4
' GradaAldl ||:;-.-| mation S | y
Project no. 034567
Grid4All
Specific Targeted Research Project (STREP)
Thematic Priority 2: Information Society Technologies
Specification & Initial Prototype of Overlay Services in
Accordance with D1.4

Due date of deliverable: 11th July 2008.

Actual submission date: 11th July 2008.
Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: (SICS, KTH, INRIA)

Revision: Draft of 11th July 2008

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU | Public

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)
CO | Confidential, only for members of the consortium (including the Commission Services) vV

D1.2

Grid4All list of participants

Grid4All-034567
11th July 2008

Part.

Role Part. Participant name short Country

name
CO | 1 | France Telecom FT FR
CR | 2 | Institut National de Recherche en Informatique en INRIA FR

Automatique

CR | 3 | The Royal Institute of technology KTH SWE
CR | 4 | Swedish Institute of Computer Science SICS SWE
CR | 5 | Institute of Communication and Computer Systems ICCS GR
CR | 6 | University of Piraeus Research Center UPRC GR
CR | 7 | Universitat Politecnica de Catalunya UPC ES
CR | 8 | ANTARES Produccion & Distribution S.L. ANTARES ES

Grid4All Confidential

Page ii

Grid4All-034567
D1.2 11th July 2008

1 Introduction

Deployment and run-time management of applications constitute a large part of software’s total
cost of ownership. These costs increase dramatically for distributed applications that are de-
ployed in dynamic environments such as unreliable networks aggregating heterogeneous, poorly
managed resources, such as community-based Grids. Such Grids are envisioned to fill the gap
between high-quality Grid environments deployed for large-scale scientific and business appli-
cations, and existing peer-to-peer systems which are limited to a single application. Application
management by humans would render many small and simple applications economically infeasi-
ble to run in such environments.

The autonomic computing initiative [8] advocates self-configuring, self-healing, self-optimizing
and self-protecting (self-* thereafter) systems as a way to reduce the management costs of such
applications. With the architectural approach to self-* management [7], autonomous services
have hierarchical architecture where each element is autonomous on its own. Autonomous
elements also need to provide certain introspection interfaces like status enquiry that enable
higher-level elements in the service architecture to implement their own autonomous behaviours.
Architecture-based self-* management of component-based applications has been shown useful
for self-repair of legacy applications. In particular, in [3] authors show how their cluster-based
component management system allows to wrap elements of legacy software into components of
the Fractal component models [5] and then making the legacy software self-healing by means of
an explicit and configurable feedback control loop structure.

This document introduces a distributed component management service (DCMS) and its ap-
plication programming interface (API) that support self-* applications for community-based Grids.
DCMS intends to reduce the cost of deployment and run-time management of applications by
allowing to program application self-* behaviours that do not require intervention by a human
operator.

Our framework separates functional and self-* application code. The functional code of appli-
cations is developed in an extended Fractal component model [5]. We introduce the concept of
component groups and bindings to groups. This results in “one-to-all” and “one-to-any” commu-
nication patterns, which support scalable, fault-tolerant and self-healing applications [4, 1]. For
functional code, a group of components acts as a single entity. Group membership management
is provided by the self-* code and is transparent to the functional code. With a one-to-any binding,
a component can communicate with a component randomly chosen at run-time from a certain
group. With a one-to-all binding, it will communicate with all elements of the group. In either case,
the content of the group can change dynamically (e.g. because of churn) affecting neither the
source component nor other elements of the destination’s group.

Our framework provides a programming model and a matching API for developing application-
specific self-* behaviours. The self-* code is organized as a network of management elements
(MEs) communicating by events. Application-specific parts of MEs are components implemented
by the application developer. The self-* code senses changes in the environment by means of
events generated by DCMS or by application specific sensors. MEs can actuate changes in the
architecture — add, remove and reconfigure components and bindings between them. Architec-
ture elements have identifiers (Id"s) that are used by MEs to sense and manipulate the application
architecture. 1d”s are network-transparent, thus management elements can be executed on any
computing node in the system. The framework allows the programmer to control the location of
management elements on the network which can improve the performance of self-management
and simplify handling of failures of nodes hosting management elements.

We distinguish the following types of management elements: watchers, aggregators and

Grid4All Confidential Page 1

Grid4All-034567
D1.2 11th July 2008

managers. Watchers monitor status of elements of the architecture. Aggregators maintain status
information of an application by collecting information from different watchers. Managers mon-
itor application status by listening to aggregators, and decide on and execute changes in the
architecture.

Applications using our framework rely on external resource management providing discovery
and allocation services. DCMS does not manage resources on its own. In the context of Grid4All,
resource management must be provided by VO resource management services. DCMS API
functions related to component life-cycle management are defined in terms of resources that are
used when a component is deployed and executed.

DCMS is self-organizing and -healing upon churn. It is implemented on the Niche overlay
services [4] providing for reliable communication and lookup, and for sensing behaviours provided
to self-* code. Thus, the DCMS framework allows application developers to exploit the self-*
properties of structured overlay networks using a simple programming model that specifically
targets designing application self-* code, and hides unneccessary details of management the
P2P infrastructure.

The first contribution of our work is a simple yet expressive self-* management framework.
The framework is network-transparent yet network-aware. The framework relieves the application
programmer from low-level details of managing the functional and non-functional parts of appli-
cations. In particular, it provides the depl oy/undepl oy and component sensing abstractions.
Network-transparency enables to program both functional and non-functional parts of applica-
tions independently of particular deployment scenarios. In particular, the framework supports a
network-transparent view of system architecture, which simplifies reasoning about and designing
application self-* code. Network-transparency also enables application-transparent migration of
MEs: DCMS can move MEs when their nodes are about to leave, and when new resources join
achieving better load balance. The framework facilitates programming scalable applications since
both functional and non-functional parts are distributed. We believe also that the framework and
our implementation of it can be extended for flexible and application-transparent replication of
management elements, effectively giving the programmer a conceptually simple platform for pro-
gramming robust self-management code. Finally, controlling co-location of architecture elements
gives the programmer a useful degree of network awareness.

Our second contribution is the implementation model for our churn-tolerant management
platform that leverages the self-* properties of a structured overlay network.

A general model for ensuring coherency and convergence of distributed self-* management
is out of scope of this work. We believe, however, that our framework is general enough for
arbitrary self-management control loops, and can be used for implementing higher-level abstrac-
tions for component-based self-managing applications, such as behavioural skeletons [2] in the
GCM component model [6]. Our example application demonstrates usability of our approach in
practice.

We proceed to gradually introduce DCMS and its concepts without the burden of full details of
its APl and current limitations. Information presented in this deliverable should suffice to under-
stand the formal API description in DCMS API document, the YASS example, and the discussion
of features, limitations and future DCMS extensions. The presentation here is informal, and par-
ticular syntax of examples can stray from the existing DCMS and YASS code for the sake of
presentation clarity.

Grid4All Confidential Page 2

Grid4All-034567
D1.2 11th July 2008

2 Application Architecture with DCMS

An application in the framework consists of a component-based implementation of the applica-
tion’s functional specification (the lower part of Figure 1), and an implementation of the applica-
tion’s self-* behaviors (the upper part). DCMS provides functionality for component management
and communication which is used by user-written implementation of self-* behaviors.

Self-* code in our management framework consists of management elements (MEs) devel-
oped by the programmer, as described in Section 3. MEs are stateful entities that subscribe to
and receive events from sensors and other MEs. Sensors are either application-specific and de-
veloped by the programmer, or provided by DCMS itself such as component failure sensors. MEs
can manipulate the architecture using the management actuation APl implemented by DCMS and
introduced in this document. The API provides in particular functions to deploy and interconnect
functional components and MEs.

e) N
actuation

agers

publish/

subscribe jators

chers

...... I
g * J
_ N —
4 _ _ __ L _ = _ _ _ N
A o4y B 5-
H B1 B2 |
> l H H |
/. - == .
g J

Figure 1: Application Architecture with DCMS.

We subdivide MEs into watchers (W, W2 .. on Figure 1), aggregators (Aggr 1) and managers
(Myr 1), depending on their role in the self-* code. Watchers monitor the status of individual archi-
tectural elements, or groups of similar elements. A watcher is a stateful entity that is connected to
and receives events from sensors that are either implemented by the element, or provided by the
management framework itself. An aggregator is subscribed to several watchers and maintains
partial information about the application status at a more coarse-grained level. A manager can
be subscribed to several watchers and aggregators. Managers use the information to decide on
and execute the changes in the architecture.

Grid4All Confidential Page 3

Grid4All-034567
D1.2 11th July 2008

3 Management Elements and Sensors in DCMS

Management Element ~
Al Eg Proxy
Application- EventHandler H{- Generic Hi—t ‘
specific TriggerInterface -} proxy —
I I
DCMService > w1 ﬁ Proxy W2 ﬁ Proxy
Initinterface = _ .
& X
- « e
Figure 2: Structure of MEs. Figure 3: Composition of MEs.

An ME consists of an application-specific Fractal component [5] and an instance of the
generic proxy component, see Figure 2. Application-specific ME components are developed
by application programmer, and the proxy component is provided by DCMS. In our Java-based
DCMS prototype, application-specific ME components are implemented as Java classes which
manipulate the application architecture using DCMS APIl. DCMS and application-specific ME
components share certain data structures that identify elements of the architecture, as discussed
in Section 4. ME proxies provide for communication between MEs, see Figure 3. When a ME is
to be deployed, the application developer specifies the implementation of the application-specific
ME component, and DCMS takes care about the rest: finding a suitable computer among those
interconnected by DCMS, creating the ME proxy and connecting the the application-specific ME
component to the proxy. Hosting and executing MEs is taxed to a set of physical nodes executing
DCMS, typically VO members. DCMS attempts to evenly balance the load of ME hosting.

As outlined DCMS API documentation, proxies will enable the programmer to control the
management architecture transparently to individual MEs, and will enable the programmer to
transparently and selectively replicate MEs for the sake of robustness of self-management code.

Application-specific ME components can have the following client interfaces (see also Fig-
ure 2):

e Triggerlnterface interface with the t ri gger method used to emit events generated by
the management element

e DCMser vi ce interface that provides DCMS API for controlling functional and non-functional
application components

Application-specific ME components need to provide the following server interfaces:

e Event Handl er interface with the event Handl er mehtod used when a management event
arrives to the ME

e Initlnterface interface used to (re)configure the management elements

The application-specific part of a ME can have further client or server interfaces which can be
bound to functional components in the application, under certain restrictions discussed in DCMS
API documentation.

Sensors have a similar two-part structure, see Figure 4. Application-specific sensor compo-
nents interact with components being sensed (component A in the Figure). Application-specific
sensor components can use the following client interface:

Grid4All Confidential Page 4

Grid4All-034567

D1.2 11th July 2008
4 N 4 ‘\‘ N
Watcherl ﬁ Proxy
w1 -W2
A J o\ X
/\
o [e ey N / N
SensorA| | [Gemor®] | [SemorE] LR ‘. A
c_F — —pul”- % — —"push” 4 : : Sensor A [Generic
A : - |B1 - B2 : LA a—th Proxy
\/ \ """"""""""""""" /
Figure 4: Structure of Figure 5. Composition of
Application-Specific Sensors. Application-Specific Sensors.

e Triggerlnterface interface with the tri gger method used to emit new events
and need to provide the following server interfaces :
e Sensorlnterface interface used to control sensors

Similarly to MEs, when a sensor is to be deployed, the application developer specifies the
implementation of the application-specific sensor component, and DCMS takes care about the
rest: it locates the component for which the sensor is to be deployed, deploys both parts of
the sensor and interconnects them (see Figure 5). Using the facilities of the Fractal component
model [5], the application developer also specifies two lists of interfaces — for information “pull”
and “push” between the sensor and the component being sensed (see Figure 4), and DCMS
uses this information to connect the named application-specific sensor component interfaces to
matching interfaces of the component being sensed.

Grid4All Confidential Page 5

Grid4All-034567
D1.2 11th July 2008

4 Architecture Representation in Self-Management Code

Elements of the architecture — components, bindings, groups and MEs — are identified by unique
identifiers (1d"s). Self-* code receives information about status of architecture elements and ma-
nipulates them using the Id”s. In our Java-based prototype of DCMS, Id"s are represented in self-*
code as certain Java objects. We discuss the implementation and performance characteristics of
our DCMS prototype in Section 9.

Componentld compA = myDCMS.deploy(ResourceA, ImplA, "A");

Componentld compB = myDCMS.deploy(ResourceB, ImplB, "B");

ManagementElementid-failureWatcher =
myDCMS.deploy(FailureWatcherComponent, {compA,compB});

4 ... [Id:3

Java object
for 1d:3

Component A\—/

Figure 6: Application Architecture in Self-* Code.

Component B

On Figure 6 a snippet of self-* code from a ME is presented. There are two components
named A and B represented in self-* code by conpA and conpB, respectively. 1d”s are introduced
in self-* code by DCMS API calls that deploy functional components and MEs. On Figure, CONpA
and conpB are results of the depl oy API calls that deploy components A and B implemented
by Java classes | npl A and | npl B on resources Resour ceA and Resour ceB, respectively. Re-
source management is discussed in Section 6. 1d"s are passed to DCMS API invocations when
operations are to be performed on architecture elements, like deallocating a component. In the
example, conpA and conpB are passed to the depl oy DCMS API call that deploys a watcher that
expects to receive Id’s of components to watch.

Note that I1d"s are network-transparent: multiple MEs share the same 1d”s even though they
reside on different physical nodes. In the example, fail ureWat cher ME will in general be
deployed on a different physical node from the one where the ME with the given part of self-*
is executed, yet both MEs posses references to DCMS Id Java objects representing A and B.
Different physical nodes necessarily have different Java objects representing the same DCMS Id,
as discussed in Section 9. We continue illustrating the manipulation of the application architecture
in Section 5 using the code for initial deployment as an example.

Grid4All Confidential Page 6

Grid4All-034567
D1.2 11th July 2008

5 Initial Deployment of Applications

DCVBer vi ce nmyDCVE;
Conponent | d conpA = nyDCMB. depl oy(ResourceA, Inpl A "A");
Conponent | d conpB = nyDCMB. depl oy(ResourceB, InplB, "B");
Management El ement | d manager =

my DCVB. depl oy(Manager Conponent, {conpA, compB});
Managerent El enent 1 d aggregator =

my DCVS. depl oy(Aggr egat or Conponent, {conpA, conpB});
(voi d) myDCVS. subscri be(aggregator, manager, "status");
(voi d) myDCVS. subscri be(conpA, aggregator, "conponentFailure");
(void) myDCVS. subscri be(conpB, aggregator, "conponentFailure");

Figure 7. Example of Self-Management Code with DCMS.

Initial deployment of applications is performed using the DCMS API. In the case the applica-
tion functional architecture is specified using an architecture description language (ADL) speci-
fication, the application deployment service interprets the ADL specification and invokes corre-
sponding DCMS API functions. DCMS ADL allows the programmer to specify the application
architecture conveniently, concisely and compactly; it is described in the DCMS API documenta-
tion. The sequence of commands executed by DCMS can look like on Figure 7. In this example,
my DCVS is an object that provides the DCMS API. The first depl oy method deploys a component
Aimplemented by | mpl A on a resource Resour ceA. We discuss the resource management in the
next Section. depl oy invocations contain also symbolic names of components in the application
architecture, A and B in our example. If the application is deployed by the deployment service,
the symbolic names of components are taken from the ADL specification. The symbolic names
can be used to obtain the component Id by e.g. other management elements:

Conponent | d conpA = nyDCMB. | ookup(" Appl i cationPrefix"+"Conponent ADLNane") ;

Component Id”s can be also passed as arguments for deployment of management elements,
as illustrated by the following call from the example above:

Managenent El ement | d manager =
my DCVB. depl oy(Manager Conponent, {conmpA, conpB});

Here, the new manager manager will receive the argument list { conpA, conpB}. The argu-
ment list is not interpreted by DCMS itself.

Finally in our example, both MEs — nanager and aggr egat or — are interconnected. The
manager is subscribed to the aggregator for application-specific st at us events:

myDCVBS. subscri be(aggregat or, manager, "status");

The aggregator is subscribed for the predefined by DCMS conponent Fai | ur e environment
sensing events that are generated by DCMS when conpA or conpB fail:

myDCVBS. subscri be(conpA, aggregat or, "conponent Failure");
myDCVB. subscri be(conpB, aggregator, "conponentFailure");

Grid4All Confidential Page 7

Grid4All-034567
D1.2 11th July 2008

6 Resource Discovery and Allocation

[Application(s)

3: deploy 1: discovery 2: allocate

’ y \

3.1: verify
resource Resource
DCMS Management

Service(s)

3.2: obtain low- - 1.1: discover low-

¢ level resource . level resource
Resources >

Figure 8: Resource Management with DCMS.

Resource management is out of the scope of DCMS. DCMS is supposed to be used together
with one or several resource management services. Applications, DCMS and resource manage-
ment services share the NodeRef and Resour ceRef abstract data types. Objects of these types
represent physical resources such as memory and CPU cycles. Applications use the “discovery”
request provided by resource management services to discover free resources on the network,
see Figure 8. Resource management services respond with NodeRef objects representing free
resource(s) on a computing node available to the particular application. Resources discovered
this way are not allocated to any application, in particular, a free resource discovered by an ap-
plication can concurrently be discovered and become used by another application. Applications
can reserve a part or whole NodeRef resource for own usage by means of the “allocate” request
to resource management services. The result of the “allocate” request is a Resour ceRef object
that represents a resource that is reserved for use by the calling application. One of the argu-
ments of the “deploy” DCMS API function that serves component deployment (see Section 5) is
a Resour ceRef object representing a resource to be used for deploying a particular component.
Resources are “consumed” when applications deploy components, i.e. the same resource can-
not be used for more than one “deploy” invocation, and for every component DCMS verifies its
resource usage with respect to Resour ceRef "s specified for deployment of that component.

Grid4All Confidential Page 8

Grid4All-034567
D1.2 11th July 2008

7 Groups and Group Sensing

DCMS supports group communication patterns through one-to-any and one-to-all bindings, which
is an extension of the Fractal model [5]. In the current Java-based DCMS prototype, compo-
nent bindings implement RMI. With a one-to-any binding, a component can communicate with a
component randomly chosen at run-time from a certain group. With a one-to-all binding, it will
communicate with all elements of the group. In either case, the content of the group can change
dynamically affecting neither the source component nor other elements of the destination’s group.

DCMS supports group communication through first-class groups created by means of the
creat eG oup DCMS API call:

G oupl d storageConponent G oupld = myDCVS. creat eG oup({compSl, conmpS2});

Once a group is created, the Groupl d object can be used as a destination in binding con-
struction call.

myDCVBI nt er f ace. bi nd(front Endl d, FILE WRI TE_CLI ENT_| NTERFACE, gl obal Fi | eG oupl d,
FI LE WRI TE_SERVER | NTERFACE, ONE_TO MANY);

Groups can be also watched by a single watcher. When a watcher for a group is being
deployed, application programmer specifies the application-specific part of sensors to be used to
generate sensing events for the watcher. DCMS automatically deploys and removes sensors as
the group membership changes. This behaviour is implemented using the SNR abstraction as
described in Section 9.

To deploy a watcher and associate it with a group you need to specify ManagementDeploy-
Parameters as follows:

parans = new Managenent Depl oyPar anmeters();

par ans. descri beVWat cher (String className, String conponent Nang,
oject[] initial Argunents, Nicheld G oupld)

myDCVBI nt er f ace. depl oy(Management Depl oyPar anet ers par ans,
Identifierlnterface destination);

The watcher, when initialized, must specify the sensor that DCMS will automatically deploy
as follows:

myDepl oySensor sl nt er f ace. depl oySensor (String sensor d assNane,
String sensorEvent G assNane, Chject[] sensorParaneters,
String[] clientInterfaces, String[] serverlnterfaces);

Grid4All Confidential Page 9

Grid4All-034567

D1.2 11th July 2008

8 Controlling Location of Management Elements

J

4 N\
-

A\ /

Figure 9: Co-location of MEs.

The application developer can control the location of MEs by specifying another architecture
element to collocate with as an optional last parameter of the deployment call.

Grid4All Confidential Page 10

Grid4All-034567
D1.2 11th July 2008

9 The Implementation Model of DCMS

DCMS implementation relies on structured overlay networking, overlay thereafter. The overlay
is used by DCMS to implement bindings between components and message-passing between
MEs, storage of architecture representation and also failure sensing.

At runtime, DCMS integrates several physical nodes using an overlay. On each physical node
there is a local DCMS process that provides the DCMS API to applications. The overlay allows to
locate entities stored on nodes of the overlay. On the overlay, entities are assigned unique overlay
identifiers, and for each overlay identifier there is a physical node hosting the identified element.
Such a node is usually called a “responsible” node for the identifier. Note that responsible nodes
for overlay entities change upon churn. Every physical node on the overlay and thus in DCMS
also has an overlay identifier, and can be located and contacted using that identifier.

DCMS maintains several types of entities, in particular components of the application archi-
tecture and internal DCMS entities maintaining representation of the application’s architecture.
Functional components are situated on specified physical nodes, while MEs and entities repre-
senting the architecture can be moved upon churn between physical nodes.

DCMS entities are identified by DCMS Id’s. DCMS Id’s are implemented using identifiers
of the overlay. A DCMS Id contains an overlay identifier and a further local identifier. The local
identifier allows to distinguish multiple entities assigned to the same overlay identifier. Note that
DCMS Id"s act as both unique identifiers and addresses of entities in DCMS.

DCMS Id”s for entities situated on specific physical nodes both identify and address the enti-
ties. In particular, DCMS Id”s of components contain the overlay Id of the physical node with the
component, and an identifier local to the node. The latter identifier allows the DCMS process on
a node to distinguish between different components situated on the node.

If no co-location constraints are specified for MEs and groups, DCMS assigns to them random
overlay 1d”s for the sake of load balancing. Since the location of MEs is controlled at runtime
by DCMS, in particular to take advantage of stable nodes as indicated by users and/or resource
management service, ME identities and ME locations are decoupled using reference entities, see
Figure 10. For a given ME there is a unique DCMS reference entity, thus the Id of the reference
entity is used as the identity of the ME. A DCMS reference contains a DCMS Id used as the
actual location of the ME. DCMS processes usually cache the true actual locations of entity, as
illustrated by the Figure. DCMS references also enable mobility of components. MEs can move
components between resources, and by updating their references other elements can still find
the components by their DCMS 1d"s.

If MEs or groups are co-located with other DCMS entities, their DCMS Id”s are assigned as
follows: the overlay Id is taken from the DCMS Id of the entity to be co-located with, and a fresh
local identifier is chosen.?

Groups are implemented using Set of Network References (SNR) [4, 1] which is a primitive
data abstraction that is used to associate a name with a set of references. SNRs can be thought
of as DCMS reference entities containing multiple references. DCMS recognizes out-of-date
references and refreshes cache contents when needed. A “one-to-any” or “one-to-all” binding
to a group means that when a message is sent through the binding, the group SNR’s location
is encapsulated in the group Id, and one or more of the group references from the SNR are
used to send the message depending on the type of the binding. A group can grow or shrink
transparently from group user’s point of view. Finally SNRs support group sensing. Adding a
watcher to a group causes deployment of sensors for each element of the group according to the

1This is actually an oversimplified model as it does not explain recursive co-location of entities, i.e. co-location with
entities that are in turn co-located with some other entities.

Grid4All Confidential Page 11

Grid4All-034567
D1.2 11th July 2008

ManagementEIementld failuteWatcher =
deploy(FailureWatcherComponent, {compA,..});

r/md lo/cation

Id:3 reference —— Y

\BeWatcher

reference

Figure 10: Id"s and References in self-* Code.

group’s SNR. Changing group membership transparently causes deployment/unemployment of
sensors for the corresponding elements.

Grid4All Confidential Page 12

Grid4All-034567
D1.2 11th July 2008

10 Conclusions

In this document we introduce a programming model and API implememented by DCMS — dis-
tributed component management service. DCMS facilitates developing self-* applications for
community-based Grids, as envisioned by Grid4All use cases. Our framework separates appli-
cation functional and self-* code, and allows to design robust application self-* behaviours as
a network of management elements. DCMS exploits a structured overlay network for naming
and lookup, communication, and DHT overlay services. DCMS intends to reduce the cost of
deployment and run-time management of applications by allowing to program application self-*
behaviours that do not require intervention by a human operator, thus enabling many small and
simple applications that in environments like Grid4All's community-based Grids are economically
infeasible without self-management.

Grid4All Confidential Page 13

Grid4All-034567
D1.2 11th July 2008

References

[1] A. Al-Shishtawy, J. Héglund, K. Popov, N. Parlavantzas, V. Vlassov, and P. Brand. Enabling
self-management of component based distributed applications. In Proceedings of Core-
GRID Symposium, Las Palmas de Gran Canaria, Canary Island, Spain, August 25-26 2008.
Springer. To appear.

[2] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Kilpatrick, P. Dazzi, D. Laforenza,
and N. Tonellotto. Behavioural skeletons in GCM: Autonomic management of grid compo-
nents. In PDP '08: Proceedings of the 16th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP 2008), pages 54-63. IEEE Computer Society, 2008.

[3] S.Bouchenak, F. Boyer, S. Krakowiak, D. Hagimont, A. Mos, J.-B. Stefani, N. de Palma, and
V. Quema. Architecture-based autonomous repair management: An application to J2EE
clusters. In SRDS '05: Proceedings of the 24th IEEE Symposium on Reliable Distributed
Systems (SRDS’05), pages 13-24, Orlando, Florida, October 2005. IEEE.

[4] P. Brand, J. Hoglund, K. Popov, N. de Palma, F. Boyer, N. Parlavantzas, V. Vlassov, and
A. Al-Shishtawy. The role of overlay services in a self-managing framework for dynamic
virtual organizations. In CoreGRID Workshop, Crete, Greece, June 2007.

[5] E. Bruneton, T. Coupaye, and J.-B. Stefani. The fractal component model. Technical report,
France Telecom R&D and INRIA, February 5 2004.

[6] Basic features of the Grid component model. CoreGRID Deliverable D.PM.04, CoreGRID,
EU NoE project FP6-004265, March 2007.

[7] J. Hanson, I. Whalley, D. Chess, and J. Kephart. An architectural approach to autonomic
computing. In ICAC '04: Proceedings of the First International Conference on Autonomic
Computing (ICAC’04), pages 2-9, Washington, DC, USA, 2004. IEEE Computer Society.

[8] P. Horn. Autonomic computing: IBM’s perspective on the state of information technology,
October 15 2001.

Grid4All Confidential Page 14

Grid4All-034567
D1.2 11th July 2008

Level of confidentiality and dissemination

By default, each document created within Grid4All is (©) Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months implemen-
tation plan, all deliverables listed in Section 7.7 have a specific dissemination level. This dissemination
level shall be mentioned in the document (a specific section for this is included in the template, both on the
cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public.

PP = Restricted to other programme participants (including the EC services).

RE = Restricted to a group specified by the Consortium (including the EC services).
CO = Confidential, only for members of the Consortium (including the EC services).
INT = Internal, only for members of the Consortium (excluding the EC services).

This level typically applies to internal working documents, meeting minutes etc., and cannot be used for
contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case,
a new document code should be given so as to distinguish between the different versions.

Grid4All Confidential Page 15

