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1 Introduction 
This is the accompanying report for the prototype deliverable D4.1. This deliverable documents the 

development process and the results of the client prototypes that are being developed within WP4 of 

the TRESCCA project. Following a recommendation of the 1st Technical Meeting, the partners of the 

consortium have initially developed several earlier individual prototypes that eventually would be 

integrated into larger prototypes demonstrating multiple or all of the TRESCCA technology 

components. The client prototypes will be used in Task 4.2 to develop scenario-oriented cloud-based 

applications for final evaluation of the TRESCCA results. 

Chapter 2 presents the different target platforms considered for the integrated platforms and explains 

why towards the end the Xilinx Zynq device and the Digilent Zedboard were chosen as the primary 

platforms despite shortcomings in the virtualization support. 

Chapter 3 describes the hardware and software architecture of the integrated prototype, which towards 

the end of the project integrated the HSM-Mem, two HSM-NoC firewall and a STNoC interconnect 

together with an UART-controlled attacker. This setup provides a good and easy starting point for 

testing and validation of the individual components as well as for setting up and deploying larger 

applications like the WeSave application of WT. 

In Chapter 4 an overview on the individual prototypes developed during the project is given including 

a performance analysis of running Virtual Machines on the Zedboard without hardware virtualization 

support. 

The report ends with a conclusion and outlook in Chapter 5. 
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2 TRESCCA client prototyping platforms 
We define a TRESCCA client device as a general embedded computing platform incorporating one or 

more TRESCCA security components, which can be hardware and/or software. The initial goal of this 

task was to develop an integrated TRESCCA prototype platform that could be used for all application 

scenarios and for evaluating each of the TRESCCA security components. However during the first one 

and a half year of the project it became clear that there would not be one platform that would serve all 

prototyping requirements. Most importantly, the prototype platform needs to provide hardware 

prototyping capabilities, i.e. it needs to incorporate an FPGA, enabling us to implement and integrate 

hardware components in addition to an existing System-on-Chips. Also, the components developed in 

WP3 require hardware virtualization support which is not yet commonly available in embedded 

computing platforms. In the end, the partners decided to use and develop several platforms, with the 

Digilent Zedboard being the primary platform and other alternatives used for cases in which the 

Zedboard was not usable. The following sections give an overview on the different platforms 

considered and for which use cases they have been used. 

2.1 Xilinx/Digilent Zedboard 
In a TRESCCA client device the HSM-Mem sits between the on-chip system interconnect and the 

controllers of external memories. In most existing Systems on Chip (SoC) the layout of the memory 

architecture is frozen and cannot easily modified to add the HSM-Mem. 

The Zynq SoC by Xilinx [1] is a notable exception and is thus a very interesting hardware target to 

prototype and evaluate the HSM-Mem technology. A Zynq SoC (see Figure 1) embeds a classical 

microprocessor and its peripherals (an ARM dual core Cortex A9) and a Field Programmable Gate 

Array (FPGA) matrix on the same silicon. As shown on Figure 1, the microprocessor subsystem is 

denoted Processing System (PS) while the FPGA part is denoted Programmable Logic (PL). Thanks to 

the PS it is possible to turn a Zynq-based system in a regular Personal Computer (PC). GNU/Linux 

complete distributions have been ported on Zynq-based systems. 

A Zynq-based board like, for instance, the ZedBoard by Digilent [2] (see Figure 2) is thus a good 

representative of the typical TRESCCA client (PC, set-top boxes, game consoles, smart meters, etc.) 

But the PL is really what makes Zynq a very appealing target for TRESCCA: it can be used to 

implement any hardware peripheral at a very reasonable cost and with good performance. Moreover, 

the microprocessor can access the external memory either directly through its memory controller (red 

path on Figure 1) or indirectly through the PL (blue path). It is thus possible to configure the PL to 

implement the HSM-Mem and to route part or all of the PS memory accesses through it. 
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Figure 1: The Xilinx Zynq architecture 

 

Figure 2: The Zynq-based ZedBoard by Digilent 
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Finally, the PL can also be configured to embed hardware emulators of attackers. These emulators can 

be used to tamper with the memory accesses and validate the countermeasures implemented by the 

HSM-Mem. 

Figure 2 shows the ZedBoard by Digilent with its Zynq core (centre), the two external DDR memory 

chips (to the left of the Zynq core) and the various Inputs/Outputs (I/Os): Ethernet, audio, video, 

switches, etc. For all the above-mentioned reasons, the Xilinx-Zynq and the ZedBoard have been 

retained as the demonstration platform of choice for the TRESCCA HSM-Mem technology. 

Despite its very good properties there are several limitations to this choice: 

- The PL maximum clock frequency is about 4 to 5 times less than the clock frequency of the 

PS. When routing the PS memory accesses through the PL, a performance penalty is thus 

added1 that blurs the overall performance degradation due to the HSM-Mem operations. As a 

consequence, accurate evaluations of the performance impact of the HSM-Mem are much 

more difficult. In order to overcome this, the clock frequency of the PS can be artificially 

reduced to match that of the PL. The performance evaluation can now be done very accurately 

at the expense of a global slowdown of the prototype of about one order of magnitude, 

compared with an actual client. This can be considered as acceptable for a prototype. 

- The Cortex A9 microprocessor by ARM pertains to the ARMv7-A, 32-bits, architecture and 

lacks the hardware virtualization support that equips more advanced ARM processors. If it is 

an (almost) perfect target for the HSM-Mem prototyping, it is thus not the ideal one for 

experiments and demonstrations about virtualization. A Cortex A15 would be a much better 

target. 

2.2 VersatileExpress 
The secondary option considered for the client prototype is the ARM Versatile Express platform. This 

prototyping platform available from ARM, enables flexible configurations of ARM CPU cores and 

peripheral HW through the use of CPU and FPGA modules that can be plugged into a base board. 

However, due to the high costs and the limited availability it is currently only an option for partners 

who already own such platform. The advantage over the Zeboard is that it enables the use of other 

ARM CPU cores up to the upcoming 64-bit ARMv8 cores. 

 

Figure 3 Versatile Express development system 

                                                      

 

1 That adds to the one due to the HSM-Mem operations. 
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ST and TEI are investigating options to prototype and implement the HSM-NoC on the Versatile 

Express system. While more complex and expensive than the Zedboard, the Versatile Express board is 

more powerful due to its large flexibility and larger FPGA fabric. It would allow integrating multiple 

fully-featured NoC firewalls in combination with the STNoC on-chip network and the HSM-Mem. 

Also it would enable us to use other more advanced ARM-CPUs such as the Cortex-A15 or later, also 

providing hardware support for virtualization. Depending on the results of the investigations and the 

availability of the VersatileExpress system, ST, TEI and CS agreed to collaborate on the development 

and integration work for that system. If work on the Zedboard progresses as expected and use of the 

VersatileExpress seams feasible, work on that platform will be done in parallel to the Zedboard-based 

development. 

The Versatile Express platform is used for one of the HSM-NoC demonstrators.  CS started to work 

on a fully integrated prototype client using a Versatile Express provided by ST and TEI. However it 

turned out to be complex, so CS focused on the Zedboard for integration. 

2.3 Samsung Chromebook 
A Chromebook is a lightweight computer laptop which follows specifications defined by Google. It 

designed to be lightweight and compact. Typically Chromebooks run ChromeOS (a modified Linux 

version using Google Chrome and Chrome applications). While nowadays, there are Chromebooks 

using Intel x86 CPUs, typically Chromebooks use ARM-based SoCs that are comparable to the ones 

used in high-end smartphones. 

 

Figure 4 Samsung Chromebook 

The Samsung Chromebook used in TRESCCA includes a quad-core Cortex-A15 SoC, providing 

hardware virtualization support and TrustZone. This enables us to implemented two main features of a 

TRESCCA platform: a Trustworthy Execution Environment based on TrustZone and a framework for 

virtualization and VM migration. However the Chromebook SoC does not include any kind of 

hardware prototyping options, hence the TRESCCA hardware components cannot be included. 

The Samsung Chromebook is used in TRESCCA for implementing and demonstrating tresccad, the 

VM migration service, and the TEE. For this purpose a linux-based operating system is required. For 

higher flexibility the ChromeOS has been replaced by Ubuntu 14.04.  
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2.4 ARM Juno development platform 

 

Figure 5 ARM Juno platform 

The ARM Juno platform is a prototyping system provided by ARM for ARMv8 (64-bit ARM) 

development mainly targeted at silicon and low-level software developers. It is one of the earliest 

available platforms for 64-bit ARM development, though it is not be used for actual product 

development. Its price is in the same range as the predecessor, the Versatile Express system. 

In TRESCCA, the Juno board is used by Virtual Open Systems for prototyping the Trusted 

Execution Environment. 

2.5 Virtual prototypes 
During the first year of the project no hardware prototypes were available. Instead virtual prototypes 

of the hardware components have been developed based on their functional specifications. Hence, 

those prototypes were fully functional, providing the same features and interfaces as the final 

hardware implementations. Though, as being virtual, they could only be used for simulation and 

integration into larger virtual prototypes of whole System-on-Chips. The three main virtual 

prototyping technologies used were Gem5, SystemC/SoCLib, ARM Fastmodels, QEMU. For 

reference, a short description of each technology is given here. For details on the virtual prototypes 

using Gem5 and SoCLib please refer to deliverable D2.2. 

2.5.1 SystemC/SoCLib 

SystemC is the well-known IEEE standard 1666 for system-level modelling. It is modelling language 

and simulator available as a C++ class library which is used on top of standard C++. It provides 

modelling elements and means to create executable models of parallel systems consisting of modules 

with parallel processes, ports, and communication channels. Originally developed as a C-based 

hardware description language, it has now grown into powerful language for virtual prototyping as 

well as high level synthesis of electronic circuits. TLM 2.0 is a SystemC-based modelling technique 

and library which enables the creation of so-called Transaction Level Models of hardware systems 

which are more abstract with respect to structure, function and timing compared to more traditional 



Project: TRESCCA Document ref.: D4.1 

EC contract: 318036 Document title: System-on-Chip and FPGA-based prototype 

  Document version: 1.0  

  Date: 11th of November 2015 

 

Page 11/25 

RT-level hardware models. Many virtual prototype models and tools available today are either based 

of or at least compatible with TLM 2.0 enabling interfacing of models and simulators from different 

vendors. 

SoCLib is an open platform for virtual prototyping of Multi-Processors System on Chip (MP-SoC) 

based on SystemC. The project started as a French publicly funded project. It is now maintained at 

Lip6. The core of the platform is a library of SystemC simulation models for virtual components (IP 

cores). The main concern is true interoperability between the SoCLib IP cores. All simulation models 

are written in SystemC, and can be simulated with the standard SystemC simulation environment. Two 

types of models are available for each IP-core: CABA (Cycle Accurate / Bit Accurate), TLM-DT 

(Transaction Level Modelling with Distributed Time). All simulation models and most associated 

tools are distributed as free software.  

In TRESCCA SoCLib is being used for developing and simulating the HSM-Mem prototype 

integrated into ARM or MIPS-based system-on-chips. 

2.5.2 Gem5 

Gem5 is a computer architecture simulator initially developed at the University of Michigan and now 

supported and used by other universities and companies, such as ARM, AMD, Texas Instruments and 

HP. It is a merge of two previously separate simulators namely M5 and GEMS. In contrast to SystemC 

(which does not come with any actual models), Gem5 is not an HDL, but has been developed as a 

computer architecture modelling framework mainly used for concept validation and preliminary 

exploration studies. It is an open, high-level, configurable simulation framework, already including 

multiple ISAs, and diverse CPU models, as well as a detailed and flexible memory system. It includes 

multiple cache coherence protocols and interconnect models and currently supports most commercial 

ISAs (ARM, ALPHA, MIPS, Power, SPARC, and x86), including booting Linux on three of them 

(ARM, ALPHA, and x86). 

In TRESCCA Gem5 is being used by TEI for developing prototypes and system simulations of HSM-

NoC-based systems. 

2.5.3 ARM Fast Models 

ARM Fast Models are virtual prototypes of ARM processors and System-on-Chip commercially 

available from ARM itself. The models themselves use proprietary technology, however they can be 

extended with SystemC and other 3rd party models through TLM 2.0 interfaces. 

The models are available for a wide range of ARM processor architectures and IP components and can 

be used with standard software compilers and debuggers. 

In TRESCCA ARM Fast models are being used by VOSYS for developing the TEE and secure 

hypervisor. 

2.5.4 QEMU 

QEMU is an open-source emulator which was originally developed for emulating non-x86-based 

processor architectures on x86 processors. Since its beginning it has grown into a system which can 

emulate full computing systems including GPUs, network interfaces, etc. Nowadays it is mostly used 

to emulate peripheral components for Virtual Machines, where the CPU itself is not emulated but 

using the hardware virtualization support of modern desktop CPUs. However such approach does only 

work if the host CPU has the same Instruction Set Architecture (ISA) as the CPU of the Virtual 

Machine. 

In TRESCCA, QEMU has been used to emulate Versatile Express based systems. In that use case, 

QEMU emulates a Versatile Express including its CPU module and all standard peripheral 
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components found on a Versatile Express system. The CPU features emulated by QEMU include 

TrustZone, so it is possible to run the OP-TEE in a QEMU-emulated virtual machine. 

One drawback of QEMU is, that it cannot be easily extended with custom hardware, such as the HSM-

Mem and the HSM-NoC. There are approaches using the PCI-Express interface provided by QEMU to 

connect SystemC modules, though this would require that the SystemC modules simulate a PCI 

express interface, which is not a common case. Also QEMU has been designed with fast performance 

and not exact hardware simulation. Therefore QEMU is not suitable for doing performance analysis of 

hardware systems. 

2.6 ARM-based development boards 
Additional alternatives for prototyping to be considered are typical ARM development boards, similar 

to the RasberryPI, the ODROID board or the Cubieboard. Those development boards usually contain 

an ARM-SoC in combination with typical peripherals and interfaces, such as USB ports, HDMI 

connectors and SDCard slots. The clear disadvantage of these boards compared to the Zedboard and 

the VersatileExpress is the missing FPGA area. The hardware of the devices is fixed and therefore any 

integration of the HSM-NoC and HSM-Mem is infeasible. However the boards are quire affordable, 

starting at ca. 50 EUR, and are available with up-to-date ARM CPUs such as Cortex-A15 or Cortex-

A7 providing features such as hardware supported virtualization (which is not available on the Zynq 

device).  

While not usable for the final prototype such boards could be used for intermediate prototypes 

showcasing only software-based features, e.g. using the Secure Hypervisor and TEE in combination 

with hardware virtualization and TrustZone. Also, due to their good software support, they are also a 

good starting point for application development before moving to the more complex FPGA-based 

platforms. 

An overview and comparison of potential candidates to be used in TRESCCA is shown in Table 1. 

The most promising candidate is the Cubieboard2 or the Cubietruck which both include a dual-core 

Cortex-A7 SoC. This processor has been designed by ARM for low cost mobile applications or as the 

low-power helper processor for the so called big.LITTLE multi-core architecture (high performance 

processors (e.g. Cortex-A15) in combination with small low power processors).  The big advantage of 

the Cortex-A7 is that despite being small and not very expensive it already includes most of the 

advanced ARM instruction set features including hardware virtualization support. 

 

Board Cubieboard1 Cubieboard2 Cubietruck 
(Cubieboard3) 

PandaBoard PandaBoard ES 

SoC Allwinner A10 Allwinner A20 Allwinner A20 OMAP4430 OMAP4460 

CPU Core(s) 1 x Cortex-A8 2 x Cortex-A7 2 x Cortex-A7 2 x Cortex-A9 2 x Cortex-A9 

RAM 1 GB 
DDR3@480M 

1 GB 
DDR3@480M 

1/2 GB 
DDR3@480M 

1 GB DDR2 1 GB DDR2 

Flash 4GB NAND, up 
to 64 GB 
micro SDCard 

3.4GB NAND, 
up to 64 GB 
micro SDCard 

8GB NAND, 
micro SDCard 

SDCard SDCard 

USB 2xUSB2, 
1xUSB2-OTG 

2xUSB2, 
1xUSB2-OTG 

2xUSB2, 
1xUSB2-OTG 

2xUSB2, 
1xUSB2-OTG 

2xUSB2, 1xUSB2-
OTG 

Ethernet 10/100 MBit 10/100 MBit 10M/100M/1G 
MBit 

10/100 MBit 10/100 MBit 

Wifi only via USB only via USB Wifi, BT WiFi,BT WiFi,BT 
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Video IO 1080p HDMI 
out 

1080p HDMI 
out 

1080p 
HDMI&VGA out 

HDMI out HDMI out, DVI-D 
out 

IO 96 extended 
pin 

96 extended 
pin 

54 extended 
pins 

camera, 
display/LVDS, 
expansion 

camera, 
display/LVDS, 
expansion 

Price 50-64 EUR 60-75 EUR 90-100 EUR 150 EUR 180 EUR 

Availability Good Good Good Good Bad 

Remarks     "Made for 
products " 

    

Table 1 Overview and comparison of possible ARM development boards for TRESCCA 

At the end of the project, none of the investigated boards were used for prototyping. Though WT did 

initial experiments using the Cubieboard before finally moving to the Zedboard for the final 

implementation. 
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3 Zedboard-based integrated prototype 
The Zedboard-based integrated prototype is a full integration of all TRESCCA hardware components 

into a single prototype platform. The Zedboard was chosen as it is available to all partners due to its 

low costs. Also the FPGA resources provided are sufficient to implement also larger and more 

complex components like the HSM-Mem and the Network-on-Chip. 

3.1 Hardware architecture 
In addition to the processing system (dual-core ARM Cortex-A9, DDR RAM controller, UART, 

Ethernet, MMC, etc.) of the Zynq device the hardware architecture of the integrated prototype 

includes: 

 An STNoC (Network-on-Chip) with two master input ports and one slave output port 

 2 HSM-NoC (Network-on-Chip firewalls) 

o 1 placed between CPU and STNoC 

o 1 placed between on-chip attacker and STNoC 

 1 HSM-Mem placed between STNoC and DDR-RAM controller 

 1 UART-controlled attacker module (acting as internal and external attacker) 

A simplified view of the architecture is shown in Figure 6. The orange components are provided by 

TRESCCA partners (HSM-NoC – TEI, STNoC – ST, HSM-Mem, Attacker – IMT). For the purpose 

of illustrating the use cases and attack scenarios covered by the prototype, the UART controlled 

attacker is shown as two separate components. However it is in fact one component acting as attacker 

to the memory bus (between HSM-Mem and DDR-Ctrl) as well as an internal on-chip attacker with 

full access to the internal bus. 

 

In a real world scenario, the external attacker would actually attack the bus signals between the DDR-

RAM controller and the external memory.  The internal attacker could be another System-on-Chip 

component like a GPU or USB controller. Such internal attacker could intentionally be malicious or 

just by accident, e.g. if there is a malfunction. 

Figure 6 Simplified view of architecture of integrated prototype 
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The detailed architecture of the whole setup including the address ranges used by the different 

components is shown in Figure 7. 

 

Figure 7 Detailed architecture of integrated prototype 

3.1.1 ARM-CPU 

The ARM CPU of the Zynq processing system is a dual-core Cortex A9. Though in the demonstrator 

only one core is used. The Cortex-A9 supports the ARMv7 instruction set including extensions such as 

TrustZone. The ARM CPU can either access the DDR-RAM directly or through the programmable 

logic through the NoC firewall, the STNoC and the HSM-Mem. 

The address space to use either of the two paths are: 

 0x0000_0000 – 0x1FFF_FFFF for direct access to the DDR-RAM 

 0x4000_0000 – 0x5FFF_FFFF for access through the programmable logic 

Both address spaces map to the same addresses in DDR-RAM, e.g. accessing address 0x4500_0000 or 

0x0500_0000 would be the same location in memory. 

It should be noted that the DDR-RAM is only accessible starting from an offset of 0x01000_0000 of 

the respective base address. Below that address only on-chip RAM can be accessed, however only via 

the direct access. 

In addition to the memory address ranges, the CPU has access to the configuration registers of both 

HSM-NoCs and the HSM-Mem. Those are accessible via the following base addresses: 

 0x8000_0000 : HSM-NoC 1 (between CPU and STNoC) 

 0x8001_0000 : HSM-NoC 2 (between Attacker and STNoC) 

 0x8100_0000 : HSM-Mem 
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Via those configuration registers the rules of the HSM-NoC as well as the security policies of the 

HSM-Mem can be configured. No other component in the system has access to these registers, i.e. the 

CPU is in control of the security enforced by HSM-NoC and HSM-Mem. 

3.1.2 HSM-NoC 

The HSM-NoC firewall instances integrated into the prototype are identical to the stand-alone versions 

implemented on the Zedboard and the Versatile Express. However there are now two instead of one. 

As can be seen from Figure 6 one HSM-NoC is located between the CPU and the STNoC while the 

other one is located between the internal attacker and the STNoC. The former is supposed to protect 

the path from the CPU over the STNoC through the HSM-Mem to the DDR RAM. The latter is 

supposed to protect the internal bus (STNoC) from the attacker. 

Both HSM-NoC allow to setup several memory ranges for which rules can be defined. If the address 

of any incoming bus transaction is within one of the defined ranges, the corresponding rule for that 

range will be checked. If the rule denies the requested access, the transaction will not be forwarded but 

instead completed by the firewall returning invalid data. Also the firewall will issue an interrupt to 

signal that a rule was activated. 

The interrupt signal of the HSM-NoCs are both connected to the CPU, hence the CPU will be notified 

by any invalid access trying to pass through the firewalls. 

The address ranges covered by the two HSM-NoCs are: 

 0x4000_0000 – 0x5FFF_FFFF for the firewall between CPU and STNoC 

 0x6000_0000 – 0x7FFF_FFFF for the firewall between Attacker and STNoC 

Both firewalls are designed to tie the first 3 most significant bits of the address of any incoming 

transaction to 0 at the output, i.e. the address of the outgoing transaction will be between 0x0000_0000 

and 0x1FFF_FFFF. While this is not relevant for the CPU and the Attacker, it is relevant for any bus 

component located at the output of the firewall, i.e. the STNoC and the HSM-Mem will only see 

transactions within that range. This is also the address range that will be active at the input of the 

DDR-RAM controller from the programmable logic. 

3.1.3 STNoC 

The STNoC is network-on-chip specifically designed for this prototype by ST. It provides two input 

ports (1 for each firewall) and one output port to the HSM-Mem. All transactions incoming to the two 

input ports are forwarded to the output port. No modifications are applied to either addresses or data 

used by the transactions, hence all transactions appear at the HSM-Mem as they have left the firewalls. 

3.1.4 HSM-Mem 

The HSM-Mem is integrated between the output port of the STNoC and the input port of the 

processing system, which itself is connected to the DDR-RAM controller. Any bus traffic leaving the 

firewalls will be forwarded to the input of the HSM-Mem. Depending on its configuration, data will 

either just passed or protected for confidentiality and/or integrity. 

The configuration registers of the HSM-Mem can only be accessed from the CPU. The base address of 

the registers is 0x8100_000. 

3.1.5 UART-controlled attacker 

The UART controlled attacker has been design by IMT for integration into the HSM-Mem prototype 

system and the integrated prototype.  It has been designed to enable easy generation of bus 
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transactions inside a TRESCCA prototype design from a PC or laptop through a simple UART 

interface. 

The basic structure of the attacker is shown in Figure 8. The module consists of a bus master module 

which is able to generate read and write transaction via its right master interface. The right master 

interface can be connected to any AXI-compatible bus interface. Via its left master interface the bus 

master module is directly connected to a UART IP core accessing the receive and transmit registers of 

that core. Internally the bus master has a set of registers which can be read and written by sending the 

right commands via the UART. The bus master will receive that commands by constantly polling the 

receive register of the UART and respond by sending data to the transmit register. By writing a certain 

set of commands to the bus master, any terminal client connected to the UART interface can generate 

read and write transactions on the bus. 

For example, by first sending a “set-address” command to the internal register of the bus master, and 

then sending a “issue read request” command, the bus master will generate a read transaction with that 

address on the bus. After sending another “read-data” command to the bus master, it will respond with 

the value returned by the read transaction. More details on the structure and use of the attacker module 

can be found at https://secbus.telecom-paristech.fr/raw-

attachment/wiki/Downloading/uart2maxilite.pdf. 

 

In the integrated prototype the UART-controlled attacker is used to play the role of two possible 

attackers to the system: 

 An internal attacker, for example trying to access memory used by software running on the 

CPU or running a denial of service attack by constantly generating transaction on the on-chip 

bus. 

 An external attacker trying to read and/or manipulate data running between the System-on-

Chip and an external memory. 

For this purpose the bus master interface of the attacker has been split to two outputs with different 

address ranges: 

 0x0000_0000 – 0x1FFF_FFFF: This output is directly routed to the DDR-RAM controller, 

bypassing the HSM-Mem, and by this playing the role of the external attacker. 

 0x6000_0000 – 0x7FFF_FFFF: This output is connected to the input of the second firewall, 

playing the role of the internal attacker. 

3.2 Software architecture 
The software architecture of the integrated prototype consists of base software supporting the test and 

evaluation of the integrated components as well as the setup and execution of applications. While the 

prototype can be used with bare metal applications (manual programming of hardware, no operating 

On-Chip 

Bus 
Bus 

Master 
M UART 

rx 

tx 
M S 

UART-Attacker 

read/write 

Figure 8 Structure of UART-controlled attacker 

https://secbus.telecom-paristech.fr/raw-attachment/wiki/Downloading/uart2maxilite.pdf
https://secbus.telecom-paristech.fr/raw-attachment/wiki/Downloading/uart2maxilite.pdf
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system) in general, the prototype comes with a set of startup scripts and loaders to automatically 

initialize the hardware design and start a Linux environment. 

3.2.1 SW setup and startup process 

The whole software environment is available as a set of files which are put on a FAT32-formatted SD 

card. The SD Card is put into the Zedboard and the Zedboard is powered on. The system then 

automatically runs through the startup process shown in Figure 9. Initially a first stage bootloader 

(FSBL) is loaded which initialized and calibrates the processing system of the Zynq device. Then the 

FSBL loads the hardware programming bitfile for the FPGA. After the programming, the 

programmable logic contains the architecture described in 3.1. Finally the FSBL loads U-Boot. 

 

Figure 9 Software startup process of integrated prototype 

U-Boot is common boot-loader used for loading Linux on embedded systems. U-Boot is open-source 

and can be customized to support different hardware architectures and boards. U-Boot loads the three 

main components of Linux: 

 Device tree – contains all information on devices present in the hardware systems including 

system memory, base addresses of registers, IRQ numbers and configuration properties 

 Kernel – the actual operating system kernel 

 Ramdisk – a minimal rootfile system of the operating system which is loaded into RAM. Any 

changes made during runtime are lost after a reboot. 

U-Boot and the Linux kernel have been configured to have Linux use the address range of 

0x4800_0000 to 0x5FFF_FFFF as system memory, hence all memory accesses generated by Linux 

will fall into that range and therefore be routed through the STNoC and the HSM-Mem. 

In principle the kernel would still be able to access physical addresses outside of that range, however 

they would not be recognized as RAM but only as addresses for memory-mapped I/O. 

3.2.2 Linux operating system 

The Linux provided with the integrated prototype is a minimal Linux enabling tests and execution of 

demo applications. It can either be accessed by serial console (USB-cable connected to Zedboard) or 

via network (if ethernet cable is plugged in). There is no support for graphical output via the HDMI 

port. 
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After successful boot, the user is greeted with a login prompt. Users can then login to the system, run 

tests and applications. To support easy use of user-defined files, the system automatically mounts the 

SD-Card file system, hence any file available on the SD card can be accessed from the system. 

Though designed as a minimal system, the rootfile system includes Python 2.7 enabling easy setup and 

execution of the Python-based WeSave application. 

Additionally the system includes the tool devmem, which can be used to easily access any physical 

address reachable from the CPU. This significantly eases the task of initially checking the existence of 

custom hardware components by testing access to their registers. 

3.2.3 HSM-NoC Linux driver 

The HSM-NoC Linux driver has initially been designed by TEI in WP3 and tested in the HSM-NoC 

Zedboard prototype. 

For the integrated prototype, the drivers have been modified by CS. The main reasons and the 

resulting modifications are: 

The initial driver was designed for one firewall with a fixed configuration address and IRQ number. 

However there are now two instances with different configuration addresses and IRQ numbers. 

Therefore the drivers have been modified to enable the setting of such parameters when loading the 

drivers into the kernel. 

The initial scenario used a Linux running in the range of 0x0000_0000 to 0x1FFF_FFFF (low memory 

range) with direct access to the memory. The memory range of 0x4000_0000 to 0x5FFF_FFFF (high 

memory range) was routed through the HSM-NoC to the DDR-RAM but only available as IO 

memory. The protected process allocated memory in the lower address range while the attacker 

process tried to access that memory via the higher memory range (through the firewall). When the 

firewall was active, that access was successfully prevented. 

In the current scenario of the integrated prototype, Linux is already using the high memory range 

routed through the firewall. For a similar approach the role of attacker and protected process needed to 

be modified. The attacker is now trying to access the memory through the high memory range, while 

the protected module allocated IO memory in the lower memory range.  

Figure 10 and Figure 11 are illustrating the different approaches. 
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Figure 10 Initial TEI scenario with Linux accessing RAM via low memory range 

 

Figure 11 Scenario of integrated prototype with Linux accessing RAM via high memory range 

Though for the final test scenarios the focus will be on the second firewall protecting the internal bus 

from the attacker. The attacker is independent of the CPU and provides the more realistic scenario, 

where some System-on-Chip component other than the CPU tries to access memory or generates 

denial-of-service attacks. Here the protected process can allocate memory provided by the kernel 

within the high memory range, while the UART-controlled attacker is trying to access that memory 

from his position. The firewall can be configured via the driver to protect that specific memory area, 

preventing the attacker from accessing and manipulating it. In case of an invalid access detected by the 

firewall, an IRQ will be issued, which will be handled by the IRQ handler of the HSM-NoC driver. 
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3.3 UART attacker sample programs 
IMT has provided a set of elemental attacker programs that can be used on a Linux PC or Laptop 

connected via a serial cable (or USB-to-Serial adapter) to the UART-controlled attacker. 

The programs included are 

 uart2mem_read: Read and return the value at a given address. 

 uart2mem_write: Write a given value to a given address. 

 uart2mem_f2m: Write the content of a given text file to a given address. 

 uart2mem_m2f: Read a given number of bytes from a given address and write the returned 

data to a given text file. 

3.4 Initial test results 
Initial tests have been run on the integrated prototype testing its general operation and availability and 

functionality of the integrated HW components. Details of the final tests and evaluation are reported in 

D4.3. 
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4 Individual client prototypes and tests 
During the 1st Technical Review the reviewers recommended to use a more agile development 

process, i.e. to produce early and intermediate demonstrators and prototypes documenting and 

validating the progress in WP2 and WP3. Also it would help to identify early on incompatibilities or 

other issues for the integration. 

During Period 2 and Period 3 the project partners worked on individual prototypes showcasing parts of 

the results of the individual HW/SW developments. That prototype finally led to the development of 

the integrated prototype presented in Chapter 3. 

4.1 Virtual Prototypes 
In WP2 two main virtual prototypes have been developed: 

 A virtual prototype of the HSM-Mem developed by IMT and written in SystemC. It is 

integrated into the SoCLib environment and thus follows the SoCLib modelling style. It is 

distributed as free software and is publically available via the website http://secbus.telecom-

paristech.fr. Future updates of the virtual prototype will be made available via this website. 

The model includes a functionally complete model of the HSM-Mem integrated into either an 

ARM- or MIPS-based system on chip. Additionally IMT provides a boot loader, operating 

system (MutekH) and software driver, allowing full software tests of the HSM-Mem using the 

virtual prototype. 

 A virtual prototype of the HSM-NoC has been developed by IMT. This was initially 

developed as a bit-accurate SystemC model of the HSM-NoC in order to assist in early design 

space exploration. Later on a C++ model was developed from the SystemC model and ported 

to the network interface of a Gem5 network model (Garnet fixed pipeline) in order to fully 

characterize performance and power metrics as early as possible in system design. 

More details on the virtual prototypes of HSM-Mem and HSM-NoC are reported in D2.2. 

4.2 GlobalPlatform TEE / DRM scenario prototype 
VOSYS has developed a first prototype of the DRM scenario using an initial implementation of the 

GlobalPlatform Trusted Execution Environment (TEE). The TEE is hosting a key management 

software that is being accessed by an audio player application to get a key to decrypt and play an 

encrypted music file. The TEE and the application are isolated through virtualization. While the 

application runs inside a virtualized Android environment, the TEE runs inside a virtual machine using 

the L4/Fiasco.OC kernel and run-time. While currently implemented on top of an x86 architecture 

using virtualization, it is planned to port the application first to an ARM-based development board and 

later to the Zedboard using TrustZone to isolate and protect the TEE from the Android system. 

4.3 FPGA-based prototype of HSM-NoC 
TEI has developed an initial FPGA prototype of the HSM-NoC implementing a simplified version of 

the firewall rule checking. The demo runs on the Zedboard and already enables to run performance 

measures and execution of bare metal software applications. 

http://secbus.telecom-paristech.fr/
http://secbus.telecom-paristech.fr/
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4.4 FPGA prototype of (simplified) HSM-Mem 
IMT has developed a first FPGA-based prototype of a simplified HSM-Mem showcasing the principal 

architecture that will also be used for the final client prototype.  The HSM-Mem is implemented inside 

the FPGA fabric and connected to the ARM CPU and the on-chip memory controller via the AXI on-

chip bus. All memory access can be routed via the bus through the HSM-Mem first and to the memory 

controller afterwards. In addition, a DMA-capable attacker is also implemented inside the FPGA 

fabric and connected to the bus, bypassing the HSM-Mem. As can be shown by the demo, all features 

of the HSM-Mem can be used to protect confidentiality as well as integrity of all data going from the 

CPU to memory and vice versa against the DMA attacker. 

4.5 Zedboard with Linux and workflow for HW integration and 

driver customization 
CS has set up a work flow and framework based on the Zedboard enabling fast integration of different 

on chip HW peripherals and easy implementation and porting of Linux SW drivers for these 

peripherals.  

This will be used for the final integration and set up of the HSM-Mem and HSM-NoC into one 

common client platform prototype. 

4.6 Performance analysis and comparison of target platforms 
During the beginning of the 3rd Period CS has setup and executed benchmarks on most target 

platforms considered for the integrated prototype. The main reason of it was to analyze the 

performance impact of running Virtual Machines on the Zedboard without hardware virtualization 

support. In that case, virtualization would be realized using QEMU emulation which by principle is 

significantly lower as hardware supported virtualization, as the instruction code is only executed by 

emulation and not directly on the host CPU. At that time the Versatile Express board was still 

considered to be an option for the integrated prototype, as it would provide hardware virtualization 

support. However, even though performance would have been better, the increased complexity for 

hardware prototyping and integration compared to the Zedboard required us to give up the plan after 

several failed attempts to make progress. 

For the performance analysis and comparisons of the different platforms and setups we have used the 

benchmark tool Coremark (http://www.eembc.org/coremark/index.php). This benchmark has been 

designed as a more portable and less artificial alternative to the widely-used Dhrystone benchmark, 

and is in particular targeted at the needs of embedded systems. The benchmark can be run as a bare 

metal program or as a user-level program in Linux. As part of our analysis we compiled and ran the 

benchmark in several different environments and setups including: 

 Bare metal on a Zedboard 

 Linux on a Zedboard 

 A Linux Virtual Machine using QEMU on a Zedboard 

 Linux on a Chromebook 

 A Linux Virtual Machine using QEMU on a Chromebook with and without KVM (hardware 

virtualization support) 

 A i7-based PC running Linux Mint 16 as reference 

The results of the performance tests are shown in Figure 12. 

http://www.eembc.org/coremark/index.php
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Figure 12 Coremark results on different target platforms 

As can be seen the Virtual Machine running on the Zedboard using QEMU (5,59) is more than 350 

times slower than the baremetal run on the Zedboard. At the same time, on the Chromebook with 

hardware virtualization support, the VM is only about 1 percent slower than its non-virtualized 

version. 

Another important result is that we had issues to use QEMU with the native mode interpreter on the 

Zedboard. When using the native mode the instruction set of the guest system is directly translated to 

instructions of the host system. In principle this is support for ARM-to-ARM as well as for x86-ARM. 

However it was not stable on the Zedboard which crashed several times when running the benchmark. 

As a fallback QEMU was using with the so-called “TCG-interpreter” mode. In that mode, QEMU 

emulates the instruction set using a virtual CPU. This is obviously the least efficient way to execute 

ARM code on an ARM processor. 

In comparison, the native mode of QEMU used on the Chromebook was only 8 times slower than 

without QEMU emulation. While still significantly slower than the non-virtualized version this could 

have been an acceptable performance for some of application scenarios evaluated by TRESCCA. 

We can conclude from this, that the QEMU-based virtualization on the Zedboard could have been 

acceptable for a certain set of applications, if the native-mode of QEMU would have worked. 

However the TCG-interpreter performance was worse by several magnitudes. Therefore, it was 

decided with other partners, that QEMU-based virtualization on the Zedboard is not an option for the 

TRESCCA application scenarios. Hence, those scenarios depending on virtualization would require an 

alternative platform, like the Chromebook. Also in that cases, no TRESCCA hardware components 

could be integrated. 
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5 Conclusion and outlook 
This report described the development and architecture of the integrated prototype of the TRESCCA 

client platform serving as the primary platform for developing and setting up the application scenarios 

of Task 4.2. 

During the initial phase of the project the partners investigated options for a target platform for the 

integrated prototype. Initial plans of designing a custom board were discarded very early, as the 

expected additional flexibility would not justify the additional cost and effort, as there were already 

other low-cost solutions available.  

The main requirement for the target platform was the possibility to prototype hardware components in 

addition to a System-on-Chip. The only two options at that time were the Versatile Express system 

from ARM and the Zynq device from Xilinx. Both platforms provided a System-on-Chip and a 

programmable area. Though as an integrated device the Zynq was less expensive than the low-volume 

and costly Versatile Express system. In fact the Zynq-based Zedboard proved to be an affordable 

solution for all partners. However one drawback of the Zynq was the lack of hardware virtualization 

support. Finally the partners agreed to use the Zedboard for all hardware prototyping and use 

alternatives like the Versatile Express or a Samsung Chromebook for prototypes and scenarios that 

required virtualization support. 

During the second year the partners developed individual prototypes, each demonstrating and testing 

single components, like the HSM-Mem, the HSM-NoC or the OP-TEE. During the third periods 

activities to develop an integrated prototype have been intensified, finally leading to an integrated 

prototype with all security hardware components included. In addition an easy to use UART-

controlled attacker allows easy setup and scripting of attacks to the internal bus as well as to the 

external memory bus. The prototype includes a minimal Linux systems also having support for Python 

2.7 applications providing a starting point for implementing the WeSave application of WT on the 

platform. 

In the future, parts of the integrated prototype will be made available open-source. Excluded from 

publication are the HSM-NoC and the STNoC. For the open-source release those components will be 

removed. Furthermore with the upcoming release of a new generation of Zynq devices incorporating 

ARM CPU cores with hardware virtualization support it would be worth investigating options to port 

the design to a new platform which could include all TRESCCA outcomes in once affordable device. 

Though this will not be possible during the remaining time of the project. 

 


