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1 Introduction
The SPaCIoS approach with model-based property-driven test generation as-
sumes that all the components of a service are modeled in ASLan++ [6, 41].
However, writing such models requires some expertise in ASLan++ as well as
knowledge about the intended and actual behavior of each component. There
are many cases where this expertise of knowledge might be scarce or unavail-
able, especially in the case of services that are built from components coming
from different sources. It is also common experience that modelling can be
misguided by expectations about the intended behavior of a subsystem, in
which case the model may not match the implemented behavior.

The SPaCIoS tool includes two approaches to address this concern, by
inferring models automatically from the actual software artifacts.

• This deliverable presents the method used to infer a model from exter-
nal observations made by interacting with a software component (black
box inference: BB).

• Deliverable D2.2.2 [37] presents methods to extract a model from its
source code when available (white-box inference: WB); it also addresses
the combination of both approaches, white-box and black-box.

In some cases, several models can be provided for a component: an initial
model can be provided by a security analyst, and models can be extracted
automatically in white or black box mode. This makes it possible to combine
information from various sources and adjust models. For instance feasible
paths are more easily found by dynamic black box testing, which can be
combined with white box extraction to lessen the impact of overapproxima-
tion. And source code analysis can help in identifying the relevant inputs to
be considered at each step in black box inference. This is presented in [37].
In another direction, the models derived automatically can also be refined
by additional observations coming from further testing, as will be presented
in the current deliverable. And of course, a security analyst can enrich the
models derived automatically with semantic information, as well as compare
them with his intuitions or an initial model.

Automatic black box inference only works from sampled behaviors and
cannot capture the full semantic information that can be provided in an
ASLan++ model. Therefore the models derived by automatic inference
methods either in WB or BB will not cover the full features of ASLan++.
However, both WB and BB in the SPaCIoS tool use the same format to
represent the same subset of ASLan++.
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The main inference method developed in the SPaCIoS project is described
in Section 2. It is based on an extended finite state model described in Sec-
tion 2.1, which takes into account key security features such as nonces, session
IDs etc. This method of inference is called here “tabular model inference” be-
cause it is based on arranging observations into tables that record sequences
of outputs observed in response to input sequences that label the rows and
columns. These observation tables have long been used in grammatical in-
ference, and the algorithm proposed here extends Angluin-style inference [4]
to the complex EFSM model described in Section 2.1.

In the course of the project, we also came up, with the help of Alexandre
Petrenko from the SPaCIoS expert group, with a new inference method,
which no longer organizes observations in tables, but in a tree structure. As
this second method is based on comparing the states reached during testing
with a refinable equivalence relation from which the model is derived as a
quotient, this second method is called “quotient model inference”. Although
this method is more recent and not yet as mature for SPaCIoS, because it
currently handles only an FSM subset of the EFSM model of Section 2.1,
we present it in this deliverable as a promising approach that could be more
flexible than tabular inference.

In all cases, automatic inference algorithms and tools need to interact
with a black box system which in the case of SPaCIoS is typically a web
application. Inference algorithms must be provided with a description of the
inputs accepted by the application. They work with abstract representations
of the inputs and outputs of the system under inference (SUI) [1]. It is time
consuming to write the drivers that map abstract symbols to concrete inputs
and vice-versa for outputs. Therefore Section 4 presents a method that was
developed in SPaCIoS to automatically derive such drivers from an initial
crawling phase on the application.

Finally, Section 5 compares the models that are generated automatically
by black and white box inference methods with models that were handwritten
for two case studies of SPaCIoS.

2 Tabular Model Inference for EFSM
Under this name, we describe the method used for the inference of Extended
Finite State models. This method is initially inspired by Angluin’s L* algo-
rithm [4]. L* learns a Deterministic Finite Automaton accepting a regular
language by querying a “teacher” (which corresponds to our system under
inference SUI) with sample words. Therefore the teacher answers “member-
ship queries” replying whether a proposed word belongs to the language. L*
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provides words that are built by concatenating prefix strings (access strings
for candidate states) with suffix strings (to distinguish states). Prefixes la-
bel rows while suffixes label columns of tables, so that the cells of the table
record results of the queries. This structure is called an observation table.

In our context, the system under inference can be queried by sending
sequences of protocol inputs (e.g. HTTP requests for a web interface) and
observing corresponding outputs (e.g. HTML pages). Since protocol data
units have complex structures, they are best modeled as parameterized in-
puts, where the input type could correspond to a PDU (protocol data unit)
type. Moreover, past values of parameters such as session IDs need to be
recorded, and the response to a given input PDU may depend on the values
of its parameters as well as the recorded values. This naturally leads to trying
to infer EFSM models, Finite State machines extended with parameterized
inputs and outputs, variables, and transitions that can depend on guards
on these values, while updating variables and producing computed output
parameters.

There must be some restrictions to the type of models that can be inferred,
because, with general EFSM, it is impossible to ascribe a single model for
any language on its inputs and outputs. The exact model that is used is
presented in Section 2.1.

Whereas algorithms directly based on L* just infer the control part of
an EFSM, we have to deal with the data values observed in the input and
output parameters. Therefore our algorithm builds two observation tables:

• a control table, which can be seen as the structure of the machine when
abstracting (partially) from data values,

• and a data table that records parameter values.

Of course, there are strong relations between the two tables, since they record
two aspects of the same interactions with the SUI:

• they have the same dimensions and labeling of rows and columns;

• consequently, whenever data values distinguish between sequences of
parameterized inputs that have the same type, this distinction may
lead to splitting rows in both tables.

As in the case of L*, there are rules for extending a table with new rows
or columns until it satisfies a certain number of properties that ensure that
an EFSM model consistent with all observations can be built. L* has two
such properties (closed and consistent). Our algorithm requires 3 properties
(closed, balanced and dispute-free) which are detailed in Section 2.2.3. Other
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aspects of the algorithm are presented in the rest of Section 2.2. The approach
is incremental: once a first consistent model has been built, new observations
from testing further with the SPaCIoS tool, or from tests suggested by the
security analyst may lead to a refinement of the initial conjectured EFSM.

Section 2.3 illustrates how the algorithm works on simple case studies. Fi-
nally, Section 2.4 presents how the SPaCIoS approach compares with related
work for state model inference.

2.1 Extended Finite State Machine (EFSM) Model
2.1.1 Basic Definitions

In the inference environment, the System Under Inference (SUI) communi-
cates with a tester. In order to make the communication feasible, we need
to configure the public keys and private keys on both sides. We can safely
assume that the encryption and decryption functions are implemented cor-
rectly in both sides. Thus the information about encryption, decryption, and
the keys is not necessary for inference and could be excluded from the model.

As the inference is performed in a controlled environment, some constants
such as the identity of a communicating entity are known and preconfigured.
Thus, the information about these constants could also be excluded from the
model.

More generally, we rely on a mapping between concrete messages or events
that can contain many parameters and complex encoding that are not rele-
vant for the security testing task, and abstract events and parameters that
are fed into the inference algorithm. This mapping approach has already
been investigated by [1]. An abstract event will consist of an input or output
symbol (typically a message type) and its relevant parameters.

As mentioned before, we introduce variables in the finite state model to
store some context information. By analyzing typical software and protocols
in the domain of software security, we make the following assumptions about
the variables:

• The number of variables equals the number of all the input and output
parameters, one corresponding to each parameter.

• In each transition, the latest value of a parameter is assigned to the
corresponding variable. This is the only allowed assignment operation
on the variables.

The first assumption is justified by the fact that we consider that only
exchanged values will affect the behavior of the protocol. Although some in-
ternal bookkeeping on local resources may affect the behavior in some cases,
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we consider only information directly related to the protocol.The second as-
sumption prevents the reuse of past values: only the latest value can be
stored and reused later in the computation of a guard or of an output pa-
rameter. We consider that this restriction would often be satisfied by security
protocols: typically, a cookie is superseded by any new value, an old nonce
is never significant, etc.

With these assumptions in mind, we can follow the traditional model of
EFSM as defined in [30] and extend it with the concept of non-deterministic
output parameter values.

In the following definitions, let X and Y be finite sets of input and output
symbols, P and V be finite disjoint sets of n parameters and variables such
that |P | = |V | = n. Then P = {p1, . . . , pn} and V = {v1, . . . , vn}, so we can
associate a parameter with a variable having the same index. For z ∈ X ∪Y ,
we note p(z) ⊆ P the set of its (associated) parameters and Dz the set of
valuations of parameters in the set p(z). We lift these notations to sequences
σ of inputs and outputs. So p(σ) is the sequence of sets of parameters, and
Dσ is a sequence of parameter valuations. Similarly, DV is a set of valuations
of variables V . Note that multiple parameters could be associated with one
input or output symbol. This helps to make the formulation of security
protocols easy and straightforward.

An Extended Finite State Machine (EFSM) M over X, Y , P , V , and the
associated function p and valuations is a pair (S, T ) of a finite set of states
S, which contains an initial state s0, and a finite set of transitions T between
states in S, such that each transition t ∈ T is a tuple (s, x,G, op, y, up, s′),
where

• s, s′ ∈ S are the initial and final states of the transition, respectively;

• x ∈ X is the input symbol of the transition;

• y ∈ Y is the output symbol of the transition;

• G, op, and up are functions, defined over input parameters and variables
V , namely,

– G : Dx ×DV → {True, False} is the guard of the transition;
– op : Dx × DV → Dy is the output parameter function of the

transition;
– up : Dx ×DV → DV is the update function of the transition.

In a state s ∈ S, an input symbol x ∈ X may not be accepted by the
EFSM, e.g., in a certain page of a web application, there does not exist
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an input field for some information. In this case, we use a transition with
a special output symbol Ω ∈ Y to represent that the input symbol is not
accepted by the EFSM. When an input or output symbol z ∈ X ∪ Y does
not have a parameter, i.e., p(z) = {}, we use a parameter value ω to represent
dz(p(z)).

According to the assumptions about variables, suppose the valuation of
parameters of x is d, the valuation of variables V is v, and the valuation of
parameters of y according to the op function is d′ = op(d, v), the function
up changes variables corresponding to parameters of x and y to d and d′

respectively, and keeps the current values of the other variables. If x and y
share a common parameter, the corresponding variable is updated with the
value of the output parameter. Formally, for d ∈ Dx, v ∈ DV , then for any
variable vi:

• if pi ∈ p(y) then up(d, v)(vi) = op(d, v)(pi),

• else if pi ∈ p(x) then up(d, v)(vi) = d(pi),

• else up(d, v)(vi) = v(vi) (in that case the value of vi is left unchanged).

Following the traditional EFSM, we have the following additional defini-
tions.

Given input x and an input parameter valuation d, a parameterized input
is denoted as x(d(p(x))). A sequence of parameterized inputs is called a
parameterized input sequence. Similarly, we define parameterized outputs
and their sequences.

An EFSM M is said to be deterministic if any two transitions outgoing
from the same state with the same input have mutually exclusive guards;
observable if, for each state and each input, every outgoing transition with
the same input has a distinct output. In this document, we assume the
EFSM to be inferred is deterministic and observable.

2.1.2 Additional Considerations about Non-Deterministic Output
Parameter Values

According to the definition of op in EFSM, in a transition, the output param-
eter value is decided by input parameter values and variable values. But in
security protocols, there are some cases where the output parameter values
are not deterministic with respect to input parameter values and variable
values. Nonce is such a case.

Nonces are cryptographic inputs with the property that each value only
occurs once within a given context [44]. Many modern cryptographic algo-
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rithms require a key and a nonce as input, and as long as the key is un-
changed, the nonce must not repeat. Examples for cryptographic solutions
that require nonces are stream ciphers, certain block cipher modes of oper-
ation, some message authentication codes, and certain entity authentication
solutions.

Session IDs and cookies are two other examples of such non-deterministic
output parameter values.

When these output parameters are included in EFSM, since their values
do not only depend on the values of input parameters and variables, op is no
longer a function. In order to express them in the EFSM model, we introduce
a special output parameter value ndv to represent a non-deterministic value.
In this way, op is still a function with a unique valuation of output parameters
for each valuation of input parameters and variables. Correspondingly, in
the model inference procedure, we need to recognize that a certain output
parameter value is ndv. In the formal model, the value recorded in the
corresponding variable is ndv, but the mapping function to the concrete
level will keep track of the corresponding concrete value.

2.2 Model Inference for EFSM
As usual, we assume that the SUI could be reset to its initial configuration
after applying each input sequence, and the set of input symbols and the
associated parameters of each input symbol are known.

In this section, we use the model depicted in Figure 1 as running example
of SUI for it helps to present the inference algorithm step by step. In the
model X = {a, b}, Y = {c, d, e,Ω}, input parameter of a is p1, input param-
eter of b is p2, output parameter of c is p3, output parameter of d is p4, and
e does not have output parameter. Correspondingly, V = {v1, v2, v3, v4}. In
this example, all parameters range over integers.

2.2.1 Observation Tables

Two observation tables are used in inferring EFSM models. A Control Table
is used to record the relationship between input strings and output symbols,
while a Data Table is used to record the relationship between input strings,
variable values, and output parameter values. Both tables have the same
structure.

Let U be the set of possible parameterized input strings. The structure
of the Control Table (S,R,E,C) and Data Table (S,R,E,D) are defined as
follows.
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s0 

s1 

s2 

a(p1)/ 

p4 = p1, 

d(p4) 

b(p2)/ 

p4 = 0, 

d(p4) 

a(p1), 

p1 < 6/ 

p3 = ndv, 

c(p3), 

v3 := p3 

b(p2)/ 

p4 = p2, 

d(p4), 

v2 := p2 

b(p2), 

p2 = v3  p2 = v2/ 

e 

b(p2), 

p2 ≠ v3  p2 ≠ v2/ 

p4 = 0, 

d(p4) 

s3 

a(p1), 

p1 >= 6/ 

p3 = ndv, 

c(p3), 

v3 := p3 

b(p2), 

p2 ≠ v3  p2 ≠ v2/ 

p4 = 0, 

d(p4) 

b(p2), 

p2 = v3  p2 = v2/ 

e 

Figure 1: Running Example of SUI

S ⊆ U and R ⊆ U are nonempty finite sets of parameterized input
strings that make the rows of the tables. S is a prefix-closed set that is used
to identify potential states in the conjecture and R is used to explore one
step further the behaviors of the SUI.

E = X initially makes columns of the observation tables and is used
to separate potential states of the conjecture. Note that in the procedure
to obtain the first conjecture as described in this document, E stays as X.
Thus we write x for an element of E. But generally an element of E could
be a sequence.

In the Control Table, each cell indexed by s ∈ S∪R and x ∈ E is a set of
elements in the form of (d(p(x)), y), in which d is a parameter valuation of x
and y is an output symbol. In the Data Table, each cell indexed by s ∈ S∪R
and x ∈ E is a set of elements in the form of (d(p(x)), v(V ) → d′(p(y))), in
which d is a parameter valuation of x, v is a variable valuation, and d′ is a
parameter valuation of y.

Formally, we define C as a finite function mapping ((S ∪ R)× E) to the
power set of {(d(p(x)), y) | x ∈ X, d ∈ Dx, y ∈ Y }. D is a finite function
mapping ((S ∪R)×E) to the power set of {(d(p(x)), v(V )→ d′(p(y))) | x ∈
X, d ∈ Dx, v ∈ Dv, y ∈ Y, d′ ∈ Dy}.

In the beginning of the inference procedure, S, E are initialized as S = {ε}

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876



D2.2.1: Method for Assessing and Retrieving Models 14/74

and E = X. R is initialized as follows: if an input symbol does not have
parameter, it is included in R, otherwise, it is associated with only one
parameter value and included in R. Suppose X = {xi | 1 ≤ i ≤ k}, then
R = {xi | p(xi) = {}, 1 ≤ i ≤ k} ∪ {xi(di(p(xi))) | p(xi) 6= {}, di ∈ Dxi

, 1 ≤
i ≤ k}. S and R will be extended during the inference procedure.

For the running example, initially, S = {ε}, E = {a, b}, R could be
{a(5), b(2)}.

After initialization, S ∪ R is prefix-closed. From the following descrip-
tion of how S and R are extended, we can see that in the whole inference
procedure, S ∪R is always prefix-closed.

2.2.2 Test Sequence Construction and Observation Recording

During the model inference procedure, test sequences are constructed as fol-
lows: for s ∈ S∪R, x ∈ E, if x has parameter, a parameter valuation d ∈ Dx

is selected to construct an input sequence s ·x(d(p(x))), otherwise, s ·x is the
input sequence. For each combination of s and x, multiple input sequences
can be constructed.

Test data selection in this security context will be addressed in a later
section. In this section, we just assume some test sequences are applied to
the SUI, and corresponding output sequences are observed. The observations
are recorded in observation tables as follows.

Suppose for input sequence

xi1(di1(p(xi1))) xi2(di2(p(xi2))) . . . xim(dim(p(xim))),

output sequence

yj1(d′j1(p(yj1))) yj2 (d′j2 (p(yj2))) . . . yjm(d′jm(p(yjm)))

is observed, with xik ∈ X, yjk ∈ Y , for 1 ≤ k ≤ m. During recording
the observation, we keep a variable valuation v with all the variable values
initialized with 0 (regardless of their types, this simply denotes the initial
value).

From the test sequence construction, we can see that

xi1(di1(p(xi1))) xi2(di2(p(xi2))) · · · xim−1(dim−1(p(xim−1))) ∈ S ∪R.

Because S ∪R is prefix-closed, all its prefixes also belong to S ∪R.
Starting from k = 1, for each pair of input/output

xik(dik(p(xik)))/yjk(d′jk(p(yjk))),
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E = X
a b

S ε (5,d), (6, d) (2, d), (3, d)

R
a(5) (5, c) (2,d)
b(2) (5,Ω) (3, d)

Table 1: Control Table

E = X
a b

S ε
(5, (0,0,0,0)→ 5), (2, (0, 0, 0, 0)→ 2),
(6, (0, 0, 0, 0)→ 6) (3, (0, 0, 0, 0)→ 3)

R
a(5) (5, (5, 0, 0, 5)→ 100) (2, (5,0,0,5)→ 0)
b(2) (5, (0, 2, 0, 2)→ ω) (3, (0, 2, 0, 2)→ 0)

Table 2: Data Table

let s be the input prefix of length k − 1, in the cell indexed by s and xik in
the Control Table, we add element (dik(p(xik)), yik), in the cell indexed by s
and xik in the Data Table, we add element (dik(p(xik)), v(V )→ d′jk(p(yjk))),
and update v as follows: for any variable vl :

• if pl ∈ p(yjk) then v(vl) = d′jk(pl);

• else if pl ∈ p(xik) then v(vl) = dik(pl);

• else v(vl) keeps unchanged.

In the running example, suppose with input sequence a(5) b(2), we ob-
serve output sequence d(5)d(0). We keep a variable valuation v, v(V ) is
initialized as (0, 0, 0, 0).

We start from the first input/output pair a(5)/d(5), in the Control Table,
we add element (5, d) in the cell indexed by ε and a, in the Data Table, we
add element (5, (0, 0, 0, 0)→ 5) in the cell indexed by ε and a, and update v
to make v(V ) = (5, 0, 0, 5).

Then, for the second input/output pair b(2)/d(0), in the Control Table,
we add element (2, d) in the cell indexed by a(5) and b, in the Data Table,
we add element (2, (5, 0, 0, 5) → 0) in the cell indexed by a(5) and b, and
update v to make v(V ) = (5, 2, 0, 0).

Table 1 is the initial Control Table filled with observed traces for the
running example. Table 2 is the initial Data Table. The input sequences
used and the corresponding output sequences observed are as follows:

a(5)/d(5), b(2)/d(2), a(6)/d(6), b(3)/d(3), a(5)a(5)/d(5)c(100),
a(5)b(2)/d(5)d(0), b(2)a(5)/d(2)Ω, b(2)b(3)/d(2)d(0).
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E = X
a b

S ε (5, d), (6, d) (2, d), (3, d)

R
a(5) (5, c), (6, c) (2, d), (3,d)
b(2) (5,Ω), (6,Ω) (2, e), (3, d)

Table 3: Balanced Control Table

E = X
a b

S ε
(5, (0, 0, 0, 0)→ 5), (2, (0, 0, 0, 0)→ 2),
(6, (0, 0, 0, 0)→ 6) (3, (0, 0, 0, 0)→ 3)

R
a(5) (5, (5, 0, 0, 5)→ 100) (2, (5, 0, 0, 5)→ 0)

(6, (5,0,0,5)→ 200) (3, (5,0,0,5)→ 0)

b(2) (5, (0, 2, 0, 2)→ ω) (2, (0,2,0,2)→ ω)
(6, (0,2,0,2)→ ω) (3, (0, 2, 0, 2)→ 0)

Table 4: Corresponding Data Table

2.2.3 Properties of Observation Tables

A conjecture of the SUI can only be constructed when certain properties are
satisfied by the observation tables. In this section, we discuss these properties
and how to make the observation tables satisfy them.

Balanced Two rows in the Control Table cannot be compared directly, if
the observations are recorded for different input parameter values. The rows
s1 and s2 are called balanced, if C(s1, x) and C(s2, x) contain the same input
parameter values for each x ∈ E. The Control Table is balanced, if for all
s, t ∈ S ∪R, s and t are balanced.

When two rows s1 and s2 are not balanced, there exist an input symbol x,
and an input parameter valuation d ∈ Dx, such that s1 · x(d(p(x))) has been
applied to the SUI but s2 · x(d(p(x))) has not, or vice versa. In this case, we
can apply the input sequence s2 · x(d(p(x))) and record the observation to
make the two rows balanced.

In Table 1, the rows ε and a(5) are not balanced, because input parameter
value 6 is not in the cell C(a(5), a), and input parameter value 3 is not in the
cell C(a(5), b). We apply input sequences a(5)a(6) and a(5)b(3) and record
the observations to make these two rows balanced.

After making each pair of rows balanced, we obtain a balanced Control
Table as Table 3 and the corresponding Data Table as Table 4. The elements
in bold font are new ones added to make the Control Table balanced.

Equivalence The rows s1 and s2 are called equivalent, denoted by s1 ∼= s2,
if they are balanced and contain the same set of output symbols for all x ∈ E.
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E = X
a b

S
ε (5, d), (6, d) (2, d), (3, d)

a(5) (5, c), (6, c) (2, d), (3, d)
b(2) (5,Ω), (6,Ω) (2, e), (3, d)

R

a(5)a(5) (5,Ω), (6,Ω) (2,d), (3,d)
a(5)b(2) (5, c), (6, c) (2,d), (3,d)
b(2)a(5) (5,Ω), (6,Ω) (2, e), (3,d)
b(2)b(2) (5,d), (6,d) (2,d), (3,d)

Table 5: Making Control Table Towards Closed

E = X
a b

S

ε
(5, (0, 0, 0, 0)→ 5), (2, (0, 0, 0, 0)→ 2),
(6, (0, 0, 0, 0)→ 6) (3, (0, 0, 0, 0)→ 3)

a(5)

(5, (5, 0, 0, 5)→ 100)
(5, (5,0,0,5)→ 300)
(5, (5,0,0,5)→ 500) (2, (5, 0, 0, 5)→ 0)
(5, (5,0,0,5)→ 600) (3, (5, 0, 0, 5)→ 0)
(5, (5,0,0,5)→ 700)
(6, (5, 0, 0, 5)→ 200)

b(2) (5, (0, 2, 0, 2)→ ω) (2, (0, 2, 0, 2)→ ω)
(6, (0, 2, 0, 2)→ ω) (3, (0, 2, 0, 2)→ 0)

R

a(5)a(5) (5, (5,0,300,5)→ ω) (2, (5,0,600,5)→ 0)
(6, (5,0,500,5)→ ω) (3, (5,0,700,5)→ 0)

a(5)b(2) (5, (5,2,0,0)→ 900) (2, (5,2,0,0)→ 0)
(6, (5,2,0,0)→ 110) (3, (5,2,0,0)→ 0)

b(2)a(5) (5, (5,2,0,2)→ ω) (2, (5,2,0,2)→ ω)
(6, (5,2,0,2)→ ω) (3, (5,2,0,2)→ 0)

b(2)b(2) (5, (0,2,0,2)→ 5) (2, (0,2,0,2)→ 2)
(6, (0,2,0,2)→ 6) (3, (0,2,0,2)→ 3)

Table 6: Corresponding Data Table

For s ∈ S ∪R, we denote by [s] the equivalence class of rows that includes s.

Closed The Control Table is closed, if for every t ∈ R, there exists s ∈ S
such that s ∼= t. When a Control Table is not closed, we make it to-
wards being closed by moving t from R to S, extending R with |X| strings
{t · xi(di(p(xi))) | di ∈ Dxi

, 1 ≤ i ≤ k} assuming X = {xi | 1 ≤ i ≤ k}, con-
structing and applying input sequences for all the empty cells, and recording
the observations.

Since the row a(5) ∈ R is not equivalent to the only row ε ∈ S, Table 3 is
not closed. We move a(5) from R to S, and extend R with strings a(5)a(5)
and a(5)b(2). By performing the same operation on the row b(2), and filling
the empty cells, we obtain Table 5 and Table 6. The new rows and new
elements added are in bold font.

Identifying ndv while Recording Observations While recording ob-
servations in observation tables, we may encounter such a situation where
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in a cell D(s, x) of Data Table, there are two elements with the same input
parameter values d(p(x)) and the same variable values, but different output
parameter values. In this case, we can decide that the output parameter
value is ndv, since this value is not deterministically decided by the input
parameter values and variable values.

When an ndv is identified, the following operations need to be performed:

• In the cell of the Data Table, merge these elements to one by changing
the output parameter value to ndv.

• In the following inference procedure, whenever we construct an input
sequence having s · x(d(p(x))) as prefix, for all the input parameters
after the prefix, we need to select the actual non-deterministic value
generated as input parameter values, in addition to other values se-
lected. When interacting with real protocol entities, the actual value
of ndv is only applied if an input parameter has a compatible type,
which is a concept omitted in this document for the sake of simplicity.
When multiple ndvs are identified in a prefix, and multiple parameters
are associated with one input symbol, there are several possible strate-
gies to apply the ndvs generated. One strategy is to guarantee that
each ndv appears at least once for each parameter. Another one is to
guarantee that all the possible combinations of ndvs appear. The selec-
tion of a specific strategy depends on the tradeoff between the resource
available and the accuracy of the conjecture to be obtained. While
recording the observation in the Control Table, ndvi, in which i is the
index of the output parameter pi of the corresponding output symbol
y, rather than the concrete value itself, is recorded as input parameter
value.

In the running example, this is the case for the Data Table cell D(a(5), a).
So, we can decide that the output parameter value is ndv, and perform the
following operations:

• We merge those elements to make the cell {(5, (5, 0, 0, 5) → ndv),
(6, (5, 0, 0, 5)→ 200)}.

• For the Data Table cell D(a(5)a(5), a), we need to construct an addi-
tional input sequence taking ndv generated as input parameter value.
This time, when a(5)a(5) is applied, d(5)c(400) is observed. Thus, we
apply a(400) after that, and observe Ω. So, in the Data Table, we add
(400, (5, 0, 400, 5)→ ω) into the cell, and in the Control Table, we add
(ndv3,Ω) into the cell.
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• For the Data Table cell D(a(5)a(5), b), we also need to construct an
additional input sequence taking ndv generated as input parameter
value. This time, when a(5)a(5) is applied, d(5)c(800) is observed.
Thus, we apply b(800) after that, and observe e. So, in the Data Table,
we add (800, (5, 0, 800, 5)→ ω) into the cell, and in the Control Table,
we add (ndv3, e) into the cell.

Making the Table Balanced with Respect to ndv With the introduc-
tion of ndvi in the Control Table, in which i is the index of output parameter
pi of output symbol y, the way of making the Control Table balanced needs
to be updated with respect to ndvi. For a cell C(s, x), when a sequence like
s · x(ndvi) needs to be constructed in order to make the table balanced, we
take the current value of vi after s is applied as the input parameter value of
x.

For example, in Table 5, for the cell C(ε, a), we could use a(0) as input
sequence, observe output d(0), and record (ndv3, d) in the Control Table, and
(0, (0, 0, 0, 0)→ 0) in the Data Table.

E = X ∼=
a b

S

ε
(5, d), (6, d) (2, d), (3, d)
(ndv3, d) (ndv3, d)

a(5) (5, c), (6, c) (2, d), (3, d)
(ndv3, c) (ndv3, d)

b(2) (5,Ω), (6,Ω) (2, e), (3,d)
(ndv3,Ω) (ndv3, e)

R

a(5)a(5) (5,Ω), (6,Ω) (2, d), (3, d)
b(2)(ndv3,Ω) (ndv3, e)

a(5)b(2) (5, c), (6, c) (2, d), (3, d)
a(5)(ndv3, c) (ndv3, d)

b(2)a(5) (5,Ω), (6,Ω) (2, e), (3, d)
b(2)(ndv3,Ω) (ndv3, e)

b(2)b(2) (5, d), (6, d) (2, d), (3, d)
ε(ndv3, d) (ndv3, d)

b(2)b(3) (5, c), (6, c) (2,d), (3,d)
a(5)(ndv3, c) (ndv3,d)

Table 7: Final Control Table

Dispute-Free In EFSM, starting from a parameterized input sequence,
different parameterized output sequences can be observed by inputting the
same input symbol sequence associated with different input parameter value
sequences. Thus, in one single cell of the Control Table, multiple output
symbols could be included. In the conjecture, multiple transitions will be
built from this information. In the Control Table, a row s ∈ S is a Disputed

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876



D2.2.1: Method for Assessing and Retrieving Models 20/74

Row, if there exists x ∈ E such that more than one output symbols are
included in the cell indexed by s and x.

A disputed row is resolved if for each y ∈ Y involved in the cell C(s, x),
there exist t = s · x(d(p(x))) ∈ R, and (d(p(x)), y) ∈ C(s, x). In order to
make well-defined transitions in the conjecture, when a disputed row s is not
resolved because such a t does not exist in R for a certain y, we extend R
with such a t. A Control Table is dispute-free if all the disputed rows in S
are resolved.

If both (d(p(x)), y) and (d′(p(x)), y) belong to C(s, x), because we as-
sume that the EFSM being inferred is observable, the states reached by
s · x(d(p(x))) and s · x(d′(p(x))) from the initial state must be the same.
So, if R needs to be extended to resolve disputed row s, only one from
s · x(d(p(x))) and s · x(d′(p(x))) is included in R.

In Table 5, output symbols d and e are involved in the cell C(b(2), b).
Thus, the row b(2) is disputed. Since b(2)b(2) ∈ R, in order to resolve
this disputed row, we only need to introduce a row b(2)b(3) in R. After
constructing and applying input sequences to make the table balanced, we
obtain Table 7 and Table 8. Now, Table 7 is balanced, dispute-free, and
closed. For each row in R, the corresponding equivalent row in S is indicated
in the right most column of the table.

E = X
a b

S

ε
(5, (0, 0, 0, 0)→ 5), (2, (0, 0, 0, 0)→ 2),
(6, (0, 0, 0, 0)→ 6), (3, (0, 0, 0, 0)→ 3),
(0, (0, 0, 0, 0)→ 0) (0, (0, 0, 0, 0)→ 0)

a(5)
(5, (5, 0, 0, 5)→ ndv), (2, (5, 0, 0, 5)→ 0),
(6, (5, 0, 0, 5)→ 200), (3, (5, 0, 0, 5)→ 0),
(0, (5, 0, 0, 5)→ 120) (0, (5, 0, 0, 5)→ 0)

b(2)
(5, (0, 2, 0, 2)→ ω), (2, (0, 2, 0, 2)→ ω),
(6, (0, 2, 0, 2)→ ω), (3, (0, 2, 0, 2)→ 0),
(0, (0, 2, 0, 2)→ ω) (0, (0, 2, 0, 2)→ ω)

R

a(5)a(5)
(5, (5, 0, 300, 5)→ ω), (2, (5, 0, 600, 5)→ 0),
(6, (5, 0, 500, 5)→ ω), (3, (5, 0, 700, 5)→ 0),

(400, (5, 0, 400, 5)→ ω) (800, (5, 0, 800, 5)→ ω)

a(5)b(2)
(5, (5, 2, 0, 0)→ 900), (2, (5, 2, 0, 0)→ 0),
(6, (5, 2, 0, 0)→ 110), (3, (5, 2, 0, 0)→ 0),
(0, (5, 2, 0, 0)→ 130) (0, (5, 2, 0, 0)→ 0)

b(2)a(5)
(5, (5, 2, 0, 2)→ ω), (2, (5, 2, 0, 2)→ ω),
(6, (5, 2, 0, 2)→ ω), (3, (5, 2, 0, 2)→ 0),
(0, (5, 2, 0, 2)→ ω) (0, (5, 2, 0, 2)→ ω)

b(2)b(2)
(5, (0, 2, 0, 2)→ 5), (2, (0, 2, 0, 2)→ 2),
(6, (0, 2, 0, 2)→ 6), (3, (0, 2, 0, 2)→ 3),
(0, (0, 2, 0, 2)→ 0) (0, (0, 2, 0, 2)→ 0)

b(2)b(3)
(5, (0,3,0,0)→ 140), (2, (0,3,0,0)→ 0),
(6, (0,3,0,0)→ 150), (3, (0,3,0,0)→ 0),
(0, (0,3,0,0)→ 160) (0, (0,3,0,0)→ 0)

Table 8: Final Data Table
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2.2.4 Test Data Selection Strategies

How to select test data is generally a difficult issue, especially in the context
of security testing. Here, we face the problem of parameter value selection in
model inference for security testing. We tackle this issue from the following
aspects.

• In the beginning of the inference procedure, we assume that there is
some information resource such as domain expertise to provide relevant
parameter values needed. In this way, we can have some usable param-
eter values for each input symbol to start the inference. In the running
example, the 5 and 6 for a and 2 and 3 for b are this case. Note that
although the initial R is obtained by associating each input symbol
with only one parameter value if there are parameters associated with
the input symbol, in the cell indexed by ε and x ∈ X, we are free to
use multiple parameter values of x to explore the behavior of the SUI.

• As described in Section 2.2.3, whenever ndv is identified for a prefix
s · x(d(p(x))), for all the input parameters after the prefix, we need to
select the ndv generated as input parameter values, in addition to other
values selected. In addition to that, we need to make the observation
tables balanced with respect to the ndv identified.

• In the definition of EFSM used in this document, transition guard is
defined as G : Dx × DV → {True, False}, which means informally
that input parameter values are “compared” with variables to decide
whether certain transition is applicable. In order to identify all the
outgoing transitions from a state, we introduce an assumption of the
SUI and a corresponding parameter value selection strategy. We as-
sume all the transition guards of SUI are logical combinations of atoms
of the form pi = vj or pi 6= vj, where pi ∈ P are input parameters,
vj ∈ V , 1 ≤ i, j ≤ n. We name this assumption as “Direct Compar-
ison Assumption”. During the inference procedure, we already keep
record of the current valuation v of variables V , in order to fill the
data table. Thus, for s ∈ S ∪ R, x ∈ X, suppose the current valua-
tion of V is v, for each input parameter in p(x), we could use the set
{v(vi) | vi ∈ V, 1 ≤ i ≤ n} ∪ {v∗} where v∗ 6= v(vi)(1 ≤ i ≤ n) as
the possible values, and try all the possible combinations of these val-
ues as d(p(x)). We name this strategy as “All Data Strategy”. When
the direct comparison assumption is held in SUI, by using the all data
strategy, we are able to find all the outgoing transitions from a state.
At the same time, applying the all data strategy is clearly costly. While
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inferring a specific protocol entity or service, a tradeoff could be defined
based on further information or heuristics about the SUI.

2.2.5 Conjecture Construction

When the Control Table is balanced, dispute-free and closed, an EFSM con-
jecture Q = (SQ, TQ) can be constructed from observation tables C and D.
There are three steps in the conjecture construction.

Construct raw conjecture As the first step, a raw conjecture Q =
(SQ, TQ) is constructed. The equivalent classes of strings in S are states
in Q. Formally, SQ = {[s] | s ∈ S}. Specifically, the initial state is s0Q = [ε].

The set of transitions TQ is defined as follows: for each [s](s ∈ S), x ∈ X,
one or more transitions are defined, according to the number of different
output symbols in the cell C(s, x). Suppose one of the output symbols is y,
the transition is ([s], x,G, op, y, up, s′) as defined below.

• When there are multiple output symbols in the cell C(s, x), the guard
G is introduced as follows:

– in each cell of Data TableD(t, x) (t ∈ [s]), there is a set of elements
in the form of (d(p(x)), v(V )→ d′(p(y))) corresponding to output
symbol y, we construct (d(p(x)), v(V ) → True) correspondingly;

– for all the other elements, we construct (d(p(x)), v(V ) → False)
correspondingly;

– the guard G is the set containing all these elements constructed.

• In each cell of Data Table D(t, x) (t ∈ [s]), there is a set of elements
corresponding to output symbol y. The output parameter function op
is the set containing all these elements.

• The variable update function up is defined as in the definition of EFSM.

• Since observation tables are dispute-free, there exists t = s ·x(d(p(x))),
t ∈ S ∪ R, such that (d(p(x)), y) ∈ C(s, x). We set the target state
s′ = [t].

If, in the Control Table cell C(s, x), there is an element (ndvi, y), we
consider the following additional transitions.

• If there is already a transition from [s] with output symbol y, in the
guard of this transition, we add “∨p(x) = vi”; otherwise, create a
transition as a normal one except the guard is “p(x) = vi”.
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• In the guards of all the other transitions from [s], we add “∧p(x) 6= vi”.

The raw conjecture constructed from Table 7 and Table 8 is depicted in
Figure 2.

[] 

[a(5)] [b(2)] 

a(p1)/ 
{(5, (0, 0, 0, 0) → 5) 
(6, (0, 0, 0, 0) → 6) 
(0, (0, 0, 0, 0) → 0) 
(5, (0, 2, 0, 2) → 5) 
(6, (0, 2, 0, 2) → 6) 

(0, (0, 2, 0, 2) → 0)}, 
d(p4), 

v1 := p1; v4 := p4 

b(p2)/ 
{(2, (0, 0, 0, 0) → 2) 
(3, (0, 0, 0, 0) → 3) 
(0, (0, 0, 0, 0) → 0) 
(2, (0, 2, 0, 2) → 2) 
(3, (0, 2, 0, 2) → 3) 

(0, (0, 2, 0, 2) → 0)}, 
d(p4), 

v2 := p2; v4 := p4 

b(y2)/ 
{(2, (5, 0, 0, 5) → 0) 
(3, (5, 0, 0, 5) → 0) 
(0, (5, 0, 0, 5) → 0) 
(2, (5, 2, 0, 0) → 0) 
(3, (5, 2, 0, 0) → 0) 
(0, (5, 2, 0, 0) → 0) 
(2, (0, 3, 0, 0) → 0) 
(3, (0, 3, 0, 0) → 0) 

(0, (0, 3, 0, 0) → 0)}, 
d(p4), 

v2 := p2; v4 := p4 

a(p1)/ 
{(5, (0, 2, 0, 2) → ) 
(6, (0, 2, 0, 2) → ) 
(0, (0, 2, 0, 2) → ) 

(5, (5, 0, 300, 5) → ) 
(400, (5, 0, 400, 5) → ) 
(6, (5, 0, 500, 5) → ) 
(5, (5, 2, 0, 2) → ) 
(6, (5, 2, 0, 2) → ) 

(0, (5, 2, 0, 2) → )}, , 
v1 := p1 

b(p2), 
{(2, (0, 2, 0, 2) → True) 
(3, (0, 2, 0, 2) → False) 

(2, (5, 0, 600, 5) → False) 
(3, (5, 0, 700, 5) → False) 

(2, (5, 2, 0, 2) → True) 
(3, (5, 2, 0, 2) → False)}  p2 = v3/ 

e, 
v2 := p2 

b(p2), 
{(2, (0, 2, 0, 2) → False) 
(3, (0, 2, 0, 2) → True) 

(2, (5, 0, 600, 5) → True) 
(3, (5, 0, 700, 5) → True) 
(2, (5, 2, 0, 2) → False) 
(3, (5, 2, 0, 2) → True)}  p2 ≠ v3/ 

{ (3, (0, 2, 0, 2) → 0) 
(2, (5, 0, 600, 5) → 0) 
(3, (5, 0, 700, 5) → 0) 
(3, (5, 2, 0, 2) → 0)}, 

d(p4), 
v2 := p2; v4 := p4 

a(p1)/ 
{(5, (5, 0, 0, 5) → ndv) 
(6, (5, 0, 0, 5) → 200) 
(0, (5, 0, 0, 5) → 120) 
(5, (5, 2, 0, 0) → 900) 
(6, (5, 2, 0, 0) → 110) 
(0, (5, 2, 0, 0) → 130) 
(5, (0, 3, 0, 0) → 140) 
(6, (0, 3, 0, 0) → 150) 

(0, (0, 3, 0, 0) → 160)}, 
c(p3), 

v1 := p1; v3 := p3 

Figure 2: Raw Conjecture

Infer guards and functions using data mining tools In the raw con-
jecture, the guards and functions are in the form of sets, which are not
convenient for a human developer or tester to understand. Providing these
sets to tools such as Daikon [15] or the data mining library Weka [43], we
could obtain a succinct form of these guards and functions. The algorithms
and mechanisms of these data mining tools are out of the scope of this doc-
ument, even out of the scope of testing techniques. Here, we only give the
result obtained using two classifiers of Weka, M5P and RandomTree, for the
running example in Figure 3.

Clean unused variable assignments From Figure 3 we can see that
in the current form of conjecture, some variable assignments, e.g., all the
assignments to variable v1, are not useful, since v1 is never used in any
guard or function. We need to remove these assignments from the conjecture.
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[] 

[a(5)] [b(2)] 

a(p1)/ 
p4 = p1, 
d(p4), 

v1 := p1; v4 := p4 

b(p2)/ 
p4 = p2, 
d(p4), 

v2 := p2; v4 := p4 

a(p1)/ 
p3 = ndv if p1 = 5  v2 = 0; 

238.75 otherwise, 
c(p3), 

v1 := p1; v3 := p3 

b(p2)/ 
p4 = 0, 
d(p4), 

v2 := p2; v4 := p4 a(p1)/ , 
v1 := p1 

b(p2), 
(p2 < 2.5  v2  1)  p2 = v3 / 

e, 
v2 := p2 

b(p2), 
((p2 < 2.5  v2 < 1)  (p2  2.5))  p2 ≠ v3 / 

p4 = 0, 
d(p4), 

v2 := p2; v4 := p4 

Figure 3: Succinct Form

This can be done as follows: For each variable assignment in the form of
vi := d(p(z))(z ∈ X ∪ Y ), we find all the paths to the next assignment of
vi in the form of vi := d′(p(z′))(z′ ∈ X ∪ Y ). If vi is not used in all the
guards and output parameter functions of all these paths, we remove the
first assignment vi := d(p(z)). After this cleaning, the final conjecture of the
running example is depicted in Figure 4.

2.2.6 Outline of the Inference Algorithm

In summary, the initial inference algorithm (before new observation process-
ing which corresponds to counterexample processing in Angluin’s algorithm)
is outlined in Listing 1.

2.2.7 Analysis of the Inference Algorithm

Informally, we say an EFSM is consistent with the observation tables if for
each sequence whose execution is recorded in the observation tables, there
exists a path in the EFSM corresponding to the execution.

In order to define the concept of consistent formally, we introduce some
auxiliary notations. Assume s is a sequence in S ∪ R of length k, i.e., s ∈
S ∪ R, s = xi1(di1(p(xi1))) xi2(di2(p(xi2))) · · · xik(dik(p(xik))) (xil ∈ X, dil ∈
Dxil

, 1 ≤ l ≤ k). We denote the prefix of s of length l as sl, i.e., sl =
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[] 

[a(5)] [b(2)] 

a(p1)/ 
p4 = p1, 
d(p4) 

b(p2)/ 
p4 = p2, 
d(p4), 

v2 := p2 

a(p1)/ 
p3 = ndv if p1 = 5  v2 = 0; 

238.75 otherwise, 
c(p3), 

v3 := p3 

b(p2)/ 
p4 = 0, 
d(p4), 

v2 := p2 

a(p1)/  

b(p2), 
(p2 < 2.5  v2  1)  p2 = v3 / 

e, 
v2 := p2 

b(p2), 
((p2 < 2.5  v2 < 1)  (p2  2.5))  p2 ≠ v3 / 

p4 = 0, 
d(p4), 

v2 := p2 

Figure 4: Final Conjecture

xi1(di1(p(xi1)))xi2(di2(p(xi2))) · · ·xil(dil(p(xil))). Thus we have s0 = ε, and
sk = s.

We assume the initial valuation of variables V is v0. We denote vk as the
valuation of V after applying input sequence s of length k, which is defined
recursively as vl = up(dil(p(xil)), vl−1), (1 ≤ l ≤ k).

Formally, an EFSM M = (SM , TM) is consistent with the observation
tables (S,R,E,C) and (S,R,E,D) if for each sequence s in S∪R of length k,
xik+1 ∈ X, and yik+1 ∈ Y such that (dik+1(p(xik+1)), yik+1) ∈ C(s, xik+1), there
exists a sequence of transitions (s0, xi1 , Gi1 , opi1 , yi1 , up, si1) (si1 , xi2 , Gi2 , opi2 ,
yi2 , up, si2) · · · (sik−1 , xik , Gik , opik , yik , up, sik) (sik , xik+1 , Gik+1 , opik+1 , yik+1 ,
up, sik+1) in M , such that for each 1 ≤ l ≤ k + 1:

• Gil(dil(p(xil)), vl−1) = True. Informally, this means the guard of each
transition is satisfied.

• (dil(p(xil)), yil) ∈ C(sl−1, xil). Informally, this means that the output
symbol of each transition is the same as what is recorded in the control
table.

• (dil(p(xil)), vl−1→ opil(dil(p(xil)), vl−1)) ∈D(sl−1, xil). Informally, this
means the output parameter value of each transition is the same as what
is recorded in the data table.
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Listing 1: Outline of the initial inference algorithm

1 procedure Inference
2 Initialize the Control Table and Data Table with the sets S = ε, E = X,
3 and R obtained by associating each input symbol with only one param-
4 eter value if there are parameters associated with the input symbol;
5 Construct parameterized input sequences and obtain corresponding param-
6 eterized output sequences by testing the SUI;
7 Record the observations in the Control Table and Data Table;
8 if ndv is identified then
9 Construct and apply additional input sequences accordingly;

10 end if
11 while the Control Table is not balanced, dispute-free or closed do
12 Make the table balanced, i.e., ∀s, t ∈ S ∪R, s and t are balanced;
13 if ndv has been identified then
14 Make the table balanced considering the ndv;
15 end if
16 Make the table dispute-free, i.e., all disputed row s ∈ S are resolved;
17 Make the table closed, i.e., ∀t ∈ R, ∃s ∈ S such that s ∼= t;
18 end while
19 Construct the conjecture from the Control Table and Data Table.
20 end procedure

Theorem 1. The conjecture EFSM Q = (SQ, TQ) constructed from balanced,
closed, dispute-free observation table C and D is consistent with the obser-
vation tables.

Proof. Because S ∪ R is prefix closed, sl−1 ∈ S ∪ R, (1 ≤ l ≤ k). From
the inference algorithm, we can see that all the strings in R are obtained
by extending a string in S with one parameterized input symbol. Thus,
sl−1 ∈ S, (1 ≤ l ≤ k). We can also see that all the strings in S are not
equivalent to each other.

According to the way observations are recorded in observation tables,
supposed when s is applied to the EFSM being inferred, the parameterized
output sequence is yi1(d′i1(p(yi1))) yi2(d′i2(p(yi2))) · · · yik(d′ik(p(yik))), we have
(dil(p(xil)), yil) ∈ C(sl−1, xil), and (dil(p(xil)), vl−1 → d′il(p(yil))) ∈ D(sl−1,
xil) (1 ≤ l ≤ k).

Thus, for each sl−1 (1 ≤ l ≤ k + 1), there exists a transition in Q
from [sl−1] with input symbol xil and output symbol yil in the form of
([sl−1], xil , Gil , opil , yil , up, s

′
il
).

• Since (dil(p(xil)), vl−1 → d′il(p(yil))) ∈ D(sl−1, xil) corresponding to yil ,

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876



D2.2.1: Method for Assessing and Retrieving Models 27/74

(dil(p(xil)), vl−1 → True) is an element of Gil .
That means Gil(dil(p(xil)), vl−1) = True.

• (dil(p(xil)), yil) ∈ C(sl−1, xil).

• Since (dil(p(xil)), vl−1 → d′il(p(yil))) ∈ D(sl−1, xil) corresponding to yil ,
(dil(p(xil)), vl−1→ d′il(p(yil))) is en element of opil . Thus, (dil(p(xil)), vl−1

→ op(dil (p(xil)), vl−1)) = (dil(p(xil)), vl−1 → d′il(p(yil))) which belongs
to D(sl−1, xil).

• The target state s′il = [sl−1 · xil(dil(p(xil)))] = [sl].

So, these transitions in Q is a “chain” as described in definition of consis-
tency and satisfy all the three conditions. This means Q is consistent with
the observation tables.

Note that considering ndv as a constant, the definition of consistency and
the proof also apply to the case where ndv is involved.

An EFSM (S, T ) is said to be strongly enabled if for each state s ∈ S,
each variable valuation v ∈ DV , and each transition (s, x,G, op, y, up, s′) ∈ T ,
there exists an input parameter valuation d ∈ Dx such as G(d, v) = True.
For example, suppose there are two transitions starting from a state s, the
two guards are p1 = v1∧p2 = v2 and p1 6= v1∨p1 6= v2, and there is a possible
valuation v∗ where v∗(v1) 6= v∗(v2), such an EFSM is not strongly enabled,
because there does not exist a valuation d ∈ Dx satisfying p1 = v1 ∧ p2 = v2.

With the following theorem, we can see that the conjecture obtained is
“minimal” under certain assumptions.

Theorem 2. Suppose a strongly enabled SUI satisfies the direct comparison
assumption, and the all data strategy is applied in the inference procedure, if
there is another EFSM W = (SW , TW ) consistent with the observation tables,
|SW | ≥ |SQ|.

Proof. Suppose there is an EFSM W = (SW , TW ) consistent with the obser-
vation tables, and |SW | < |SQ|.

Since |SQ| = |S|, there exist strings s1, s2 ∈ S, such that in W the same
state s∗ is reached by applying s1 or s2 from the initial state.

Since in the observation tables, s1 is not equivalent with s2, there exist
x ∈ X, y ∈ Y such that there exists (d1(p(x)), y) ∈ C(s1, x) but there is no
such an element with output symbol y in C(s2, x).

Since W is consistent with the observation tables, in W there is a transi-
tion (s∗, x, G, op, y, up, s∗′) ∈ TW from state s∗. Suppose the valuation of
V after applying s1 to W is v1, G(d1(p(x)), v1) = True.
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Suppose the valuation of V after applying s2 to W is v2, which is also the
valuation after applying s2 to SUI. In the state reached by s2 in SUI, there
must exist a valuation d2 ∈ Dx such that G(d2(p(x)), v2) = True. Otherwise
we can transform the transitions starting from the state reached by s2 in SUI,
such that there is one transition having G as the guard, and this transition is
never enabled with variable valuation v2. This means the SUI is not strong
enabled.

Because the direct comparison assumption is satisfied in SUI, and the all
data strategy is applied, during the inference procedure, we must have tried
a valuation d∗ ∈ Dx after s2 such that G(d∗(p(x), v2) = True, and the output
symbol is not y. This is a contradiction with the statement that in W there
is a transition (s∗, x,G, op, y, up, s∗′) ∈ TW from state s∗.

So, such an EFSM W does not exist. This concludes the proof.

Since the SUI itself is consistent with the observation tables, from Theo-
rem 2, we can know that the number of states of the conjecture is bounded
by the number of states of the SUI.

Suppose the number of states of SUI is m, the number of input symbols
is |X| = k. From Theorem 2, we know that the number of rows in the set
S is bounded by m. According to the way R is constructed, the number of
rows in R is bounded by mk, which means for each string in S, there are
at most k corresponding strings in R. Thus, the number of cells in the final
control table is bounded by (m+mk)k.

The number of tests needed for each cell in the observation tables depends
on the test data selection strategy. When the all data strategy is used, for
each s ∈ S ∪ R, x ∈ X, in the worst case, there could be |V | = n different
values in the current valuation of V , that means, for each parameter of x,
there are n + 1 different values to be executed. If we want to execute all
the combinations of different values of parameters of x, the number of tests
needed will not be bounded by a polynomial expression. Thus, it is important
to define an efficient test data selection strategy, or in another word, to find
a tradeoff between the cost and the accuracy of the conjecture obtained.

2.2.8 New Observation Processing

In Angluin’s algorithm, after a conjecture is obtained, it is given to a teacher,
who will provide a counterexample if the conjecture is not equivalent to SUI.
In our algorithm, we extend the concept of “counterexample” to that of
“new observation”, which is a pair of a parameterized input sequence and
the corresponding output sequence of SUI. The input sequence has not been
executed in the previous model inference procedure. In Angluin’s algorithm,
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counterexample processing always leads to a new conjecture with more states.
In our case, since the guards and output parameter functions in the raw
conjecture are always partial functions, new observation processing may only
“enrich” these function without introducing new states in the next conjecture.

For the time being, we do not consider how a new observation is obtained.
Suppose the input symbol sequence of the new observation is α ∈ X∗,

the parameterized input sequence is α(d(p(α))), the output symbol sequence
is sequence is β ∈ Y ∗, and the parameterized output sequence is β(d(p(β))).
We denote suffixj(α) as the suffix of α of length j.

By adapting the “Suffix1by1” method described in [20], our new observa-
tion processing approach is outlined in Listing 2.

Listing 2: Processing new observation

1 procedure New_Observation_Processing
2 Divide α as γ · σ, where γ is the longest prefix of α such that
3 there exists d′(p(γ)) ∈ Dγ and γ(d′(p(γ))) ∈ S ∪R;
4 if d 6= d′ then
5 if γ(d′(p(γ))) ∈ S then
6 Add γ(d(p(γ))) into S;
7 else
8 Add γ(d(p(γ))) into R;
9 end if

10 end if
11 for j = 1 to |σ| do
12 if suffixj(σ) /∈ E then
13 Add suffixj(σ) into E;
14 end if
15 Fill the empty cells of the observation tables;
16 Make the Control Table balanced;
17 if the Control Table is not closed then
18 break the for loop;
19 end if
20 end for
21 Make the Control Table balanced, closed, and dispute-free;
22 Make a conjecture.
23 end procedure

In the running example, suppose after the conjecture depicted in Fig-
ure 2 is obtained, a new observation is obtained, where the input sequence
is a(5)a(6)b(2) and the output sequence is d(5)c(1000)d(0).
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Following the new observation processing algorithm, γ = a · a, σ = b.
We add a(5)a(6) into R. Since b ∈ E, no column is added. After executing
several tests, the balanced, closed, and dispute-free Control Table obtained
is 9, while the corresponding Data Table is 10.

E ∼=
a b

S

ε
(5, d), (6, d) (2, d), (3, d)
(ndv3, d) (ndv3, d)

a(5) (5, c), (6, c) (2, d), (3, d)
(ndv3, c) (ndv3, d)

b(2) (5,Ω), (6,Ω) (2, e), (3, d)
(ndv3,Ω) (ndv3, e)

R

a(5)a(5) (5,Ω), (6,Ω) (2, d), (3, d)
b(2)(ndv3,Ω) (ndv3, e)

a(5)a(6) (5,Ω), (6,Ω) (2,d), (3,d)
b(2)(ndv3,Ω) (ndv3, e)

a(5)b(2) (5, c), (6, c) (2, d), (3, d)
a(5)(ndv3, c) (ndv3, d)

b(2)a(5) (5,Ω), (6,Ω) (2, e), (3, d)
b(2)(ndv3,Ω) (ndv3, e)

b(2)b(2) (5, d), (6, d) (2, d), (3, d)
ε(ndv3, d) (ndv3, d)

b(2)b(3) (5, c), (6, c) (2, d), (3, d)
a(5)(ndv3, c) (ndv3, d)

Table 9: Control Table after Processing a New Observation

The raw conjecture constructed from Table 9 and Table 10 is depicted in
Figure 5. The new data obtained from the processing is in bold font. We
can see that by processing this new observation, the data of the conjecture
is enriched, but no new state is introduced.

Now, consider we have another new observation, in which the input se-
quence is a(5)a(6)b(2)a(5) and the output sequence is d(5)c(222)d(0)d(5).
Following the new observation processing algorithm, γ = a · a, σ = b · a.
Since a(5)a(6) ∈ R, no row is added. In the for loop in the algorithm, when
j = 1, no column is added. When j = 2, b · a is added to E. Then, we con-
struct and execute tests to fill the empty cells in the observation table. Since
ndv is included in the inference procedure, policy described in Section 2.2.3
with respect to ndv is followed. We also use more input data to follow the
“All Data Strategy” described in Section 2.2.4. In the end of the for loop,
we obtain the Control Table 11 and Data Table 12. Now, the Control Table
is not closed, since the row a(5)a(6) is not equivalent to any row in S. We
move it to S, extend R accordingly, construct and execute more tests, until
we obtain balanced, closed, and dispute-free Control Table. Finally we are
able to construct another conjecture, which has 4 states as the SUI depicted
in Figure 1.
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E
a b

S

ε
(5, (0, 0, 0, 0)→ 5), (2, (0, 0, 0, 0)→ 2),
(6, (0, 0, 0, 0)→ 6), (3, (0, 0, 0, 0)→ 3),
(0, (0, 0, 0, 0)→ 0) (0, (0, 0, 0, 0)→ 0)

a(5)
(5, (5, 0, 0, 5)→ ndv), (2, (5, 0, 0, 5)→ 0),

(6, (5,0,0,5)→ ndv), (3, (5, 0, 0, 5)→ 0),
(0, (5, 0, 0, 5)→ 120) (0, (5, 0, 0, 5)→ 0)

b(2)
(5, (0, 2, 0, 2)→ ω), (2, (0, 2, 0, 2)→ ω),
(6, (0, 2, 0, 2)→ ω), (3, (0, 2, 0, 2)→ 0),
(0, (0, 2, 0, 2)→ ω) (0, (0, 2, 0, 2)→ ω)

R

a(5)a(5)
(5, (5, 0, 300, 5)→ ω), (2, (5, 0, 600, 5)→ 0),
(6, (5, 0, 500, 5)→ ω), (3, (5, 0, 700, 5)→ 0),

(400, (5, 0, 400, 5)→ ω) (800, (5, 0, 800, 5)→ ω)

a(5)a(6)
(5, (5,0,2000,5)→ ω), (2, (5,0,1000,5)→ 0),
(6, (5,0,3000,5)→ ω), (3, (5,0,5000,5)→ 0),

(4000, (5,0,4000,5)→ ω) (6000, (5,0,6000,5)→ ω)

a(5)b(2)
(5, (5, 2, 0, 0)→ 900), (2, (5, 2, 0, 0)→ 0),
(6, (5, 2, 0, 0)→ 110), (3, (5, 2, 0, 0)→ 0),
(0, (5, 2, 0, 0)→ 130) (0, (5, 2, 0, 0)→ 0)

b(2)a(5)
(5, (5, 2, 0, 2)→ ω), (2, (5, 2, 0, 2)→ ω),
(6, (5, 2, 0, 2)→ ω), (3, (5, 2, 0, 2)→ 0),
(0, (5, 2, 0, 2)→ ω) (0, (5, 2, 0, 2)→ ω)

b(2)b(2)
(5, (0, 2, 0, 2)→ 5), (2, (0, 2, 0, 2)→ 2),
(6, (0, 2, 0, 2)→ 6), (3, (0, 2, 0, 2)→ 3),
(0, (0, 2, 0, 2)→ 0) (0, (0, 2, 0, 2)→ 0)

b(2)b(3)
(5, (0, 3, 0, 0)→ 140), (2, (0, 3, 0, 0)→ 0),
(6, (0, 3, 0, 0)→ 150), (3, (0, 3, 0, 0)→ 0),
(0, (0, 3, 0, 0)→ 160) (0, (0, 3, 0, 0)→ 0)

Table 10: Data Table after Processing a New Observation

2.3 Implementation and Experimentation
The model inference algorithm proposed is implemented in Java. Experi-
ments are performed taking different SUIs including: a corrected version of
Needham Schroeder Public Key protocol (NSPK) [23], the running example
depicted in Figure 1, a simulated service provider of SAML Single Sign On
(SSO) [13], and a real service provider of SimpleSAMLphp, which can be
found at the address http://simplesamlphp.org/.

2.3.1 Implementation

The implementation is composed of the following components:

• Inference algorithm.

• Test drivers. As in other testing platforms, the test driver is an im-
portant part of the tool to bridge the gap between abstract symbols,
and messages and events at the implementation level. One of the test
drivers we implemented is used for simulated EFSM SUI, which re-
ceives an input sequence, simulates the behaviors of the EFSM model,
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[] 

[a(5)] [b(2)] 

a(p1)/ 

{(5, (0, 0, 0, 0) → 5) 

(6, (0, 0, 0, 0) → 6) 

(0, (0, 0, 0, 0) → 0) 

(5, (0, 2, 0, 2) → 5) 

(6, (0, 2, 0, 2) → 6) 

(0, (0, 2, 0, 2) → 0)}, 

d(p4), 

v1 := p1; v4 := p4 

b(p2)/ 

{(2, (0, 0, 0, 0) → 2) 

(3, (0, 0, 0, 0) → 3) 

(0, (0, 0, 0, 0) → 0) 

(2, (0, 2, 0, 2) → 2) 

(3, (0, 2, 0, 2) → 3) 

(0, (0, 2, 0, 2) → 0)}, 

d(p4), 

v2 := p2; v4 := p4 

b(y2)/ 

{(2, (5, 0, 0, 5) → 0) 

(3, (5, 0, 0, 5) → 0) 

(0, (5, 0, 0, 5) → 0) 

(2, (5, 2, 0, 0) → 0) 

(3, (5, 2, 0, 0) → 0) 

(0, (5, 2, 0, 0) → 0) 

(2, (0, 3, 0, 0) → 0) 

(3, (0, 3, 0, 0) → 0) 

(0, (0, 3, 0, 0) → 0)}, 

d(p4), 

v2 := p2; v4 := p4 

a(p1)/ 

{(5, (0, 2, 0, 2) → ) 

(6, (0, 2, 0, 2) → ) 

(0, (0, 2, 0, 2) → ) 

(5, (5, 0, 300, 5) → ) 

(400, (5, 0, 400, 5) → ) 

(6, (5, 0, 500, 5) → ) 

(5, (5, 2, 0, 2) → ) 

(6, (5, 2, 0, 2) → ) 

(0, (5, 2, 0, 2) → ) 

(5, (5, 0, 2000, 5) → ) 

(6, (5, 0, 3000, 5) → ) 

(4000, (5, 0, 4000, 5) → )}, 

, 

v1 := p1 

b(p2), 

{(2, (0, 2, 0, 2) → True) 

(3, (0, 2, 0, 2) → False) 

(2, (5, 0, 600, 5) → False) 

(3, (5, 0, 700, 5) → False) 

(2, (5, 0, 1000, 5) → False) 

(3, (5, 0, 5000, 5) → False) 

(2, (5, 2, 0, 2) → True) 

(3, (5, 2, 0, 2) → False)} 

 p2 = v3/ 

e, 

v2 := p2 

b(p2), 

{(2, (0, 2, 0, 2) → False) 

(3, (0, 2, 0, 2) → True) 

(2, (5, 0, 600, 5) → True) 

(3, (5, 0, 700, 5) → True) 

(2, (5, 0, 1000, 5) → True) 

(3, (5, 0, 5000, 5) → True) 

(2, (5, 2, 0, 2) → False) 

(3, (5, 2, 0, 2) → True)} 

 p2 ≠ v3/ 

{ (3, (0, 2, 0, 2) → 0) 

(2, (5, 0, 600, 5) → 0) 

(3, (5, 0, 700, 5) → 0) 

(2, (5, 0, 1000, 5) → 0) 

(3, (5, 0, 5000, 5) → 0) 

(3, (5, 2, 0, 2) → 0)}, 

d(p4), 

v2 := p2; v4 := p4 

a(p1)/ 

{(5, (5, 0, 0, 5) → ndv) 

(6, (5, 0, 0, 5) → ndv) 

(0, (5, 0, 0, 5) → 120) 

(5, (5, 2, 0, 0) → 900) 

(6, (5, 2, 0, 0) → 110) 

(0, (5, 2, 0, 0) → 130) 

(5, (0, 3, 0, 0) → 140) 

(6, (0, 3, 0, 0) → 150) 

(0, (0, 3, 0, 0) → 160)}, 

c(p3), 

v1 := p1; v3 := p3 

Figure 5: Raw Conjecture after Processing a New Observation

and gives back the output sequence. This is useful for comparing the
conjecture with a real model. Another one is used to communicate with
SimpleSAMLphp’s implementation of service provider, which generates
and receives HTTP requests and responses used in SAML SSO proto-
cols.

• Connector to Weka. At the end of the inference, we use Weka to
obtain a succinct form of guard and functions. The connector can
generate input file in Weka format (ARFF), call filtering and classifying
functions, and then the output are parsed and made available to the
algorithm.

• Output (connector to GraphViz). For graphic representation of the
conjecture, we use the DOT format accepted by GraphViz tool. In-
formation about guard and functions is presented in the label of the
transition.

• Logging. The logging component records the requests performed and
the intermediate observation tables. Several statistics are also logged
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E
a b ba

S

ε
(5, d), (6, d) (2, d), (3, d) (2− 5,d−Ω), (7− 5,d−Ω)
(ndv3, d) (ndv3, d) (ndv3 − 5,d−Ω)

a(5) (5, c), (6, c) (2, d), (3, d) (2− 5,d− c), (7− 5,d− c)
(ndv3, c) (ndv3, d) (ndv3 − 5,d− c)

b(2) (5,Ω), (6,Ω) (2, e), (3, d) (2− 5, e− d), (7− 5,d− c)
(ndv3,Ω) (ndv3, e) (ndv3 − 5, e− d)

R

a(5)a(5) (5,Ω), (6,Ω) (2, d), (3, d) (2− 5,d− c), (7− 5,d− c)
(ndv3,Ω) (ndv3, e) (ndv3 − 5, e− d)

a(5)a(6) (5,Ω), (6,Ω) (2, d), (3, d) (2− 5,d− d), (7− 5,d− d)
(ndv3,Ω) (ndv3, e) (ndv3 − 5, e− d)

a(5)b(2) (5, c), (6, c) (2, d), (3, d) (2− 5,d− c), (7− 5,d− c)
(ndv3, c) (ndv3, d) (ndv3 − 5,d− c)

b(2)a(5) (5,Ω), (6,Ω) (2, e), (3, d) (2− 5, e− d), (7− 5,d− c)
(ndv3,Ω) (ndv3, e) (ndv3 − 5, e− d)

b(2)b(2) (5, d), (6, d) (2, d), (3, d) (2− 5,d−Ω), (7− 5,d−Ω)
(ndv3, d) (ndv3, d) (ndv3 − 5,d−Ω)

b(2)b(3) (5, c), (6, c) (2, d), (3, d) (2− 5,d− c), (7− 5,d− c)
(ndv3, c) (ndv3, d) (ndv3 − 5,d− c)

Table 11: Control Table after Processing the Second New Observation

like the number of requests and duration of the learning process.

2.3.2 Experiments with SimpleSAMLphp

SAML SSO enables clients to access multiple services by signing-on only once.
This is achieved using SAML (Security Assertion Markup Language) which
is an XML-based standard for exchanging authentication and authorization
data. By applying our algorithm to SAML SSO, we check that it can handle
features of state of the art security protocols, so that the models could be
used by model checkers and for model based test generation.

Three roles take part in the protocol: a client (C), an identity provider
(IdP) and a service provider (SP). C, typically a web browser guided by a
user, aims at getting access to a service or a resource provided by SP (i.e., SP-
initiated SSO). IdP authenticates C and issues corresponding authentication
assertions. Finally, SP uses the assertions generated by IdP to give C access
to the requested service. Initially, C asks SP to provide the resource located
at certain address. SP then initiates the SAML Authentication Protocol by
sending C an Authentication Request redirected to IdP containing an ID
which is a string uniquely identifying the request. IdP then challenges C to
provide valid credentials and, if the authentication succeeds, IdP builds an
Authentication Assertion. IdP places the Authentication Assertion into a
response message and then makes C (usually through scripting) sending this
message to SP. SP checks the Authentication Assertion and grants access
to C. We can summarize the protocol flow in Figure 6.

From the model inference point of view, the ID generated by SP is an

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876



D2.2.1: Method for Assessing and Retrieving Models 34/74

E
a b ba

S

ε
(5, (0, 0, 0, 0)→ 5), (2, (0, 0, 0, 0)→ 2), (2− 5, (0,0,0,0)→ 2− ω),
(6, (0, 0, 0, 0)→ 6), (3, (0, 0, 0, 0)→ 3), (7− 5, (0,0,0,0)→ 0− ω),
(0, (0, 0, 0, 0)→ 0) (0, (0, 0, 0, 0)→ 0) (0− 5, (0,0,0,0)→ 0− ω)

a(5)
(5, (5, 0, 0, 5)→ ndv), (2, (5, 0, 0, 5)→ 0), (2− 5, (5,0,0,5)→ 0− 900),
(6, (5, 0, 0, 5)→ ndv), (3, (5, 0, 0, 5)→ 0), (7− 5, (5,0,0,5)→ 0− 350),
(0, (5, 0, 0, 5)→ 120) (0, (5, 0, 0, 5)→ 0) (0− 5, (5,0,0,5)→ 0− 888),

b(2)
(5, (0, 2, 0, 2)→ ω), (2, (0, 2, 0, 2)→ ω), (2− 5, (0,2,0,2)→ ω − 5),
(6, (0, 2, 0, 2)→ ω), (3, (0, 2, 0, 2)→ 0), (7− 5, (0,2,0,2)→ 0− 330),
(0, (0, 2, 0, 2)→ ω) (0, (0, 2, 0, 2)→ ω) (0− 5, (0,2,0,2)→ ω − 5)

R

a(5)a(5)
(5, (5, 0, 300, 5)→ ω), (2, (5, 0, 600, 5)→ 0), (2− 5, (5,0,333,5)→ 0− 444),
(6, (5, 0, 500, 5)→ ω), (3, (5, 0, 700, 5)→ 0), (7− 5, (5,0,340,5)→ 0− 340),

(400, (5, 0, 400, 5)→ ω) (800, (5, 0, 800, 5)→ ω) (777− 5, (5,0,777,5)→ ω − 5)

a(5)a(6)
(5, (5, 0, 2000, 5)→ ω), (2, (5, 0, 1000, 5)→ 0), (2− 5, (5,0,222,5)→ 0− 5),
(6, (5, 0, 3000, 5)→ ω), (3, (5, 0, 5000, 5)→ 0), (7− 5, (5,0,350,5)→ 0− 5),

(4000, (5, 0, 4000, 5)→ ω) (6000, (5, 0, 6000, 5)→ ω) (999− 5, (5,0,999,5)→ ω − 5)

a(5)b(2)
(5, (5, 2, 0, 0)→ 900), (2, (5, 2, 0, 0)→ 0), (2− 5, (5,2,0,0)→ 0− 555),
(6, (5, 2, 0, 0)→ 110), (3, (5, 2, 0, 0)→ 0), (7− 5, (5,2,0,0)→ 0− 360),
(0, (5, 2, 0, 0)→ 130) (0, (5, 2, 0, 0)→ 0) (0− 5, (5,2,0,0)→ 0− 310)

b(2)a(5)
(5, (5, 2, 0, 2)→ ω), (2, (5, 2, 0, 2)→ ω), (2− 5, (5,2,0,2)→ ω − 5),
(6, (5, 2, 0, 2)→ ω), (3, (5, 2, 0, 2)→ 0), (7− 5, (5,2,0,2)→ 0− 370),
(0, (5, 2, 0, 2)→ ω) (0, (5, 2, 0, 2)→ ω) (0− 5, (5,2,0,2)→ ω − 5)

b(2)b(2)
(5, (0, 2, 0, 2)→ 5), (2, (0, 2, 0, 2)→ 2), (2− 5, (0,2,0,2)→ 2− ω),
(6, (0, 2, 0, 2)→ 6), (3, (0, 2, 0, 2)→ 3), (7− 5, (0,2,0,2)→ 7− ω),
(0, (0, 2, 0, 2)→ 0) (0, (0, 2, 0, 2)→ 0) (0− 5, (0,2,0,2)→ 0− ω)

b(2)b(3)
(5, (0, 3, 0, 0)→ 140), (2, (0, 3, 0, 0)→ 0), (2− 5, (0,3,0,0)→ 0− 666),
(6, (0, 3, 0, 0)→ 150), (3, (0, 3, 0, 0)→ 0), (7− 5, (0,3,0,0)→ 0− 380),
(0, (0, 3, 0, 0)→ 160) (0, (0, 3, 0, 0)→ 0) (0− 5, (0,3,0,0)→ 0− 320)

Table 12: Data Table after Processing the Second New Observation

Service Provider Client Identity Provider 

Request target ressource 

IdP Discovery 

Authentication request 
Authentication request 

User authentication 

Authentication response 
Authentication response 

Ressource 

1 

2 

3 

4 

5 

6 

Figure 6: SAML SSO Protocol

ndv. In the protocol, this ndv is generated by SP and needs to be checked in
incoming Authentication Assertions.

SimpleSAMLphp is an application written in native PHP that deals
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with authentication. It contains both the service provider and the identity
provider. This application is installed on a virtual machine and each service
is on a different port. In the following, we illustrate the experimentation with
SP.

First, we define the relevant input and output symbols. Depending on
the level of abstraction, input symbols can be: httprequest, httpresponse
or, at a higher level: login, getInfo, logout. In our case, we have chosen
In_GetResource, In_GetSAMLReq, and In_SAMLResp as input symbols
and Out_IdPlist, Out_SAMLReq, Out_Resource, and Out_Error as output
symbols. In practice, we can follow the requests stream and give a name to
each request used in the protocol.

For each request, we need to find parameters which make the request
successful such as nonce, session ID, or user password. During this step, we
may need to update the input and output symbols defined beforehand. For
example, when the same type of HTTP messages are used in two cases with
different number of relevant parameters, two input (or output) symbols need
to be defined for these cases. Our test drivers implements those abstractions,
and the model inference method is executed to infer a model.

2.3.3 Results

As an example, the conjecture of the SP in SimpleSAMLphp is depicted in
Figure 7.

S0 

S1 

S2 

In_SAMLResp 

(sessionID, requestID)/ 

Out_Error 
In_GetSAMLReq(sessionID), 

sessionID = v1 / 

Out_SAMLReq(ndv2) 

In_GetResource(sessionID), 

sessionID ≠ v1 / 

Out_IdPlist(ndv1) 

In_GetResource(sessionID), 

sessionID = v1 / 

Out_Resource 

In_SAMLResp 

(sessionID, requestID), 

sessionID = v1  requestID = v2 / 

Out_Resource 

In_SAMLResp 

(sessionID, requestID), 

sessionID ≠ v1  requestID ≠ v2 / 

Out_Error 

In_GetResource(sessionID), 

sessionID ≠ v1 / 

Out_IdPlist(ndv1) 

Figure 7: Conjecture of SP in SimpleSAMLphp
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Case States Requests Average DurationLength
NSPK 2 92 2.91 0.31

Example 3 52 2.53 0.07
Simulated 3 96 2.93 0.49SAML SP

SimpleSAMLphp 3 212 2.93 1192.84SAML SP

Table 13: Statistics on Experiments

The experimentation runs quite fast (in less than one second) on locally
simulated systems. On web applications, the time for each request can vary
between 0 and 2 seconds, and reaches 5 seconds with virtual machine imple-
mentations.

In Table 13, the number of requests executed is reported for each experi-
mentation performed. We also report the average length of the parameterized
input sequences and the learning duration.

In Table 13, we can see that even for small sized automata the number of
requests seems high. This is mainly due to the procedure to make the table
balanced, especially when an ndv is identified, the value needs to be applied
to the parameters of all the future requests. But this problem is reduced
with types: an ndv is indeed reused only for input parameters of the same
type. We thus need less requests to make the table balanced. SAML SSO
SP is not really more complex than NSPK in terms of states and transitions
but it needs more requests to be inferred. This is mainly because the SP
has more input parameters than NSPK and an ndv is identified. The real
SAML SSO SP needs more requests because in web applications, when we
send something wrong, in most cases, we go back to the main page, and we
get a session ID for each input symbols. For example, when we try to logout
or get some information before login, we get a redirection to the main page
and the server gives us a session ID. Thus each symbol produces an ndv,
which leads to many requests. The time needed to infer the system is also
very high compared to a simulated system because we use a virtual machine.

In summary, from the experimentations performed, we can see that the
model inference method proposed can produce conjectures for state-of-the-
art security protocols, in which multiple input/output parameters and non-
deterministic values are involved, using a reasonable number of requests. Al-
though the number of states may look small (for example with respect to the
usual inference of deterministic finite automata), this actually corresponds
to the type of models used for such protocols, where the complexity is hidden
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in the transitions and parameter handling, which our inference method can
successfully infer.

2.4 Related Work
The need of constructing specifications can occur in various context, and var-
ious techniques have been proposed. In [14] finite state models are extracted
from Java source code. In [16], an automatic dynamic technique for simul-
taneously learning and enforcing general temporal properties over method
call sequences is presented. In [7] and [22], specifications are inferred from
source code for the purpose of reliability and security. In [28], learning is
combined with assume-guarantee reasoning for the purpose of verification of
autonomous software.

In previous work with other partners, we had shown that inference can
be used to derive a restricted form of Parameterized Finite State Machine
[21]. The inference algorithms have been applied successfully to several case
studies provided by France Telecom [33]. However, such a restricted model
(which is memory-less with respect to parameter values) is not suitable in
contexts such as security testing where previously exchanged values must be
recorded. Inference of variables while testing a black box component is not
straightforward, because the internal structure of a component is unknown,
the encoding of state information between set of states and variables might
be arbitrary, and thus the inference process can hardly infer a meaningful
state structure. In addition to that, we also extend previous work by various
authors to accommodate non-deterministic values which are important in
security protocols.

In [1], Angluin’s algorithm [4] was adapted to include data parameters in
messages and states for generating Symbolic Mealy Machine (SMM) models,
which are similar to EFSM. The framework is inspired by predicate abstrac-
tion, which has been successful for extending finite-state model checking to
large and infinite state spaces. A key assumption of [1] is that a set of
guards and expressions, which includes the guards and expressions used in
the symbolic transitions of the SMM, is also given a priori. This set can be
seen as describing how state variables of SMM can be used, i.e., how they
can influence control flow through tests, and how they can be manipulated
to produce output symbols. In the present work, we do not rely on such a
strong assumption.

In [8], variables and related operations are inferred for communication
protocols. In this approach, first the behavior of the protocol is observed
when the parameters of input messages are from a small domain. Then a
finite state Mealy machine is generated, which describes the behavior of the
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component on this small domain. Thereafter this finite state Mealy machine
is folded into a smaller symbolic model. In addition to the constraints in the
symbolic model mentioned before, this two-phase approach implies that the
intermediate finite state Mealy machine may get rather large, in comparison
with the final Symbolic Mealy Machine. Our approach infers EFSM directly
and does not suffer from this problem. Furthermore, the model used by [8]
only allows equality in guards and output functions. We extend this and
allow the use of functions that can be inferred by traditional data inference
techniques.

In [27], learning is integrated with verification and testing of crypto-
graphic protocols. The learning ingredient of the approach contains two
parts, adding examples while there exists a trace in the implementation but
not in the model, and removing counterexamples while there exists a trace
in the model but not in the implementation. In adding examples, transitions
are added manually into the model with intuition that the control structure
of the current specification should be kept as much as possible, while how the
“triggering” trace is identified is not clearly defined. Removing a counterex-
ample consists in undoing the effect of the last “adding examples” operation,
and in proposing another way of adding the last example.

Among the existing work on security testing (e.g., [2, 42, 45, 31]), many of
them suppose that a specification of the system under test (SUT) is available.
As stated before, the limitation of these methods is that in reality, a formal
specification of SUT is usually unavailable. Even in the case that such a
specification is available, implementations are always more complicated than
the specification with a lot of engineering details implemented, and these
testing methods do not deal with the behaviors beyond what is specified.
The model inference methods can help to obtain and enhance the model of
SUT and thus improve the quality of testing. At the same time, input vector
identification techniques used in penetration testing [18] may be integrated in
model inference to identify “interesting” input data in the context of security.

In European project AVANTSSAR (www.avantssar.eu), model checking
techniques are developed for security protocols and web applications. For
example, [5] provided formal models of a variant of the SAML protocol im-
plemented by Google, and revealed a severe security flaw that allows a dis-
honest service provider to impersonate a user at another service provider.
In SPaCIoS project, these techniques are extended and applied to generate
security tests. For example, [11] considers models of protocols and describe
an approach to generate tests with mutation operators to introduce poten-
tial security-specific leaks into the model. Then, if the leak is confirmed by a
model analyzer, a test case for the security property is generated. The EFSM
model obtained using the model inference algorithm proposed here has the
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same semantics as the models used in these papers. Thus, the algorithm
could be applied together with techniques described in [5] and [11] to solve
practical security validation problems.

3 Quotient Model Inference for FSM
Quotient model inference is a new method to infer finite state behavioral
models of black box components by testing them. Typically, such compo-
nents could be accessed over a network, so that we do not even assume that
the executable can be scrutinized: the system can only be observed at its
interfaces [1]. This corresponds to a typical black box testing situation where
the tester would send inputs to a system and observe its outputs.

We assume that the System Under Test (SUT) can be modeled, at some
level of abstraction, on its inputs and outputs, as a Finite State Machine
(FSM). FSM-based testing theory has shown that an FSM can be identified,
i.e., the SUT can be tested to be proven equivalent to it, with the help of state
identifying (distinguishing) sequences, constituting, e.g., a characterization
set, W-set, of input sequences.

Central to this approach is the notion of initial quotient of an FSM asso-
ciated with a “partial” characterization set Z ∈ W . In essence, the quotient
represents an approximate model where some states might not be distin-
guished. Previous methods for automata inference have mostly been derived
from grammatical inference techniques. And this method follows partly the
same paradigm framework, in particular the Minimally Adequate Teacher [4].
It assumes that the SUT can be used to answer queries in two forms: out-
put queries, where an input sequence can be submitted to the SUT (after
resetting it to its initial state) to get the corresponding output sequence; and
a restricted form of equivalence queries: we assume that further testing of
the SUT can provide counterexamples, i.e., input sequences for which the
output sequences differ from the SUT in the inferred FSM. This method
will thus infer an SUT by building increasingly precise quotients of it using
counterexamples.

This method departs from previous methods in that it is directly inspired
by testing theory. It is also designed to be more adapted and efficient in a
software testing context: although it is an active testing and learning method,
it can start from existing test records as in passive testing and inference; an
initial Z-set of distinguishing sequences can be provided, e.g., by the test
expert. The experiments confirm that it requires fewer queries (tests) than
existing recent algorithms to infer a given FSM.
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3.1 Basic Definitions
A Finite State Machine (FSM) A is a 5-tuple (S, s0, I, O, hA), where:

• S is a finite set of states with the initial state s0;

• I and O are finite non-empty disjoint sets of inputs and outputs, re-
spectively;

• hA is a behavior function hA : S×I → 2S×O, where 2S×O is the powerset
of S ×O.

Depending on the properties of the behaviur function, a number of various
types of FSM can be defined as follows. FSM A = (S, s0, I, O, hA) is:

• trivial if hA(s0, a) = ∅, ∀(s0, a) ∈ S × I;

• complete if hA(s, a) 6= ∅,∀(s, a) ∈ S × I;

• partially specified (a partial FSM) if hA(s, a) = ∅, for some (s, a) ∈
S × I;

• deterministic if |hA(s, a)| ≤ 1,∀(s, a) ∈ S × I;

• nondeterministic if |hA(s, a)| > 1, for some (s, a) ∈ S × I;

• observable if the automaton A× = (S, s0, I × O, δ), where δ(s, ab) 3 s′
iff (s′, b) ∈ hA(s, a), is deterministic

We consider only observable machines; one could employ a standard pro-
cedure for automata determinization to transform a given FSM into an ob-
servable one. Moreover, all the machines are assumed to be initially con-
nected, i.e., each state is reachable from the initial state. We use a, b, c for
input and output symbols, α, β, γ for input and output sequences, s, t, p, q
for states, and u, v, w for traces.

Given FSM A = (S, s0, I, O, hA), (s1, ab, s2) is a transition if s1, s2 ∈
S and (s2, b) ∈ hA(s1, a). A path from state s1 to sn+1 is a sequence of
transitions (s1, a1b1, s2)(s2, a2b2, s3) . . . (sn, anbn, sn+1) such that (si+1, bi) ∈
hA(si, ai), where 1 ≤ i ≤ n and n is the length of the path. A sequence
u ∈ (I ×O)∗ is called a trace of FSM A in state s1 ∈ S, if there exists a path
(s1, a1b1, s2)(s2, a2b2, s3) . . . (sn, anbn, sn+1) such that u = a1b1a2b2 . . . anbn.
Note that a trace of A in state s0 is a word of the automaton A×. Let
inp(u) ⊆ I denote the set of inputs appearing in a trace u. We use Tr(s)
to denote the set of all traces of A in state s and Tr(A) to denote the set of
traces of A in the initial state.
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The projection operator ↓B, which projects sequences in (I×O)∗ onto the
set B ⊆ I ∪ O, is recursively defined as ε ↓B= ε, (ua) ↓B= u ↓B a if a ∈ B,
and (ua) ↓B= u ↓B otherwise, where u ∈ (I × O)∗ and a ∈ I ∪ O. Given a
sequence u ∈ (I ×O)∗, the sequence u ↓I is the input projection of u. Input
sequence α ∈ I∗ is a defined input sequence in state s of A if there exists
u ∈ Tr(s) such that α = u ↓I . We use Ω(s) to denote the set of all defined
input sequences for state s.

Given two states s, t ∈ S of FSM A and a set of input sequences Z ⊆
Ω(s) ∩ Ω(t), s and t are Z-equivalent, if for all a ∈ Z it holds that {u ∈
Tr(s) | u ↓I = a} = {u ∈ Tr(t) | u ↓I = a}. Z-equivalent states are k-
equivalent, if Z includes all input sequences of length k. States s and t are
equivalent if they are Z-equivalent and Z = Ω(s) = Ω(t), i.e., Tr(s) = Tr(t).
If Tr(s) ⊆ Tr(t) then s is trace-included in t. States s and t that are not
Z-equivalent are Z-distinguishable. An input sequence a ∈ Ω(s) ∩ Ω(t) such
that {u ∈ Tr(s) | u ↓I = a} 6= {u ∈ Tr(t) | u ↓I = a} is called a sequence
distinguishing s and t. States s and t are (k-)distinguishable, if there exists
a sequence distinguishing them (of length k). A set of input sequences Z
such that each pair of distinguishable states is Z-distinguishable is called a
characterization set of FSM A. A complete FSM which has no equivalent
states is called minimal.

The introduced equivalence and distinguishability relations over states
are extended to states of different machines.

3.2 Inferring a State Model of a System
In this section, we introduce the concept of an initial Z-quotient of a given
FSM and give the algorithm for its inference by testing.

3.2.1 Initial Z-Quotient

Assume we are given an SUT which behaves as an FSM and on which we
can perform experiments by applying inputs and observing outputs to infer
an FSM model. To this end, we need to know at least a subset of its input
alphabet. The inference can easily be performed assuming that the black box
behaves as a deterministic machine and the number of its distinct states n
as well as a characterization set are known. Recall that characterization set
distinguishes all non-equivalent states. To infer an FSM model, it is sufficient
to use a slightly modified W -method [40]. Namely, instead of using a state
cover, as it is unknown, we use the set of all possible input sequences of up to
n−1 length. However, when the actual number of states and characterization
set are unknown, we need to find a way of inferring an approximated model
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with a controllable precision. This could be done by using, instead of a
characterization set, a predefined set Z of input sequences. The idea comes
from the fact that it defines the Z-equivalence relation between states of the
FSM, so states of this machine could be identified modulo Z-equivalence.
The idea leads to the following definition and eventually to an inference
algorithm.

Given a complete FSM A = (S, s0, I, O, hA) and a finite non-empty set
of input sequences Z ∈ I∗, let πZ be the partition on the set of states S
induced by the Z-equivalence relation. For state s, the states that are Z-
equivalent to state s constitute the equivalence class πZ(s). It is known
that a state equivalence relation induces a quotient model of the original
machine, see, e.g., quotient model of Kripke structure [12]. The idea we
use, which can be traced back to work in [10] and [25] is to collapse all
Z-equivalent states (k-equivalent in [10]) while keeping all transitions. The
obtained model preserves all the traces of the original machine, but contains
additional traces.

Quotient models are widely used in model checking, however, in the infer-
ence process we are constrained to a single representative of each equivalence
class πZ . The reason is that once a distinct Z-distinguishable state is identi-
fied, it should be included into the inferred model. This constraint leads to
the following definition.

Definition 1. Given a complete FSM A = (S, s0, X,O, hA) and a set of
input sequences Z ⊆ I∗, I ⊆ X, an FSM K = (Q, q0, I, O, hK) is an initial
(Z, I)-quotient of A, if there exists an injection f from Q to S such that

• f(q0) = s0;

• for any two distinct states q1, q2 ∈ Q, f(q1) and f(q2) are Z-distinguish-
able;

• for any q ∈ Q, there exists a path (s0, a1b1, s1) . . . (sn−1, anbn, sn), such
that si = f(qi), qi ∈ Q, 1 ≤ i ≤ n and sn = f(q);

• for any q ∈ Q and a ∈ I, b ∈ O, (p, b) ∈ hK(q, a) iff there exists s ∈ S,
such that (s, b) ∈ hA(f(q), a) and s and f(p) are Z-equivalent.

We use initial in the introduced term to emphasize the fact that the latter
represents a part reachable from the initial state of a given FSM modulo Z-
equivalence. We do not require that a quotient use each and every input of
the FSM to be inferred. This choice is motivated by the observation that in
practical situations, the number of inputs can be just too big to explore all of
them, moreover, some inputs can be equivalent, in the sense that they cause
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transitions that differ only in input symbols. If I = X then instead of initial
(Z,X)-quotient, we will refer to initial Z-quotient or simply to quotient when
the set Z is clear from the context. As an example, consider the FSM A in
Figure 8 and its initial Z-quotient in Figure 9, where Z = {a, b}, f(ε) = 0,
f(a1) = 1 and f(a1a2) = 2. Note that the initial Z-quotient is deterministic.

Figure 8: FSM A

Figure 9: Initial {a, b}-quotient of FSM A

There is a special case of initial Z-quotient, when the set Z is a char-
acterization set of a given FSM A. In this case, since any two states of
A are distinguished by a sequence in Z, each state of the given machine is
represented by a distinct state in the initial quotient, which thus becomes
equivalent to A. Recall that in the case of Figure 8, where Z = {a, b} is not
a characterization set of A, the initial Z-quotient and A are not equivalent.
This observation leads to the following theorem about properties of initial
Z-quotient.

Theorem 3. Given an initial Z-quotient K of a complete FSM A, if Z is a
characterization set of A, then FSM A and K are equivalent; otherwise, if A
has distinguishable but Z-equivalent states, then A and K are distinguishable.

The more sequences of a characterization set are included into the set Z
the more precise is the approximation. The precision of initial Z-quotient of
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an FSM can be controlled by the parameter Z, henceforth called the inference
parameter.

Given a natural k, an initial Z-quotient is called a k-quotient if Z =
Ik [17]. It is known that the set Ik contains distinguishing sequences for any
pair of states in any FSM over the input alphabet I with at most n = k + 1
states, hence it is a characterization set of such machines.

The case of k = n−1 actually corresponds to worst case situations, which
occur in special pathological machines, such as Moore locks. For other types
of machines, k-equivalence of states becomes state equivalence for a much
lower value of k and thus it may be more appropriate to consider instead of
upper bounds asymptotic characterization of FSM parameters for “almost all
FSMs”. The monograph [39] indicates that for complete FSM with n states,
m inputs, and l outputs, the length of input sequences reaching all n states is
asymptotically equal to logm(n) and distinguishing states just logm logl(n).
These results suggest that even when the value of the parameter k is well
below the actual number of states of a given FSM, the approximation of
the FSM in the form of a k-quotient might be sufficiently precise and thus
acceptable for practical applications. This also means that choosing a set
Z, one is not obliged to focus on long input sequences, but rather on those
which may discriminate various operational modes of an SUT and thus its
internal states.

3.2.2 Inferring Z-Quotient of the SUT

We assume that a given SUT treated as a black box can be modeled by
a complete and deterministic FSM over the input X and output O sets.
Moreover, a reset operation can be performed on the SUT, when different
test sequences are to be applied to its initial state.

We further assume that we are given a set of inputs I ⊆ X and set of input
sequences Z ⊆ I∗ to infer a (Z, I)-quotient of A by testing its implementation,
the SUT. A basic idea of our inference method directly following from the
clauses of the definition of (Z, I)-quotient is as follows. We start building an
initial (Z, I)-quotient by including an initial state which could be injected
to the initial state of A. We explore the states of A from the initial state
by applying inputs from the given set I. For each visited state, we decide
whether to include a corresponding state in the initial (Z, I)-quotient. If
the current state is Z-equivalent to a state already visited, then we do not
explore states of A further from this state. For each state, the transitions
are defined respecting the Z-equivalence.

This basic idea is described in more detail in the following algorithm. To
represent the observed traces, we use a tree FSM.
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Definition 2. Given a (prefix closed1) set U of observed traces of an FSM
over input set I and output set O, the observation tree is FSM (U, ε, I, O, hU),
where the state set is U , and hU(u, a) = {(uab, b) | ∃b ∈ O (uab ∈ U)}.

We use U to refer to both, a prefix-closed set of FSM traces, i.e., states
and the FSM (U, ε, I, O, hU).

The quotient inference method includes two phases: first constructing an
observation tree while identifying all the quotient’s states and then deter-
mining transitions between the states. In the state identification phase, we
apply inputs to an SUT, observe traces and add them to the observation tree
U , initialized with {ε}. We perform Breadth First Search (BFS) on the tree
and if the current node, i.e., state u, is Z-distinguishable from each already
traversed state in the observation tree, we add the state u into the set of
states of the quotient. Otherwise, if there exists a traversed state w which
is Z-equivalent to u, we label the state u with w, i.e., label(u) = w; u is
not included into the states of the quotient, and the behavior of the FSM
A will no longer be explored from the state u. Once the tree stops grow-
ing, all the states of a (Z, I)-quotient are identified. Transitions between the
states of the quotient are determined from the transitions of the observation
tree. Namely, a transition is considered if neither the source state nor any
of its predecessors is labelled in the tree. If the target state is not labelled
either, the same transition exists in the quotient. Otherwise the transition
is redirected to the state which is used to label the target state.

The inference algorithm uses two procedures defined as follows.
Given an observation tree U , and an unknown FSM A with input alphabet

X, procedure Extend_Node(A, u, Σ) explores the behavior of FSM A from
a state reached by input sequence u by applying the input sequences of a
given set Σ of queries and returns the augmented observation tree U . This
procedure is shown in Listing 1.

Given an observation tree U , and an unknown FSM A over the input set
X and output set O, procedure Build_Quotient(A, I, Z, U), where I ∈ X,
Z ∈ I∗, constructs the FSM K = (Q, q0, I, O, hK) which is a (Z, I)-quotient
of A, and returns an augmented observation tree U . This procedure is shown
in Listing 2. While procedure Build_Quotient treats any given observation
tree U , it can also be initialized with the trivial tree U = {ε}.

We illustrate procedure Build_Quotient by inferring a (Z, I)-quotient of
FSM A in Figure 8. The input set X of A is {a, b}, and we build a (Z, I)-
quotient with the input set Z = I = {a, b}. Initially, U = {ε}, Z = {a, b}.

1Recall that a symbol of an FSM trace is a pair of an input from I and an output from
O, so every prefix takes the FSM from its initial state into some state.
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Listing 1: procedure Extend_Node

1 procedure Extend_Node (A, u,Σ), where u ∈ U , Σ ⊆ X∗
2 while there exists a1a2...ak ∈ Σ such that a1a2...ak 6= v ↓I ,
3 for any v ∈ Tr(u) do
4 reset A to its initial state
5 apply u ↓I to A
6 apply a1a2...ak to A, let the corresponding observed output sequence
7 be b1b2...bk
8 add the trace ua1b1a2b2..akbk and all its prefixes ua1b1,
9 ua1b1a2b2, ..., ua1b1a2b2..akbk to U

10 end while
11 end procedure

In the first execution of the first for loop, the only node ε is traversed. After
calling Extend_Node(A, ε, Z), nodes a1 and b0 are added to U , and ε is
added to Q. In the second execution, node a1 is traversed. This time, nodes
a1a2 and a1b0 are added to U . Since node a1 is not Z-equivalent to the node
ε, a1 is also added to Q. In the next execution, Extend_Node(A, b0, Z) is
called, nodes b0a1 and b0b0 are added to U . Since node b0 is Z-equivalent
to the node ε, it is labelled with ε. The procedure continues, nodes a1a2,
a1b0, a1a2a3, and a1a2b0 are traversed, node a1a2 are added to Q, a1b0 is
labelled with a1, a1a2a3 is labelled with ε, a1a2b0 is labelled with a1a2. In
the end of the execution of the first for loop, Q = {ε, a1, a1a2}.

In the execution of the second for loop, the following transitions are
added to K: (ε, a1, a1), (ε, b0, ε), (a1, a2, a1a2), (a1, b0, a1), (a1a2, a3, ε),
and (a1a2, b0, a1a2). With these transitions, the quotient FSM in Figure 9
is obtained.

Finally, the third for loop is executed. For example, node b0 is labelled
with ε, in U there is a transition (b0, a1, b0a1), in K there is a transition
(ε, a1, a1), so, the node b0a1 is labelled with a1. The resulting tree U is
depicted in Figure 10.

The procedure Build_Quotient(A, I, Z, U) partitions the explored nodes
of the observation tree U according to their output reactions to Z so that
each block becomes a state of the quotient, however, it does not guarantee
that the resulting quotient preserves traces that distinguish them. Thus, the
quotient returned by the procedure still needs to be checked for consistency
with the observation tree U .

Let a1a2...ak be an input sequence from X∗ and K be an FSM (Q, q0, I,
O, hK) where I ⊆ X. A trace a1b1a2b2...akbk is incompatible with state q of
K iff there is no trace c1b1c2b2...ckbk of state q such that for all i, if ai ∈ I then
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Listing 2: procedure Build_Quotient

1 procedure Build_Quotient(A, I, Z, U)
2 for each state u of U being traversed during Breadth First Search
3 such that u has no labelled predecessor do
4 Extend_Node(A, u, Z)
5 if u is Z-equivalent to a traversed state w of U then
6 label u with w, i.e., label(u) = w
7 else
8 add u into Q
9 Extend_Node(A, u, I)

10 end if
11 end for
12 for each transition (u, ab, v), such that neither state u nor any of its
13 predecessors is labelled do
14 if v is not labelled then
15 add transition (u, ab, v) to K
16 else
17 add transition (u, ab, w) to K, where w = label(v)
18 end if
19 end for
20 for each node u′ labelled with u do
21 label the successors node of u′ such that
22 for each transition (u′, ab, v) do
23 if there is a transition (u, ab, w) in K then
24 label v with w
25 end if
26 end for
27 end for
28 return the labelled tree U and the resulting FSM
29 K = (Q, ε, I,O, hk) as a (Z, I)-quotient of the FSM A
30 end procedure

ci = ai. Notice that for a (Z,X)-quotient, i.e., I = X, the above definition
requires only that a given trace should not be in Tr(q). We present a more
general version for dealing with counterexamples, used in the next section.

Given an observation tree U and a (Z, I)-quotient K = (Q, q0, I, O, hK)
obtained from U , we say that a node of the tree U labelled with q ∈ Q has
an inconsistent label, if it has a trace that is incompatible with state q of the
(Z, I)-quotient K; the trace is called an inconsistency witness for q.

The idea of resolving this inconsistency is to extend the set Z with the
input projection of the witness and repeat the procedure Build_Quotient(A,
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I, Z, U) until the resulting tree has no inconsistent label for the obtained
quotient. This idea is implemented in the fix-point procedure Fix_Point_-
Consistency(A, I, Z, U, K) shown in Listing 3.

Listing 3: procedure Fix_Point_Consistency

1 procedure Fix_Point_Consistency(A, I, Z, U,K)
2 while there exists an unprocessed witness w for state q
3 such that its input projection is not in Z do
4 if there does not exist a trace v ∈ TrU (q) such that v ↓I= w ↓I then
5 apply (qw) ↓I to A in the initial state to obtain trace v ∈ TrU (q)
6 end if
7 if w 6= v then
8 Z ′ = Z ∪ {w ↓I} and I ′ = I ∪ inp(w)
9 Build_Quotient(A, I ′, Z ′, U), returning an updated observation

10 tree and quotient
11 Z = Z ′ and I = I ′

12 end if
13 mark w as processed
14 end while
15 return the last labelled observation tree and quotient
16 end procedure

In our running example, the observation tree U in Figure 10 does not
have any inconsistent label.

The following theorem claims that the above method can be used to
infer an initial Z-quotient of the FSM from which traces are collected during
testing.

Theorem 4. The procedures Build_Quotient and Fix_Point_Consistency
applied to a deterministic FSM A terminate. The resulting FSM K is an
initial (Z, I)-quotient of FSM A, moreover, it is a minimal machine.

3.2.3 Dealing with Counterexamples

A counterexample CE for a (Z, I)-quotient is a trace of the FSM to be inferred
that is incompatible with the initial state of the (Z, I)-quotient.

The inference method including counterexample processing is described
in the following procedure.

Given an unknown FSM A with input alphabet X, output alphabet O,
I ⊆ X, Z ⊆ I∗, procedure Infer(A, I, Z) returns updated I ′ and Z ′ and
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Figure 10: Observation tree U

constructs an FSM which is an initial (Z ′, I ′)-quotient of A. This procedure
is shown in Listing 4.

Listing 4: procedure Infer

1 procedure Infer(A, I, Z)
2 Build_Quotient(A, I, Z, {ε}) returning U and K = (Q, q0, I, O, hK)
3 Fix_Point_Consistency(A, I, Z, U,K)
4 ask for counterexamples for K
5 while there exists an unprocessed counterexample CE do
6 U = U ∪ CE
7 Fix_Point_Consistency(A, I, Z, U,K)
8 end while
9 return I, Z and the last quotient

10 end procedure

In our example, we have performed steps 2 and 3 to obtain the (Z, I)-
quotient depicted in Figure 10. In step 4, suppose we obtain a counterexam-
ple a1a2b0b0b0a3b0b0a3. In step 6 of the while loop, we update the tree U
with the counterexample and obtain the tree in Figure 11.

Now, the procedure Fix_Point_Consistency is called. In the first execu-
tion of the while loop, we determine that in U , state a1a2b0 labelled with
a1a2 has an inconsistent label, since it has a trace b0b0a3b0b0a3 incompatible
with state a1a2 in the (Z, I)-quotient, as this state has no such trace. Thus,
the witness w is b0b0a3b0b0a3. We first apply a1a2 followed by bbabba to
A in the initial state and obtain the trace b0b0a3b0b0a1, which is different
from w = b0b0a3b0b0a3. Thus, we extend Z to {a, b, bbabba} and execute
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the procedure Build_Quotient. The new (Z, I)-quotient is represented in
Figure 12.

Figure 11: The observation tree U updated with the counterexample

Figure 12: FSM K1, an initial {a, b, bbabba}-quotient of FSM A

In the second execution of the while loop, we identify that in U , state
a1b0b0 labelled with a1b0 has an inconsistent label, since it has the trace
a2b1 incompatible with state a1b0 in the (Z, I)-quotient in Figure 12. In
this case, the witness w is a2b1. State a1b0 has a trace a2b0, which has
the input projection ab and is different from w. Thus, we extend Z to
{a, b, bbabba, ab} and execute Build_Quotient again. The obtained (Z, I)-
quotient is equivalent to the FSM to be inferred. With this result, the exe-
cution of Fix_Point_Consistency and Infer procedures terminates.
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3.2.4 Strategies in Counterexample Processing

The Fix_Point_Consistency procedure used in counterexample processing
can be implemented using an arbitrary strategy for searching witnesses. For
example, suffixes of the counterexample of increasing length can be checked.
Indeed, a bottom-up strategy, as in the Suffix1by1 method [20], identifies a
minimal-length witness suffix of the counterexample. Contrary to methods
based on observation tables such as [20, 38], where the length of the witness
is a concern, in our method we can just as well perform a top-down search
which in many cases (including Moore locks and counters) is more efficient.
Following Rivest and Schapire [32], it is also possible to identify the shortest
witness by binary search on the counterexample.

At the same time, a distinctive feature of our method is that once the
counterexample initial processing has yielded a new quotient, our fixpoint
procedure is able to use witnesses that are in different branches of the obser-
vation tree. In the experiments reported in this deliverable, we have simply
reused a BFS strategy to look for all witnesses.

Finally, let us remark that checking whether a trace is a witness is
straightforward despite the apparent generality of the definition of compat-
ibility (which uses negation of an existential quantifier): we process it from
left to right, recording at each input the potential states in which the quo-
tient can be, based on the output from the trace provided by the black box
and the corresponding transitions that have this output in the quotient to
find the next states.

3.3 Experiments
3.3.1 Random Machines

To evaluate the proposed method, we use it to infer randomly generated
FSM. Although we know each FSM to be inferred and could compute a
minimal counterexample, we simulate a practical CE search by first randomly
walking through a generated FSM and then comparing the output sequence
with that of the inferred quotient. Random walks are restarted up to a limit
(defined by the number of states). Once this limit is reached, the resulting
machine is considered equivalent to the FSM and the inference terminates.
In the experiments, we determine the average number of generated queries
(tests) needed to terminate the inference of a random machine with a varying
number of states from 50 to 1000, 10 inputs and 10 outputs.

Figure 13 presents the numbers of queries generated by the proposed
method and the table-based LM∗ algorithm [34] combined with the Suf-
fix1by1 method for processing counterexamples [20]. With our method, the
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Figure 13: Comparing the proposed method with the LM∗ algorithm

number of needed queries grows slowly whereas with the LM∗ method, it in-
creases quickly. We also compared our method with the table-based method
L∗m using the example provided by its authors in [38]. The FSM to be inferred
has 6 states, 4 inputs and 3 outputs. For both methods we consider only two
counterexamples, using which L∗m infers the machine with 155 queries. When
the initial set of inputs I is empty, our method also generates as many queries;
however, when all the inputs are considered (which is exactly what L∗m does),
the number of queries is cut to 124.

3.3.2 SIP Protocol

The SIP protocol is widely used in telecommunications and especially for
controlling voice and video calls over IP. This protocol has already been
used by other authors to assess inference methods, although this has usually
been done on simulated implementations (in NS-2). In our experiment, the
model inference tool implementing our method directly interacts with a real-
world implementation of SIP. We have created a new account on iptel.org
which provides free SIP services. According to their website, this service is
also used for software/hardware interoperability testing. Our tool plays the
role of client and infers a model of the SIP server implemented by iptel.org.
The inputs are parameterized to make a call to the Echo test service. This
is a special account to check if the client is correctly configured to use the
service.

SIP contains 14 different types of requests, in this experiment we focused
on the main four types commonly used to make a call: Register, Invite, Ack
and Bye. Outputs are the responses code and Timeout when no response is
received. As we have no information about the distinguishing sequences of
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Figure 14: Inferred SIP protocol

SIP, the set Z is initially empty. Counterexamples are provided manually.
Figure 14 shows the model of SIP protocol implemented by iptel.org and

obtained with 26 requests in 10 seconds. This model is consistent with
the specification of the protocol. The only counter-example needed is In-
vite.Invite: In order to call someone on iptel.org, we have to be authenticated
before. Here, the first Invite sent by the client is not enough to make a call.
A “Proxy authentication required” response (code 407) is received with the
nonce needed for the authentication. Then, the authenticated Invite is built
and sent and the “OK” response (code 200) is obtained.

Our tool could easily infer any other SIP server implementation available
on the Internet just by changing the service provider address.

3.4 Related Work
D. Peled’s paper [29] triggered the interest in using inference algorithms
(in this case L∗ [4]) for software validation. The proposed method actually
relies on the W -method [40] as an oracle for finding counterexamples. It was
followed by a number of approaches to use L∗ or modified versions of it in a
testing context [1, 34, 35, 38]. Most of these approaches have used tables (as
in L∗) as the basic structure for recording observations and building models.

Our approach departs from those table-based approaches inspired by ma-
chine learning algorithms that record positive and negative samples. First, it
records behaviors (traces) of the SUT in a tree structure. Saving on common
prefixes is not really an argument there, as similar space-saving methods are
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also used in table-based methods (with filters [26] and dictionaries to cache
queries). The key point is that the tree structure makes it possible to com-
pare nodes of the tree with states of the model even when such nodes are not
associated with a row label in a table. Our witness identification procedure
can find incompatibilities with observations even recorded earlier. Also, it
avoids requiring suffix-closure properties as in many table-based approaches,
yet it is sound and produces models consistent with observations contrary to
Rivest [32].

The L∗m algorithm presented in [38] is a table-based approach that capital-
izes on previous improvements of such methods. It uses binary search as [32]
to reduce the worst case complexity factor from linear in counterexample
length to logarithmic. It also attempts avoiding suffix-closure by a new no-
tion of “semantic suffix-closedness”. However, this notion and the algorithm
proposed to implement it are less powerful than our fixpoint witness search
(cf. Section 3.3). The main reason is that like all table-based approaches, it
just looks at suffixes of a counterexample, whereas our approach will make
the most of a counterexample by comparing nodes throughout the tree, not
just in the path provided by the counterexample. In our running example, it
would typically fail to identify the inconsistent label of the state a1b0b0 that
we find in the second round of the while loop.

The work by Meinke [24] is another attempt to define a method of infer-
ence for Mealy automata, CGE. It also uses notions of congruences of outputs
(similar to the equivalence we assume with the abstraction on concrete out-
puts) and states; therefore it has some similarities with our quotient-based
approach. It is also designed to make the most of every observation requir-
ing new queries only to get information that cannot be deduced from the
existing set, and it uses a similar fixpoint iteration over the rules that are
used as a compact way of representing Mealy automata. However, in the
form presented in [24], CGE only does passive inference: it does not define
how new queries would be derived. Also, it does not consider equivalence on
inputs, as we do with our definition of compatibility.

Our quotient approach generalizes the k-quotient method presented in [17].
First, instead of considering all sequences up to a given length, it reduces
this exponential complexity with the Z set, which in our case only contains
sequences of inputs that at some point separate states in a quotient. Im-
portantly, Z does not even have to contain all inputs. Our new approach
is incremental in Z and I. Another major improvement is that [17] only
built an initial k-quotient for an SUT, but further refinements derived from
counterexamples would no longer be quotients. Our new approach makes it
possible to derive a converging sequence of quotients that are well-defined
approximations of the SUT.
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A related area as defined in [3] is specification mining, which is a machine
learning approach to discover formal specifications of the protocols that code
must obey when interacting with an application program interface or abstract
data type. From the model inference point of view, this belongs to passive
inference, where model is built based on a given set of traces. On the contrary,
our work belongs to active inference, where the next input to the unknown
FSM is decided according to the observation so far. Among the work in
this area, [20] uses k-equivalence as the criterion to merge states. At the
same time, it assumes variable values are accessible, while our work follows
a black-box approach.

In [9], static web service signature information described in WSDL is used
to construct behavior protocol model of web service, and testing is used to
prune false data dependence between input/output parameters of operations
defined in the WSDL. In our work, a finite state model is built based on run
time observations of software execution, and testing is used to obtain system
behavior corresponding to various inputs.

4 Driver Generation for Web Applications
The inference approaches presented before need to communicate actively
with the application but they work at an abstract level whereas applications
mainly work at the concrete HTTP level. To fill this gap, crawling techniques
can be used to extract all inputs and outputs from the application and get
the corresponding test driver which will act as a proxy between these two
levels. More details about the test driver generation method can be found
in [19]

4.1 Web application abstraction
Modern web applications can be developed in multiple languages dedicated
for web applications, e.g., PHP, ASP, and not designed for them, e.g., Python,
Java, but all applications generate a common language: HTML. Inputs and
outputs will be extracted from the HTML source code of a page.

An input is an action provided by the application and executed using a
link or a form element in HTML. We define an input I as a tuple (M, A, P)
where M is the HTTP method used, A is the URL address of a web page to
handle the request and P is a finite set of couples (name, values) where name
is the name of the parameter and values is a set of strings corresponding to
the possible values. In the case of a link, P could be the empty set and M is
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always the GET method. Parameters can have more than one value, e.g. in
Listing 5 and even for a link, e.g. in Listing 6.

Listing 5: select element
1 <select name="id">
2 <option value="1">1</ option >
3 <option value="2">2</ option >
4 <option value="3">3</ option >
5 </ select >

Listing 6: link with multiple values for one parameter
1 http :// test/index.php?id =1& id =2& id=3

An output is a page, independently of the content. For example, two
profile pages are considered as the same page: only the content changes but
not the structure. To extract the different outputs of the application, we
only have to consider the structure of the page. Then, for the structure-
based differentiation, page content is removed and a page tree is constructed
from the tags which are related to the structure of the page. Two pages with
different page trees are different.

Some kind of contents like ads or dynamic contents can slightly modify
the structure of the page by adding some tags; this can lead to false nega-
tives during the differentiation. This is why we use a threshold. Below this
threshold, two HTML pages are considered as the same output.

Like inputs, outputs may contain parameters. We define an output pa-
rameter as a part of the source code which directly depends on an input
parameter, in this case it is deterministic, otherwise it is a nondeterministic
parameter, typically ads, date time and dynamic content like RSS, Chat. To
detect them, each output page is requested several times, then similar parts
are matched together using a pairwise alignment algorithm and remaining
parts are considered as parameters.

For example, with a first request we can obtain Listing 7, and with a
second one Listing 8. The div and span elements match and only the content
of the span tags are different. We can see that each of these two span contains
one parameter.

Listing 7: A page obtained for the first time
1 <div id="# profile ">
2 <span id="# username ">John </span >
3 <span id="#money">100 </span >
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4 </ select >

Listing 8: The same page obtained for the second time
1 <div id="# profile ">
2 <span id="# username ">Henri </span >
3 <span id="#money">300 </span >
4 </ select >

We have defined a method to extract all inputs in a page, differentiate
two pages and extract the output parameters. Combining these methods
with a crawler allows us to build the abstraction and the corresponding test
driver automatically.

4.2 Crawling strategy
The crawling process has to browse the different pages as much as possible in
order to find the maximum of different outputs and inputs. Even if the goal
is to generate a test driver automatically, some data still need to be provided
by the tester, like credentials.

A naive crawling method would only enumerate the reachable pages.
Depth-first-search or breath-first-search strategies can also be used, start-
ing from a given page and stopping when all possible pages are explored.
However, these methods do not work anymore with modern web applica-
tions where the order of visit is important.

Consider a simple web application with the start page index.php, then
login.php and, after being authenticated, view.php, search.php and logout.php.
A classical crawler will start from index.php, then the only page accessible
page without being authenticated is login.php. After being authenticated,
the crawler can access view.php. This page contains a link to logout.php.
Since the crawler visits logout.php, all other pages found, e.g., search.php,
will not be accessible anymore because logout.php changes the internal state
of the application. This is why we need another strategy.

To avoid this problem, we do not use a single request to retrieve a page
but a sequence of requests combined with depth-first-search and page differ-
entiation to avoid loops and crawling the same page too many times. The
sequences send for the last example are described in Listing 9.

Listing 9: Sequence of inputs
1 index.php
2 index.php;login.php
3 index.php;login.php;view.php
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4 index.php;login.php;view.php; logout .php
5 index.php;login.php; search .php

By sending sequences of inputs, we are able to explore the entire appli-
cation automatically even if the internal state changes.

4.2.1 Optimizations & heuristics

Applications can use a parameter to select the content of the page. Typically,
the page index.php has one parameter id to select the content or in gallery-
style application, each element of the gallery has one id associated. Each of
these links differs only by one parameter value and lead to the same page.
To avoid visiting this entire set of links we use this heuristic: if at least two
pages are the same and parameters differs only by one value, other similar
pages will not be visited.

A form element can contain multiple actions. In WebGoat Stored XSS
lesson, the main page has a list of employees and four buttons, each associ-
ated with a different action. During the crawling, actions are extracted and
parameters are associated with them. Therefore, some parameters may be
unnecessary. This is why we filter the parameters if we find the same action
somewhere else with a subset of parameters.

5 Model assessment
In this section, we demonstrate why it is important to have some automatic
procedures to generate the Aslan++ models by comparing the generated
models with the handwritten models.

5.1 Inferred vs. handwritten models
To assess the need for a black-box inference component, we compare the
handwritten model with the inferred one for the WebGoat application. List-
ing 10 was constructed by hand and described in detail in Deliverable D5.2 [36].
Listing 11 represents the same part of the application but in the inferred
model by SIMPA, the inference component of the SPaCIoS tool.

Listing 10: A part of the manual model of the WebGoat Stored XSS lesson.
1 specification example
2 channel_model CCM
3
4 entity Environment {
5 types
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6 profile < text;
7 content < text;
8 cookie < message ; % cookie < text;
9

10 symbols
11 login ( agent , symmetric_key ) : message ;
12 logout : message ;
13 viewProfile ( profile ): message ;
14 editProfile ( profile ): message ;
15 listProfiles : message ;
16 updateProfile ( profile , content ): message ;
17 findProfile ( content ): message ;
18 ...
19 symbols % local variables for the lesson example
20 webServer : agent ;
21 larryProfile , peterProfile : profile ;
22 larry , peter : agent ;
23 larryContent , peterContent : content ;
24
25 entity Session (U, S: agent ) {
26 entity User( Actor , S : agent ) {
27 symbols
28 P: profile ;
29 ProfileContent : content ;
30 Cookie : cookie ;
31 SentProfiles : profile set;
32
33 body { % of User
34 % we define a trace through the state machine so that every message

is sent at least once
35 % login - viewProfile - editProfile - updateProfile - listStaff -

searchStaff - logout
36
37 % login
38 [ Actor ] *->* S : login ( Actor , shared_secret :( password ( Actor , S )

) ); % Actor itself logs in with shared secret
39 S *->* [ Actor ] : secret_cookie :( ? Cookie ) ; % user gets his cookie
40
41 % viewProfile
42 if ( Actor -> canView ( ?P ) ) {
43 [ Actor ] *->* S : Cookie . viewProfile ( P );
44 S *-> [ Actor ] : shared_profile :( ? ProfileContent );
45 }
46
47 % editProfile
48 if( Actor -> canEdit ( ?P ) ) {
49 [ Actor ] *->* S : Cookie . editProfile ( P );
50 S *->* [ Actor ] : shared_profile :( ? ProfileContent ); % User

learns name of the profile
51 }
52
53 ...
54
55 }
56 }
57
58 entity Server ( U, Actor : agent ) {
59 symbols
60 UP: public_key ; % user ’s pseudonym
61 Profile : profile ;
62 Cookie : cookie ;
63 Content : content ; % User can search for a profile by name
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64 Parent : nat; % identifies the parent entity
65 SentProfiles : profile set; % used by Server to send profiles .
66 body {
67 while (true) {
68 select {
69
70 % Login action
71 on( [?U]_[? UP] *->* Actor : login ( ?U, shared_secret :( password (?

U, Actor ) ) ) ): {
72 secret_cookie :( Cookie ) := fresh ();
73 cookies ( Actor )->contains ( (U, Cookie ) );
74 Actor *->* [U]_[UP] : Cookie ;
75
76 select { on( child ( ?Parent , IID ) ): {} }
77 while ( canView ( U, ? ) ) {
78 shared_profile_set ( Parent )->add( U );
79 }
80 }
81
82 % ViewProfile action
83 on( [?U]_[? UP] *->* Actor : ? Cookie .( viewProfile (? Profile ) ) &

cookies ( Actor )->contains ( (U, Cookie ) ) & U-> canView (
Profile ) ): {

84 % select { on( child ( ?Parent , IID ) ): {} }
85 select { on( contentOf ( Profile , ? Content ) ):{} }
86 % this parent entity is stored in ? Parent
87 Actor *->* [U]_[UP] : shared_profile :( user_auth :( Content ) )

;
88 }
89
90 % Logout action
91 on( [?U]_[? UP] *->* Actor : ? Cookie .( logout ) & cookies ( Actor )->

contains ( (U, Cookie ) ) ): {
92 cookies ( Actor )->remove ( (U, Cookie ) );
93 }
94 shared_profile_set ( Parent )->remove ( U );
95 }
96
97 ...
98 }
99 }

100 }
101 }
102 ...
103 }
104 ...
105 }

Listing 11: A part of the model inferred by SIMPA for the WebGoat Stored
XSS lesson.

1 specification WEBGOAT_STORED_XSS
2 channel_model CCM
3
4 entity Environment {
5 symbols
6 a : agent ;
7 editionpage (text) : message ;
8 editprofile (text) : message ;
9 home(text) : message ;
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10 listing (text) : message ;
11 login (text , text) : message ;
12 logout (text) : message ;
13 profilepage (text) : message ;
14 ...
15
16 entity WEBGOAT_STORED_XSS ( Actor : agent , Other : agent ){
17 symbols
18 State : nat;
19 Xsspayload : text;
20 Codeeditionpage : text;
21 Codehome : text;
22 Codelisting : text;
23 Codeprofilepage : text;
24 ...
25
26 body {
27 State := 0;
28 while (true){
29 select {
30 on( State = 0): {
31 select {
32 on( Other -> Actor : login (? Profileidlogin , ? Passwordlogin )): {
33 if (( Profileidlogin = s101) & ( Passwordlogin = slarry ) | (

Profileidlogin = s111) & ( Passwordlogin = sjohn )){
34 Codelisting := sOK;
35 Actor -> Other : listing ( Codelisting );
36 State := 1;
37 }
38 if (( Profileidlogin = s101) & ( Passwordlogin = sfoo) | (

Profileidlogin = s101) & ( Passwordlogin = sjohn ) | (
Profileidlogin = s111) & ( Passwordlogin = sfoo) | (
Profileidlogin = s111) & ( Passwordlogin = slarry ) | (
Profileidlogin = s666)){

39 Codehome := sOK;
40 Actor -> Other : home( Codehome );
41 State := 0;
42 }
43 }
44 on( Other -> Actor : logout (? Profileidlogout )): {
45 Codehome := sOK;
46 Actor -> Other : home( Codehome );
47 State := 0;
48 }
49 ...
50 }
51 }
52 on( State = 1): {
53 select {
54 on( Other -> Actor : login (? Profileidlogin , ? Passwordlogin )): {
55 if (( Profileidlogin = s101) & ( Passwordlogin = slarry ) | (

Profileidlogin = s111) & ( Passwordlogin = sjohn )){
56 Codelisting := sOK;
57 Actor -> Other : listing ( Codelisting );
58 State := 1;
59 }
60 if (( Profileidlogin = s101) & ( Passwordlogin = sfoo) | (

Profileidlogin = s101) & ( Passwordlogin = sjohn ) | (
Profileidlogin = s111) & ( Passwordlogin = sfoo) | (
Profileidlogin = s111) & ( Passwordlogin = slarry ) | (
Profileidlogin = s666)){

61 Codehome := sOK;
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62 Actor -> Other : home( Codehome );
63 State := 1;
64 }
65 }
66 on( Other -> Actor : logout (? Profileidlogout )): {
67 Codehome := sOK;
68 Actor -> Other : home( Codehome );
69 State := 0;
70 }
71 on( Other -> Actor : viewprofile (? Profileidprofile )): {
72 Codeprofilepage := sOK;
73 Actor -> Other : profilepage ( Codeprofilepage );
74 State := 1;
75 }
76 ...
77 }
78 }
79 }
80 }
81 }
82 }
83 body {
84 new WEBGOAT_STORED_XSS (system , a);
85 }
86 }

Pros. The first advantage of the inferred model (Listing 11) is that it has
been produced in less than one minute and considering the system as a black-
box only, while the manual one required a lot of time and detailed knowledge
of the application. As a second advantage, since the inputs are based on
the actions of the application, the model is easy to read and understand.
For instance, the inferred model generates only one entity to represent the
system. Each state can be identified clearly in the switch structure.

Cons. The inferred model (Listing 11) is an abstraction of the real system,
and the level of detail may not show all the internal behaviors. For example,
the handwritten model also specifies the security properties of the individual
channels, whereas the inferred model uses a basic, unsecured channel.

The handwritten model is obviously better than the inferred one. But it
needs a lot of time to be written and the user must have some experience with
the specification language to be able to develop one from scratch. On the
other hand, the inferred model can be obtained automatically and quickly. It
is the perfect base for the user who can start to work on this model to improve
it. This shows the need of the inferred model and reveals the importance of
having such automatic procedures for generating models.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876



D2.2.1: Method for Assessing and Retrieving Models 63/74

5.2 Code-based vs. handwritten models
5.2.1 Model Extraction in a Nutshell

Complementary to the black-box model inference, IeAT has developed white-
box model extraction techniques. In order to compare the resulting models
with manually written ones, we briefly present the jModex model extraction
tool. A detailed description can be found in Deliverable D2.2.2 [37].

The jModex tool analyzes the code of a JSP/Servlet-based web appli-
cation and produces an Aslan++ model. Figure 15 shows a high-level
view of the model extraction process, with its two main analysis steps, each
implemented by a component which is briefly described in the following.

Code

Behavioral 
Model

Extraction
(iSummarize)

ASLAN(++) 
Model Generation

ASLAN(++) 
Model

Behavioral
Automaton 

(EFSM)

Figure 15: jModex Processing Steps

• iSummarize – this component analyzes the code of the application
and builds an EFSM in which each transition represents an execution
path through the program, while a state represents the entry/exit point
of the system under analysis or a loop header. For each transition, the
constraints that enable the execution of the transition are captured
(e.g., branch conditions that must be satisfied to follow a particular
execution path), together with updates to state variables relevant to
the application and to the analysis goal (e.g., session attributes of the
servlet, or the output of the program). The guard conditions and the
updates capture the usage of every relevant value, including the in-
puts of the application (e.g., values coming from the user via request
parameters, or database values). More details about the EFSM extrac-
tion algorithm can be found in Deliverable D2.2.2 [37, Section 2.2.2].

• Aslan++ Converter – receives an EFSM built by the previous com-
ponent, and transforms it into an Aslan++ model. For this purpose,
a control tree is built, capturing the required Aslan++ statements
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and how they will be chained/nested in order to capture the semantics
of the translated EFSM. After that, the guards and the updates from
the automaton are translated to Aslan++ statements/expressions ac-
cording to translation schemata which are further used as conditions
or added to the bodies of corresponding control statements from the
control tree. As a result, the Aslan++ model is built. More details
about the conversion process including the mapping of code constructs
to Aslan++ are presented in Deliverable D2.2.2 [37, Section 2.2.3].

5.2.2 Sample Models and Discussion

As part of the assessment, we present a portion of the Aslan++ model for
the BookStore application (Listing 12) constructed by hand and described in
detail in Deliverable D5.2 [36], with some updates. Listing 13 shows the same
part of the model inferred by jModex in its present development stage2, with
some manual simplifications (currently being automated). We compare the
two models and discuss pros and cons regarding the automatic extraction of
Aslan++ models.

Listing 12: A part of the manual model of BookStore.
1 specification Bookstore_Login_Manual
2 channel_model CCM
3
4 entity Environment {
5 entity Session (S: agent ) {
6 symbols
7 ...
8 entity Server (Actor , U: agent , Sess: text. message set) {
9 symbols

10 getUID (text): text;
11 getURights (text): text;
12 request (text , text. message set): text;
13 ...
14 validU (text. message set , text , text): fact;
15 paramsFromText (text) text.text set;
16 ...
17 Params : text. message set;
18 ...
19 sFormName : text;
20 sLogin : text;
21 sEmpty : text;
22 ...
23 body {
24 ...
25 % Start server actions
26 while (true) {
27 select {
28 on (?U *->* Actor : request (sLogin ,? Params )
29 & ?Params -> contains (( sFormName , sLogin ))
30 & ?Params -> contains (( sFormAction , slogin ))): {

2Some information, e.g., exception handling, is not captured yet in the model.
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31 if ( validU (Params , ?Uname , ? Password )) {
32 if (Sess -> contains (( sUID , ? Remove )))
33 Sess -> remove (( sUID , Remove ));
34 if (Sess -> contains (( sURights , ? Remove )))
35 Sess -> remove (( sURights , Remove ));
36 Sess -> contains (( sUID , getUID ( Uname )));
37 Sess -> contains (( sURights , getURights ( Uname )));
38 if (Params -> contains (( sRetPage ,? RetPage )
39 & RetPage != sLogin & RetPage != sEmpty )
40 if (Params -> contains (( sQuerystring ,? Querystring ))
41 U *->* Actor : request (RetPage , paramsFromText ( Querystring

));
42 else
43 U *->* Actor : request (RetPage ,{});
44 else
45 U *->* Actor : request ( shoppingCart ,{});
46 } else
47 U *->* Actor : request (login ,{});
48 }
49 on (?U *->* Actor : request (sLogin ,? Params )
50 & ?Params -> contains (( sFormName , sLogin ))
51 & ?Params -> contains (( sFormAction , slogout ))): {
52 if (Sess -> contains (( sUID , ? Remove )))
53 Sess -> remove (( sUID , Remove ));
54 if (Sess -> contains (( sURights , ? Remove )))
55 Sess -> remove (( sURights , Remove ));
56 Sess -> contains (( sUID , sEmpty ));
57 Sess -> contains (( sURights , sEmpty ));
58 Actor *->*U: viewLogin ;
59 }
60 ...
61 }
62 }
63 }
64 ...
65 } % end Server
66 ...
67 } % end Environment

Listing 13: A part of the model inferred by jModex for BookStore.
1 specification Bookstore_Login_Simple
2 channel_model CCM
3
4 entity Environment {
5 symbols
6 ...
7 entity Session (S: agent ) {
8 entity Server ( Actor :agent , U:agent , Sess: message . message set) {
9 symbols

10 ...
11 body {
12 while (true) {
13 select {
14 on (?U*->* Actor : login_jsp (? Params )): {
15 select {
16 % PASSWORD IS OK BUT USER NAME IS MISSING
17 on (Params -> contains (( sPassword ,? Password ))
18 & Params -> contains (( sFormAction ,? FormAction ))
19 & Params -> contains (( sFormName ,? FormName ))
20 & (!( Params -> contains (( sLogin ,?)))
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21 | Params -> contains (( sLogin , sEmpty )))
22 & !(? Password = sEmpty ) & Params -> contains (( sPassword ,?))
23 & !( Login_jsp_LoginAction_v53 =0)
24 & ? FormAction = slogin & ? FormName = sLogin ): {
25 if (Params -> contains (( sPassword ,? Password )) { }
26 else Password := oNull ;
27 if (Sess -> contains (( sUserID ,? UserID ))) {
28 Sess -> remove (( sUserID , UserID ));
29 }
30 if ( DBAccessFunction (

select_member_id__member_level_from_members_where_member_login_EQ_
. sEmpty . _and_member_password_EQ_ .Password ,1) != oNull ) {

31 Sess -> contains (( sUserID , DBAccessFunction (
select_member_id__member_level_from_members_where_member_login_EQ_
. sEmpty . _and_member_password_EQ_ .Password ,1)));

32 }
33 if (Params -> contains (( sPassword ,? Password ))) { }
34 else Password := oNull ;
35 if (Sess -> contains (( sUserRights ,? UserRights ))) {
36 Sess -> remove (( sUserRights , UserRights ));
37 }
38 if ( DBAccessFunction (

select_member_id__member_level_from_members_where_member_login_EQ_
. sEmpty . _and_member_password_EQ_ .Password ,2) != oNull ) {

39 Sess -> contains (( sUserRights , DBAccessFunction (
select_member_id__member_level_from_members_where_member_login_EQ_
. sEmpty . _and_member_password_EQ_ .Password ,2)));

40 }
41 }
42 %USER NAME IS OK BUT PASSWORD IS MISSING
43 on (... %long condition % ...): {
44 ...
45 }
46 % LOGOUT
47 on (Params -> contains (( sFormAction ,? FormAction )) & Params ->

contains (( sFormName ,? FormName )) & ? FormAction = slogout &
... %long condition % ...): {

48 if (Sess -> contains (( sUserID ,? UserID ))) {
49 Sess -> remove (( sUserID , UserID ));
50 }
51 Sess -> contains (( sUserID , sEmpty ));
52 if (Sess -> contains (( sUserRights ,? UserRights ))) {
53 Sess -> remove (( sUserRights , UserRights ));
54 }
55 Sess -> contains (( sUserRights , sEmpty ));
56 }
57 %USER NAME AND PASSWORD ARE OK
58 on (Params -> contains (( sLogin ,? Login ))
59 & Params -> contains (( sPassword ,? Password ))
60 & Params -> contains (( sFormAction ,? FormAction ))
61 & Params -> contains (( sFormName ,? FormName ))
62 & !(? Login = sEmpty ) & Params -> contains (( sLogin ,?))
63 & !(? Password = sEmpty ) & Params -> contains (( sPassword ,?))
64 & !( Login_jsp_LoginAction_v53 =0)
65 & ? FormAction = slogin & ? FormName = sLogin ): {
66 if (Params -> contains (( sLogin ,? Login ))) { }
67 else Login := oNull ;
68 if (Params -> contains (( sPassword ,? Password ))) { }
69 else Password := oNull ;
70 if (Sess -> contains (( sUserID ,? UserID ))) {
71 Sess -> remove (( sUserID , UserID ));
72 }
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73 if ( DBAccessFunction (
select_member_id__member_level_from_members_where_member_login_EQ_
. Login . _and_member_password_EQ_ .Password ,1) != oNull ) {

74 Sess -> contains (( sUserID , DBAccessFunction (
select_member_id__member_level_from_members_where_member_login_EQ_
. Login . _and_member_password_EQ_ .Password ,1)));

75 }
76 if (Params -> contains (( sLogin ,? Login ))) { }
77 else Login := oNull ;
78 if (Params -> contains (( sPassword ,? Password ))) { }
79 else Password := oNull ;
80 if (Sess -> contains (( sUserRights ,? UserRights ))) {
81 Sess -> remove (( sUserRights , UserRights ));
82 }
83 if ( sDBAccessFunction (

select_member_id__member_level_from_members_where_member_login_EQ_
. Login . _and_member_password_ .Password ,2) != oNull ) {

84 Sess -> contains (( sUserRights , DBAccessFunction (
select_member_id__member_level_from_members_where_member_login_EQ_
. Login . _and_member_password_ .Password ,2)));

85 }
86 }
87 % PASSWORD AND USER NAME ARE MISSING
88 on (... %long condition % ...): {
89 ...
90 }
91 }
92 }
93 }
94 }
95 }
96 ...
97 }

Condition structure. The automatically extracted model has complex con-
junctions of conditions for each select on (...) branch. In comparison,
the handwritten model initially tests only the JSP module and the form
name, and does the remaining tests later, in if statements. This is because
the automatically generated model successively accumulates conditions as
the execution paths are traversed backwards, and individually identifies and
treats each cycle-free execution path. Consequently, the handwritten model
is more easily understandable as it closely reflects the step-by-step decision
structure of the original application code. Moreover, the automatically gen-
erated code may exhibit duplication, e.g., of assignments appearing in a joint
prefix of several execution paths.

To reduce complexity and code duplication, paths with identical assign-
ments are grouped together, and their path conditions combined using dis-
junction (this optimization is partially implemented). It would be possible
to extract common assignments between different groups of paths and move
them up in the control flow, thus more closely reconstructing the original
decision structure. This would be beneficial for human readability. However,
this is only a matter of presentation and has no effect on the complexity
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of the model (for analysis / model checking), since the translator to ASLan
re-creates the same set of individual transitions as in the EFSM built in the
first step (by iSummarize).
Handling request parameters. Both models represent the HTTP request (and
the session state) as set of pairs of strings (parameter name and value). A
frequent operation in the code is to extract and use the value of a given
parameter (typically given as a constant string). However, the parameter
may be absent and this case must always be treated. Therefore, in the
automatically extracted model, each use of an extracted parameter value is
guarded by a test of the form Params->contains((paramName, ?ParamValue))
as seen in lines 25, 33, 66, etc. Currently, this test is inserted independently
of context, without taking into account the path condition, which may make
the test superfluous (or, on the contrary, unsatisfiable). Correlating these
tests with the path condition and performing the resulting simplification
does not raise conceptual difficulties and will be implemented, resulting in
cleaner generated models.
Database modeling. In the handwritten model, the check for username and
password is represented by a dedicated predicate, validU(), and likewise
extracting the user ID and access rights from the corresponding database
record (functions getUID(Uname) and getURights(Uname). The representation
in the automatically extracted model is closer to the JSP code, using a generic
function DBAccessFunction(sqlQuery, columnNo) to model performing the
query and selecting a given field from the result. Representing queries will
become more expressive with the ongoing work on database modeling and
interpreting a subset of SQL.
Temporary variable names. Automatically generated models may contain
temporary variables (such as _v53 in this model) that appear either due to
the static single assignment form employed by the intermediate representa-
tion, as state needed during a loop, or to represent certain function results.
Information linking them to the original code will need to be generated as
an explanation for the user.

Pros. Two advantages, speed and accuracy, are direct consequences of au-
tomation. The model is produced in a few seconds, and is not prone to
human error in understanding and capturing the behavior of the analyzed
system. In particular, human errors may appear because a person is biased
to infer and capture the intent of a piece of code, rather than the actual im-
plementation of that intention in the code, as has been our experience with
an initial version of the handwritten bookstore model. The benefit of accu-
racy should become more apparent once a complete analysis of exceptions
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is implemented, as they are generally known both to complicate the control
flow and as potential sources of flaws.

The automatically generated model can also be at times simpler than a
handwritten one-to-one translation from the application source code, since
the satisfiability checks on transitions can both identify infeasible paths and
simplify superfluous tests.

Cons. The extracted model (Listing 13) is arguably more difficult to read
by a human analyst, mostly due to the very complex condition formulas. This
could be alleviated by extracting common parts of path conditions and com-
mon assignments in order to reconstruct the original code structure. Another
possibility is to use comments that link parts of the model (e.g., conditions,
sub-conditions, etc.) with the actual source code of the system.

Overall, it is clear that automatic procedures for extraction of ASLan++
models from code are indispensable for making automatic analysis extensively
applicable. Combined with appropriate simplification procedures and sup-
port for traceability from source code to model, they can also aid a human
in comprehending the behavior of the analyzed application.

6 Conclusions
We have presented the black box model inference method that makes it possi-
ble to derive a model of any component or subsystem of an application. This
can be done with almost no knowledge about the component: its behavior
will be inferred, and the set of its inputs and outputs can even be extracted
automatically with the crawling approach presented in Section 4 when it has
a web interface. The method is implemented in the SIMPA component of
the SPaCIoS tool.

Although inferring such parametric models with security features is at the
leading edge of research, it has been shown to work on case studies from the
project, and the inferred model is comparable (modulo the restrictions on the
semantic parts that are not accessible to inference) with the models that had
been handwritten in ASLan++. The same applies to models extracted from
source code with the jMODEX component of the SPaCIoS tool. Of course,
the models produced automatically are less readable and lack the semantics
and meaningful naming that are directly produced with handwritten models.
But in both cases, the automated inference/extraction can be run very fast,
and provides accurate models that can be refined if needed by a security
analyst. Including such approaches in the SPaCIoS project and tool was a
challenge and a bet, and the results so far are more than encouraging. At
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the same time, the project also triggers incentives for further research, with
new directions such as suggested in Section 3 of this deliverable.
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