(M) by ~, and [Z(M),_ | the number of equivalence classes
of schedules induced by ~.

Grid4All Public Page 2

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

The following constraints or combinations of constraints are particularly useful for defining appli-
cation semantics. Let M = (K, +,—,—, <1,#) be a multilog and a., B two actions of K. A cycle of
—-constraints in M (e.g., & = B=a — BAP —) represents antagonism, i.e for any schedule
S of X(M), either atis in S, or B is in S, or neither of them; the conjunctionp < =B — aAB <o
means o depends causally on B; and an <I-cycle suchas o 3 B = < B AP < o expresses an
atomic grouping. Finally o+ B means that o and B do not commute: if o and [are ACID trans-
actions, it models isolation (the | of ACID). Writing a specification of a concurrent application in
ACF is bottom-top. It requires to produce the constraints between operations from the invariants
over the data items. Section 4 illustrates how to proceed to design a shared text editor.

2.1.2 Particular subsets of multilogs and concept of soundness

The following subsets of K are of particular interest for the study of consistency.

. Committed actions appear in every schedule of M. This set is the subset of K that satisfies:

Committed(M) = {a|a" vV 3B € Committed(M),o <1 B}

. Aborted actions never appear in a schedule of M. Aborted(M) is the subset of K that
satisfies:

B, .., Bmz>0 € Committed(M),00 — By — ... — By —
Aborted(M) =< o| V 3B € Aborted(M),B <
Vo

. Serialized actions are either aborted, or ordered with respect to all non-commuting con-
straints against non-aborted actions:

a—PBVR—a
o| VBeK,anB= | Vo ecAborted M)
VB € Aborted(M)

Serialized(M) 2

. Decided actions are either aborted, or both committed and serialized:

Decided(M) £ Aborted(M) U (Committed(M) N Serialized(M))

A multilog M is sound iff Committed(M) N Aborted(M) = @. Observe that £(M) # @ implies
M sound. A multilog M is decided iff Decided(M) = K. or equivalently iff M is sound and
|Z(M) /N\ =1

2.2 Formalizing consistency in replicated systems

We consider an asynchronous distributed system of n sites, connected through fair-lossy links
[2]. The failure model is fail-stop. A global clock ¢ € T ticks at every step of any site, but site do
not access to it.

We assume that some shared data items: Items, are partially-replicated across sites. Given a
data item x, we note replicas(x) the set of sites that replicates x. Initially, at z = 0, x is in the

Grid4All Public Page 3

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

same state at every site in replicas(x). Given an action o, we note item(a) the data item on
which o applies. The granularity of a data item is unspecified, it can be a single bits, a memory
page, or even a whole relational database.

A site contains two processes: an application process called the client, and a single consistency
agent (or just agent hereafter). Clients receive and execute user actions accessing Items. Agents
ensure the consistency of the system by executing a certain protocol.

2.2.1 Site-multilogs and site-schedules

Each site i contains a site-multilog M;(t) = (Ki(t),+i(t),—i(t),—i (t)),<; (t),# (t) and a site-
schedule S;(t). At any point in time 7, these two abstractions define entirely the state of site
i

. M;(t) is the local knowledge that i has at time ¢ of the set of actions and of the semantics
linking them.

Initially, every site-multilog equals (J,3,3,D,d,D).

Site-multilogs grow monotonically over time, as clients and agents add new actions and
constraints. The following rule captures this monotonic growth:

Vi,Vt € T,3IM M(t+1) = M;(t) UM

. Si(tr) € £(M;(t)) represents the state of the subset of Ifems that i replicates at time ¢.
The choice of S;(r) is arbitrary when X(M;(t)) ., contains multiple equivalence classes. If
Si(t — 1) is not a prefix of S;(¢), it represents a roll-back.

Agents and clients both access the site-schedule and the site-multilog. We suppose our clock
fine-grain enough, that between ¢t and ¢ 4 1, at a site only the client, or the agent, access the
site-multilog and the site-schedule.

2.2.2 Eventual consistency

A distributed system is a tuple S, = ((M1,S1),...,(My,S,)) of nsites. A run r of S, is an array of
n rows. Each row i represents the evolution over time of (M;,S;) starting at t = 0. Considering a
run r, we say that a site i is correct in r iff r[i] is infinite (noted i € correct(r)); otherwise we say
that i is crashed in r.

Definition 1 (Eventual Consistency). A system S, is eventually consistent in a run r iff it satisfies
the following correctness conditions:

. Eventual Decision:
Vi € correct(r),Vt € T,V € K;(t), 3" € T,0 € Decided(M;(t'))

« Mergeability:
(U M) # 0o

ie[1,n]
teT

Grid4All Public Page 4

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

. Eventual Propagation of Actions

Vt € T,Vx € Items,Yo. € A, item(a) = x,
Vi, j € replicas(x) Ncorrect(r),
oeM(t)= 3 >r,0e M)

. Eventual Propagation of Constraints

Vi e T Vo, €A,
Vl,] € Sna(x’aﬁ € Mi(t) ﬁ]V[j(l‘)v
(o,B) € M;(t) = 31" > t,00€ M;(t')

Roughly speaking, Eventual Decision and eventual Propagation of Actions and Constraints en-
sure that the system makes progress. Mergeability ensures that the system is globally sound,
i.e., no decision ever puts it in an error state.

An algorithm that ensures eventual consistency, i.e. reconciles divergent replicas. is a concur-
rency control algorithm or a commitment protocol.

2.3 Contribution

The model we described previously brings some minor enhancements to the original work on
ACF [9]. Notably, we introduced crashes in the definition of eventual consistency.

During Grid4All, our work on ACF mainly focused on understanding and designing commitment
protocols. In particular we modeled the DataBase State Machine approach [7] and Holiday et al.
[16] in ACF. These protocols are the state of the art in database replication. Thanks to this work,
we were able to propose two new concurrency control algorithms for database replication:

. Animprovement over DBSM [16]. Our protocol reduces the number of aborted transactions
while preserving the advantage of DBSM: fault-resilience and read one / write all replicas.

. A decentralised algorithm [18] to committing transactions in a partially-replicated database
systems. Previous protocols either reexecute transactions entirely and/or compute a total
order of transactions. In contrast, this algorithm applies update values, and generate a
partial order between mutually conflicting transactions only. Transactions execute faster,
and distributed databases commit in small committees. Both effects contribute to preserve
scalability as the number of databases and transactions increase. This algorithm is live
and safe in spite of faults.

We have also designed in ACF a voting algorithm to reconcile distributed collaborative sys-
tems [13]. This algorithm works as follows. Each site makes a proposal, reflecting its tenta-
tive and/or preferred schedules. Our protocol distributes the proposals, which it decomposes
into semantically-meaningful units called candidates, and runs an election between comparable
candidates. A candidate wins when it receives a majority or a plurality. The protocol is fully
asynchronous: each site executes its tentative schedule independently, and determines locally
when a candidate has won an election. The committed schedule is as close as possible to the
preferences expressed by clients. We further detail this protocol in Section 4.

Grid4All Public Page 5

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

3 Implementation of ACF in Telex

This section describes our in-memory implementation of ACF in Telex. This work was done during
Grid4All. For further details about Telex, the reader is referred to deliverable D3.4.

3.1 Implementation of the Multilog concept

Our implementation of ACF in Telex use JGraphT [1], an open-source library for graph manipula-
tion in Java.

We represent a multilog that is not a site-multilog with the Fragment class. A Fragment is a set of
constraints, and a set of actions. We use this representation when

. Sites exchange actions and constraints.
. Aclient or an agent adds new actions and constraints to the the site-multilog.

A site-multilog is an instance of the GraphComponent class. This class is the core of our imple-
mentation of the multilog abstraction The GraphComponent class defines methods to compute
(i) committed, aborted and serialized actions in M, (ii) a set of constraints D such that M U D
is a decided multilog and (iii) the sound schedules of M. Computing (ii) and (iii) both use the
procedure decide() that we detail now.

3.2 Deciding a multilog

Decide() takes as input a multilog M = (K, +, —,—, <1,1), and outputs a multlog M’ = (K', +",—", =’
,<1" 1) such that :

1. Decide() adds only decisions, i.e.:
. Decide() does not add actions: K’ = K.
-+ 2+
R
o= B=a—pBVaxp
“H o=
2. Multilog M’ is decided.

3. If M is sound, then M’ is sound.

Our implementation follows the general guidelines proposed by Shapiro and Krishna [10]. We
decompose decision into three parts: serialization, conflict-breaking and validation: serialization
orders any non-commuting pairs of actions, conflict-breaking aborts at least one transaction in
every —-cycle, and validation commits the remaining set of non-aborted actions: Algorithm 1.

We serialize the non-commuting actions computing the relation — (lines 2-4). —' is a linear
extension of the order — over the set of non-serialized actions SER.

Breaking —-cycles minimizing the number of actions aborted is stated as follows:

Definition 2. Consider a weighted graph G = (V,E) where:

Grid4All Public Page 6

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

Algorithm 1 Decide(M)

1: {Serialization}

2: let SER := K \ Serialized(M)
3: choose —' such that:
—C—

AVa,B € SER, ((o,B) e—")V ((a,B) e—")
%::*),
: {Cycle breaking}
: M := breakCycles(M)
: {Validation}
: for all T ¢ Decided(M) do
M:=MU{a"}
: end for

o ©0W®NOoO U

. Each node in'V is an action o in K \ Committed(M) weighted by k, where k equals one
plus the number of distinct predecessors by <1 that o. has in M (i.e. the actions that o
enables).

. For (v,V') € V, a directed edge going fromv toV' exists in E, iffv — V' is in M.
Conflict breaking is the problem of finding the minimum feedback vertex set of G.

This problem is an NP-complete optimization problem, and the literature upon this subject is
important [4]. In Telex we implement 3 solutions:

. The IceCube heuristic [6], that requires quadratic time. This heuristic is incremental.

. An heuristic that stores the predecessors of each actions, killing an action when it is the
predecessor of itself. This heuristic is incremental, and requires linear time.

. An exhaustive solver that requires exponential time, and is not incremental. We use this
solver for collaborative distributed applications where there is few actions (typically the
shared calendar application).

At the end of the serialization process and the conflict breaking, remaining non-aborted actions
are committed: lines 8 and 9.

3.3 Caching features and split mode
The GraphComponentCache class caches the set of aborted actions, the set of committed ac-
tions, and a reduced NotAfter graph.

The reduced NotAfter graph accelerates decide(). It contains all actions in K\ (Aborted(M) U
Committed(M)). An edge (o,) in this graph means that either o« — [3, or it exists a set of
committed actions {7i,...,¥n} such thato. — vi,...Yn — B.

We refresh the cache incrementally each time we add a new action/constraint.

Telex also implements a split mode for multilogs. Telex splits a multilog into independent sub-
graphs, or connected components, and compute decide over each component.

Figure 1 shows the time to execute decide() according to different modes. In this synthetic bench-
mark, we repeatedly add a fragment of 100 actions, up to 45,000, to a site-multilog, and compute
a single proposal. The top-most curve, labeled “nocache,” uses our standard implementation.

Grid4All Public Page 7

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

5000 T T T T T T T T

"split"
"unsplit” -t
4500 "nocache” k- [J

4000 |- x i
3500 | : -
3000 |-
2500 |-

2000

Decision time (ms)

1500

1000

500

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
#Actions

Figure 1: Incremental schedule computation efficiency

The middle curve, “unsplit,” shows the effect of the cache. The lowest curve, “split,” additionally
breaks the multilog into connected components. In all cases, the computation time increases
linearly with the number of actions; the cache and connected components improve performance
considerably.

4 Using ACF

The work we describe along this section, was published during the Grid4All project [3, 5].

4.1 General considerations
ACF is independent of a particular application. Each application defines its own action types, and
parametrises the system with constraints between them.

To discuss how to design an application using ACF, consider a developer who has a rough design
for a sequential version of an application, its data structure, invariants and operations. What are
the steps to make the application run well in an optimistic model?

Grid4All Public Page 8

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

4.1.1 Actions and sequential constraints

Let us first consider sequential execution, ignoring concurrency and conflicts for now. An ap-
plication puts actions, as well as causality and atomicity constraints, in its local site-multilog.
Dependence translates to a causal constraint; for instance, if action o reads some value used
by B, the application should add a constraint oc < . Similarly, to ensure action composition
(either both o and B execute or neither does), the application adds a fragment containing o, 3
and o 2 B.

4.1.2 Concurrency and constraints

Operations commute if either relative execution order yields the same final state.

—

Two types of conflict exist in ACF: the antagonism (o = B), and the non-commutativity (ot + B
Actions are antagonistic when they cannot both execute together; this should be obvious based
on action types and their arguments.

In all other cases, the actions are non-commuting o+ 3. As an ordering between a and 3 might
violate an application invariant, the application must check its invariants at run time.

4.1.3 Constraints and application design

Well-chosen constraints are critical to performance and user experience. Commutativity is the
most favorable case.

A simple way to decrease conflicts is to break out each piece of mutable information into a sep-
arate, fine-grain document. Sometimes, operations logically commute but conflict in the imple-
mentation; it may be necessary to redesign the internal data structure in this case.

Run-time checking of application invariants is required for safety, but is not related to concurrency,
since applications only ever execute sequential schedules. Indeed, the corresponding sequential
application would include the same checks.'

We now further illustrate how to design using ACF with a concrete example: a collaborative text
editor.

4.2 Designing a collaborative text editor in ACF

Consider three users collaboratively writing a wiki page about optimistic replication. Suppose the
three users concurrently edit the section “Detection and resolution of confiicts”, of the wiki page
whose initial state is illustrated in Figure 2.

Further suppose the three users perform the operations : User 1 inserts a new line as the 10th
line, User 2 updates the 9th line, User 3 deletes the lines 8 to 10. The modifications of each user
are shown in the same figure, Figure 3.

Afterwards, all three users try to publish their versions of the document by exchanging their
modifications. Eventually all replicas should converge.

"Databases make a similar assumption: this the “C” of the famous ACID properties that define database transac-
tions.

Grid4All Public Page 9

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

article dizcussion it hiztary

OptimisticReplication

Elements of optimistic replication [edit]

Objects,replicas and sites

navigation A minimal unit of replication is called object. A replica is a copy of an object stored in & site or a computer.
= Main Page A site may store replicas of multiple objects.
= Community portal Operatiuns
= Current events
» Recert changes An update performed on an object is called an operation. To update an operation a user submits an operation
= Random page at gome site. A site applies an operation locally immediately and it exchanges and applies remaote
= Help operations in the background. These systems are said to offer eventual consistency because they guarantee
" Donations that the state of replicas will converge only eventually.
search Propagation
A generated operation is tentatively applied on the local replica to let user continue working on that update.
The operation is also logged in order to be propagated to other sites later. These systerns often deploy
toolbox epidemic propagation to let all sites receive operations even when they cannot communicate with each ather
directly.

= YWhat links here
= Related chanoes Detection and resolution of conflicts
® Special pages

)) 8With no coordination, multiple users may update the same object at the same time. A solution to this
® Printable version

) problem is to detect operations that are in conflict and resalve themn, for instance, by letting users negoatiate.
= Permanernit link

Canflicts happen when operations fail to satisfy their preconditions. Preconditions can be built implicitly in
the replication algorithm, such flagging conflict between all concurrent operations as in Palm Pilot. Other
systems let users write preconditions explicitly.

1 OResqution of conflicts can be done manually or automatically. Most systerns simply flag a conflict and let
users to fix it manually.

References [edit]

= ‘Yasushi Saito and Marc Shapiro, Optimistic replication, ACW Computing Suneys (CEUR), v 37 n.t,
p.42-81, March 2005

Figure 2: Initial state of the section “Detection and resolution of conflicts”

Grid4All Public Page 10

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

navigation

hain Page
Community portal
Current everts
Recert changes
Fandom page
Helg

Danations

search

toolbox

Wizt links here
Related changes
Special pages
Prirtable version
Permanert link

Grid4All Public

Detection and resolution of conflicts

article dizcussion edit history

OptimisticReplication

Elements of optimistic replication [edit]

Objects,replicas and sites

A minirnal unit of replication is called object. A replica is a copy of an object stored in a site or a computer.
A site may store replicas of multiple abjects.

Operations

An update performed on an object is called an operation. To update an operation a user submits an
operation at some site. A site applies an operation lacally immediately and it exchanges and applies remote
operations in the background. These systems are said to offer eventual consistency because they guarantee
that the state of replicas will converge only eventually.

Propagation

A generated operation is tentatively applied on the local replica to let user continue working on that update.
The operation is also logged in order to be propagated to other sites later. These systems often deploy
epidernic propagation to let all sites receive operations even when they cannot communicate with each other

directly. dEIEtEd pa rt

Wyith no coordination, multiple users may update the same object at the same tirme. A solution to this

problem is to detect operations that are in conflict and resolve thermn, fcupd[atedquart
Conflicts happen when operations fail to satisfy their preconditions. Precor®itions can be built imgZitly in
hereolication algorithm, such flagaing conflict between all concurrent operations as in Palm Pilo

mohile file systernfl Other systems let users write preconditions explicitly.

sually, detection of conflicts is done by using the happens-befare relationship in order to flag conflicts.

Resaolution of conflicts can be done manually or automatically. Most s estams= Séni:_'tﬁga'mﬂ ELGAE

users to fix it manually. pa rt

References [edit]

= ‘Yfasushi Saito and Marc Shapiro, Optimistic replication, ACW Computing Sunveys (CSUR) w37 nt,
p.42-31, March 2005

Figure 3: Overview of changes performed by users.

Page 11

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

To ensure this property, a simple technique is the “Thomas Write Rule” approach [19], also called
“Last-Writer Wins” in replicated file systems. The successive versions of a file are timestamped or
numbered; the version with the highest number is retained, and other versions are thrown away.
The drawback of course is that concurrent updates are lost.

Instead, the literature on computer-supported co-operative work says that “user intention” should
be preserved. Unfortunately, it is difficult to characterise user intention formally. The action-
constraint framework maintains an explicit representation of semantic relations between opera-
tions, e.g., conflicts, to express users’ intention and try to combine them optimally.

We model a collaborative text editing as a totally ordered set of lines: D = (L, <p), and each line
in L is uniquely identified. Users update D using the following actions:

. create(c,k,l): create a line with content ¢ between lines k and /; return its unique identifier.
. delete(l): hide line [.
. update(l,c): replace the contents of line [with c.

We identify the state of a document with a schedule. Consider that INIT is the schedule that
leads to the state depicted in Figure 2, before users start editing the document. As a simplifi-
cation, we identify line creation actions by the identifier of the created line. Thus, we note Ig =
create(“With no .., —, —) the action that created line 8; similarly [y = create(“Conflict happen ...", —, —)
for line 9, and [jp = create(“Resolution ...", —, —) for line 10. Since User 3 wants to atomically
delete lines 8 to 10, his change is modeled as:

. A set of three actions: d| = delete(lg), dy = delete(ly), dz = delete(ly0).

. An <-cycle: d; <1 dy <1 ds < dy. Therefore all three delete operations execute, or none of
them does.

Action u; = update(“Conflict happens ... and Coda ...",) is User 2’s update. Notice that actions
u; and d; conflict. Depending on the desired effect, the application may declare them, either to
be non-commuting: u; # dy, or antagonistic: u; = d; (shortcut for u; — dy Ady — up). In what
follows, we declare them to be antagonistic.

The system has the obligation to eventually resolve conflicts: the Eventual Consisntency property
(see Section 2.2.2). In the case of non-commuting actions, it must either order them (by adding
a NotAfter constraint), or abort one or the other or both. In the case of an antagonism, it can only
abort. A commitment protocol ensures that sites agree on a final common state.

Designing an application in ACF is invariant-driven. Let us consider the following (informal) set of
invariants:

1. Any two collaborators eventually observe any two visible lines in the same order.
2. Ifline [is created, eventually all collaborators see [, or none of them.

3. Given aline [/, [has eventually the same content for all collaborators.

. A
Tables 4 and 5 specify constraints that satisfy these invariants. (k<p k' =k <pk'Vk=k,0o' <o
means that o happens-before o, o’ || o means that o and o’ are concurrent: o’ £ o Ao 4 o, and
[= o' means that the identifier of / (a line) and that of o’ (an action of creation) are equal.)

Grid4All Public Page 12

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567

ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009
o © create(c',k',1") delete(l') | update(c',1")
o' —o
create(c,k,l) | k=0 , %) %)
0 =0 <o
Vi=o
delete(1) =0 =0 o %) %)
update(c,1) =0 =0 To %} (I1=0)
) — = 0/ — 0
Figure 4: Collaborative editing constraints for o’ < o
o © create(c',k',1I") delete(l") |update(c’,1")
k<pk <pl ,
create(c,k,l) VK <pk<pl =ono %) %)
1=
delete(l) %] %) ey
=7 (1=
update(c,l) %) 1| = oo

Figure 5: Collaborative editing constraints for o’ || o

4.3 Agreeing when collaborating

The system sends the contents of site-multilogs, using background epidemic communication (to
achieve Eventual Propagation of Actions and Constraints). Eventually, users become aware of the
actions of their collaborators, and the possible conflicts. Thus every user eventually receives the
insertion: I1; = create(“Usually, the detection... ”,lo,1,0) from User 1, the update: u; from User 2,
and the actions d, d,, ds with the parcel constraint from User 3. According to Table 5, every site
eventually includes the following information in its multilog: the set of actions {/1,u1,d1,d2,d3},
the parcel constraint: d| <1 d» <1 d3 <1 dy, and the conflict: u; = ds.

However, until operations commit, different users may view different states of the document.
For instance if User 1 ignores User 3, his current view could be the following sound schedule:
Sy = INIT.l;;.u;. Similarly User 3 might observe his own actions only: S3 = INIT.d,.d>.d3.

To attain Eventual Consistency we propose a voting protocol, whereby each site makes a pro-
posal reflecting its tentative state and/or the user’s preference [14].

Back to the example. Actions u; and d; are antagonistic (linked by a NotAfter cycle), and actions
di, d» and d; are atomic (linked by an Enables cycle). Say User 1 and User 2 both vote to
commit /11 and u;; consistency obligates them to vote to abort d;, d, and d3. Note this proposal
P, and note Q the proposal of User 3 to commit his own actions and to abort both /;; and u;. Our
protocol distributes proposals epidemically. Eventually all sites are aware of P and Q.

Our algorithm decomposes a proposal into semantically-meaningful units, called candidates. An
election runs locally between competing candidates. A candidate C receives a number of votes,
equal to the sum of the weights of the sites that voted for some proposal containing C. (If a single
site has a weight of 100%, our algorithm degenerates to a primary approach.) Suppose that

Grid4All Public Page 13

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

weights are uniformly distributed among three sites. Then candidate C = “commit u;” extracted
from P has a weight of 2 and candidate C' = “abort u;” extracted from Q has a weight of %

A candidate cannot be just any subset of a proposal. It must also be consistent with existing
constraints. For instance “abort d;” is not a well-formed candidate, because of the atomicity
constraint, but “abort d; and d, and ds” is well-formed. During an election a candidate competes
against comparable candidates. Two candidates are comparable if they contain the same set of
actions. For instance candidates C and C’ are comparable. A candidate wins when it receives a
majority or a plurality. In our example, eventually every site aborts d;, d; and d3, and commits [;;
and u;.

4.4 Evaluation

Communication Complexity We consider that m sites execute an action concurrently. Sites
exchange their proposals and their multilogs epidemically. In the best case, the communication
costis 4(m—1):

. Every site sends its actions to site i: m — 1 messages.
. Site i computes the constraints, and sends its multilog M to all other sites: m — 1 messages.

. When a site receives M, it computes a proposal and returns the result to i: m — 1 mes-
sages.

. Site i receives all proposals, and sends them to other sites: m — 1 messages.
. Each site decides locally.

This reduces to 2(m — 1) if a single site holds 100% weight.
Time Complexity The complexity of the election algorithm is O(m*n?) in the worst case [12].

Space complexity In ACF a site stores all the non-durable actions, be they either local or
remote. However, durable actions and their constraints are eventually garbage-collected, and
replaced by snapshots. A snapshot contains the state of the document, its size is proportional to
1. If we assume that GC keeps a small and constant number of snapshots at each site, the space
complexity is O(Im).

The size of a proposal is eventually O(n). As each site keeps tracks of all proposals, the space
requirement for proposals is O(nm). (Proposals are also eventually garbage-collected, but we
ignore this effect in this evaluation.)

First Site Convergence Latency In the best case execution (the one depicted above), the
number of asynchronous rounds to converge is 3. It reduces to 1 if a primary site holds all the
weight.

Convergence Latency Once a site has elected a candidate locally, a single additional round
ensures other sites are informed.

Grid4All Public Page 14

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

Semantic Expressiveness ACF supports arbitrary operation types. The ACF logic is parametrised
by application semantics; see for instance Tables 4 and 5. A different application differs only by

a different set of constraints. Conflict is an important concept in collaborative applications, and
ACF supports it. ACF recognises two variants of conflict, non-commutativity and antagonism.
ACF also allows users to group operations atomically. This is particularly useful in our example.
For instance, if a user inserted a line between lines 8 and 9, it probably would not make sense

to keep the inserted line without the lines around it. In our system, this will be flagged as an
antagonism, and either the insert or the delete would fail (or both).

Determinism By design, our approach is not deterministic, since the outcome depends on the
collaborators’ votes. However, for a given set of votes, the system is deterministic.

5 Conclusion

In this paper, we presented the Action-Constraint Framework. ACF is a framework that helps
describing consistency issues, and designing new solutions.

During Grid4All, we implemented ACF in our semantic store: Telex. Telex is a platform for sharing
mutable data in a decentralised way over a large-scale network. Telex supports an optimistic
application model based on ACF, and takes over system issues such as replication, persistence,
disconnected operation, and reconciliation.

Reconciliation was our main focus during Grid4All. Using ACF, we designed new concurrency
control protocols [16, 13, 18]. Our algorithms brings elegant solutions to the known-difficult prob-
lems of database replication and distributed collaboration.

We have also explored distributed collaborative design. We proposed a design methodology for
building applications with ACF, and compared it to existing solutions in the field of shared text
edition [3]. We used this methodology to construct applications on top of Telex [5].

References

[1] JGraphT: an open-source graph manipulation library in java.

[2] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Solving problems in the pres-
ence of process crashes and lossy links. Technical Report TR96-1609, Cornell University,
Computer Science Department, 1996.

[3] Lamia Benmouffok, Jean-Michel Busca, Joan Manuel Marqués, Marc Shapiro, Pierre Sutra,
and Georgios Tsoukalas. Telex: Principled system support for write-sharing in collaborative
applications. Technical Report 6546, INRIA, May 2008.

[4] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[5] Claudia-Lavinia Ignat, Gérald Oster, Pascal Molli, Michele Cart, Jean Ferrié, Anne-Marie
Kermarrec, Pierre Sutra, Marc Shapiro, Lamia Benmouffok, Jean-Michel Busca, and Rachid

Grid4All Public Page 15

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Guerraoui. A comparison of optimistic approaches to collaborative editing of Wiki pages.
Number 3, White Plains, NY, USA, November 2007.

Anne-Marie Kermarrec, Antony Rowstron, Marc Shapiro, and Peter Druschel. The Ice-
Cube approach to the reconciliation of divergent replicas. In Symp. on Principles of
Dist. Comp. (PODC), Newport RI, USA, August 2001. ACM SIGACT-SIGOPS. http:
//research.microsoft.com/research/camdis/Publis/podc2001.pdf.

F Pedone, R Guerraoui, and A Schiper. The database state machine approach. Distrib.
Parallel Databases, 14(1):71-98, July 2003.

Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
a tutorial. ACM Comput. Surv., 22(4):299-319, December 1990.

Marc Shapiro, Karthikeyan Bhargavan, and Nishith Krishna. A constraint-based for-
malism for consistency in replicated systems. In Proc. 8th Int. Conf. on Prin-
ciples of Dist. Sys. (OPODIS), number 3544 in Springer-Verlag, pages 331-345,
Grenoble, France, December 2004. http://www-sor.inria.fr/ shapiro/papers/
opodis2004-£final-2004-10-30.pdf.

Marc Shapiro and Nishith Krishna. The three dimensions of data consistency. In Journées
Francophones sur la Cohérence des Données en Univers Réparti (CDUR), pages 54-58,
CNAM, Paris, France, November 2005. http://www-sor.inria.fr/ shapiro/papers/
cdur2005.pdf.

Pierre Sutra, Jodo Barreto, and Marc Shapiro. An Asynchronous, Decentralised Commit-
ment Protocol for Semantic Optimistic Replication. Research Report 6069, INRIA, Decem-
ber 2006.

Pierre Sutra, Jodo Barreto, and Marc Shapiro. An asynchronous, decentralised commitment
protocol for semantic optimistic replication. Technical report, December 2006.

Pierre Sutra, Jodo Barreto, and Marc Shapiro. Decentralised commitment for opti-
mistic semantic replication. In Int. Conf. on Coop. Info. Sys. (CooplS), Vilamoura,
Algarve, Portugal, November 2007. http://www-sor.inria.fr/ shapiro/papers/
sutra-barreto-shapiro-coopis40.pdf.

Pierre Sutra, Jodo Barreto, and Marc Shapiro. Decentralised Commitment for Optimistic
Semantic Replication. In Proc. of the International Conference on Cooperative Information
Systems - CooplS 2007, Vilamoura, Algarve, Portugal, November 2007.

Pierre Sutra and Marc Shapiro. Comparing Optimistic Database Replication Techniques. In
Bases de Données Avancées, Marseille, France, October 2007.

Pierre Sutra and Marc Shapiro. Comparing optimistic database replication techniques. In
Bases de Données Avancees, Marseille, France, October 2007.

Pierre Sutra and Marc Shapiro. Fault-tolerant partial replication in large-scale database
systems. pages 404—413, Las Palmas de Gran Canaria, Spain, August 2008.

Pierre Sutra and Marc Shapiro. Fault-tolerant partial replication in large-scale database
systems, 2008.

Robert H. Thomas. A Majority Consensus Approach to Concurrency Control for Multiple
Copy Databases. ACM Transactions on Database Systems, 4(2):180—-209, June 1979.

Grid4All Public Page 16

D 1.3 SPECIFICATIONS AND MODELS FOR THE Grid4All-034567
ACTIONS-CONSTRAINTS FRAMEWORK 12th January 2009

Level of confidentiality and dissemination

By default, each document created within Grid4All is (©) Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months implemen-
tation plan, all deliverables listed in Section 7.7 have a specific dissemination level. This dissemination
level shall be mentioned in the document (a specific section for this is included in the template, both on the
cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public.

PP = Restricted to other programme participants (including the EC services).

RE = Restricted to a group specified by the Consortium (including the EC services).
CO = Confidential, only for members of the Consortium (including the EC services).
INT = Internal, only for members of the Consortium (excluding the EC services).

This level typically applies to internal working documents, meeting minutes etc., and cannot be used for
contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case,
a new document code should be given so as to distinguish between the different versions.

Grid4All Public Page 17

