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1 Introduction

Black-box and white-box model inference techniques both have specific
strengths and weaknesses. They are complementary in that we can counter-
balance one’s limitations with the other one’s strengths in order to obtain
better, more precise models, in a less costly manner.

We first describe in detail our method for model extraction from source
code. Then we present two approaches to combine it with black-box model
inference, for two different purposes. First, we can interface the two methods
and use the white-box approach to provide information to black-box model
inference, such as the alphabet of input/output events, and oracle informa-
tion. Additionally, we compare a black-box model learned by crawling with
a source-extracted model in order to detect potentially unintended behaviors
and vulnerabilities.
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2 White-Box Model Extraction
This section describes jModex, a tool for white-box extraction of behav-
ioral models for JSP/Servlet web applications. Models are first generated in
an extended finite state machine format and then converted into ASLan++.
jModex attempts to combine the effects of statements as much as possible,
following the idea of large-block encoding [1]. In short, it captures the be-
havior of the system by recording the execution conditions and state changes
on every distinct execution path through the analyzed program.

This section is intended as a standalone description of jModex, includ-
ing both previously implemented parts and updates representing the current
development status of the tool. Therefore the exposition includes fragments
already included in other deliverables, e.g., [4, 5].

2.1 jModex Components

Code

Behavioral 
Model

Extraction
(iSummarize)

ASLAN(++) 
Model Generation

ASLAN(++) 
Model

Behavioral
Automaton 

(EFSM)

Figure 1: jModex Components

Figure 1 presents the two main components of jModex, which correspond
to the two main steps of the ASLan++ model extraction process:

• iSummarize - starting from the application code, a behavioral model
(called iSummarize model) of the application is extracted in the form
of an extended finite state machine (EFSM). The obtained model is
further used by the second jModex component, but it can also be
used by other tools as shown in different sections of this deliverable.

• ASLan++ Generator - using a set of translation schemas, this
component translates the iSummarize model into an ASLan++ model
of the application.
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2.2 iSummarize - Capturing Execution Paths
iSummarize analyzes each method from the investigated application record-
ing the updates of relevant state variables and the conditions under which
these updates are performed. As a result, it builds an EFSM for the ana-
lyzed method. Figure 2 exemplifies in more detail the extraction process of
the iSummarize model for the function shown in Listing 1.

Listing 1: A Source Code Example
1 public void _jspService(HttpServletRequest request,
2 HttpServletResponse response)
3 throws IOException , ServletException {
4 ServletOutputStream out = response.getOutputStream();
5 String aVar = "No Link!";
6 out.println("<html >");
7 out.println("<body >");
8 if(request.getParameter("update").equals("false")) {
9 out.println(aVar);

10 } else {
11 request.getSession().setAttribute("seen", "true");
12 out.println("<a href=\"B.jsp?name=exec\"");
13 out.println("Click here!");
14 out.println("</a>");
15 }
16 out.println("</body >");
17 out.println("</html >");
18 }

The process starts by building the control-flow graph of the analyzed
method, using the WALA analysis infrastructure1. Next, the graph is tra-
versed in a depth-first order and the various execution paths are determined
and analyzed instruction-by-instruction in reverse execution order.

Initially, at the end of the analyzed method, the final state of the method’s
EFSM is created. Going backward, on encountering an assignment to a
relevant state variable, the update is recorded on every possible execution
path leading from the assignment to the method exit/final state. Figure 2A
shows the status of the iSummarize model construction after analyzing lines
16 and 17. For some analysis goals, capturing the output produced by a web
application might be relevant. Thus, iSummarize records these updates
and, consequently, it determines that by executing the _jspService function
the strings “</body>” and “</html>” will be sent to the user.

When a join point is encountered (e.g., immediately before line 16), the
paths/transitions going from that point to the final state of the method must
be propagated backwards through each possible joining branch. As a result,
the single transition from Figure 2A will be duplicated: the two copies will
record the constraints/updates on the false branch of the if statement from
line 8 and on the true branch, respectively. Figure 2B shows the iSummarize

1http://wala.sourceforge.net
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Figure 2: Exemplifying the Model Building Process
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model after both true and false branches are traversed. On the true branch,
the value of variable aVar is sent to the user. On the false branch, some other
string values are sent and there is an update to another relevant state variable
for a JSP/Servlet application: the session attribute named seen which takes
the string value “true” (line 11) on this execution path/transition.

When encountering an if decision (e.g., line 8), iSummarize checks to
see if it is relevant i.e., the system state/response depends on the branch
taken. If not, the instruction is ignored and the transitions for the true and
false branch are jointly kept for further backward propagation. When the
if is relevant, the constraints/guards for the transitions from that execution
point are changed by performing a conjunction with the condition of the if
statement (or its negation, respectively)2. Furthermore, all transitions (from
both true and false branches) are propagated backward to the beginning of
the method. As a result, the guards of the exemplified iSummarize model
are updated as in Figure 2C (the equals operator tests the equality of two
strings, and returns 1 when the strings are equal and 0 otherwise).

For a JSP/Servlet application, another relevant aspect are the request pa-
rameters, representing inputs sent (typically) by the user to the application.
Since these inputs affect the application behavior, iSummarize captures the
usage of such values using the RequestParameter construct.

The algorithm continues until the depth-first order traversal of the method
control-flow graph is finished. Figure 2D shows the final form of the extracted
iSummarize model. On each possible transition the output of the application
will contain the strings “<html>” and “<body>” due to lines 6 and 7. The
beginning of the method corresponds to the initial state of the EFSM.

When building the EFSM, every assignment operation triggers a substitu-
tion in iSummarize: every occurrence of the assigned variable in the current
EFSM is substituted with the expression on the right side of the assignment.
For instance, the assignment in line 5 triggers the substitution of variable
aVar with the string “No Link!”. The variable appears in the automaton of
Figure 2C on the transition corresponding to the true branch of the decision
on line 8. As a result of the substitution, Figure 2 shows that when taking
the mentioned transition the string “No Link!” is sent to the user.

Handling loops. The previously described algorithm captures as EFSM
transitions all relevant paths of a loop-free method. However, when a loop is
encountered, we cannot enumerate all paths. To handle loops, a state (control
point) for the loop header is inserted in the automaton under construction.

2The true/false branches might be interchanged by WALA, for instance, by using an
inequality operator instead of equality.
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Moreover, the computation of the guards and updates associated with the
transitions leaving the header is repeated until a fixpoint is reached (no
further change appears). The reason is that inside the loop, we need to
capture all relevant variables and their updates that directly or indirectly
affect any relevant state variable and/or any variable controlling the loop.
If on a loop path, we find that a variable is used to update a relevant state
variable, the analysis has to be re-executed by considering the influencing
variable as a new relevant state variable.

Managing infeasible paths. The approach used to build the iSumma-
rize model for a method captures every possible loop-free path through
that method. However, some of these paths might not be feasible. For in-
stance, when we have two consecutive non-nested if statements, four distinct
execution paths are possible. But, when the if conditions cannot be simulta-
neously true, the path passing through the true branches of both statements
will never be executed (i.e., it is unfeasible). To detect and eliminate such
paths, iSummarize tries to directly identify simple contradictions in the
path guards (e.g., 1 > 4 is always false, etc.). Additionally, our tool can use
the external Z33 theorem prover in order to decide on the satisfiability of a
logical condition guarding the execution of a path.

From individual methods to the entire system. The model extraction
algorithm described above is applied to each method from the target system,
producing a set of EFSMs, one for each method. To then build a model for
the entire application, iSummarize performs the following steps:

1. The JSP/Servlets entry points (the _jspService methods) are detected
and a context-insensitive call-graph is built starting from these entry
points, also using the WALA analysis infrastructure.

2. The graph is then traversed in a depth-first order, applying for each
reached method the EFSM extraction algorithm after every function
invoked by the method has been processed. When a method invocation
is encountered during the EFSM construction, the behavioral automa-
ton of the invoked method is integrated/in-lined in the automaton of
the invoking method. This action includes the substitution of formal
parameters from the invoked automaton with the actual parameter val-
ues, the substitution of the caller’s variable capturing the return value

3http://z3.codeplex.com/
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with the returned value of the called method, etc. For this in-line ex-
pansion, the call-graph must be traversed in depth-first order. As a
consequence of inlining, the tool does not handle recursion.

Following these analysis steps, iSummarize builds an inter-procedural
EFSM for each entry point of the investigated application. These automata
can be used for further analysis goals, e.g., modeling the application in
ASLan++ (the next section describes how they are combined in this case).

iSummarize Meta-Model. Figure 3 depicts the entities used to represent
an iSummarize model and their relations.

MethodSummary

MethodControlPoint

1

*
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GuardExpression
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TracedVariable

1
MethodPath Traced

Variable -variableToExpression

1

GuardAndExpression
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...

GuardOrExpression

GuardProgramExpression

ProgramDbRValue

ProgramFunction

Figure 3: iSummarize Meta-Model

iSummarize represents as first-class entities the behavioral automata
(i.e., MethodSummary) and their main components: states (i.e., MethodCon-
trolPoint) and transitions (i.e., MethodPath). A MethodSummary has one
entry control point/state, a MethodControlPoint can have any number of
outgoing transitions, while a MethodPath connects two states.

Each MethodPath has a guard condition (i.e., GuardExpression) repre-
senting the logical condition that enables the execution of that path. The
nodes GuardNotExpression, GuardAndExpression, GuardOrExpression and
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GuardTrueExpression represent the usual logical connectors and the value
true, respectively. A special logical expression that can appear in a guard
is the GuardProgramExpression which represents a predicate extracted from
the program (e.g., ProgramRelationalExpression objects correspond to com-
parisons between numerical values in the program).

A TracedVariable corresponds to a relevant variable whose updates need
to be captured. We capture updates to fields, relevant local variables (i.e.,
ProgramIndexExpression objects corresponding to local variables) and re-
turn variables (i.e., ProgramReturnVariable). In particular, for JSP/Servlet
applications, we capture modifications to session attributes (i.e., Program-
SessionAttribute) and to the output of the program (i.e., ProgramOutput).

For every MethodPath, the tool associates every TracedVariable that is up-
dated on that execution path with the actual ProgramExpression denoting
the assigned value. Expressions of this kind can be numerical operations (i.e.,
ProgramBinaryExpression), relational expressions (i.e., ProgramRelational-
Expression), constants or local variables (i.e., ProgramIndexExpressions), etc.
In particular, for a JSP/Servlet application, request parameter inputs are
represented as ProgramRequestParameter objects.

Values coming from a database via SQL queries are detected and repre-
sented by iSummarize in the behavioral model as ProgramDbRValue. Values
returned by functions/methods defined in external libraries (i.e., outside the
analyzed application and thus not analyzed in-depth) are recorded as Pro-
gramFunction objects. This type of object memorizes the invoked function
together with the invocation arguments.

Other features and current limitations. The user of the tool can de-
cide to ignore during the analysis a given method from the system under
investigation, e.g., replace the method with the identity transform. Such an
abstraction must be chosen carefully to preserve soundness, without omitting
aspects that are important for the goal of the analysis. Nevertheless, such a
feature is important for reducing the size of the extracted model.

At present, iSummarize does not consider paths corresponding to ex-
ception propagation, polymorphic invocations or non-static field accesses.
These could conceptually be treated in the same way. For instance, to add
exception paths the analysis needs to follow and compose exception edges
(provided by WALA, but currently ignored by iSummarize) in the method
control flow graph. Guard conditions need to be added to execution paths
capturing the implicit generation of an exception (e.g., X == null for a Null-
PointerException exception when invoking a method on a reference X); in
contrast, X != null must be added to a normal execution path.
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2.3 Generating the ASLan++ model
We next describe the ASLan++ Converter component of jModex, which
takes a set of EFSMs built by the iSummarize component and transforms
them into an ASLan++ model of the investigated application.

Integrating several EFSMs. Given a JSP/Servlet application, jModex
builds a behavioral automaton for each of its distinct components (i.e., JSP /
Servlet) starting from its entry point. All these distinct automata are trans-
lated into a single ASLan++ entity corresponding to the entire application.
We describe how these different sub-models are integrated into a single one.

In a JSP/Servlet application, the components can be invoked by a user/in-
truder in any possible order, without enforcing a particular invocation pro-
tocol (e.g., following the request links displayed by the presentation layer).
Therefore, to obtain the overall model, all sub-models are jointly enclosed
in a while(true) loop in which one sub-model is selected for execution based
on the user request. A special sub-model is inserted before this while loop,
corresponding to the initialization phase of the application.

Next, we describe how a single iSummarize automaton / a single com-
ponent sub-model is translated into ASLan++.

Building the Control Tree. To translate a given automaton, the con-
verter first has to decide on the control structure of the generated ASLan++
model. In other words, the converter must decide which control statements
(e.g., select, if, etc.) will be used and how they will be composed to represent
the EFSM semantics and to minimize duplication in the ASLan++ code.
For this purpose, the converter performs a structural analysis [3] reducing
the EFSM graph using a set of basic structures (regions) associated with spe-
cific ASLan++ control statements. As a result, a control tree is obtained,
capturing the required control statements and their chaining and/or nesting.
Figure 4 exemplifies this process for the automaton from Figure 2D.

Converting Expressions. Once the control structure of an ASLan++
model has been established, the remaining task is to translate the guards
and the state updates from the control tree into ASLan++ statements. The
guards result in branching conditions for the control statements while the up-
dates are translated into assignments in the bodies of the control statements.
In the following, we will show how guards/update expressions are represented
in ASLan++ by jModex, i.e., how various entities from the meta-model
(Figure 3) are mapped into ASLan++ constructs. Since some of these enti-
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ties represent the state of the application and thus, we also explain how they
are expressed as ASLan++ state symbols.

Select While

Some basic control structures/regions

Building 
the Control Tree

ProgramOutput=[
“<html>”,“<body>”, ”No Link!”, 

“</body>”,“</html>”]

Guard
equals(RequestParameter(“update”),“false”)==0
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NOT(equals(RequestParameter(“update”), “false”)==0)

State/Output
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“<html>”,“<body>”,...,“Click here!”,“</a>”,

“</html>”,“</body>”]

State/Output
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Guard
NOT(equals(RequestParameter(“update”),

“false”)==0)

Updates
...
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...

Figure 4: Control Tree Example

Values Correspondence and Operations
• Numeric values: ASLan++ only supports natural numbers. As a

result, we have to abstract operations with real/integer values. One
option is to create a particular ASLan++ type for numbers (e.g.,
numeric) and to treat the required numerical operations (e.g., Pro-
gramBinaryExpression) as uninterpreted functions over this type. A
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refinement would be to declare a distinct ASLan++ type for each nu-
merical Java type (e.g., int or double) in order to specialize how each
class of values is managed during model checking.

• String values are treated as ASLan++ messages. String concatena-
tion is converted into message concatenation while the equality test
is translated as message equality. In some cases, we may define spe-
cial functions or predicates representing other string-related operations
(e.g., equals ignoring case).

Translating Non-State Related Entities

• The relevant constants identified by jModex in a program (i.e., objects
of ProgramIndexExpression type in Figure 3 associated with constants)
are expressed in ASLan++ as constants of corresponding types.

• Request parameter: in a JSP/Servlet application, the objects of type
ProgramRequestParameter are simple named inputs of type string that
the client provides in its request. In ASLan++ we represent them
as a set of message pairs (i.e., Params : message.message set). The
application entity receives the actual values for these parameters (i.e.,
a concrete set of message pairs) as a message sent by the client entity.

• Program function: Some functions called in the application code are
not analyzed by jModex (e.g., library methods). In these cases, the
function return value is represented by a ProgramFunction expression
(in Figure 3). These expressions are translated to ASLan++ as ap-
plications of uninterpreted functions.

• Database values: as suggested by the name, these expressions represent
data that come from a database (ProgramDbRValue in Figure 3). For
such a value, we capture the expressions corresponding to (i) the SQL
query producing the value and (ii) to the position in the resulting table.
This information can be used in ASLan++ to express database values
as results obtained by applying uninterpreted functions.

Translating State-Related Constructions.

• Temporary Variables (i.e., ProgramIndexExpression instances in Fig-
ure 3 corresponding to local variables) are expressed in ASLan++ as
variable symbols of corresponding types, local to the application entity.
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• Session attribute: they represent a set of named state variables of the
application (i.e., ProgramSessionAttribute in Figure 3). In ASLan++
they are expressed as a local set of message pairs (i.e., Sess : mes-
sage.message set). Accesses/assignments to the state attributes are
made using the contains function, while attribute deletion can be im-
plemented using the fact retraction construct.

Current Limitations. Currently, the strongest limitation of jModex is
that it does not properly capture updates to the database; only read ac-
cesses are expressed using uninterpreted functions. Since for some analysis
purposes, updates are also relevant, they must also be handled. We plan to
eliminate this problem by modeling relevant parts of the database. More-
over, we plan to evaluate the possibility of employing coarser abstractions
(e.g., representing and translating the entire output of the application is not
relevant in many cases) and to optimize the translation of the expressions
identified as relevant.

Example. Listing 2 shows the ASLan++ model produced by jModex
for the code from Listing 1. The model is generated abstracting away the
HTML output but shows the decision structure based on request parameters.

The Application entity (line 15) represents the modeled web application
and the while(true) loop (line 23) corresponds to the server loop (i.e., it waits
for requests from clients). The first select is used to model the invocation of
a particular JSP/Servlet as discussed in Section 2.3 (paragraph “Integrating
several EFSMs”). Since in our example we have just a single JSP/Servlet,
we have just a single on block (line 25) associated to this single component
of the application. The entry message represents the invocation of the ex-
emplified service, and the received content provides the values of the request
parameters sent by the user (i.e., Params at line 25).

The second select statement (line 26) distinguishes between the various
execution paths that can be followed in the exemplified program/automaton.
When the value of the parameter named “update” (update in lines 27 and
28) is not equal with the string “false” (sfalse constant in line 28) the session
attributes of the system (i.e., Sess) are updated (line 33) as in the case of
the original program from Listing 1. The if statements ensure that i) the
updated attribute (i.e., seen constant in lines 30 and 33) will not have more
than one value in the session set and ii) the updated attribute will not have
the null value (i.e., it must exist in the session)4

4In this case, the second if condition is always true. With a simple satisfiability analysis
of guards (here, comparison of different constants) the model can be further simplified.
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The second path in Listing 1 (i.e., when the “update” parameter is “false”)
does not appear in the ASlan++ model because it does not affect the state
of the system (we do not capture the output changes in this example) and
thus, the path can be eliminated from the model (i.e., we would have an
alternative on with an empty body which is irrelevant in this case).

Listing 2: The Generated ASLan++ Produced by jModex
1 specification AnExample
2 channel_model CCM
3 entity Environment {
4
5 symbols
6 entry(message.message set):message;
7 seen:message;
8 oNull:message;
9 strue:message;

10 update:message;
11 sfalse:message;
12
13 entity Session(S:agent) {
14
15 entity Application(Actor:agent,U:agent,Sess:message.message set) {
16
17 symbols
18 Params:message.message set;
19 Seen:message;
20 Update:message;
21
22 body {
23 while(true) {
24 select {
25 on (?U*->*Actor:entry(?Params)): {
26 select {
27 on(Params->contains((update ,?Update))
28 & !(?Update = sfalse)):{
29 if(Sess->contains((seen,?Seen))){
30 Sess->remove((seen,Seen));
31 }
32 if(strue!=oNull) {
33 Sess->contains((seen,strue));
34 }
35 }
36 }
37 }
38 }
39 }
40 }
41 }
42
43 body {
44 new Application(S,i,{});
45 }
46 }
47
48 body {
49 any A. Session(A) where A!=i;
50 }
51 }
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3 Combining Black-Box and White-Box
Inference

3.1 Overview and benefits
Extracting models statically, from the source code of a system, generally pro-
duces models that over-approximate the real of the system behavior. Com-
plementarily, when a model is learned at runtime, by repeatedly querying the
system, the resulting model may not contain all feasible system behaviors.
However, the search space of learning a model can be efficiently limited when
source code is available for the system under learning. This can be done by
using relevant information from the statically extracted model.

In the following, we assume that the models inferred are in both cases
Mealy machines with parameterized guard conditions, and that the learned
system behaves deterministically, i.e., for each sequence of input events it
produces exactly one sequence of output events.

3.2 Providing abstractions to black-box inference
The model extracted by means of white-box inference can be used to provide
several relevant abstractions to the black-box inference process, abstractions
that are specific to the domain of white-box analysis. In a black-box only
inference approach, such abstractions as transition guards can only be ob-
tained approximatively, in an empirical manner, at the end of the inference
process, while by employing a white-box analysis of the application they can
be made available before the black-box model learning starts.

Therefore, an important contribution the white-box inference process can
bring is to provide both an abstract and a concrete alphabet of input and
output events for black-box model learning. Extracting such an alphabet
from the source code is significantly different from alphabet extraction via
crawling, as the source code provides more information on an application’s
input/output events.

3.2.1 Extracting the Alphabet of Input Events

As a result of the white-box model inference, we have access to a superset
of all feasible paths that link an input to an output event in the application
under learning. These paths can be statically explored. When exploring
the paths between input and output in the source code, we can gather path
conditions and use them to extract relevant constraints on valid input pa-
rameters. This leads us to an abstract set of inputs, where each input in
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the alphabet has its parameters characterized by several logical constraints.
We can see such an abstract input in Listing 3, where the domain of each
input parameter is restricted by a set of constraints, obtained from the path
conditions specifically referring to that parameter.

Listing 3: Abstract Input Example
<input address="http://localhost:8080/org/apache/jsp/mock/Login.jsp"
method="POST" type="FORM">

<parameters>

<parameter name="FormName">NOT(RequestParameter("FormName") eq null)
AND RequestParameter("FormName").equals("") eq 0</parameter>

<parameter name="ret_page">NOT(RequestParameter("ret_page").equals("")
eq 0) AND NOT(RequestParameter("ret_page") eq null)</parameter>

<parameter name="querystring">RequestParameter("querystring").equals("")
eq 0 AND NOT(RequestParameter("querystring") eq null)</parameter>

<parameter name="Login">RequestParameter("Login") eq null</parameter>

<parameter name="FormAction">RequestParameter("FormAction") eq null</parameter>

</parameters>

</input>

Listing 4: Concrete Input Example
<input address="http://localhost:8080/org/apache/jsp/mock/Login.jsp"
method="POST" type="FORM">

<parameters>

<parameter name="FormName">0</parameter>

<parameter name="ret_page"></parameter>

<parameter name="querystring">0</parameter>

<parameter name="Login">null</parameter>

<parameter name="FormAction">null</parameter>

</parameters>

</input>

The abstract set of inputs cannot be used as such by the black-box in-
ference process, but, by employing a SMT solver such as Hampi [2], one can
instantiate each abstract input. Thus, whenever the conditions associated to
the parameters of an abstract input are satisfiable, we can solve them and
create concrete values for each input parameter. In this way, we obtain an
alphabet of concrete input events that can be used for black box inference.
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Such an example of a concrete input, defined by a set of concrete parameter
values, can be seen in Listing 4.

It is worth noting here that, while working with the abstract alphabet
appears at first to complicate the alphabet extraction process, it actually
brings significant value when compared to crawling. As the black-box model
learning process aims to obtain an EFSM that would describe the behavior
of the application under inference, it needs to determine relevant guard con-
ditions for the model’s transitions. The crawler only extracts, in a black-box
manner, a concrete alphabet of the system under inference, where each pa-
rameter is characterized by a set of possible values. This set is not exhaustive
and it does not give out any information on whether the system may react
in a way on some of these values and differently on others. The actual guard
conditions are extracted only during the black-box inference process and,
as they are obtained empirically, using only runtime observations, they are
imprecise. By contrast, when the concrete input is an instance of a known
abstract input, the guard conditions can be derived from the conditions on
the abstract input parameters, which are precise. So, the extraction of the
abstract alphabet is not only a preliminary step in providing the concrete
alphabet, but also a significant source of insight for the black-box inference
process, which can use it to obtain precise guard conditions.

3.2.2 Extracting the Alphabet of Output Events

Obtaining a white-box model of the system also has advantages for determin-
ing the output alphabet of the system under inference. An output HTML
page, generated by the application as a HTTP response, may have several
variable fields. Such fields may depend on the actual input parameters pro-
vided in the HTTP Request, may originate from a database, etc. When the
output alphabet is obtained by crawling, one has to request a page several
times in order to be able to approximatively identify these variable fields.
But, when white-box analysis is possible, we can determine statically, for
each field of a HTTP response whether it is constant or variable, whether it
was obtained from an access to a database or from a third party library func-
tion (which is left uninterpreted by jModex to avoid excessive complexity).
Such fields can then be statically identified as variable fields, and reliably
reported as such.

For uniformity in the way outputs are considered by the black-box infer-
ence process, we also strip the HTML pages returned as a HTTP response
down to their relevant structure, and consider two pages as equivalent if their
structure is similar. This is done by removing the actual data associated to
the variable output parameters, as using it in the comparison between two
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Figure 5: Output Example

HTML pages would result in a significant amount of false negative results. In
Figure 5 we can see an example of tree corresponding to an output stripped
of all data associated to the variable output parameters, as well as from
irrelevant tags.

3.2.3 Alphabet Extraction Method

The steps involved in computing a concrete input and output alphabet that
can be provided to the black-box inference tool are the following:

1. Use the iSummarize component of the white-box model inference tool
jModex to analyze the source code of the application and extract a
detailed model as an EFSM.

2. For each method, start from its initial state, the MethodControlPoint
entry, and enumerate all possible paths through the method. While
going through a path, we gather all GuardExpression conditions that
involve entities of the type ProgramRequestParameter, which represent
input parameters. Similarly, all the entities of type ProgramOutput,
each representing an output fragment, are collected on the explored
path, in the order in which they are met.

3. An abstract input (represented by a set of constraints on the values
of concrete input parameters, which are, in this case, HTTP request
parameters) is obtained whenever the end of a path (its exit point) is
reached. An output for the explored path is also obtained at this point,
by concatenating the ordered output fragments we have collected. Both
the abstract input and the output are associated to the path and are
memorized as such.
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4. For each obtained path, we try to solve the constraints characterizing
the abstract input parameters by using the Hampi [2] SMT string
solver. If we succeed, i.e., the path is feasible, we obtain a concrete
input, which is added to the concrete alphabet. Also, we add the
corresponding abstract input to the abstract alphabet. If the path is
found infeasible, the abstract input is dropped.

5. Feasible paths are grouped together based on their outputs. These out-
puts, originally HTML pages generated by the application, are stripped
down of parameter data and common tags. For each group of equiva-
lent paths, only one abstract and one concrete input event are kept –
this allows us to reduce the size of the input alphabet. If an exhaustive
alphabet is desired, the path grouping feature can be disabled.

6. As each group of equivalent feasible paths are characterized by one
common output and one common, chosen representative input event
(be it abstract or concrete), we pair together the input and output
events belonging to the same path group and provide these pairs in a
separate file. These input/output pairs are important, as they can be
used to label the transitions on the Mealy machine learned by black-
box inference. We can see an example of such an input/output pair
in Listing 5 (where an abstract input is considered and the output is
presented in its original, unstripped form).

Listing 5: Input/Output Pair Example
<IOPair>

<input address="http://localhost:8080/org/apache/jsp/Login.jsp"
method="POST" type="FORM">
<parameters>
<parameter name="FormName">NOT(RequestParameter("FormName") eq null) AND

NOT(RequestParameter("FormName").equals("") eq 0)</parameter>
<parameter name="ret_page">RequestParameter("ret_page").equals("") eq 0 AND

NOT(RequestParameter("ret_page") eq null)</parameter>
<parameter name="FormAction">NOT(RequestParameter("FormAction").equals("") eq 0)

AND NOT(RequestParameter("FormAction") eq null)</parameter>
<parameter name="querystring">RequestParameter("querystring").equals("") eq 0

AND NOT(RequestParameter("querystring") eq null)</parameter>
<parameter name="Login">RequestParameter("Login") eq null</parameter>
</parameters>
</input>

<output>
<html>
<head>
<title>Book Store</title>
<meta name="GENERATOR" content=

"YesSoftware CodeCharge v.1.2.0 / JSP.ccp build 05/21/2001"/>
<meta http-equiv="pragma" content="no-cache"/>
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<meta http-equiv="expires" content="0"/>
<meta http-equiv="cache-control" content="no-cache"/>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
</head>

<body style="background-color:#FFFFFF; color:#000000; font-family:
Arial,Tahoma,Verdana,Helvetica background-color:#FFFFFF; color:#000000;
font-family:Arial,Tahoma,Verdana,Helvetica">
<center>
<table>
<tr>
<td valign="top">
<table style="" border=1>
<tr>
<td style="background-color:#336699;text-align:Center;border-style:outset;

border-width:1" colspan="2">
<font style="font-size:12pt; color:#FFFFFF; font-weight:bold">
Enter login and password</font></td>
</tr>
<tr>
<td colspan="2" style="background-color:#FFFFFF; border-width:1">
<font style="font-size:10pt; color:#000000"></font></td>
</tr>
<form action="Login.jsp" method="POST">
<input type="hidden" name="FormName" value="Login">
<tr>
<td style="background-color:#FFEAC5; border-style:inset; border-width:0">
<font style="font-size:10pt; color:#000000">Login</font></td><td style=
"background-color:#FFFFFF; border-width:1">
<input type="text" name="Login" maxlength="50" value=""></td>
</tr>

<tr>
<td style="background-color:#FFEAC5; border-style:inset; border-width:0">
<font style="font-size:10pt; color:#000000">Password</font></td>
<td style="background-color:#FFFFFF; border-width:1">
<input type="password" name="Password" maxlength="50"></td>
</tr>
<tr>
<td colspan="2"><input type="hidden" name="FormAction" value="login">
<input type="submit" value="Login">
<input type="hidden" name="ret_page" value="RequestParameter(ret_page)">
<input type="hidden" name="querystring" value="RequestParameter(querystring)">
</td>
</form>
</tr>
</table>
guest/guest<br>
admin/admin

</td>
</tr>
</table>
<center><font face="Arial"><small>This dynamic site was generated with
<a href="http://www.codecharge.com">CodeCharge</a></small></font></center>
</body>
</html>
</output>

</IOPair>
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3.2.4 Advantages and Limitations

Extracting the input and output alphabet from the white-box model, when
source code is available, has the following benefits when compared to extract-
ing the alphabet by crawling:

• an easier, straightforward selection of relevant input parameters

• obtaining a set of precise constraints on the domain of abstract input
parameters, from which transition guards can be further derived for
the EFSM learned by black box model inference

• automated generation of relevant concrete values for selected input pa-
rameters, based on the constraints obtained for the abstract parameters

• a static identification of variable elements in HTTP Responses

• the possibility of inferring relations between input and output events

As a limitation of the approach, one must remember that white-box in-
ferred models are relatively low-level, and the control flow between an input
and an output event can have many decision points, cycles, etc. This may
lead, in some cases, to a large number of possible paths between an input
and an output event, even though not all of them are always feasible. Enu-
merating all these paths is computationally expensive, even if some of them
can be dropped as infeasible early on in the exploration process.

Further on, a large number of paths can translate in a large input and
possibly also a large output alphabet. This last limitation was partially
addressed by grouping together paths based on output equivalence (where a
structure-based abstraction of actual outputs was considered), and by only
considering one input and one output event for each group of equivalent
paths. For the considered example of Login.jsp, this approach has led from
604 to only 27 input/output pairs, thus narrowing down the initial alphabet
of events to a small relevant subset, much more suitable for use in the black-
box model inference process.

3.3 Using the white-box model as a learning oracle
Let us assume that the black-box inference technique uses the alphabet of
the statically extracted model. This model over-approximates the real sys-
tem behavior as it may contain infeasible transitions and, also, by grouping
together different states of the system. This leads to nondeterminism in the
white-box model, therefore one input sequence can result in more than one
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output sequence, while the real system normally produces exactly one out-
put sequence for each input sequence (abstracting away from on-demand ads,
randomly selected database records, etc.).

However, there can be input sequences for which the white-box model
is precise and answers with an unique output sequence. In such cases, the
white box model can be used to answer membership queries for those in-
put sequences, thus acting as a proxy for the real system. Depending on
the degree of nondeterminism in the white-box model, using it as a proxy
oracle can reduce the number of membership queries the oracle is actually
asked (i.e., the number of tests run on the real system). As the number of
runtime queries is the actual bottleneck for black box model inference, this
enhancement can significantly reduce the cost of black-box model learning.5

Also, the white-box model (used as a proxy) can be refined in parallel
with the black-box inference process: whenever the white-box model does
not have a unique answer to an input sequence and the actual system is
tested instead, the output sequence thus obtained can be used to prune the
other, unfeasible paths from the over-approximated model. This can reflect
on the proxy giving more precise answer to further queries.

5Another possibility is that, if the real system becomes unavailable at some point, the
learning algorithm will drop the assumption of determinism for the learned system and
continue the inference process by only querying the white-box proxy.
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4 Model-driven detection of unintended
executions

In addition to interfacing white-box and black-box inference, we are devel-
oping an approach that detects potentially unintended execution flows in a
web application by comparing a model obtained by deep web crawling with
the white-box model extracted from the server-side application code. The
comparison aims to identify executions in the white-box model that can be
confirmed by tests but cannot be triggered by following the presentation layer
(i.e., following links and submitting forms in the application’s web pages).
These could be action sequences unintended by the application designer, in
particular, instances of unauthorized access (e.g., to functionality that should
be available only after authentication in a login page).

4.1 Page graph extracted by crawling
As a first step, we have developed a deep web crawler that builds a page
graph of the application by following links on the application’s web pages
and submitting forms.

Abstracting HTML The crawler works with abstract HTML pages which
contain the possible actions that a user can make on the given page. In order
to create an abstract page, the crawler uses HtmlUnit, a headless browser,
to send a HTTP request and to parse the response for links and forms. After
getting the list of anchors and forms, the crawler generates a set of requests,
which represent the actions of a user, associated with the abstract page. To
generate this set, the crawler applies a request generation strategy for links
and another one for forms. The requests generated by forms are the following:

1. a request with the form parameters having empty values
2. a request with parameters having their default values
3. a request with free-form parameters having random values, other pa-

rameters (like checkboxes, radiobuttons) having a randomly chosen
value from their possible values

4. a user-specified request (for example login credentials)

Links are grouped based on their target and their parameters (ignoring their
values); two pages with identical groups of links are deemed similar.

From each group the first N links are chosen and added to the request
set. For example, if we have the following links:
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<a href="Books.jsp?category_id=1&"></a>
<a href="Books.jsp?category_id=2&"></a>
<a href="Books.jsp?category_id=3&"></a>
<a href="BookDetail.jsp?item_id=1&"></a>
<a href="BookDetail.jsp?item_id=2&"></a>
<a href="BookDetail.jsp?item_id=3&"></a>

and we configure N=2, the following requests will be generated:
Request1[ target=Books.jsp method=GET Parameters={ category_id="1" } ]
Request2[ target=Books.jsp method=GET Parameters={ category_id="2" } ]
Request3[ target=BookDetail.jsp method=GET Parameters={ item_id="1" } ]
Request4[ target=BookDetail.jsp method=GET Parameters={ item_id="2" } ]

As another example, for the following form:
<form action="Login.jsp" method="POST">
<input type="hidden" name="FormName" value="Login">
<input type="text" name="Login" maxlength="50" value="">
<input type="password" name="Password" maxlength="50">
<input type="hidden" name="FormAction" value="login">
<input type="submit" value="Login">
</form>

if the user specifies that the guest:guest values for the parameters should be
tried too, then the generated requests will be the following:
Request1[ target=Login.jsp method=POST Parameters={ FormName="Login" , Login="" ,

Password="" , FormAction="login" } ]
Request2[ target=Login.jsp method=POST Parameters={ FormName="Login" , Login="

guest" , Password="guest" , FormAction="login" } ]
Request3[ target=Login.jsp method=POST Parameters={ FormName="Login" , Login="

random123" , Password="random321" , FormAction="login" } ]

Constructing the page graph The graph’s nodes are states, its edges
are requests. A state is defined by the path (a sequence of requests) from the
root node to it and by its associated abstract page. The crawler starts from
the root node, which has a configured list of requests, the public pages of the
application, which are known and can be directly accessed. The construction
of the page graph is realized by expansion and reduction rounds.

In the expansion round, the crawler executes all requests of the states
found in the previous round. With each expansion round, the current explo-
ration depth (CD) is increased by one. At first only expansion rounds are
made, until CD becomes greater than the comparison depth (K). When this
happens then each expansion round is followed by a reduction round.

The reduction round compares the states at depth D = CD – K to all
states at depth less than D. To determine if a state is new we check if it can be
considered equal to a previously explored state. We consider two states equal
if their abstract pages are similar and their child state’s pages are similar too.
The verification of the child states is done up to depth K. If they are found
to be equal, the new state is removed from the page graph, along with its
child states, reducing the number of future states to be explored.
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Figure 6: Crawled Bookstore

Figure 6 presents the page graph of the Bookstore application, with K=0,
meaning two states are considered equal if their pages are similar. The login
credentials for the guest user are specified as input to the crawler, as well as
the two starting pages, Login.jsp and Default.jsp. A directed edge between
node A and B means that there is at least one request made from state A
that resulted in a transition to state B.

4.2 Correlating crawled and source-extracted models
Comparing the model extracted from source code with the one extracted
through crawling raises several challenges, e.g., different levels of abstrac-
tion and different representations. To enable a smooth comparison between
models extracted from source code and by deep crawling we need to abstract
away information from the EFSM inferred from source code and create a
model that is similar in nature to the one extracted through crawling.

First, we correlate the white-box model with the black-box one based
on the output, i.e., the HTML code that the server sends as response. We
do this by accumulating the output that each symbolic path in the EFSM
would generate. The accumulated output is symbolic, containing abstract
values, e.g., data coming from the database. We currently assume that the
data coming from the repository is pure data, and not HTML code, links,
etc. For the applications we address, this assumption holds most of the time.
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In order to be able to create correlations between the black-box model and
the white-box one we merge all paths that have equivalent outputs into a
multipath. When grouping paths together, the guard for the new multipath
becomes the disjunction of all the guards of the paths grouped together. The
notion of output equivalence can be considered a parameter of this technique.
We currently use the same technique described in Section 4.1 for abstracting
the symbolic output. We consider two pages equivalent, and merge the paths,
if two abstracted pages have the same possible actions, i.e., forms and links.

Second, by analysing each multipath, we are able to generate concrete re-
quests that would execute that multipath. For multipaths that are control-
dependent on request parameters, we generate concrete values for the re-
quests parameters that would execute that multipath. Each multipath has
a guard associated with it. We use the Hampi string solver [2] to solve the
constraints on request parameters for each path. This gives us the option
to validate faults detected through static analysis and also guide the crawler
and improve on its incompleteness.

4.3 Finding executions undetected by crawling
In contrast to the crawled model, the model extracted by analyzing the
application servlet code centers on the server state. It is an extended Mealy
automaton, where the HTTP response generating the page content is viewed
as transition output. The server processes any incoming HTTP request,
not limited to those that can be produced by following the links and forms
provided to the user.

In general, the white-box model will contain a superset of executions
compared to those in the black-box page graph, considering that both models
are sound. The first use of the white-box model will be to guide the crawler
towards additional executions: checking for feasibility of transitions in the
white-box model will lead to concrete test inputs that can be applied, leading
the crawler towards portions of the state space that random exploration (with
no knowledge of constraints to be satisfied) may have missed.

In a second step, relations between nodes in the black-box page graph can
be identified (such as pages that can only be reached through a login page).
We can identify these pages by looking for dominator nodes in the black-box
model. Writing the corresponding specifications, the white-box model can
be checked and violations reported and subsequently confirmed by testing.

The white-box model centers on capturing the server internal state. We
define a state in the white-box model as a set containing the current val-
ues stored by the server, e.g., Session[username] = Alice. We express the
constraints on a transition between two states in first-order logic without

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876



D2.2.2: Combined black-box and white-box model inference 30/32

quantifiers. A relation R is a guard over the Input, i.e., the values of the re-
quest parameters of the current request, and the internal server state, e.g., the
values in the current session. A relation R(S0, Input, S1 , Output) expresses
that an application currently in state S0, on input Input reaches state S1 and
outputs the HTML in Output. The relation R is built from the white-box
inferred EFSM and represents the disjunction of all guards over all paths in
the white-box EFSM. We consider that cycles execute at most once for the
sake of efficiency, but this can be improved.

Thus, we can express a user’s initial interaction when logging in by R({},
Login.jsp?username = Alice & password = ****, Session[username] = Alice,
Session[userRights] = 1 , 〈html〉 . . . 〈/html〉), where {} is the initially empty
session state. We express chains of interactions as R({}, Req1, S1, output1) ∧
R(S1, Req2, S2, output2) ∧ . . . ∧ R(Sn−1, Reqn, Sn, outputn). We match these
transitions with those in the black-box model based on the generated out-
put. Although the output obtained through source code analysis might be
symbolic and therefore a simple string comparison does not work, we use the
technique described in Section 4.1 to successfully abstract away from these
differences. This way we are able to match transitions in the white-box model
with ones in the black-box model.

We use the black-box model to infer a specification for the application.
Because the page-graph obtained through crawling represents the way an
honest user would interact with the application, following only the displayed
user interface, we consider this model as an intended specification. We can
then check if the complement of the black-box interactions is SAT in the
white-box model; if this is the case, we found an interaction that was not
discovered following the user interface. This can be due to a vulnerability,
an error, or to the incompleteness of black-box crawling in general. We need
to validate the interaction found by executing the application and ensuring
the found interaction cannot be executed following the user interface; if this
is the case, we found an unintended execution, otherwise we refine the black-
box model and restart the process. We can also check more specific patterns,
e.g., if we find that one page is a dominator for another one through black-
box model inference, we can check that this holds true also in the white-box
model. If it does not, we have to validate the found counter-example and
ensure that it cannot be executed just by following the user interface. If this
is the case, we found a possible vulnerability. We use the Z3 SMT Solver to
check these relationships and find unintended executions.

As the comparison of presentation layer and model extracted from source
is a new approach in the project, it is currently under active development.
Complete results will be provided in Deliverable 5.4 Final Tool Assessment.
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5 Conclusions
We have presented jModex, a tool that enables the programmer to auto-
matically extract an extended finite state machine model from a JSP/Servlet
application and translate the EFSM to an ASLan++ model. In addition to
the benefits of automation, the model produced in this way is more accurate
than a handwritten model obtained by code inspection. A preliminary as-
sessment shows that jModex is able to automatically infer complete models
on the targeted case studies.

Next, we show two directions to combine the white-box inferred EFSM
with the black-box model. We present means to use jModex in conjunction
with black-box model inference. We show a method to guide the black-box
model inference towards better exploration by using information obtained
from source code by automatically extracting an alphabet for the application.
We then show how to use the white-box model as an oracle for black-box
exploration.

As a supplementary approach, we present a method to detect unintended
executions by using the black-box model obtained through crawling as a
specification for the white-box extracted model.
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