
Secure Provision and Consumption
in the Internet of Services

FP7-ICT-2009-5, ICT-2009.1.4 (Trustworthy ICT)

Project No. 257876

www.spacios.eu

Deliverable D2.5.1
Framework for concretisation of abstract

tests

Abstract
This deliverable discusses the development of a generic framework for model-
based security testing that, firstly, captures relevant relationships between
models and implementations (that is, security-specific abstractions and dual
concretisations) and, secondly, operationalises the explicit knowledge of these
abstractions for the semi-automated generation of the driver components.
Driver components bridge the levels of abstraction between actual systems
and their models, in order to execute tests.

Deliverable details
Deliverable version: v1.0 Classification: public
Date of delivery: 31.03.2013 Due on: 31.03.2013
Editors: TUM, UNIVR, ETH Zurich, INP and IeAT principal editors;
UNIGE, SAP and Siemens secondary editors Total pages: 42

Project details
Start date: October 01, 2010 Duration: 36 months
Project Coordinator: Luca Viganò
Partners: UNIVR, ETH Zurich, INP, KIT/TUM, UNIGE, SAP, Siemens,
IeAT

http://www.spacios.eu
www.spacios.eu

D2.5.1: Framework for concretisation of abstract tests 2/42

(this page intentionally left blank)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 3/42

Contents
1 Introduction 6

2 Relationships between models and implementations 7
2.1 Abstraction for automatically generated models 7

2.1.1 Inferred models . 7
2.1.2 Extracted models . 10

2.2 Relation for manually built models 12

3 Semi-automated generation of driver components 14
3.1 Test concretisation for Instrumentation-Based Testing Approach

14
3.1.1 Modeling . 14
3.1.2 Instrumentation . 16
3.1.3 Test Execution Engine 20

3.2 Test Concretisation for SPaCiTE 20
3.2.1 Framework for instantiating at the browser level 21
3.2.2 Getting values for malicious parameters 30
3.2.3 Circumventing missing elements during the execution . 31
3.2.4 Requirements for the attacker behavior 32

3.3 Test concretisation for VERA 36
3.3.1 Modeling the low-level attacker 36
3.3.2 Prioritizing Instantiation Library 39

4 Summary 41

References 42

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 4/42

List of Figures
1 Stored XSS lesson main page 8
2 Layers of test case instantiation in SPaCiTE 22
3 Generating Actions (GAs) . 23
4 Verifying Actions (VAs) . 23
5 Instantiation and Execution Methodology 24
6 Instantiation . 29
7 HTTP verb tampering low-level attacker model 37
8 Example of Instantiation Libraries used in VERA 39

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 5/42

List of Acronyms
AAT Abstract Attack Trace . 21
ASLan++ high level AVANTSSAR Specification Language 6
BA Browser Action . 27
GA Generating Action . 4
MBT Model-Based Testing . 6
RA Recovery Action . 27
SUT System Under Test . 6
SUV System Under Validation. .22
TEE Test Execution Engine . 6
VA Verifying Action . 4
WAAL Web Application Abstract Language . 21
XSS Cross-Site Scripting . 30

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 6/42

1 Introduction
In Model-Based Testing (MBT), generating test cases from a model is only
the first step. Since the model is an abstraction of the System Under
Test (SUT), test cases are usually too abstract to be executed by a Test
Execution Engine (TEE). Establishing relationships between models and
implementations is therefore the key to be able to concretize the test cases.
When models are automatically inferred from the SUT, this mapping can
be defined by the extracting tool, as explained in Section 2. However, for
manually written models, someone has to describe the mapping between ab-
stract actions in the model and concrete values in the corresponding SUT.
Hopefully, this manual task is simplified with the help of appropriate tools
and languages.

In SPaCIoS, three driver components have been developed that support
models at different level of abstraction. Thus, a modeler is free to write his
model at the level of abstraction of his choice and then choose the most-
suitable driver for his model. This choice mostly depends on the SUT: a
protocol could be described at a low level of abstraction to simplify the
concretization step, while a web application would be described at a higher
level to reduce the size of the model and improve its readability.

As the abstraction level might vary from one model to another, we have to
develop one driver component for each abstraction level we want to support.
However, as some models in SPaCIoS are directly inferred or extracted from
the SUT, we can take advantage of these model inference tools to establish
some relationships between models and implementations. Gathering such in-
formation at that time is very helpful for when we need to get a concrete value
of an abstract message, in order to test the corresponding implementation.

All three developed driver components are presented in Section 3: the
driver for high level AVANTSSAR Specification Language (ASLan++) mod-
els at the protocol level in Section 3.1, the driver for ASLan++ models at
the browser level in Section 3.2, and the driver for low-level attacker models
in Section 3.3. Finally, Section 4 gives a summary of the obtained results.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 7/42

2 Relationships between models and imple-
mentations

SPaCIoS uses the high-level AVANTSSAR Specification Language (ASLan++)
language as a common representation for the models. While the represen-
tation is the same, the abstraction level may be different depending on the
method used to create or generate the model.

2.1 Abstraction for automatically generated models
2.1.1 Inferred models

Model inference is used to generate a model of a web application automat-
ically. The model is generated from the observed interactions between the
inference algorithm and the application. As the inference works on abstract
inputs and outputs, the first step of the inference process is to build a test
driver which is responsible for concretisation and abstraction of input-output
symbols.

A generic abstraction for web applications is defined in [9]. In this de-
liverable, we just provide an overview of the abstraction and concretisation
provided along with the inference method. Basically, each action provided
by the application through links or forms is considered as one input of the
system, and each different page, from the structure point of view, is consid-
ered as one output. The collected list of inputs defines the set of abstract
inputs, just as the list of pages constitute the set of abstract outputs. An
abstract symbol (input or output) can be parametrized, and we just keep
in the abstract form the essential parameters, whereas the concrete symbol
retains all the detailed content of the real interaction with the SUT, typically
a full HTTP PDU (request or response). Essential parameters are those that
need to be distinguished at model level (for instance name of an agent, cre-
dential used etc.) whereas non-essential parameters include fields and details
that are needed for the communication but which do not vary along a given
session or do not influence the flow (e.g. content of a cookie, detailed form
of a URL etc). The inference process can actually identify parameters that
play a role from those that are not essential.

As explained in [9], the inference process works in two steps on web
interfaces. First, in an initial crawling phase, all the inputs and outputs are
collected. This phase identifies the input and output symbols, and at the
same time it builds a driver to translate from concrete HTTP PDUs into
abstract symbols, and conversely to concretize them. In the second phase,
the inference algorithm which works at abstract level can learn a behavioral

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 8/42

model by interacting with the application through this driver.
As this test driver generation is done automatically, by a crawling tech-

nique, it can be used as an alternative test execution engine (TEE) or just
to help the building of TEE mapping.

Model inference produces an extended finite state machine (EFSM) rep-
resentation of the system. This EFSM is then converted to ASLan++, the
language of the SPaCIoS tool. The translation is straightforward.

We illustrate on a Webgoat lesson the method to extract the abstract
inputs from a concrete web-page. Fig 1 shows the main page of the stored
XSS lesson of Webgoat and its source code (Listing 1).

Figure 1: Stored XSS lesson main page

Listing 1: Main page of the stored XSS lesson of WebGoat
1 <form id=" form1 " name =" form1 " method ="post" action =" attack ? Screen =20& menu =900">
2 <table width ="60%" border ="0" cellpadding ="3">
3 <tr >
4 <td >
5 <label >
6 <select name =" employee_id " size ="11">
7 <option selected value ="101">
8 Larry Stooge (employee)
9 </ option >

10 </ select >
11 </ label >
12 </td >
13 <td >
14 <input type =" submit " name =" action " value =" SearchStaff "/>

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 9/42

15

16 <input type =" submit " name =" action " value =" ViewProfile "/>
17

18 <input type =" submit " name =" action " value =" Logout "/>
19 </td >
20 </tr >
21 </ table >
22 </ form >

In this page, there is no link and the only inputs are identified using
the input tags with a submit type. The method and the address of these
inputs are extracted from the form tag. As the inputs share the same form
element, they share the same parameters. Parameters and the possible con-
crete values are extracted from the select tag. Here we extract one parameter
named employee_id and one possible value which is 101. Techniques to re-
fine the inputs, e.g, remove the unnecessary parameter from Logout action,
are explained in [9].

We obtain the following three inputs.
{POST , / WebGoat / attack ? Screen =20& menu =900& stage =1,

[employee_id =101 , action = Logout]},
{POST , / WebGoat / attack ? Screen =20& menu =900& stage =1,

[employee_id =101 , action = ViewProfile]},
{POST , / WebGoat / attack ? Screen =20& menu =900& stage =1,

[employee_id =101 , action = SearchStaff]},

Conversely, for concretisation, from a trace of the model, we translate
each abstract input into a concrete HTTP request. Here we see that there
are two levels of concretisation on the system side. The first one works at
the level of HTML actions (in our example, the three actions associated with
elements in the HTML output). Another concretisation is performed at the
HTTP level. Concretization to HTML action level is not needed here and
building the resulting HTTP requests produces the same results. An ab-
stract input contains the method (GET or POST), the address of the page
which processes the request, and the parameters. Building the corresponding
HTTP request from an abstract input is straightforward since the abstraction
procedure had initially collected all the values for non-essential parameters.

Let us consider the following abstract input (Method, Address, Parame-
ters):
{POST , / WebGoat / attack ? Screen =20& menu =900& stage =1,
[employee_id =111 , password =John]}

The corresponding concrete HTTP request is:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 10/42

POST / WebGoat / attack ? Screen =20& menu =900& stage =1 HTTP /1.1
Host: localhost
Accept : text/html , application / xhtml +xml , application /xml;
Authorization : Basic Z3Vlc3Q6Z3Vlc3Q =
Connection : keep - alive
Cookie : JSESSIONID =49 C81F65E7B54E150206769CAA7859DB
Host: localhost :8080
Referer : http :// localhost :8080/ WebGoat / attack ? Screen =20& menu =900
User - Agent : SIMPA
Content - Length : 42
Content -Type: application /x-www -form - urlencoded

employee_id =111& password =John& Submit = Login

The fact that the abstraction is close to the system reduces the distance
between the system and its model. In a typical scenario, an abstract attack
trace (AAT) can be found. Converting this AAT to a sequence of concrete
HTTP requests can be done automatically. Converting from the level of con-
crete actions (such as our three HTML actions in the Webgoat XSS lesson)
is not needed for the inference but it is also possible to do it automatically.
In addition to the relationship between a system and its model, the auto-
matically generated test driver can be used as a test execution engine (TEE)
or as a mapping provider for other TEEs.

2.1.2 Extracted models

In Deliverable 5.2 [8, Section 2.7.1] we have shown how jModex (initially
named WebAppModel) extracts behavioral automata in the form of EFSMs
for a system under analysis. We have also explained that, in a second phase,
jModex will convert these automata into the actual ASLan++ model of the
investigated program. In this section we are going to show how we plan to
express in ASLan++ various information from the behavioral automata, and
thus document the relations between the generated model and the system
implementation.

Relationships at architectural level. For a JSP/Servlet application,
jModex builds a behavioral automaton for each distinct component (i.e.,
servlet) of the system. All these distinct automata are translated into a single
ASLan++ entity corresponding to the entire application. Consequently, the
issue is how these different sub-models will be integrated into a single one. At
present, the integration is performed as follows: all sub-models are enclosed
into a while(true) loop in which one sub-model is selected for execution based
on the “invoked” component. The reason behind this translation is that, in a
JSP/Servlet application, the components can be invoked by a user/intruder

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 11/42

in any possible order without enforcing a particular invocation protocol (e.g.,
following the request links displayed by the presentation layer).

Relationships at code level. Each transition in a behavioral automaton
produced by jModex corresponds to some execution path(s) from the ana-
lyzed program and captures the conditions under which the transition can
be executed, together with all assignments to relevant state variables. In
Deliverable 5.2 Figure 7 [8, Section 2.7.1] we have presented some classes of
expressions (e.g., ProgramRequest, SessionAttribute, etc.) that can appear in
the guards/updates of a jModex automaton. In the following we show how
we plan to express in ASLan++ some of these types of expressions:

• Numeric values – ASLan++ only provides support for natural numbers.
As a result, we have to abstract away the operations with real/integer
values. One option is to create a particular ASLan++ type for numbers
(e.g., numeric) and to treat the required numerical operations as un-
interpreted functions over this type. A refinement would be to declare
a distinct ASLan++ type for each numerical Java type (e.g, integer
for Java int, double for Java double) in order to try to specialize the
manner in which each class of values is managed during model checking.

• String values – we treat these values as ASLan++messages. String con-
catenation is converted into message concatenation while the equality
test is translated as message equality. It might be possible to include
some special functions or predicates representing other methods on
strings (e.g., equals ignoring case).

• The relevant constants identified by jModex in a program are expressed
in ASLan++ as constants of corresponding types.

• Request parameter – in a JSP/Servlet application, these are simple
named inputs of type string provided in the client request. We can
represent them as a set of ordered pairs of messages.

• Session attribute – they represent a set of named state variables of the
application and we can represent them as a set of ordered pairs of mes-
sages. Accesses/assignments to the state attributes are made using the
contains function, while attribute deletion can be implemented using
the fact retraction construct.

• Program function – not every function from the target system is an-
alyzed in detail by jModex (e.g., library methods). Additionally, the

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 12/42

user may chose to ignore some methods from the program during the
analysis. In these cases, the function return value is represented by
jModex using a ProgramFunction expression which contains also the
function arguments. These expressions will be converted to ASLan++
using applications of uninterpreted functions.

• Database values – as suggested by the name, these expressions represent
data that come from a database. For such a value, at present, we
capture the expressions corresponding to i) the SQL query producing
the value and ii) to the position in the resulting table. This information
can be used in ASLan++ to express database values as results obtained
by applying uninterpreted functions.

• Redirection – such an expression shows that, during a transition from
an automaton, the application transfers the flow of execution to another
component (i.e., JSP/Servlet). This is done by telling to the user (ac-
tually, to its browser) to “invoke” another JSP/Servlet with a given set
of request parameters and associated values. Consequently, this type of
expression is expressed in ASLan++ as a message sending operation,
from the user to the application. Additionally, a redirect expression
also captures the values of the request parameters that are going to
be used during the “invocation” of the new component. Usually, these
values appear in a program like a constant string containing parameter-
value pairs. In such cases, translating the actual request parameters of
the “invocation” as ASLan++ is simple. However, the parameter-value
pairs might be available just as a derived string value because, for in-
stance, it is computed by the application based on some input value.
Consequently, we cannot know precisely what request parameters are
used in the redirection and which are their concrete values. In such
cases, the redirection should be translated in ASLan++ as sending a
message whose content might be any possible combinations of request
parameters and their corresponding values.

2.2 Relation for manually built models
Models are not always extracted or inferred from the SUT. When the model is
built manually, establishing the relationship between its abstract actions and
the concrete values on the implementation cannot be done in an automatic
way. Therefore, each driver provides tools and languages to support the
modeler/tester in his task of mapping these abstract actions to concrete
values that can be used by the TEE. Since the tools and/or languages

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 13/42

differ from one driver to another, they are described together with the driver
concretization phase in the next sections.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 14/42

3 Semi-automated generation of driver com-
ponents

The SPaCIoS tool includes three engines for test case execution. Test case
concretisation varies according to their usage. This section presents, for each
engine, how drivers are generated that can execute the abstract test cases.

3.1 Test concretisation for Instrumentation-Based Test-
ing Approach

The instrumentation-based testing approach has already been presented in
Section 4.2 of Deliverable 2.1.2. We revisit it here for completeness.

The instrumentation-based testing approach executes tests in two steps.
First, it instruments a model with program fragments (see Section 3.1.2).
Then it executes the fragments in the order established by the attack trace
(see Section 3.1.3).

3.1.1 Modeling

We specify protocols using ASLan++, whose semantics is given in ASLan.
In this section we present a simplified version of ASLan, featuring only the
aspects of the language that are relevant for this work. ASLan supports the
specification of model checking problems of the form M |= φ, where M is a
labeled transition system modeling the behaviors of the honest principals and
of the Dolev-Yao intruder (DY)1 and their initial state I, and φ is a Linear
Temporal Logic (LTL) formula stating the expected security properties.

The states of M are sets of ground (i.e. variable-free) facts, i.e. atomic
formulae of the form given in Table 1.

Table 1: Facts and their informal meaning

Fact Meaning
stater(j, a, [e1, . . . , ep]) a, playing role r, is ready to execute the proto-

col step j, and [e1, . . . , ep], for p ≥ 0 is a list of
expressions representing the internal state of a.

sent(rs, b, a,m, c) rs sent message m on channel c to a pretending
to be b.

ik(m) The intruder knows message m.
1A Dolev-Yao intruder has complete control over the network and can generate new

messages both from its initial knowledge and the messages exchanged over the network.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 15/42

Transitions are represented by rewrite rules of the form (L rn(v1 ,...,vn)−−−−−−→ R),
where L and R are finite sets of facts, rn is a rule name, i.e. a function symbol
uniquely associated with the rule, and v1, . . . , vn are the variables occurring
in L. The variables that occur in R must also occur in L. We use typewriter
font to denote states and rewrite rules with the additional convention that
variables are capitalized (e.g., Client, URI), while constants and function
symbols begin with a lower-case letter (e.g., client, httpRequest).

Protocol messages Messages are described as follows. HTTP requests are
represented by expressions httpRequest(method, address, query_string, body),
where method is either the constant get or post, address and query_string
are expressions representing the addressess and the query string in the URI
respectively, and body is the HTTP body. Similarly, HTTP responses are
expressions of the form httpResponse(code, loc, query_string, body), where
the code is either the constant code_30x or code_200, loc and query_string
are (in case of redirection) the location and the query string of the location
header respectively, and body is the HTTP body. For empty parameters, the
constant nil is used.

Specification of the rules of the honest agents The behavior of honest
principals is specified by the following rule:

sent(brs, bi, a,mi, ci) � stater(j, a, [e1, . . . , ep]) sendj,k
r (a,...)−−−−−−−→

sent(a, a, bo,mo, co) � stater(l, a, [e′1, . . . , e′q]) (1)

for all honest principals a and suitable terms brs, bi, bo, ci, co, e1, . . . , ep,
e′1, . . . , e

′
q,mi,mo, and p, q, k ∈ N. Rule (1) states that if principal a plays role

r is at step j of the protocol and a message mi has been sent to a on channel
ci (supposedly) by bi, then she can send message mo to bo on channel co and
change her internal state accordingly (preparing for step l). The parameter
k is used to distinguish rules associated to the same principal, and role. In
the initial and final rules of the protocol, the fact sent(. . .) is omitted in the
left- and right-hand sides of the rule (1), respectively.

Specification of the intruder rules The abilities of the DY intruder of
intercepting and overhearing messages are modeled by the following rules:

sent(A, A, B, M, C) intercept(A,B,M,C)−−−−−−−−−−→ ik(M) (2)

sent(A, A, B, M, C) overhear(A,B,M,C)−−−−−−−−−→ ik(M) �LHS

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 16/42

where LHS is the set of facts occurring in the left-hand side of Rule (1).
We model the inferential capabilities of the intruder restricting our atten-

tion to those intruder knowledge derivations in which all the decomposition
rules are applied before all the composition rules. The decomposition capa-
bilities of the intruder are modeled by the following rules:

ik({M}k) � ik(k−1) decrypt(M,...)−−−−−−−→ ik(M) �LHS (3)

ik({M}s
K) � ik(K) sdecrypt(K,M)−−−−−−−→ ik(M) �LHS (4)

ik(f(M1, . . . , Mn))
decomposef (M1,...,Mn)
−−−−−−−−−−−−→ ik(M1) � . . . � ik(Mn) �LHS (5)

where {m}k (or equivalently enc(k,m)) is the result of encrypting message
m with key k and k−1 is the inverse key of k, {m}s

k (or senc(k,m)) is the
symmetric encryption, and f is a function symbol of arity n > 0.

For each protocol rule (1) in Section 3.1.1 and for each possible least
set of messages {m1,l , . . . ,mjl ,l} (let m be the number of such sets, then
l = 1, . . . ,m and jl > 0) from which the DY intruder would be able to build
a message m′ that unifies mi, we add a new rule of the form

ik(m1,l) � . . . � ik(mjl,l) � stater(j, a, [e1, . . . , ep]) impersonatej,k,l
r (...)−−−−−−−−−−−→

sent(i, bi, a,m
′, ci) � ik(m′) �LHS (6)

This rule states that if agent a is waiting for a message mi from bi and
the intruder is able to compose a message m′ unifying mi, then the intruder
can impersonate bi and send m′.

3.1.2 Instrumentation

The model instrumentation instructs the TEE on the generation of outgoing
messages and on the checking of incoming ones. Instrumenting a model
consists in calculating program fragments p associated to each rule of the
model. Program fragments are then evaluated and executed by the TEE
(See Section 3.1.3) in the order established by the attack trace.

Before providing further details we define how we relate expressions with
actual messages. As seen in Section 3.1.1, messages in the formal model are
specified abstractly. Let D be the set of data values the messages exchanged
and their fields. Let E be the set of expressions used to denote data values
in D. An abstraction mapping α maps D into E.

Let D⊥ be an abbreviation for D ∪ {⊥} with ⊥ 6∈ D. Let f be a user
defined function symbol of arity n ≥ 0. Henceforth we consider constants

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 17/42

as functions of arity n = 0. We associate f to a constructor function and a
family of selector functions:

Constructor: f : Dn → D such that α(f(d1, . . . , dn)) = f(α(d1), . . . , α(dn))
for all d1, . . . , dn ∈ D;

Selectors: πi
f : D → D⊥ such that πi

f (d) = di if d = f(d1, . . . , dn) and
πi

f (d) = ⊥ otherwise, for i = 1, . . . , n.

with the following exceptions. With K ⊆ D we denote the set of crypto-
graphic keys. If k ∈ K, then inv(k) is the inverse key of k. If f = enc
(asymmetric encryption), then

1. π1
enc is undefined and

2. π2
enc : K×D → D⊥, written as decrypt, is such that decrypt(inv(k), d′) =
d if d′ = encrypt(k, d) and decrypt(inv(k), d′) = ⊥ otherwise.

If f = senc, sdecrypt is defined similarly, replacing inv(k) with k.
In security protocols specifications, the behavior of principals is repre-

sented in an abstract way, and thus the operations to check incoming mes-
sages and to generate outgoing ones are implicit. For example, in ASLan,
message checks are realized by pattern matching and fields of the received
message must match with some expressions stored in the state of the agent.
To interact with a system under test, we need to make these procedures ex-
plicit. We write these procedures as well as the TEE in a pseudolanguage
with statements such as if-then-else, foreach, and the like. We also assume
that the pseudolanguage has a procedure eval(p) that evaluates a program
fragment p. Let e be a ground expression in E. We denote `e a memory
location that stores a data value d ∈ D such that e = α(d).

A data value d could be the result of the evaluation of a program fragment
p, i.e., d = eval(p). We use memory locations to refer to channels as well.
Let `ci

and `co be two memory locations for the channel constants ci and
co, respectively. Besides the common operation of reading and writing on
channels as memory locations, we define two operators to access them as pipes
in order to send (i.e. `c >> `m) and to receive data values (i.e. `c << `m).
Also, we consider a further operation to peek at the first data value available
in the pipe without removing it (i.e., `c |> `m). The latter operator is useful
to explain the instrumentation for the intruder rules.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 18/42

Instrumenting honest agents The program fragment psendj,k
r (a,...,ci,co) en-

coding a rule (1) is as follows:
`′mi

:= `mi ;
`ci >> `mi ;
if `′mi

is not empty and `mi != `′mi
then:

return False;
eval(pmi);
`mo := eval(pmo);
`co << `mo ;

where mi and mo are the incoming and outgoing message respectively.
The fragment pmi

checks whether `mi
is such that mi = α(`mi

) and pmo

computes a message `mo such that mo = α(`mo).
We define an association between an ASLan expression e and the fragment

p used to retrieve the corresponding data value denoted by e (by accessing
memory locations directly or using selectors operating on them). We call p : e
an associated expression where e ∈ E and p is a program fragment (containing
selectors operating on memory locations) such that e = α(eval(p)).

With reference to the send rule (1), just after the reception of `mi
, the

knowledge of the principal is represented by the following set of associated
expressions: Ms = {`mi : mi , `e1 : e1 , . . . , `en : en}. Given Ms we need
compute the associated expressions of each sub-term of mi.

Closure under decomposition Given a set Ms of associated expressions,
the closure of Ms under decomposition, in symbols ↓Ms, is the smallest set
such that:

1. Ms ⊆ ↓Ms,

2. if p1 : enc(k, e) ∈ ↓Ms and p2 : inv(k) ∈ ↓Ms, then (decrypt(p2, p1) :
e) ∈ ↓Ms,

3. if p1 : senc(k, e) ∈ ↓Ms and p2 : k ∈ ↓Ms, then (sdecrypt(p2, p1) : e) ∈
↓Ms,

4. if p : f(e1, . . . , en) ∈ ↓Ms, then (πj
f (p) : ej) ∈ ↓Ms for j = 1, . . . , n.

For simplicity, here we assume atomic keys. Nevertheless the approach
described can be readily generalized to support composed keys.

After having computed all the associated expressions, we need to either
check or store the data values, according to the list of expressions representing
the internal state of the principal. With reference to the send rule (1), let
kn = {e1, . . . , en}, and Ms′ = ↓Ms− {`e1 : e1, . . . , `en : en}.

Atomic checks The set of atomic checks Pmi
for a message mi ∈ E over a

knowledge kn is defined as follows:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 19/42

1. for each p : e in Ms′, if either e is a constant or e is a variable, and
e ∈ kn then the following fragment is in Pmi

:
if eval(p) != `e then:

return False;

2. for each p1 : e, . . . , pn : e in Ms′, if e is a variable, and e 6∈ kn then the
following fragment is a member of Pmi

:
`e := eval(p1);
if (`e!=eval(p2) or `e != eval(p3) or . . . or `e != eval(pn)) then:

return False;

The program fragment pmi
is a sequence of all the items in Pmi

.
Message generation function We call message generation function over a

set of expressions kn a function MsgGen defined as follows:

1. MsgGen(e) = `e if e ∈ kn;

2. MsgGen(f(e1, . . . , en)) = f(MsgGen(e1), . . . ,MsgGen(en))

With reference to the send rule (1), the program fragment pmo is calcu-
lated by MsgGen(mo) over kn = {e′1, . . . , e′q}.

Instrumenting the intruder Let us consider the intercept rule (3) in
Section 3.1.1. Let M be the message. The fragment pintercept(A,B,M,C) of
pseudocode encoding the rule is as follows:
`′M := `M ;
`c >> `M ;
if `′M is not empty and `M != `′M then:

return False;

where `′M contains the previous value (if any) in `M , before the reception
of the new message. The fragment of pseudocode encoding the overhear
rule (3) in Section 3.1.1 is the same as the one defined above, except for the
operator |> in place of >>.

Let us consider the rules modeling the ability to decompose messages
(i.e., decrypt, sdecrypt, and decompose).

The pseudocode fragment pdecrypt(M,...) encoding the rule (3) is as follows:
`M := eval(decrypt(`inv(K), `{M}K

));

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 20/42

where M and K are two ASLan expressions for the message and the
public key, {M}K is the asymmetric encryption of M with K, and decrypt
is the selector function associated to enc. Similarly for psdecrypt(...) encoding
the rule (4).

The fragment pdecomposef (M1,...,Mn) encoding the rule (5) is as follows:

`M1 := eval(π1
f (`f(M1,...,Mn)));

`M2 := eval(π2
f (`f(M1,...,Mn)));

...
`Mn := eval(πn

f (`f(M1,...,Mn)));

where f(M1, . . . ,Mn) is the message the intruder decomposes, and πi
f for

i = 1, . . . , n are the selector functions associated to the user function symbol
f .

Let us consider the impersonate rule (6) in Section 3.1.1. The fragment of
pseudocode pimpersonatej,k,l

r (...) encoding this rule is computed by MsgGen(m′)
over the knowledge kn = {m1,l, . . . ,mjl,l}.

3.1.3 Test Execution Engine

The Test Execution Engine (TEE) takes as input a SUT configuration, de-
scribing which principals are part of the SUT, and an attack trace. The
operations performed by the TEE are as follows:

1 procedure TEE(SUT :Agent Set;[step1, . . . , stepn]:Attack Trace)
2 for i:=1 to n do:
3 if not(stepi == sendj,k

r (a, . . .) and a ∈ SUT) then:
4 if not eval(pstepi) then:
5 printf (" Test execution failed in step %s", stepi);
6 halt;

The TEE iterates over the attack trace provided as input. During each
iteration it checks whether the rule stepi must be executed (line (3)). Namely,
if stepi is either an intruder rule or a rule concerning an agent that is not
under test, then the program fragment pstepi

is executed. If pstepi
is executed

without any errors the procedure continues with the next step, otherwise
(lines (5)–(6)) notify that an error occurred.

3.2 Test Concretisation for SPaCiTE
SPaCiTE assumes the existence of a secure specification describing a Web
application at the browser level. This specification is provided as a model

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 21/42

written in ASLan++. Faults are injected to this secure model by using
specific mutation operators. The model-checking backends may report some
Abstract Attack Traces (AATs) from such mutated models. There are then
three issues in executing such AATs:

• How to instantiate an abstract action such that the TEE can execute
it via a browser?

• How to instantiate the malicious parts of some abstract actions?

• How to react when the TEE fails to execute an abstract action because
of missing elements?

After introducing the general framework used by SPaCiTE to instantiate
an AAT at the browser level, we present solutions to the two remaining issues.

3.2.1 Framework for instantiating at the browser level

A preliminary version of this framework has been presented in [6, Section 4.3]
to justify how abstract actions at the abstract testing interface can be ex-
ecuted by the concrete testing interface. Since this framework has been
extended and its description is of essence here, we present again the parts
that have not been modified, plus the extensions, in a comprehensive way.

The mapping of the abstract attack trace to executable source code is a
multi-step process, as it consists of application-dependent and application-
independent information. To separate the two kinds of information, we add
an additional intermediate level (Ë in Figure 2) in between the abstract
attack trace layer (Ê in Figure 2) and the implementation layer (Ì in Fig-
ure 2). These three layers have different purposes. Layer Ê describes the
abstract attack trace as it is given by the output of the model checker. The
abstract attack trace consists of a sequence of messages that are exchanged
between the defined agents. Layer Ë describes an intermediate layer where
the same abstract attack trace of layer Ê is described using actions of Web
Application Abstract Language (WAAL), a dedicated language for web ap-
plications. WAAL is a language to describe how exchanged messages between
agents can be generated and verified in terms of actions a user performs in
a web browser. Finally layer Ì describes the instantiated attack trace in
terms of source code. In addition it shows how the TEE reacts if an error or
exception occurs during the execution of the attack trace.

First, we recall the TEE to have a clear understanding how the abstract
test cases must be instantiated to be executable. Then, after describing
WAAL, we present the first mapping from application-dependent messages

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 22/42

Figure 2: Layers of test case instantiation in SPaCiTE

to the intermediate level. Finally the second mapping, from the interme-
diate level to executable test cases, is described. As WAAL actions are
application-independent, the last mapping can be reused for testing other
web applications. Both mappings are illustrated with an application to the
WebGoat lesson on authorization flaws.

Test Execution Engine (TEE) The TEE is responsible for running test
cases and reporting verdicts. A test case is a sequence of descriptions of
controlled and observed messages. Controlled messages are also called stimuli
and observed messages are also called reactions. As such, with the reactions,
a test case encodes the expected behavior with respect to the stimuli.

Running a test means applying the stimuli to the System Under Validation
(SUV) and observing the SUV reactions (the actual reactions). Building a
verdict means to compare the actual reactions to the expected reactions. If
they conform, we say the test passes. If they do not, we say that the test
fails. The result of this comparison is called the verdict. In our context, we
generate attack traces. If we successfully reproduce an attack on a SUV, then
our terminology applies as follows. As the expected reaction says that the
attack should not be reproduced by the SUV (which is in conformance with

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 23/42

the SUV’s specification), then we say that the attack has been reproduced,
but the test has failed.

Having in mind this terminology, let us describe now the language used
at the intermediate level.

Web Application Abstract Language (WAAL) WAAL is an abstract
language for web application actions at browser level. The purpose of this
language is to define actions that an end user can perform from a browser to
either send messages to a Web server or check its responses. Thus, WAAL
actions are split into two sets: GAs and VAs.

Figure 3: Generating Actions (GAs)

Generating Actions (listed in Figure 3) represent a small but complete
set of atomic actions that a user can perform when he uses a web application
(e.g., follow a link, click on a button, type text into a text field). More
complex actions can be described by a combination of such atomic actions.
For example, log in via a form may correspond to the sequence: select the
name from a menu, type the password into a text field, and click on the login
button. Since it works at the Browser level, GAs are close to API methods
from Selenium, a Web application testing framework. However, GAs are not
API methods at source code level but abstract browser actions and therefore
they are technology independent.

Figure 4: Verifying Actions (VAs)

Verifying Actions (listed in Figure 4) are used to verify whether an ob-
served response matches with an expected one. A user can either verify the
received message at HTML or HTTP level. The verification is performed
according to a user-provided criterion.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 24/42

Figure 5: Instantiation and Execution Methodology

The GA and VA sets define the foundations for WAAL:

WAAL = (GA∗ × VA∗)∗

In other words, a valid word in WAAL is a sequence of actions that either
produces (GA∗) or verifies (VA∗) protocol-level messages. We consider se-
quences only (and not trees) because this language is intended to represent
the abstract attack trace at the browser level. Since a trace from a model-
checker is an abstract message sequence, a sequence of actions at browser
level is sufficient to represent such traces.

Mapping from abstract model level to browser level The output of
the model checker is an abstract attack trace that consists of a sequence of
exchanged messages. Each message m has a sender agent S, a receiver agent
R and a channel C. Thus, the input layer L1 for the mapping to WAAL is
defined as follows:

L1 = (A× C × A×M)∗

where A is the set of agents, C is the type of channel used (confidential,
authentic, or both), andM is the set of abstract messages exchanged between
two agents.

The mapping τ1 maps each message m (together with its sender, receiver
and channel) to a pair of sequences that generates and verifies m:

τ1 : (A× C × A×M)→ (GA∗ × VA∗)

The actual mapping depends on the sender and the receiver. Each agent
described in the model is either part of the SUV — the TEE can observe his

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 25/42

behavior — or is simulated (stubbed) by the TEE. The former kind of agent
is denoted by the set Ao, for observed agents, while the latter is denoted by
the set As, for simulated agents. Partitioning the agent set A into Ao and
As is the responsibility of the test expert.

Given these two sets, the sequence of GAs for S → R : m is constructed
as follows: (ga1, ga2, . . . , gan), if S ∈ As

(), if S ∈ Ao

where n ∈ N and gai ∈ GA for all 1 ≤ i ≤ n. Thus, if the sender S is a
simulated agent, the message m is mapped to a sequence of GAs such that
the messagem is generated by a web browser after executing this sequence. If
the sender is an observed agent, the TEE does not need to generate anything.

In addition to Ao and As, the sequence of VAs also depends on an as-
sumption about the channel, namely whether sent messages can be assumed
to be delivered unmodified. This assumption is called integrity assumption.(), if S ∈ As ∧ integrity

(va1, va2, . . . , van), otherwise

where n ∈ N and vai ∈ VA for all 1 ≤ i ≤ n. Thus, a message m is mapped
to a sequence of VAs such that a browser can verify the received message m
by executing this sequence. The only case where the TEE does not need to
verify m is when m has been sent over an integrity channel by a simulated
agent.

In addition to mapping every message from the attack trace to sequences
of actions in WAAL, the test expert must also provide an initialization block
(GA_0 in Figure 5) in order to prepare the execution of the attack trace.
This initialization block is also described as actions in WAAL.

Let us now give a concrete example of this mapping, by using again the
WebGoat lesson on authorization flaws.

According to the model, the agent server is in Ao as it is part of the SUV
and the agent tom is in As as it is a compromised user and therefore must
be controlled by the TEE. For our example, we also assume the integrity
of messages sent over the channels. Thus, messages generated by simulated
agents do not have to be verified.

Listing 2: Abstract attack trace
<tom > ->* webServer : login (tom , password (tom , server))
webServer -> <tom > : listStaffOf (tom)
<tom > *-> webServer : viewProfileOf (jerry)
webServer *->* <tom > : profileOf (jerry)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 26/42

Listing 3: Mapping of WebGoat abstract actions to WAAL
τ1(login(usr , pwd)) =

((selectItem (employeeList , usr),
intputText (passwordField , pwd),
clickButton (login)), ())

τ1(listStaffOf (usr)) = ((),
(checkHTML (criterionFor (listStaffOf (usr)))))

τ1(viewProfileOf (usr)) =
((selectItem (profileList , usr),

clickButton (ViewProfile)), ())

τ1(profileOf (usr)) = ((),
(checkHTML (criterionFor (profileOf (usr)))))

The abstract attack trace found by the model-checker (presented in List-
ing 2) consists of four messages (login, listStaffOf, viewProfileOf, profileOf).
Listing 3 shows the mapping of these four messages to sequences of actions
in WAAL; Only the GAs and VAs relevant to the attack trace are shown.

In addition to the mapping of the attack trace, the initialization block
in WAAL (GA_0) provides a way to put the system into a state suitable
to run the attack trace. For the WebGoat example, this initialization block
follows some links to reach the login page of the lesson under test.

Mapping from WAAL to executable source code Once the attack
trace is translated into WAAL actions, the remaining step to be able to exe-
cute the test case is to map these WAAL actions into executable statements.
In contrast to the first mapping τ1 (from abstract messages to WAAL ac-
tions) that is application dependent, the second mapping τ2 (from WAAL to
source code) is done once and for all, except if the technologies used by the
TEE change.

At the source code layer, two API interfaces are used in cooperation, even
though they operate on different abstraction levels. The first API works at
the browser level and is then close to WAAL, which makes the translation
of WAAL actions to this API easier. The second API works directly at the
protocol level and is then close to Web application communication protocol.
The second API is needed only if an action cannot be performed by the
first API. In that case, the TEE may request the help of a test expert for

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 27/42

providing the corresponding protocol-level message.
In Figure 5, there are two kinds of blocks at the source code level: Browser

Action (BA), and Recovery Action (RA). A BA block corresponds to an ac-
tion performed on a browser. A RA block corresponds to a recovery action
performed after a failure from a BA. A failure in a BA block is either a
runtime exception (e.g., a browser object where an action should be invoked
does not exist) or the response of the BA block corresponds to a runtime
exception from the SUV (e.g. the webserver returns an “authentication re-
quired” response instead of the desired webpage). RA blocks belong to either
the browser or the protocol level, depending on the failure that triggers those
actions, and they may ask a test expert to provide additional information.

The mapping τ2 : GA ∪ VA→ (BA× RA)∗ maps each WAAL action to
a sequence of BA and RA with τ2 (a) ∈ (BA× RA)∗.

If the TEE can successfully execute every BA block, which is done in a
fully automatic way, then the verdict is determined as follows: if the actual
reactions of the SUV conform to the expected reactions of the test cases
— this verification is done by the BA blocks related to VA actions —, the
attack has been reproduced and therefore the test has failed; otherwise, the
test has passed.

However, a BA block may fail due to several reasons of different na-
ture. For example, an input element is disabled, in read only mode, or its
maxLength attribute is set to a value smaller than the size of the text to
type in. Another example is a button that is disabled or totally missing, and
therefore the BA block cannot click on it. For some failures of this kind,
it might be possible to execute a recovering action and continue the test
execution.

If an error occurs when executing a BA block, the TEE changes its op-
erational mode and a RA block is executed in order to recover from this
error (respectively, review the decision). There are three different ways of
recovering after a BA block has failed: (i) prepend missing information to
the BA block and execute it again; (ii) find an alternative way to execute the
BA block and resume just after it; (iii) move to the protocol level, provide
the corresponding message, and resume after the next protocol-level message
(which may be after several BA blocks). For the following examples of these
recovering methods, the browser level represents HTML elements including
their actions, and the protocol level is HTTP.

As an example for the prepend case, let BA be an action to check the con-
tent of a webpage. This action may fail because the user is not authenticated
and first has to provide credentials. In the case of basic access authentica-
tion, this request for credentials can be automatically detected and therefore
it is not necessary to provide this step as WAAL actions. Thus, a possible

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 28/42

action in RA could be that the TEE asks the test expert for the credentials
or that they are read from a configuration file. Then, the TEE reconfigures
the used component by adding the credentials and re-requests the website
again. Requesting a website and adding credentials can both be performed
at the browser level.

For the alternative case, let us consider an HTML button element that
triggers an event if the user clicks on it and this event is the execution of a
defined JavaScript function. If the HTML button is disabled, the click event
can not be triggered by the BA block. A possible alternative action, per-
formed by the corresponding RA block, is to execute the JavaScript function
directly, by using a different API call.

An example where the TEE has to switch to the protocol (HTTP) level
is the following one. Assume that a BA block tries to select an element
from a list and sends this value to the server by clicking on a button. This
action may fail because the element is not present in the list. In that case,
the TEE presents some sample HTTP messages to the test expert (e.g., by
generating the HTTP messages corresponding to choosing another element
from the list). Then, the TEE asks the test expert to provide the correct
HTTP message. This message is sent and the BA block that follows this
HTTP message is executed afterwards. It is worth noting that the underlying
assumption when a RA creates some HTTP samples is that the agent state
may be restored afterwards. Thus, as soon as the TEE intercepts and drops
the HTTP requests, the RA block can generate as many samples as possible.

For our example, we consider the Selenium Framework at the browser
level and the Apache HTTPComponents project2 at the protocol level. Sele-
nium provides WebElement objects to represent HTML elements and Web-
Driver objects to represent “the Browser” at the source code level. These
objects provide API functions to find an element in the browser object
(HtmlUnitDriver.findElement()), to access the current webpage of the browser
(HtmlUnitDriver.getPageSource()), or to perform a click action on an HTML
element (WebElement.click()).

Listing 4 shows how the WAAL action selectItem, that is part of List-
ing 3, is mapped to Selenium source code. The result is a Java function
that takes as parameters: a connection object, the name of the list and the
name of the item that should be selected from that list. The function then
executes the following actions: (i) find the HTML list element, (ii) click on
the corresponding item from this list. The try-catch block captures runtime
exceptions and executes the corresponding RA block.

This sums up the overview of how each abstract action from a test case
2http://hc.apache.org/

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

http://hc.apache.org/

D2.5.1: Framework for concretisation of abstract tests 29/42

Listing 4: Mapping of τ2 (selectItem(listID, item))
Connect s e l e c t I t em (Connect conn , S t r ing l i s t ID , S t r ing item){

try {
conn . convertToHtmlDriver () ;
// Get the corresponding l i s t
c1 = " //a [conta in s (t ex t () , ’ " + l i s t ID + " ’)] " ;
l i s t = conn . driverHtml . f indElement (By . xpath (c1)) ;
// S e l e c t the item from the l i s t
c2 = " //a [conta in s (t ex t () , ’ " + item + " ’)] " ;
l i s t . f indElement (By . xpath (c2)) . c l i c k () ;

} catch (Exception e) {
// Ac t i va t e RA Block

}
return conn ;

}

Figure 6: Instantiation

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 30/42

are instantiated in SPaCiTE. In the next section, we point out how malicious
parameters, which are present in some abstract actions, are instantiated.

3.2.2 Getting values for malicious parameters

When the AAT comes from a mutated model, it exploits a specific injected
vulnerability. Knowing which vulnerability is exploited helps in automati-
cally executing every action of the AAT. Here, we give few examples on how
this knowledge is actually used to select the malicious data used by the TEE.
The complete description is available in [7, Section 1.3].

Path based access control. The abstract attack found for the mutated
model of a path based access control system is reported in Listing 5. The
abstract action viewFile corresponds, in the web application interface, to a
drop-down menu with allowed filenames and a button with the label “View
File” to request the selected file. The abstract action fileContent is designed
such that the content of the requested file is displayed in a HTML page.
The exact value for notAllowed_file and getFileContent(notAllowed_file)
comes from an instantiation library. For example, the values /etc/passwd and
root:x:0:0:root:/root:/bin/bash could be used for these two parameters,
respectively.

Listing 5: Path based access control attack trace
user *-> <webServer >: viewFile (notAllowed_file)
<user > *-> webServer : viewFile (notAllowed_file)
webServer ->* <user >: fileContent (getFileContent (notAllowed_file))

Stored Cross-Site Scripting (XSS). As another example of getting val-
ues for malicious parameters, the abstract action editProfileOf from the
attack reported in Listing 6 must inject a stored XSS payload. To get this
information, we also rely on an instantiation library. For example, the pay-
load in Listing 7 could be injected in any field of the form to edit a profile
and the verification code in Listing 8 would be used when instantiating the
corresponding viewProfileOf action.

Listing 6: Stored XSS attack trace
<tom > *->* webServer : login (tom , password (tom , webServer))

webServer *->* <tom > : listStaffOf (tom)
<tom > *->* webServer : viewProfileOf (tom)

webServer *->* <tom > : profileOf (tom)
<tom > *->* webServer : editProfileOf (tom)

webServer *->* <tom > : profileOf (tom)
jerry *->* <webServer > : login (jerry , password (jerry , webServer))

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 31/42

<jerry > *->* webServer : login (jerry , password (jerry , webServer))
webServer *->* <jerry > : listStaffOf (jerry)

<webServer > *->* jerry : listStaffOf (jerry)
jerry *->* <webServer > : viewProfileOf (tom)

<jerry > *->* webServer : viewProfileOf (tom)
webServer *->* <jerry > : profileOf (tom)

<webServer > *->* jerry : profileOf (tom)

Listing 7: XSS payload for editProfileOf
<script > function fn (){

var el= document . createElement (’div ’);
el. setAttribute (’id ’, ’THISISANXSSATTACK ’);
el. innerHTML =’ THISISANXSSATTACK ’;
document . getElementById (’ lesson_wrapper ’). appendChild (el);}

document . getElementById (’ lessonContent ’). setAttribute (’onclick ’, ’fn () ’);
</script >

Listing 8: XSS verification code for viewProfileOf
waal_click (domID ("// div[@id=’ lessonContent ’]");
waal_checkInDOM (exists ("// div[@id=’ THISISANXSSATTACK ’]"))

3.2.3 Circumventing missing elements during the execution

Intuitively, the instantiation framework goes from more abstract to more
concrete in a unidirectional way. However, the TEE may fail to execute an
abstract action because of missing elements in its current context. Since
our TEE works at the browser level, there is an instantiation step done
by the browser (i.e., from browser action to protocol-level message) that
could be circumvented as well. Instead of asking the test expert to provide
such missing elements, one could retrieve the missing part by analyzing the
underlying relationships between abstract actions and concrete messages in
another context.

This part has already been covered in details in [10, Section 4.1]. Ba-
sically, the TEE may fail to execute a translated action because it cannot
reproduce it at the browser level. Still, the attack might be possible at a
lower level (i.e., by bypassing the browser level). The TEE has several ways
to execute the corresponding action at the HTTP level, from gathering in-
formation from previous executed actions to executing the same action in a
different context (i.e., from a secure trace which is more likely to succeed).
In the former, abstract parameters are bound to concrete values after the
successful execution of an action; for example, the user name jerry is linked
to the id 106 after a successful login. In the later, the abstract action is iden-
tified from the failing concrete action thanks to the relationship established
by the instantiation framework. Therefore, the framework is also used in

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 32/42

the other direction, from concrete values to abstract actions, mostly to reuse
instantiated values in a different context.

3.2.4 Requirements for the attacker behavior

One of the most important and time consuming aspects of formal validation
of security specification is the intruder engine. In particular in the context
of the SPaCIoS project we have used model-checkers (e.g., SATMC [2]) that
use the Dolev-Yao [4] intruder for generating our test cases. While this
attacker has been widely used for validating security cryptographic protocol
specifications, there are indications that Dolev-Yao is not suited for web
applications [1, 3]. In this section we investigate all the variations/mutations
of Webgoat [5] case study, and test if we can reach the goal without encryption
and decryption rule of the intruder.

We have tested 37 ASLan++ specifications and mutations of them in
two different ways. The first experiment has been performed using SATMC
with and without the entire intruder deduction system and the second one
just excluding encryption/decryption from the set of rules of the intruder
in SATMC. The first experiment has not reported the expected result for
all the specifications because in one case we have reached the expected goal
only using the intruder. However, we think it is important to report it in
order to show that, in most of the cases, the intruder deduction system do
not play any significant role to find an attack trace. On the other hand,
the second experiment returns the expected result for all the specifications.
That is, satmc either finds the same3 attack with and without encryption
and decryption rules, or no attack in any of two cases.

Experiment I — Excluding the deduction system of Dolev-Yao in-
truder. We describe here the result of testing every specification of the
Webgoat case study in SPaCIoS using SATMC with and without the intruder
deduction system. This experiment has been done using a beta version of
SATMC 3.5 that is not publicly available yet but the developers have pro-
vided us for this specific purpose. In this beta version there is the option
--intruder_rules that if set to false excludes the entire deduction system
of the intruder. Unfortunately this option gives conflicts with the step com-
pression procedure of SATMC, which we have excluded with --sc=false.
The only side effect of this conflict is at computational level, i.e. SATMC

3The attack traces produced by SATMC with and without the attacker are not identical
given that for the second case we don’t have the intruder deduction system. But it is easy
to see that the attack traces produced differ only in this aspect, so the attack traces could
be considered equal from the point of view of the logic of the web application.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 33/42

performances decreases, but it has not afflicted the results. Another option
we had set is a threshold to decide the maximum amount of time after which
a validation can be considered as inconclusive. In this experiment the time
limit for inconclusive results has been (empirically) set to 300 seconds, i.e.
after 300 seconds a SIGTERM signal is sent to the process.

The results of this experiment is summarized in Table 2 which reports
either the SATMC output or an empty field for timeout for each specifications
for the two considered cases: with and without intruder deduction system.
From this table we observe that:

• for 6 specifications we correctly find the same attack even without the
attacker deduction system

• for 7 specifications we correctly reports no attack found with and with-
out the attacker

• 2 specifications are reporting an attack only with the intruder

• the others 22 either do not conclude in 300 seconds (timelimit thresh-
old) or do not report the expected attack, but it is important to high-
light that the result is the same with and without the intruder

We have checked why for two specifications the attack was not found
without the intruder. For rbac_1_http_mutated.aslan++ the intruder i
was explicitly used in the requirements. Then we have renamed it with
another honest agent and the attack has been found using SATMC also
without intruder.

For xss_stored_goal2_nonSan.alan++ the attack should be also found
without the intruder given that the attack trace reported by SATMC with
intruder (Listing 9) does not use cryptography or pair rules.

Listing 9: xss_stored_goal2_nonSan.alan++ attack trace
<tom > *->* webServer : login (tom , password (tom , webServer))

webServer *->* <tom > : listStaffOf (tom)
<tom > *->* webServer : viewProfileOf (tom)

webServer *->* <tom > : profileOf (tom)
jerry *->* <webServer > : login (jerry , password (jerry , webServer))

<tom > *->* webServer : editProfileOf (tom)
webServer *->* <tom > : profileOf (tom)

<jerry > *->* webServer : login (jerry , password (jerry , webServer))
webServer *->* <jerry > : listStaffOf (jerry)

<webServer > *->* jerry : listStaffOf (jerry)
jerry *->* <webServer > : viewProfileOf (tom)

<jerry > *->* webServer : viewProfileOf (tom)
webServer *->* <jerry > : profileOf (tom)

<webServer > *->* jerry : profileOf (tom)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 34/42

n Spec With Attacker rules Without Attacker rules

1 Command_injection_Inj ATTACK_FOUND ATTACK_FOUND
2 Command_injection_NoInj NO_ATTACK_FOUND NO_ATTACK_FOUND
3 path_based_ac_Mutated_reach ATTACK_FOUND ATTACK_FOUND
4 path_based_ac_Mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
5 path_based_ac NO_ATTACK_FOUND NO_ATTACK_FOUND
6 rbac_1_http_mutated ATTACK_FOUND NO_ATTACK_FOUND
7 rbac_1_http NO_ATTACK_FOUND NO_ATTACK_FOUND
8 rbac_1_mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
9 rbac_1_no_ieqtom_mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
10 rbac_1_no_ieqtom NO_ATTACK_FOUND NO_ATTACK_FOUND
11 rbac_1 NO_ATTACK_FOUND NO_ATTACK_FOUND
12 rbac_3_mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
13 rbac_3_no_ieqtom_mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
14 rbac_3_no_ieqtom NO_ATTACK_FOUND NO_ATTACK_FOUND
15 rbac_3 NO_ATTACK_FOUND NO_ATTACK_FOUND
16 stored_xss_cookie_mutated
17 stored_xss_cookie
18 xss_reflected_goal1_no_ieqtom ATTACK_FOUND ATTACK_FOUND
19 xss_reflected_goal1 ATTACK_FOUND ATTACK_FOUND
20 xss_stored_goal1_malicioustom
21 xss_stored_goal1_no_ieqtom_malicioustom
22 xss_stored_goal1_no_ieqtom
23 xss_stored_goal1
24 xss_stored_goal2_maliciousTom ATTACK_FOUND ATTACK_FOUND
25 xss_stored_goal2_no_ieqtom_maliciousTom ATTACK_FOUND ATTACK_FOUND
26 xss_stored_goal2_no_ieqtom_nonsan NO_ATTACK_FOUND NO_ATTACK_FOUND
27 xss_stored_goal2_no_ieqtom NO_ATTACK_FOUND NO_ATTACK_FOUND
28 xss_stored_goal2_nonSan ATTACK_FOUND NO_ATTACK_FOUND
29 xss_stored_goal2 NO_ATTACK_FOUND NO_ATTACK_FOUND
30 xss_stored_goal3_maliciousTom
31 xss_stored_goal3_no_ieqtom_maliciousTom
32 xss_stored_goal3_no_ieqtom
33 xss_stored_goal3
34 xss_stored_goal4_maliciousTom
35 xss_stored_goal4_no_ieqtom_maliciousTom
36 xss_stored_goal4_no_ieqtom
37 xss_stored_goal4

Table 2: SATMC deduction system test results

Even after adding all the needed sessions in order to let the model checker
find the attack we have not managed to find this attack and it is still not
clear to us if there is a bug in this beta version of SATMC with this particular
set up or if there is a constraint at specification level that requires the in-
truder deduction system. We are investigating the core of this discrepancies.
Nevertheless, this result is showing that even if we totally exclude the entire
Dolev-Yao intruder deduction system and we use a standard model checker
we will obtain the same result as if we were using the intruder on all the
specification but one. Therefore the intruder rules seem not to be relevant
to our web application case study.

Experiment II — excluding the encryption/decryption rules. The
experiment has been performed using SATMC but using the standard 3.5
version instead of the beta version mentioned before. In order to exclude
the encryption/decryption rules we have manually modified (deleting each
occurrence of these rules) each sate4 file generated by SATMC while running

4Sate files are generated by SATMC after performing a preliminary static analysis.
These files contain the ASLan specifications and the intruder rules.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 35/42

Attacker with Attacker without
n Spec Encryption rules Encryption rules

1 Command_injection_Inj ATTACK_FOUND ATTACK_FOUND
2 Command_injection_NoInj NO_ATTACK_FOUND NO_ATTACK_FOUND
3 path_based_ac_Mutated_reach ATTACK_FOUND ATTACK_FOUND
4 path_based_ac_Mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
5 path_based_ac NO_ATTACK_FOUND NO_ATTACK_FOUND
6 rbac_1_http_mutated ATTACK_FOUND ATTACK_FOUND
7 rbac_1_http NO_ATTACK_FOUND NO_ATTACK_FOUND
8 rbac_1_mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
9 rbac_1_no_ieqtom_mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
10 rbac_1_no_ieqtom NO_ATTACK_FOUND NO_ATTACK_FOUND
11 rbac_1 NO_ATTACK_FOUND NO_ATTACK_FOUND
12 rbac_3_mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
13 rbac_3_no_ieqtom_mutated NO_ATTACK_FOUND NO_ATTACK_FOUND
14 rbac_3_no_ieqtom NO_ATTACK_FOUND NO_ATTACK_FOUND
15 rbac_3 NO_ATTACK_FOUND NO_ATTACK_FOUND
16 stored_xss_cookie_mutated
17 stored_xss_cookie
18 xss_reflected_goal1_no_ieqtom ATTACK_FOUND ATTACK_FOUND
19 xss_reflected_goal1 ATTACK_FOUND ATTACK_FOUND
20 xss_stored_goal1_malicioustom
21 xss_stored_goal1_no_ieqtom_malicioustom
22 xss_stored_goal1_no_ieqtom
23 xss_stored_goal1
24 xss_stored_goal2_maliciousTom ATTACK_FOUND ATTACK_FOUND
25 xss_stored_goal2_no_ieqtom_maliciousTom ATTACK_FOUND ATTACK_FOUND
26 xss_stored_goal2_no_ieqtom_nonsan NO_ATTACK_FOUND NO_ATTACK_FOUND
27 xss_stored_goal2_no_ieqtom NO_ATTACK_FOUND NO_ATTACK_FOUND
28 xss_stored_goal2_nonSan ATTACK_FOUND ATTACK_FOUND
29 xss_stored_goal2 NO_ATTACK_FOUND NO_ATTACK_FOUND
30 xss_stored_goal3_maliciousTom
31 xss_stored_goal3_no_ieqtom_maliciousTom
32 xss_stored_goal3_no_ieqtom
33 xss_stored_goal3
34 xss_stored_goal4_maliciousTom
35 xss_stored_goal4_no_ieqtom_maliciousTom
36 xss_stored_goal4_no_ieqtom
37 xss_stored_goal4

Table 3: SATMC Encryption test results

the standard validation on each specification of our case study. The time
threshold has been set to 300 seconds as for the previous experiment.

The test is summarized in Table 3 which reports either the SATMC out-
put or an empty field for timeout for each specifications for the two considered
cases: with and without encryption rules. We can observe that for each spec-
ification the result has been the same with or without the encryption/decryp-
tion rules. In particular, we have obtained the same results as in the previous
experiment except that also for xss_stored_goal2_nonSan.alan++ SATMC
with no encryption rules reports the correct attack trace.

In our experiments the Dolev-Yao intruder seems not to be relevant for
web applications when it comes to cryptographic rules. We however conjec-
ture that message concatenation, and non-deterministic scheduling of Dolev-
Yao attacker would be needed on a more general web application case study.
This could be used to speed up the search of goals and then to increase
performances of model checkers while validating web applications.

We, therefore, want to focus on peculiarities of web applications when
performing model based testing and find which is the right way to model
them. This could let us use a model checker to find attacks that are not

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 36/42

strictly related to what the web application is implementing (e.g. protocol
faults) but to the web application environment they are deep into.

As future work, we will test this conjecture by specifying a more elaborate
web application, and investigate the impact of different attacker models on
its verification.

3.3 Test concretisation for VERA
We have already discussed in [7] and 3.3 [10] the VERA-tool components:

• Low-level attacker model that reflect the common steps an attacker
would take in order to exploit low-level vulnerabilities.

• Instantiation library containing data values used to interact with
SUT.

• Configuration file containing system specific information needed to
test a SUT.

Regarding the concretisation of abstract tests, the VERA-tool does not
have a “real” concretisation phase. Since we are dealing with a low-level at-
tacker model the concretisation phase starts during the creation of the model
and it ends with the choice of the right instantiation library. In the following
we show how the security expert has to take into account the missing ab-
straction gap between the models and the SUT, both in the creation of the
models, and in the instantiation of the tests.

3.3.1 Modeling the low-level attacker

HTTP verb tempering is an attack where an attacker modifies the HTTP
verb (e.g. GET, PUT, TRACE, etc.) in order to bypass access restrictions.
We report the model in Figure 7; we have already explained how to create
a model in Deliverable 2.4.1 so we skip the explanation on how the model
works.

Every model used in the VERA-tool is created using a set of primitives
defined by functions in python. We saved the used set of primitives directly
in the VERA-tool source code. These primitives are the building blocks of
our models; they define how to retrieve (or modify data) on the messages
exchanged with the SUT.

In the scope of the VERA-tool, two approaches in the creation of the
low-level attacker model primitives have emerged:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 37/42

a
/snd(URL, ‘OPTIONS’)

b

rcv/
Code = self.getCode(rcv)

c

[Code == 200]/
AllowedMethods = self.getMethods(rcv);

Index = 0

d

/
snd(URL, AllowedMethods[Index])

[‘OK’ in rcv] rcv/
reportError()

e

[‘OK’ not in rcv AND
Index < length(AllowedMethods)]

rcv/
Index = Index + 1

[‘OK’ not in rcv AND
Index == length(AllowedMethods)]/

Index = 0

[‘OK’ in rcv] rcv/
reportError()

f

/
snd(URL, IO[Index])

[‘OK’ not in rcv AND
Index < length(IO)]

rcv/
Index = Index + 1

[‘OK’ not in rcv AND
Index = length(IO)] rcv/

reportSuccess()

Figure 7: HTTP verb tampering low-level attacker model

• create a library of general purpose primitives in order to use it during
the testing of different applications, or

• create an ad hoc library for a specific attack.

In the following we show some of the primitives (with a short explanation)
for these two approaches.

General purpose primitives We currently have three general purpose
modules that we use for the communication with the application, the gener-
ation of sockets, and the display of messages to the security analyst.

The vHttp module contains the primitives needed for HTTP commu-
nications with the applications:

Primitive Use
snd Sends an HTTP-Request. Request type, headers,

fields, etc. can be specified. Can also automatically
modify the received page to contain only absolute
URLs

listForms Returns a list of all forms on a web page
listFields Returns a list of all fields in a form

The vSocket module specifies the primitives for the managing of sockets:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 38/42

Primitive Use
openSocket/listen Creates a new socket and starts listening
connect Connects to a remote host
snd Sends data over the established connection
isConnected Returns whether a connection has been estab-

lished
close Closes socket/connection

The vPrint module contains the primitives that we use for the display of
messages to the security analyst.

Primitive Use
debug
info
warning Returns a message of the used type to the user
normal
success
fail

Ad hoc primitives The second approach consists in the creation of prim-
itives for targeting a specific attack. In the following we report two attacks
with the primitives used in the corresponding low-level attacker model.

XML Signature wrapping attack
Primitive Use

snd to send HTTP/HTTPS requests
getIdP to obtain IdP from a SAMLL Authentication Re-

quest message
getSAMLRequest to obtain SAML Request from a SAML Authen-

tication Request message
getRelayState to obtain relay state from a SAML message
getBody to create a message body to be sent to IdP
getSAMLResponse to obtain SAML Response from a SAML Authen-

tication Response message
fuzz to apply XML Signature wrapping attack on

SAML Response
getTarget to obtain target URL to send the changed SAML

Response
reportError to report error in SUT
reportSuccess to report no error in SUT
clearCookies to clear cookies received

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 39/42

(a) IO for Cross-Site Scripting. (b) IO for SQL-injection

Figure 8: Example of Instantiation Libraries used in VERA

Verb tampering attack
Primitive Use

snd of course;
getCode to obtain the code of HTTP response message;
getMethods to obtain the allowed methods of the server;
reportSuccess
reportError

3.3.2 Prioritizing Instantiation Library

We already discussed how to prioritize the attacker models of VERA (ap-
proach based on a risk analysis of the system under test (SUT)) in Sec-
tion 3.1.1 of Deliverable 3.3.

As stated in the deliverable the set V containing the available low-level
attacker models v1, · · · , vn can be reduced to a subset Ve (the vulnerabilities
to be tested on the SUT) according to a risk factor. We have show how
these models use the instantiation libraries according to the vulnerability
that they implement. An example of Instantiation Libraries used by the
VERA-tool during the assessment of i) a general SQL-injection or ii) a Cross-
Site Scripting attacks is shown in Figure 8. An Instantiation Library consists
of a simple text file containing an array called IO of either single values or
tuples. Which kind of data is in the array depends largely on the attacker
model it was created for.

Write α(v) for the set of instantiation libraries associated to a vulnerabil-
ity v ∈ V . In order to choose the right instantiation library during the test,
we introduced the concept of tags; a tag is written in the form c.v, where c
is a category and v is a value. We assume that the SUT is tagged according
with the values used for tagging the instantiation libraries.

We have identified two common scenarios where it makes sense to use
multiple Instantiation Libraries during a vulnerability assessment:

• If the same steps can be performed to create completely different at-
tacks, then it makes sense to use different Instantiation Libraries for

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 40/42

these kinds of attacks. It makes sense to not have a single big library,
but rather have different instantiation libraries α(v1), . . . , α(vn).

• If there are a large number of values, and these can be divided based
on information which might be available during the test time, such
as the back-ends used, it might make sense to split the Instantiation
Library (α(v) = IO1 ∪ . . . ∪ IOn). An example for this would be file
enumeration, where different instantiation libraries might exist for the
different kinds of platforms available.

For the first case we can use as an example the two instantiation libraries
shown in Figure 8. The low-level attacker model injection attacks (e.g. SQL-,
X-Path-, Command-Injection, etc.) is the same, the only thing that change
is the instantiation library that the security analyst has to select during the
vulnerability assessment.

As an example of for the second case we report the different queries (with
the corresponding tag) that a security analyst can try in order to assess the
version of the database of the SUT.

bd.db2
select versionnumber ,

version_timestamp
from sysibm . sysversions ;

bd.mssql & bd.mysql bd.postgresql
select @@version select version ()

With multiple instantiation libraries, the corresponding tags, and the tags
for the SUT we can calculate the likelihood of each instantiation library in
α(v) (refer to Section 3.1.1 of Deliverable 3.3 for the algorithm for calculating
likelihood). Say that l(L) is the likelihood of succeeding in performing the
test on the SUT using the instantiation library L ∈ α(v). For example if the
security analyst has to assess a SUT tagged with db.mysql the likelihood of
the instantiation libraries tagged with db.db2 and db.postgresql is zero.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 41/42

4 Summary
This deliverable has presented how abstract test cases generated in SPaCIoS
are turned into concrete test cases that can be executed by one of the TEE
developed in the project.

First of all, the relationship between abstract actions in the model and
concrete data in the SUT is established. This can be done in a more or less
automatic way when the model is inferred or extracted from the SUT. For
manually created models, the modeler can describe this mapping using some
intermediate languages, developed within the project, which make this task
easier and less error-prone. TEEs are able to automatically execute test cases
described in such languages.

Then, concretisation of test cases is explained for each driver component.
As these drivers support different models, the concretisation phase slightly
differs from one to another. However, they all make use of the established
relationships between models and implementations. At the end, it is possible
to concretize tests for both security protocols and Web applications.

Some issues remain open at the time of writing this deliverable. These
open questions will be addressed in the following deliverable on bridging
components for different levels of abstraction (D3.4.1).

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.5.1: Framework for concretisation of abstract tests 42/42

References
[1] D. Akhawe, A. Barth, P. Lam, J. Mitchell, and D. Song. Towards a

formal foundation of web security. In Computer Security Foundations
Symposium (CSF), 2010 23rd IEEE, pages 290–304, July.

[2] A. Armando and L. Compagna. SATMC: a SAT-based model checker
for security protocols. In Proceedings of the 9th European Conference
on Logics in Artificial Intelligence (JELIA’04), volume 3229 of LNAI,
pages 730–733, Lisbon, Portugal, 2004. Springer-Verlag.

[3] C. Bansal, K. Bhargavan, and S. Maffeis. Discovering concrete attacks
on website authorization by formal analysis. In 25th IEEE Computer
Security Foundations Symposium, CSF 2012, June 2012.

[4] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Trans. on Information Theory, IT-29(2):198–208, 1983.

[5] OWASP. OWASP WebGoat Project. https://www.owasp.org/index.
php/Category:OWASP_WebGoat_Project, 2011.

[6] SPaCIoS. Deliverable 2.1.2: Modeling security-relevant aspects in the
IoS, 2012.

[7] SPaCIoS. Deliverable 2.4.1: Definition of Attacker Behavior Models,
2012.

[8] SPaCIoS. Deliverable 5.2: Proof of Concept and Tool Assessment v.2,
2012.

[9] SPaCIoS. Deliverable 2.2.1: Method for assessing and retrieving models,
2013.

[10] SPaCIoS. Deliverable 3.3: SPaCIoS Methodology and technology for
vulnerability-driven security testing, 2013.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

	Introduction
	Relationships between models and implementations
	Abstraction for automatically generated models
	Inferred models
	Extracted models

	Relation for manually built models

	Semi-automated generation of driver components
	Test concretisation for Instrumentation-Based Testing Approach
	Modeling
	Instrumentation
	Test Execution Engine

	Test Concretisation for SPaCiTE
	Framework for instantiating at the browser level
	Getting values for malicious parameters
	Circumventing missing elements during the execution
	Requirements for the attacker behavior

	Test concretisation for VERA
	Modeling the low-level attacker
	Prioritizing Instantiation Library

	Summary
	References

