

 Project Acronym: TRESCCA

 Project Title: Trustworthy Embedded systems for Secure Cloud Computing

 Project number: European Commission – 318036

 Call identifier FP7-ICT-2011-8

 Start date of project: 01 Oct. 2012 Duration: 36 months

Document reference number: D4.3

Document title:
Report on evaluation and security assessment of trustworthy

cloud platform

Version: 1.1

Due date of document: 30st of September 2015

Actual submission date: 23rd of January 2016

Lead beneficiary: WT

Participants: Mercedes Castaño (WT), I. Garcia (WT), M. Grammatikakis

(TEI), M. Paolino (VOSYS), B. Katzmarski (OFFIS), R.

Pacalet (IMT), A. Herrholz (CS), M. Coppola (ST)

Project co-founded by the European Commission within the 7th Framework Programme

DISSEMINATION LEVEL

PU Public X

PCA Public with confidential annex

CO Confidential, only for members of the consortium (including Commission Services)

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

2

CONTENTS

1 Introduction 6

1.1 Purpose of the Document 6

1.2 Document Versions Sheet 6

2 Evaluation method and plan 7

3 Security use cases 9

3.1 Summary 9

3.2 Coverage of Use Cases by Scenarios 11

4 TRESCCA Requirements 12

4.1 User requirements 12

4.2 Functional requirements 15

4.3 Security requirements 18

5 Scenario-specific evaluations and tests 22

5.1 Scenario 1 – Smart metering/energy management 22

5.1.1 Background 22

5.1.2 Running the application 22

5.1.3 Unauthorized Access 24

5.1.4 Defending the attack with HSM-NOC and HSM-Mem 25

5.1.5 Preventing an internal attack by HSM-NoC 25

5.1.6 Preventing an external attack by HSM-Mem encryption functionality 26

5.1.7 Preventing an internal attack by HSM-Mem integrity check 27

5.1.8 Summary and conclusion 27

5.2 Scenario 2 – Digital Right Management 28

5.3 Scenario 3 – Securing transactions or authentications 28

5.4 HSM-NoC performance and cost analysis 30

5.4.1 Hardware performance and area costs 30

5.4.2 Profiling of the NoC Firewall Driver 34

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

3

5.4.3 Conclusions and outlook based on HSM-NoC evaluation tests 34

5.5 HSM-mem hardware costs and performance overheads 35

5.5.1 Hardware costs 35

5.5.2 Memory footprint overhead 36

5.5.3 Performance overhead 36

5.5.4 Conclusions on HSM-mem performance evaluations 37

5.6 Validation of integration effort 37

6 Summary, conclusions and outlook 40

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

4

LIST OF FIGURES

Figure 1 Architecture of WeSave application 22

Figure 2 Architecture of TRESCCA prototype platform and address ranges. 25

Figure 5-1: DRM ebook reader evaluation 28

Figure 5-2 Illustration of implemented VM migration prototyp 29

Figure 5-3:VM snapshots are exposed to integrity and confidentiality threats 29

Figure 5-4 STNoC services at the network interface 30

Figure 5-5 Spidergon STNoC system configurations to study the effect of security.We perform

experiments for up to 32-nodes connected to STNoC. 31

Figure 5-6 NoC delay for different STNoC setups, when firewall is on or off (logarithmic scale). 32

Figure 5-7 NoC power for different STNoC setups, when firewall is on or off. 32

Figure 5-8 NoC delay for different packet injection rates per cycle per CPU (scale is logarithmic), in

a setup with 2 CPUs and 2 memories interconnected with STNoC, link-width=8 Bytes. Injection rate is

the same across all CPUs. 33

Figure 5-9 NoC delay for different packet injection rates per cycle per CPU (scale is logarithmic), in

a setup with 8 CPUs and 8 memories interconnected with STNoC, link-width=8 Bytes. Injection rate is

the same across all CPUs. 33

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

5

LIST OF TABLES

Table 1 Synthesis results on the Zedboard Z7020 FPGA ... 31

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

6

1 Introduction

1.1 Purpose of the Document

This deliverable describes the setup of the fully working evaluation platform of the cloud environment

using the client prototype and a standard cloud server installation.

After the design and implementation of the evaluation environment, the application use cases will be

implemented and deployed including a full assessment of the security objectives.

1.2 Document Versions Sheet

Version Date Description, modifications, authors

0.1 12/08/2015 First version of the deliverable. Mercedes Castaño Torres

(WT), All

1.0 11/11/2015 Final version for 3rd Technical Review. Mercedes Castaño

Torres (WT), All

1.1 23/01/2016 Revised version following review recommendations. Add

section on setup, attack and protection of WeSave application

(Section 5.1, Scenario 1). Rework HSM-mem performance

evaluation. (Section 5.5). Add section on validation of

integration effort (Section 5.6). Add remarks on limits of

performed evaluation throughout document.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

7

2 Evaluation method and plan

As introduced in D1.3, TRESCCA is being developed based on a Scenario-Based Design (SBD)

approach that enables to experiment and validate the results in a real-world environment. Within the

different phases of the SDB framework, the last stage involves the implementation of a prototype and

the evaluation plan of the designed TRESCCA cloud environment.

In D1.3 the scenarios that should be used to evaluate TRESCCA features was described as well. It

helped to define the overall user, functional and security requirements. Based on this previous work,

within this task the consortium defined altogether the evaluation methodology in order to evaluate

TRESCCA in experimental use, involving one or more secured devices connected to a cloud

environment.

The primary goals of evaluation of the TRESCCA platform components are:

1. Show effective protection of the TRESCCA platform against those security threats which have

been defined in D1.1 and are considered to be covered by TRESCCA.

2. Show general applicability and flexibility of the TRESCCA platform components to be

deployed in several different application scenarios and cloud environment setups.

The evaluation is being executed using the following steps:

1. Investigation and definition of requirements and limitations of the evaluation environment.

2. Selection of target technologies and HW/SW components for implementation of TRESCCA

platform demonstrators. Technologies and components for cloud and client side may be

specific for certain scenarios depending on the particular requirements of the application.

3. Setup of cloud-side evaluation environment.

4. Development of TRESCCA client demonstrators integrating all or selected HW or SW

TRESCCA security components. Specific demonstrators may be developed for certain

scenarios.

5. Initial integration and test of TRESCCA client(s) with cloud-side evaluation environment.

6. Definition and implementation of a library of security attacks that may either be executed

internally as part of an application (software attack, either on hypervisor, kernel or application

level) or externally (client hardware or communication infrastructure attack). There needs to

be one or more attacks for each Use Case whereas each Use Case may cover one or more

security threats.

7. Design and implementation of evaluation scenarios by developing applications demonstrating

the general applicability of the TRESCCA platform.

8. Execution of the security attacks within the context of the different scenarios and

demonstration of the effective protection against the corresponding threat.

9. Report of evaluation results of the different scenarios and protection against security threats.

This Scenario evaluation and validation methodology is important because the initial analysis done

may be overly influenced by the consortium’s a priori understanding of TRESCCA platform and its

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

8

use context. An explicit validation in real scenarios will allow the consortium to check with end-users

and experts to ensure that the results fulfil the security threats and objectives detected.

While and after this evaluation stage a claim analysis will be done to reflect the consequences of

scenarios, the results of interaction between all the components, system features and likely

consequences of such security objectives in each of the scenarios. This claim analysis involves

aggregating and interpreting claims, with the respective improvements in the TRESCCA platform and

the evaluation report.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

9

3 Security use cases

In D1.3 a set of seven Security Use Cases has been defined. It was expected that each use case would

be covered by at least one of the scenarios. This chapter summarizes the use cases and includes an

overview on their final coverage. Details on the use cases can be found in D1.3. Details on how the

scenarios specifically covered a use case are given in chapter 5.

3.1 Summary

This section includes a short summary of the use cases defined in WP3.

UC1. Shared resources as a threat for integrity, confidentiality and availability.

Summary: Malicious software or even the user himself, are often a threat for the

integrity, confidentiality and availability of a system. A strong isolation

between sensible components of a system helps to prevent this kind of

attacks.

UC2. Data leakage while storing or transferring data between client and Cloud

Summary: The storage services must ensure that the information stored in persistent

mediums remains confidential and with integrity for all except the user

of the service and authorized personnel of the underline service. Data

may be stored remotely or locally and should be protected

(confidentiality & integrity) in both storage and transmission.

UC3. Malicious access or modification of critical information on external memory pages

Summary: The access or modification of the content of a page of the external

memory that contains data identified as critical for the proper working of

the platform or its sensitive applications should be impossible for an

unauthorized entity.

This protection shall take into account both software and hardware

attempts to access these critical memory pages.

Software attacks are prevented using strong isolation between processes

and virtual machines, and hardware attacks are prevented using external

memory encryption and integrity protection.

UC4. Uncontrolled access to memory regions

Summary:

Typically, different regions of memory are used and shared by different

HW and SW components. Isolation of SW services and applications as

well as HW components can only be accomplished if the access to these

memory regions is controlled and protected. Therefore different regions

of the memory may only be accessed and/or modified if the accessing

component can provide the proper access rights. Control and enforcement

of these access rights should be ensured by a combination of HW and SW

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

10

measures.

UC5. Integrity and confidentiality of memory shared between VMs

Summary: A VM needs to interact and communicate with the outside world. This

means that it is necessary to share information with other VMs, such as

network packets, secure service requests, data coming from devices or

the user, etc.

UC6. Integrity of boot process and software stacks

Summary: In collaborative distributed systems, it is mandatory for a remote

platform to provide its integrity status in a trustworthy way to others in

order to detect and prevent applications from being deployed on

untrusted even hostile platforms and the software components are

authentic. It is essential to check if the integrity of its code and data is

protected and that it can be only updated by its authority. Chained

integrity checking during the boot sequence is an important feature that

guarantees to boot a system into a known and trustworthy operating

system state.

UC7. Protection of migrating applications

Summary: Today’s services are facing a lack of trust which is twofold: providers

cannot trust their user’s devices and users do not have a way to control

their personal data shared with their providers. Virtualization and

migration technology could unlock much more potential if the platform

could be trusted. While data simply can be protected by encryption no

method exists for computations. Applications still need to decrypt data in

order to process it. Offering a secure platform where applications can

migrate seamlessly between clouds and devices can fill this gap. On the

one hand location aware data access can protect sensitive information

and on the other hand secure migration of applications introduces

attractive possibilities for cloud and mobile computing.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

11

3.2 Coverage of Use Cases by Scenarios

While none of the scenarios covered all use cases, each use cases is at least covered by one scenario.

Scenario UC1 UC2 UC3 UC4 UC5 UC6 UC7

Digital Rights

Management

x x x

Smart grids

and cloud

systems

x x x x

Securing

transactions

and

authentications

 x x

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

12

4 TRESCCA Requirements

At the beginning of the project, TRESCCA has defined a set of requirements, initially reported in D1.3

and partitioned into user requirements, functional requirements and security requirements. In the

following sections, these requirements will be revisited and evaluated if they have been met and

covered by a specific scenario and/or corresponding hardware or software component developed by

TRESCCA.

For some of the requirements it proved to be very challenging to give precise answers whether they

have been met or not. This mostly applies to the more general and cloud oriented requirements. The

identified gap between the high level cloud scenario and the low level technology developed in

TRESCCA could not always be bridged. Nonetheless the porting of the WeSave application to the

integrated prototype as part of Scenario 2 has proven the general applicability of the TRESCCA

technologies for cloud services.

Due to the limitations of the final prototyping platform and the implemented demonstration

applications, the requirements have not be validated in the context of real applications. Except for the

WeSave applications, all other applications are only proof-of-concepts and no actual real-world

application. Though for Scenario

4.1 User requirements

The rich catalogue of risks identified in the deliverable D1.1 “Security Analysis of cloud application

of security objectives” could be seen as the main difficulties for the applicability of cloud computing,

and even more when there is a hardware device at the user side with computing capabilities.

After a first phase of identification of the target users, TRESCCA also identified from the beginning a

large variety of user requirements. These user requirements have been written from the user’s point of

view and describe the key security properties that must be provided to satisfy the user’s needs and to

boost the trustiness in cloud computing technologies. These user requirements will be translated to

functional and security requirements, to describe what the software and hardware shall do in terms of

security services and tasks. So the user requirements are the basis for the technical partners to develop

the TRESCCA platform.

As previously the target user has been identified, each of them show different but also overlapping

user needs, thus giving birth to too many different user requirements. In this section, TRESCCA

identifies the most high-level and relevant user requirements that suit the needs of multiple target

users, and will satisfy critical mass of users.

USER.1

Description Ensure confidentiality of the information

User / Rationale The Cloud Consumer will generally expect all communication between them

and the Cloud Provider will remain private. If client information kept by the

cloud provider is not confidential, some people might be reluctant to seek

critical information on it. From this point of view, the light client must ensure

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

13

that they comply with the applicable provision of confidentiality when storing

and transmitting client data.

From the other side, the Cloud Provider might also be interested in the

confidentiality of the information he delivers to the customer or the light client

hardware device, in order to ensure the no replication and proper use of

information, as for example to ensure digital right of media.

Priority High

Result Requirement met and covered in scenario 1, 2 and 3 through TEE and

secure communication channel.

USER.2

Description Integrity Assurance

User / Rationale The overall cloud computing infrastructure must exhibit key features to enable

the assurance of service and data integrity for the users. To ensure this integrity,

the Cloud Provider needs a cloud based integrity management service coupled

with a trustworthy client component as a mean to increase the quality of the

security evaluation of the client.

Priority High

Result Requirement met and covered in scenario 1, 2 and 3 through TEE and

secure communication channel.

USER.3

Description Authenticity

User / Rationale End-to-end identity management and third party authentication are key

elements of cloud security for both the Cloud Provider and the Cloud

Consumer. They require a proper identity security mechanism to make sure the

preservation of the integrity and confidentiality of data and application while

making access readily available to the appropriate users.

Priority High

Result Requirement met and covered in scenario 1, 2 and 3 through TEE, secure

communication channel and VM migration.

USER.4

Description Privacy

User / Rationale Most customers are aware of the danger of letting data control out of their

hands and storing data with an outside cloud computing provider. Data could

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

14

be compromised by the Cloud Computing Provider itself, or other competitive

enterprises which are customers with the same Cloud Computing Provider.

There is still a lack of transparency for customers on how, when, why and

where their data is processed.

Moreover, data protection and privacy legislation is not even similar in many

countries around the globe yet and cloud computing is a global service of the

future.

Priority High

Result Requirement met and covered in scenario 2 and 3 through TEE, secure

communication channel and VM migration.

USER.5

Description Traceability and non-repudiation

User / Rationale Cloud Providers should track the deployment options from the data center to

the business process to make sure the value chain is uncompromised.

Moreover the Cloud Provider is very interested in having non-repudiation

mechanisms as a methodology for ensuring the traceability to conform the

agreed policies and the accounting.

Priority High

Result Requirement indirectly covered in scenario 2 but not directly related to

TRESCCA outcomes.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

15

4.2 Functional requirements

FUNCT.1

Description TRESCCA must ensure Secure Hypervisor and Virtualization.

Rationale The TRESCCA hypervisor provides an isolation layer that is a key feature of

the whole project. This component must enable the isolation between VMs and

the possibility to access to the Trusted Compartment. A secure abstraction of

the underlying hardware will be provided by the hypervisor to the virtual

machines.

A secure migration mechanism ensures that the computation is decupled from

data. Moving the VMs to the devices where sensitive user’s data are stored

permit to not share security assets outside the secure platform.

Reference UC1, UC5, UC7

Priority High

Result Requirement covered in scenario 1 and 3 through TEE and secure

hypervisor. Indirectly supported by HSM-Mem and HSM-NoC.

FUNCT.2

Description Provide HSM-mem and SSM-mem to protect external memory.

Rationale TRESCCA platform architecture must guarantee confidentiality and the

integrity of critical software applications even in the presence of an adversary

who has physical access to every system component, other than internal

components of the main SoC.

TRESCCA platform aims to protect confidentiality and integrity of the

communications between on-chip CPUs and off-chip external memories by

guaranteeing that sensitive information does not leave the SoC in plaintext

form and cannot be tampered with without causing a trap due to an integrity

check. For each physical page on the memory bus, the SSM-mem will assign a

security policy in terms of confidentiality and integrity, and the hardware

HSM-mem will apply this policy on all memory accesses to that page. This

simple organization will ease the design of the SSM-mem module and HSM-

mem and allow protecting sensitive memory pages with the most appropriate

cryptographic primitive for the defined security policy.

Reference UC1, UC2, UC3, (UC6, UC7)

Priority High

Result Requirement covered in scenario 1 and 2 through HSM-Mem.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

16

FUNCT.3

Description Provide HSM-NoC and Software NoC Configuration Manager (SNoCCM).

Rationale The NoC Firewall regulates accesses to privileged memory (page tables,

virtualization contexts and interrupt information). This functionality is crucial

to most TRESCCA use cases, since it supports malware detection of viruses,

Trojan horses or rogue applications, as well as subverting Denial-of-Service

attacks by appropriately policing the NoC Firewall access point configured at

the network interfaces of the initiator or target IPs. Moreover, it supports

hardware virtualization extensions for hypervisor and/or guest VM isolation

via a NoC firewall implementing Mandatory Access Control policies

Reference UC1, UC3, UC4, UC5

Priority High

Result Requirement covered in scenario 1 and 2 through HSM-NoC and NoC

firewall Linux drivers.

FUNCT.4

Description Ensure secure chained booting from Boot ROM to Hypervisor.

Rationale For TRESCCA the hypervisor will be a critical component. It has to be made

sure that the hypervisor is in a well-defined state and it has not been tampered

with. Attacks against the hypervisor are threatening the whole TRESCCA

platform. Therefore the integrity of the hypervisor has to be measured at boot

time and maintained during runtime. Common practise is to rely on a chained

integrity measurement mechanism to boot the system with its hypervisor into a

trustable state. This functionality is essential for virtual machines and

applications putting their trust into its hypervisor.

Reference UC6, UC7

Priority High

Result Requirement partly covered in scenario 1 through TEE. Supported but not

fully validated using HSM-Mem.

FUNCT.5

Description Provide a Software Trusted Platform Module.

Rationale The Trusted Platform Module (TPM) is a hardware chip specified by the

Trusted Computing Group (TCG). It provides cryptographic primitives and a

secure storage location for encryption keys. TRESCCA will borrow some

concepts from the TPM specification and may implement a software based

TPM solution to achieve security features like trusted boot. The HSM-mem and

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

17

its SSM-mem software driver itself will not offer any TPM functionality. The

HSM-mem provides the base for a 100% software based TPM implementation

that can also be used for protection at runtime. HSM-mem is responsible for

enforcing confidentiality and integrity of external memory pages. To build a

Software TPM on top of the HSM-mem will facilitate the ability to implement

chained integrity checking and applications can benefit from a well-defined

interface for cryptographic functionalities and key management. While a

software-based TPM cannot build trust on its own, in combination with HSM

memory protection this can be extended to a trustable base on which multiple

instances will be possible. Especially for cloud application this is desirable.

Reference UC2, UC6

Priority Medium

Result Requirement partly covered in scenario 1 through TEE. No full support

for TPM functionality.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

18

4.3 Security requirements

SEC.1

Description Guarantee that a hardware and software trusted compartment exists inside the

light client

Rationale The most important security objective of the TRESCCA platform in order to

prevent that information cannot be compromised neither by software exploits or

hardware attacks

Reference UC2, UC6, UC7

Priority High

Result Partly implemented in integrated prototype (HSM-Mem, HSM-NoC). TEE

implemented on Versatile Express, Chromebook and Juno board.

SEC.2

Description TRESCCA will ensure robustness against software denial of service

Rationale The hardware and software extensions of the light client shall guarantee that,

whatever the currently running applications in the untrusted area and the load

they put on shared resources, the trusted compartment is still reactive and is

granted a sufficient access to the shared resources to render its nominal

services.

Reference UC2

Priority High

Result Requirement covered by HSM-NoC.

SEC.3

Description Remote attestation mechanism between the cloud provider and the light client

Rationale The attestation mechanism will certificate that the trusted compartment has not

been tampered with. For applications that are making use of the distributed

approach of TRESCCA need to rely on proper attestation of remote platforms.

This includes cloud and client side. Before sending sensitive information or

computing tasks the platform has to make sure that the other party is trustable

Reference UC2, UC7

Priority High

Result Requirement partly met by HSM-Mem, TEE and VM migration. However

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

19

not fully validated as part of a scenario or test.

SEC.4

Description Remote authentication of delegated processing in the light client

Rationale The trusted compartment shall provide means to authenticate computing tasks

that the cloud infrastructure or the end user delegates to the light client.

Reference UC2, UC7

Priority High

Result Requirement covered and validated in scenario 1 and 3 through TEE and

VM migration.

SEC.5

Description Software update and boot-to-boot integrity

Rationale This is required to fix discovered bugs or security flaws or to add new features.

Updating the software stack shall not compromise the trusted compartment.

Upgrades of the trusted compartment shall be authentic and there must be a

way for the cloud infrastructure and/or the end user to control the upgrade.

Reference UC2, UC6, UC7

Priority High

Result Requirement covered by HSM-Mem and TEE though not fully validated

as part of a scenario.

SEC.6

Description Isolation between applications

Rationale The trusted compartment shall guarantee the perfect memory isolation between

services unless they require memory sharing. The level of isolation is an

important requirement. The highest possible isolation would be achieved by

using completely different machines. To achieve a high isolation within a

platform, TRESCCA will integrate it from bottom up and use hardware

supported isolation. This is especially required when it comes to run different

applications with different level of trust on the same hardware platform.

Reference UC1, UC3, UC4, UC5

Priority High

Result Requirement met in scenario 1, 2 and 3 through HSM-NoC, TEE and

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

20

secure hypervisor.

SEC.7

Description Robustness against software exploits and other logical attacks

Rationale The consequences of a software exploit shall thus be limited to the attacked

application (containment of software exploits), will be one of the key features

of TRESCCA project.

Reference UC1, UC2, UC6

Priority High

Result Requirement covered by HSM-NoC and TEE. For TEE validated in

Scenario 1.

SEC.8

Description Computing and Storage Security

Rationale When it comes to computing and storing confidential or sensitive data reliable

functionality is needed. This includes the strength of used cryptographic

algorithms, proper length of encryption keys and securely encrypted storage to

store them as well as other sensitive data needed by applications.

Reference UC2

Priority Medium

Result Requirement not directly addressed in TRESCCA. Analysis of crypto

algorithms as part of HSM-Mem development and application of good

practices when designing security components.

SEC.9

Description Network Security

Rationale Whenever an application requires multiple parties for the fulfilment of a task it

needs the assurance of the platform that data is delivered over a secured

channel. This can be achieved by using end to end encryption via TLS

connections.

Reference UC2, UC7

Priority Low

Result Requirement covered in all scenarios through use of secure

communication. Though no new contribution by TRESCCA.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

21

SEC.10

Description Alteration Detection

Rationale Alteration detection includes the protection of code as well as data. At no time

it should be possible for an adversary to tamper with data or code. The highest

goal is to prevent any attempts coming from malicious users.

Reference UC2

Priority Medium

Result Requirement covered in scenario 2 through HSM-Mem protecting

integrity of data including protection against replay attacks.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

22

5 Scenario-specific evaluations and tests

5.1 Scenario 1 – Smart metering/energy management

5.1.1 Background

Wellness Telecom provides a cloud based energy monitoring platform, called WeSave. It consists of

the cloud infrastructure and a Universal Monitoring Device (UMD) located at the end-user premises.

In this scenario the UMD is represented and implemented on the Zedboard based demonstrator. The

UMD is a Python application running on top of an ARM-based Linux OS. The UMD is responsible for

collecting and storing metering data from connected smart meters. Additionally the UMD submits

collected data to the cloud and provides a Web UI. This UI is used by administrators for configuration

purposes and is the attack target. In this scenario it is assumed, that the attacker has physical access to

the hardware and the skills and abilities to read out and manipulate any RAM area used by the

application.

Figure 1 Architecture of WeSave application

5.1.2 Running the application

The application is started by typing “python main.py” at the command prompt which will then shows

the following output to the console.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

23

The application has been modified to output the physical address of a sensitive data used by the

application. In a real attack scenario this address would not be directly available to the attacker.

However, there are several techniques to search and analyze any memory area for such sensitive data.

The marked line shows the physical address (0x552E_9740) of a “secret key” of the UMD.

When connecting to the Zedboards IP on Port 8080 with a browser, the WeSafe configuration UI is

displayed including the value of the sensitive data.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

24

5.1.3 Unauthorized Access

When an attacker has physical access to the DMU he may read out the content of some sensitive

memory areas by sniffing directly on the wires between the CPU and the external RAM. In our

scenario, we use the UART-Attacker to emulate this attack. The UART-Attacker is UART-controlled

bus master located within the programmable logic (PL). Through commands received via the UART

the attacker can read any RAM location in the Regular Address Space (RAS) from 0x0000_0000 to

0x1FFF_FFFF. The same memory area can also be accessed through HSM-Mem and HSM-NoC in

the Alternative Address Space (AAS) from 0x4000_0000 to 0x5FFF_FFFF.

The UART module is connected via an RS232 interface to a PC. The PC runs two software tools,

which can either read or write memory locations through commands send to the UART-attacker via

the RS232 interface.

When HSM-Mem is deactivated, the attacker can read some sensitive data from the RAS by reading

out the content of the mentioned address 0x552E_9740. (The actual address of that location in the

RAS is accessed by subtracting 0x4000_0000 from the given physical address RAS_address =

0x552E_9740 – 0x4000_0000 = 0x152E_9740):

The given command writes the received data for that address to a file called “weSaveRAS”. The

content of the file can be inspected by entering:

Which will output the following data:

We now try to manipulate the data on that address by writing “4213374231” to this file and then

writing it back to memory by entering:

This results in the WeSave Application displaying the manipulated data

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

25

This attack has demonstrated a simple scenario for attacking a real world application like the DMU of

WeSave. In a similar way, any sensitive data of the application stored in the external RAM can be read

out and manipulated without any notice of the application. While the application has been modified to

output the physical address of a specific date, the attack would also be possible without it, given

enough time to read out and analyze the memory of used by the application.

The next section will demonstrate how the HSM-Mem and the HSM-NoC security measures can be

used to effectively prevent the demonstrated attack.

5.1.4 Defending the attack with HSM-NOC and HSM-Mem

The shown attack was realized by sniffing the signals directly from the wires to RAM which are

available in address space from 0x0000_0000 to 0x1FFF_FFFF and can be described as an external

attack. An attack can also occur as an internal attack, when the access to internal busses, e.g. through

compromised hardware or manipulated USB devices. In our scenario, the UART-attacker additionally

simulates an internal attacker in the address space from 0x6000_0000 to 0x7FFF_FFFF as shown in

the demonstrator architecture.

Figure 2 Architecture of TRESCCA prototype platform and address ranges.

5.1.5 Preventing an internal attack by HSM-NoC

The UART-Attacker is able to read out sensitive data (in this case only 4 bytes) by using the following

command

and shows

http://www.dict.cc/englisch-deutsch/additionally.html

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

26

Which are the first four bytes of the sensitive data string “0123871623”

After enabling the HSM_NoC driver

and denying read access with

reading the same address

results in

After re-enabling the read access

and writing some new data to the regarding address with

the new data can be displayed with

and shows

When the write access now is disabled by

Writing the old value with

has no effect. A read command at the regarding address displays no change in the contained value

5.1.6 Preventing an external attack by HSM-Mem encryption functionality

When HSM-Mems encryption functionality is active, every value written by the OS in the AAS is

encrypted. Therefore the direct read out on memory wires (RAS) results in useless data. Accessing the

same memory cells over the two different address spaces

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

27

results in encrypted

and unencrypted data

An unauthorized write to 0x150a4360 with some new value e.g. “4213374231” contained in the file

“writeNewValue”

results in some useless content in the regarding address

5.1.7 Preventing an internal attack by HSM-Mem integrity check

An unauthorised write to 0x750a4360 with some new value simulates an internal attack via the HSM-

NoC. The command

results in

After this, the AXI-bus does not accept any new transactions, which means the systems freezes and no

manipulation or reading of sensitive data in possible anymore.

5.1.8 Summary and conclusion

This section demonstrated and verified the functionality of the HSM-Mem and the HSM-NoC in the

context of the WeSave application. The DMU components running on the remote device has been

implemented on top of the Zedboard integrated prototype including the HSM-Mem and the HSM-NoC

hardware prototypes. The program was modified to output the physical address of a sensitive data that

is being attacked using the also integrated UART attack module.

As was shown, with no protection reading and manipulating the sensitive data through the UART

attacker was easily possible. With HSM-Mem enabled, reading the data could be prevented through

data encryption while manipulation could be prevented using the integrity protection feature of the

HSM-Mem. The internal attack on the memory bus could be prevented by using a rule in the HSM-

NoC firewall.

In this configuration the whole memory used by the Linux kernel and user processes was protected.

This made protection of the DMU very easy as no further setup and manipulation was necessary.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

28

Though there was a noticeable performance impact as all memory accesses have been processed by

the HSM-Mem. In an improved setup it would be preferred to configure protection only for those parts

of the memory that contain critical data.

5.2 Scenario 2 – Digital Right Management

Scenario 1 shows how TRESCCA features could improve the security of the DRM devices we use

everyday. However, it is out of the scope for the project to provide a full featured and integrated DRM

solution. In fact, the main objective of this scenario is to show how, integrating many of the

TRESCCA concepts and features in a DRM system, it is possible to avoid attacks to the protected

content and to the system's security assets.

Figure 5-3: DRM ebook reader evaluation

For example, if an attacker in the guest tries to read a book file, the book content will be encrypted

(right part of Illustration 1). An unencrypted copy of the file can't be found anywhere in the guest,

because the decryption is done on the fly only when the TEE is involved in the DRM file reproduction

(left part of Illustration 1).

Moreover, any unauthorized access from the guest and from the host to the security assets stored in the

TEE are forbidden. This will be demonstrated by developing a TEE attacker program, which randomly

tries to access to the Secure World applications.

Finally, in addition to ARM virtualization and security extensions, the DRM scenario could also

benefit from other TRESCCA features such as HSM-mem (e.g., to protect external memory), HSM-

NoC (e.g., to secure VM memory from attackers on the host) and hybrid migration (e.g., to move the

DRM application at the content provider side to upgrade software).

5.3 Scenario 3 – Securing transactions or authentications

Scenario 3 is based in an E-commerce context, where features of TRESCCA shall be used in order to

make the process more secure. However, it is out of the scope for the project to provide a full

integrated E-commerce solution but an integration of the main components and concepts required, has

been achieved. Thus far, the approach does not offer any direct security functionality and is by no

means more secure. However, by integrating other components developed in TRESCCA the foreseen

approach could demonstrate its benefits. Most promising is the integration of HSM-Mem to protect

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

29

external memory of moving VMs. Application developers can then decide to move to a target device

in order to benefit from memory protection for sensitive operations.

Figure 5-4 Illustration of implemented VM migration prototyp

The objective of this scenario is to demonstrate integrity and confidentiality of virtual machines while

they are being migrated. VMs are transferred between cloud and client in a serialized package

containing all necessary data to restore the current state of the VM. If an attacker gains access to the

serialized snapshot of a given VM he can easily leak or tamper with the data which can be seen in

Fehler! Verweisquelle konnte nicht gefunden werden.. It is inevitable to protect this data by

sending it over a secured channel. Even if an attacker will manage to sniff communication, it will not

be possible for him to resume execution of the VM in a foreign environment. This property can

directly be demonstrated by placing a man in the middle attack.

Figure 5-5:VM snapshots are exposed to integrity and confidentiality threats

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

30

Protecting VM packages during transfers from eavesdropping can be achieved in many ways. On the

one hand TLS is used to protect the communication channel between two tresccad instances.

Furthermore, a basic Public-Private Key Scheme has been implemented to protect VM packages. In

this way, they can be encrypted using the public Key PK_Host#x of the respective destination host.

These keys need to be exchanged before moving VM packages. Private keys need further runtime

protection that may come from other TRESCCA components. However, for implementing a real use

case, some PKI environment would be needed as well. Before executing foreign VMs, their origin

would need to be attested to assure they were created by trustworthy parties. Required keys could

either be stored in TPMs or the TEE. In this way, a key infrastructure would also allow signing VM

packages on each host, so that their entire execution trace can be validated.

5.4 HSM-NoC performance and cost analysis

5.4.1 Hardware performance and area costs

Figure 5-6 STNoC services at the network interface

The NoC Firewall service implemented at the initiator network interface (see Figure 5-6) is one of

many lightweight services that can be deployed at the network interface. It is based on simple low-

level primitives (coarse-grain segment-level protection) which can be virtualized to support isolation

of virtual machines (and guest OSs) from each other by protecting both logical attacks (virus, Trojans)

and security vulnerabilities, e.g. corrupt DMA engines.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

31

Component LUTs Registers RAMS Frequency (MHz)

HSM-NoC (16 seg.) 655 1082 12 348

AXI4 Bridge 723 971 220.6

STNoC (3x7) 24939 17983 129.3

IOMMU 11150 9860 14 + 2.3K

LUTRAM

204

Table 1 Synthesis results on the Zedboard Z7020 FPGA

As shown in Table 1, HSM-NoC synthesis results (area cost and frequency) for the Zedboard Z7020

FPGA compare favorably with other modules (STNoC and IOMMU) implemented on the same

technology. The complexity is in fact even smaller than an AXI4 bridge. In terms of performance,

HSM-NoC is non-intrusive, except when handling interrupts, which account for 90% of total access

time. For this reason, TEI is investigating into alternative kernel-assisted probing, as well as interrupt

coalescing mechanisms.

Figure 5-7 Spidergon STNoC system configurations to study the effect of security.We perform

experiments for up to 32-nodes connected to STNoC.

Evaluation based only on the implementation of a NoC Firewall module on Zedboard is rather limited

for extracting the value in terms of its implementation on top of a commercial NoC, such as STM's

STNoC. In terms of scalability, we have examined behavior of the NoC Firewall (time-annotated

based on RTL models) when it is implemented at the network interface for different network

configurations (e.g. see Figure 5-7) based on a cycle-approximate STNoC instance modeled in Gem5;

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

32

a full version of this model will be released to Gem5 community in July 2016, while a preliminary

beta version will also be available shortly as free software on http://gem5stnoc.sourceforge.net.

Figure 5-8 NoC delay for different STNoC setups, when firewall is on or off (logarithmic scale).

Figure 5-9 NoC power for different STNoC setups, when firewall is on or off.

Assuming a typical STNoC configuration, with delays of 1 cycle at the NI and 2 cycles at the router

and link, a link width of 16 bytes, a 72 bytes 5-flit STNoC packet (with 8 bytes header and 64 bytes

body) and with NI and router buffers sets to 5 flits, Figure 5-8 and Figure 5-9 show that an HSM-NoC

implemented at each NI initiator can relieve the NoC from unnecessary load in the presence of

malicious processes by stopping them prior to entering the NoC, thus reducing both NoC power and

total NoC delay and often avoiding network saturation (e.g. in 8CPU/8MEM and 16CPU/16MEM

cases). The greater benefits come when the number of relative malicious requests is large and also

when the NoC topology is large.

http://gem5stnoc.sourceforge.net/

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

33

Figure 5-10 NoC delay for different packet injection rates per cycle per CPU (scale is logarithmic), in

a setup with 2 CPUs and 2 memories interconnected with STNoC, link-width=8 Bytes. Injection rate is

the same across all CPUs.

Figure 5-11 NoC delay for different packet injection rates per cycle per CPU (scale is logarithmic), in

a setup with 8 CPUs and 8 memories interconnected with STNoC, link-width=8 Bytes. Injection rate is

the same across all CPUs.

Network saturation is related to the packet injection rate, and possibly with the incapability of the

network interface buffers to serve it, while the routing infrastructure and physical links eventually

often remain largely underutilized. Figure 5-10 and Figure 5-11 consider simulations with a 4-node

Spidergon (2 CPUs, 2 Memories) and 16-node Spidergon topology (8 CPUs, 8 Memories),

respectively. When the firewall is disabled the NoC becomes saturated for smaller values of the

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

34

injection rate (#packets/cycle/CPU), i.e. less than 0:05 packets per cycle and CPU. On the other hand,

when the firewall is active, as the number of malicious requests increases over the safe ones, the

injection rate that the system can serve without becoming saturated increases. In fact, in some cases,

e.g. 1S8M in 4-node network (see Figure x4), the firewall even prevents the system from becoming

saturated at any injection rate. Network saturation is also affected by different STNoC parameters, e.g.

link width or the number of packet flits. We have found that when the link-width is set to 8 Bytes the

system is not able to break down the packets in flits within a reasonable time, and consequently the

network experiences long delays.

5.4.2 Profiling of the NoC Firewall Driver

TEI has developed a single kernel module for HSM-NoC allowing simpler manipulation and

providing the possibility to examine driver performance issues. In this scenario, the main module

allocates two memory regions: one freely accessed where no rule exists (alternatively, an allow rule

could be in place), and another one which is denied read and/or write access by the NoC Firewall.

Then, two threads are generated using kthread()function: one protected thread accessing the rule-

free memory region, and another exploitation thread accessing the protected memory region (hence, it

falls in interrupt mode). Similar to the previous scenario, the exploitation thread represents a malicious

(or corrupt) driver. All accesses to memory regions are routed via the NoC Firewall and are timed by

calling the ktime_get() function to enable functional profiling and obtaining performance

characteristics.

During module entry:

 kmalloc, data initialization, virtual to physical address translation, as well as writing a segment or rule

register take on the order of 100 to 1K ns

 request_mem_region, ioremap (for range and rule registers) take on the order of 1K to 10K ns

 ioremap for IRQ register takes 10K to 100K ns

 registering the interrupt handler takes 70K to 700K ns

 creating each kthread is delayed 100K to 1.5M ns

During normal operation:

 successful data reads and writes take 100 to 1K ns, while reads that cause interrupt (denied read) take 10K

to 100K ns

 reads that cause interrupt (denied read) take 10K to 100K ns;

During module exit: freeing memory takes 100K ns.

Based on the above profiling, in relation to performance, we note that interrupt handling under linux is

very slow, taking approximately 90% of the total access time for both read and write accesses, thus

ratifying our results from the bare-metal examples. This high interrupt costs can be relieved by

redesigning the NoC Firewall, or implementing interrupt coalescing to reduce driver overhead.

5.4.3 Conclusions and outlook based on HSM-NoC evaluation tests

In order to shed some light towards future research directions in this exciting area, it is interesting to

present a glimpse at the (hidden from this deliverable) complete HSM-NoC research world. Several

results directly relate to HSM-NoC (NoC Firewall) research, including

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

35

 patenting virtualization-aware hardware mechanisms,

 developing open source system-level models (SystemC and Gem5) of the HSM-NoC and

integrating them at the network interface of a cycle-approximate gem5 STNoC model for design

space exploration, and

 designing the HSM-NoC architecture and an implementation in VHDL, performing synthesis and

integration with STNoC, prototyping on Zedboard (and Versatile Express), design and profiling of

bare-metal and GNU/Linux system driver and development of high-level security services; the

latter is actually the only HSM-NoC related result covered in this deliverable (in Section 4.2).

HSM-NoC research described above has laid the foundations for further R&D and commercialization

efforts concentrating on the following interesting topics.

 The design of an enhanced process-aware NoC Firewall which provides an improved interrupt service

backward compatibility with previous version.

 The design and integration of an extended NoC Firewall into each port of a multicast router, with deny

rules depending on physical address, as well as input and output ports.

 The design of distributed NoC Firewall synchronization mechanisms for consistent update of rules

(add/delete/modify).

 Integration of the NoC Firewall within an IOMMU, either at device table and/or page walk interface,

thus enhancing page-level protection.

5.5 HSM-mem hardware costs and performance overheads

This section is a summary of the performance evaluation of the HSM-mem. Its functional and security

evaluation is presented in D4.2.

5.5.1 Hardware costs

The resources usage of the HSM-mem plus the attacker, plus the debugging facilities (not presented in

D4.2) on the Xilinx Zynq-7020 FPGA, the Zynq core that equips the Zedboard prototyping board, is

summarized in the following table:

Resource type Usage

Glue logic (LUTs) 59.69%

Registers 3.67%

Memory (Block RAMs) 6.29%

DSPs 0%

The Zynq-7020 being the second smallest member of the family and the FPGA technology being far

less dense than its equivalent integrated circuits technology, this can be considered as very reasonable.

Using the (usually optimistic) Xilinx conversion ratio this can be estimated as about 750 k-gates or 3M

transistors. Manufactured in a 14 nm process the HSM-mem would occupy a silicon area of about 0.3

mm².

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

36

5.5.2 Memory footprint overhead

The flexibility of the HSM-mem protection, the ability to fine-tune it and to control it by software

comes at a price: the data structures used by the control are stored in the external memory. Moreover,

the Message Authentication Codes (MAC) use to protect the integrity of memory pages are also stored

in external memory.

The data structures occupy exactly 1/256 (0.39%) of the total memory space to protect. A 4GB

memory space, for instance, requires 16MB of data structures.

An integrity-protected read-only memory page adds to this a set of MACs that occupy 25% of the size

of the memory page. This overhead is 33% for integrity-protected read-write memory pages.

All in all, a system with 4GB external memory, 256MB of integrity-protected read-write memory and

1GB of integrity-protected read-only memory, would dedicate 16+256/3+1024/4=357MB (8.7%) of

its external memory to the data structures and MACs. Of course, this highly depends on the type of

applications and system memory layouts.

5.5.3 Performance overhead

In order to estimate the performance overhead introduced by the HSM-mem, several experiments have

been conducted in 21 different configurations that differ by the monolithic security policy applied to

the memory space of the software stack (the Linux kernel and the software applications running on top

of the kernel). They differ also by the granularity of the protection: the HSM-mem operates on

memory pages and supports various page sizes (4kB, 64kB, 1MB and 16MB). For various reasons that

go beyond the purpose of this chapter, both the security policy and the page size on which it is applied

impact the performance overhead.

In all these configurations a complete software stack (Linux, BusyBox, applications) has been run. On

top of it, several classical benchmarks for integer processing (Dhrystone), floating point processing

(Whetstone) and memory bandwidth (RAMSpeed, RAMSMP) have been used. Finally, the Linux

kernel initialization time has also been measured using the timed kernel messages.

The detailed results are presented in a dedicated chapter of the D2.4 deliverable. Two important

remarks must be considered when analysing these results:

 In 20 of the studied configurations the complete memory space is protected with a given,

unique, security policy. They are a worst case. In a realistic situation only memory pages

requiring protection would be protected and only with the lightest cryptographic primitive that

fulfils their security requirements. The results presented must thus be considered as absolute

upper-bounds. Implementing and evaluating more realistic situations, while perfectly feasible,

would have required huge software developments, including significant modifications to the

memory management sub-system of the Linux kernel, going far beyond the scope of

TRESCCA.

 The performance overhead introduced by the HSM-mem is mainly due to the increased

external memory latency: before returning read data to the processor, the HSM-mem must

discover what security policy to apply and apply it. A first consequence is that it is only on

CPU cache misses that the overhead is paid for. A second consequence is that, as the HSM-

mem itself implements several cache-based optimization techniques, the overhead, when any,

highly depends on the regularity of the memory accesses.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

37

5.5.4 Conclusions on HSM-mem performance evaluations

The hardware cost of the presented version of the HSM-mem is comparable to that of a typical

hardware accelerator and can be considered as perfectly acceptable for the typical TRESCCA edge

device target.

As can be seen from the D2.4 results, the Dhrystone and Whetstone benchmarks show no or negligible

differences between the configurations. This is due to the fact that most of the time they entirely fit in

the CPU caches and / or HSM-mem caches. The Linux start and init times are more interesting

because they are typical of an application that fetches a lot of non-cached data and code from the

external memory. The overhead introduced is more significant because of the very low level of

locality. It ranges from 1.3x to 50x slowdown. As logically expected, the worst overhead corresponds

to configurations where the integrity is protected by Merkle MAC trees and the confidentiality by

Cipher Block Chaining. Moreover, for any given security policy, it is worse for fine grain and better

for coarse grain granularity.

The memory bandwidth benchmarks show similar results: for small data blocks (1kB) the overhead is

very limited (less than 10% in the worst case) because most of the accesses fall in the CPU caches and

those which do not highly benefit from the HSM-mem internal caches. For very large blocks (32MB)

that render the CPU and HSM-mem internal caches completely useless, however, the overhead ranges

from 1.6x to 90x bandwidth reduction. And there again, the configurations where the integrity is

protected by Merkle MAC trees and the confidentiality by Cipher Block Chaining are the worst and,

among them, the finest the granularity, the worse the overhead.

The memory footprint and performance overheads, in the non-realistic worst cases, can be significant

but the protected device is still usable. In realistic situations where only the most sensitive assets are

protected and only with the most appropriate cryptographic primitives, these overheads would

probably be perfectly acceptable.

5.6 Validation of integration effort

During the development of the integrated platform as reported in D4.1, the components developed in

WP2 and WP3 have been integrated into one demonstration platform. The following table lists the

evaluation results of that integration process with respect to interoperability and integration effort for

the different components.

It should be noted, that effort is only estimated and validated on a technical level, analysing the

complexity and compatibility of the given technology with todays common System-on-Chip design.

No actual effort in terms of cost and effort are given.

Component Level Results

HSM-Mem On-chip communication

level

The resulting HSM-Mem hardware design

provides a 32-bit AXI-bus interface. This

interface is very common in ARM-based System

on Chips. Integration into the Zedboard prototype

was very easy as the whole design was based on

AXI.

Internally the HSM-Mem uses a VCI bus

interface. The adaptor can be used with different

+ + +

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

38

bus adaptors to use the same components with

different bus interfaces.

System-on-Chip level The HSM-Mem works on the level of memory

addresses and data. No specific customization to

different System-on-Chip architectures, not even

instruction set architectures would necessary.

+ + +

Software level Software integration proved to be more

challenging. No full integration into Linux or any

other operating system is available yet.

Configuration is generally possible from operating

system, though full integration requires

modification of memory manager of that

operating system. Currently only full protection of

operating system and application enabled by First

Stage Bootloader is available.

- -

HSM-NoC On-chip communication

level

HSM-NoC is designed with an AXI-interface.

Integration into the Zedboard prototype using

AXI-interconnect was possible without extra

effort.

Integration with other on-chip bus architecture

would require modification of HSM-NoC

interface.

+ +

System-on-Chip level HSM-NoC rules are defined and checked on the

level of physical address and segments. This

works practically in all system and processor

architectures.

However if rule checking should be extended

towards Virtual Machines, more changes and

specific support are needed for different

architectures.

+ +

Software level Linux drivers for HSM-NoC are available

enabling setting and checking of access rules from

applications.

Though currently no direct support is yet

available which would make sure that only the

kernel or the hypervisor enables or disables rules

during run time.

+

Secure

Hypervisor

System-on-Chip level The Secure Hypervisor could not be integrated on

the Zedboard due to the limitations of the

underlying prototyping platform. However it was

prototyped and tested on the VersatileExpress and

the Juno prototyping systems.

The Secure Hypervisor requires hardware

virtualization support available through the KVM

-

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

39

hypervisor and the ARM TrustZone hardware

feature.

This limits the use of the Secure Hypervisor to

ARM-based Systems with hardware virtualization

support. Though all recent SoC products released

during the last two years include that features.

Secure Hypervisor is not dependent on TRESCCA

HSMs though it would benefit from the additional

security. It is up to the application and the

developer whether this additional security is

necessary. However, products integrating

TRESCCA HSMs will not be available before

2017.

Software level No full integration has been done on the Zedboard

prototype.

The prototypes based on VersatileExress and Juno

provided all necessary features to setup and use

the Trusted Execution Environment of the Secure

Hypervisor from applications.

+

The development of the integrated platform has proven the general applicability and compatibility of

the developed TRESCCA hardware components. Though the Secure Hypervisor could not be

integrated into the same platform due to limitation of the prototyping system. This limited the

validation of the Secure Hypervisor and prevented using the Secure Hypervisor in combination with

the TRESCCA HSMs.

Also there are several requirements for integrating the HSMs into a System-on-Chip design. There is

no full compatibility with any architecture. Though the HSMs have shown to be adaptable to different

architectures or they at least support one very common bus architecture like AXI and the ARM

processor architecture. The effort for integration into future products is roughly comparable to any

other existing hardware IP components available on the market. Given the fact, that IP-based design

(design of SoCs based on third party IP core) is very common nowadays, integration of TRESCCA

HSMs does not generate more effort and cost than other typical IP components.

Software support for the HSMs is still limited. While there are drivers and example source code files

are available to initialize and configure the HSMs, more software is needed to integrate the HSM

features on the functional level of operating system. Currently it is either impossible or very difficult

to use specific HSM features from an application. For example the HSM-Mem could be configured

from the Linux kernel, however integration with applications would only work, if the memory

manager of the kernel is modified to be HSM-Mem aware, so that allocated memory segments could

be enabled with a configurable security policy.

Project: TRESCCA Document ref.: D4.3

EC contract: 318036 Document title: Report on evaluation and security assessment

of trustworthy cloud platform

 Document version: 1.1

 Date: 2016-01-23

40

6 Summary, conclusions and outlook

This report presented an overview on the activities and results generated by the TRESCCA consortium

in evaluating and validating technologies and application scenarios developed by the project.

In general, evaluation of TRESCCA has shown to be very challenging. There is a significant gap

between the low level hardware and software security components and the general cloud-based

applications scenarios identified in WP1. In some cases, this gap could not be fully bridged. However

the security technology developed by TRESCCA has been demonstrated and evaluated to full extend

and also proved to be applicable to a complex use case such as a Smart Meter Gateway (WeSave).

There are several approaches for evaluating and validating security solutions, though they are not

generally applicable. While TRESCCA has chosen the Scenario Based Design method, the approaches

chosen for evaluation were different depending on the evaluated technology, ranging from hardware

prototypes over proof-of-concept software demos to complete applications. This is mostly due to the

fact that the evaluation had to cover hardware security modules, protecting either on-chip or off-chip

communication as well as Virtual Machine migration and virtualization-based Trusted Execution

Environments.

The Consortium revisited the requirements, use cases and security threats initially defined in D1.1 and

D1.3. While some of them could be covered by TRESCCA directly, others were too general to be

addressed by TRESCCA. In this cases, future directions or potential uses of TRESCCA technology to

address such requirements were given.

The functional specifications and requirements of the different TRESCCA technologies have all been

validated in prototypes and proof-of-concept implementations. An integrated prototype running the

WeSave application and including all components (except virtualization-depending components) has

proven that the components can be combined and orthogonally enhance the security of embedded

cloud edge devices.

Though limitations of the underlying prototyping platforms prevented a full integration. The

Consortium had to find a good trade-off between cost, complexity and limitations of the prototyping

platform. The Zedboard proved to be the best trade-off but at the cost of not being able to integrate

hardware-supported virtualization. Still alternative prototype platforms, such as the Versatile Express

and the Chromebook enabled validation of those technologies that could not be fully integrated.

There are several different directions in which the outcomes of TRESCCA can be used and exploited.

For instance, the hardware security could be scaled up towards integration into server platforms but

also scaled down towards smaller and more light-weight systems. Also TRESCCA technologies could

be used in future R&D projects in a more application centric scenario. In this case, the gaps between

the security technology and the cloud application scenarios could be bridged by an additional

middleware layer, making the security provided by the hardware easier to access and exploit by the

software services.

