ﬁ Secure Provisioning of Cloud Services

based on SLA Management

SPECS Project - Deliverable 5.1.3

Description of the validation scenarios and
identification of common elements

Version no.1.1
15 February 2016

L e——

SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud services based on SLA Management

Deliverable information

Deliverable no.:

D5.1.3

Deliverable title:

Description of the validation scenarios and identification of
common elements

Deliverable nature: Prototype
Dissemination level: Public
Contractual delivery: 15 February 2016
Actual delivery date: 15 February 2016

Author(s): Stefano Marrone (CeRICT), Giancarlo Capone (CeRICT)
Contributors: Massimiliano Rak (CeRICT)
Reviewers: Andrew Byrne (EMC), Adrian Spataru (IeAT)

Total number of pages:

33

SPECS Project - Deliverable 5.1.3 2

Secure Provisioning of Cloud services based on SLA Management

Executive summary

This deliverable reports the status of development activities of the web container and metric
catalogue application. These applications are in charge of demonstrating the feasibility of the
SPECS approach; they also have the purpose of testing the entire SPECS platform and modules
implementing the Validation Scenarios according to the methodology expressed in D5.1.2.

In this document, we present the final status of the development activities related to T5.1 and
references to install and use the prototype applications developed in the framework of this
task. All the software artefacts are available, they cover a very large number of Validation
Scenarios and they solicit a great part of the SPECS platform and modules, although most of
them are transparent to the SPECS end-users. In this deliverable, we focus on implementation
status, provide links to repositories, and present guides for installation and usage of the
components. Furthermore, in accordance with the methodology proposed in D4.5.2, unit test
results are be presented.

Using SPECS, an EU of the web container application can instantiate a VM containing a generic
web application and negotiate, monitor and enforce the security of such application in a
transparent way. The web container application solicits the greatest part of the components
demonstrating, with a single application, the feasibility and the effectiveness of the proposed
SPECS solution. Being part of the Solution Portfolio, this application highlights a strong
industrial interest in the results of these development and validation activities. Moreover, it is
in charge of implementing the subset of the Validation Scenarios covering the greatest part of
the Key Concern Items as discussed in D5.1.2.

Using SPECS, an EU of the metric catalogue application can define new security metric to
adopt in existing/future SPECS applications. The metric catalogue application implements
some important Validation Scenarios representing one of the most requested application in
SPECS. Notwithstanding this application is not in the SPECS solution portfolio, the need of
having the metric catalogue is witnessed by the number of the other SPECS applications which
use it.

SPECS Project - Deliverable 5.1.3 3

Secure Provisioning of Cloud services based on SLA Management

Table of contents

Deliverable INFOTMAtION ... bbb 2
EXECULIVE SUIMIATY ..rvueusersseseessessesssesssessesssessesssessesssesssessesssessesssessssssssssssssssss s s sessssssesasessassses s s s sssse s sssasens 3
B IE=T o) L0 0] 4 U= 0L PPN 4
INAEX Of FIGUIES w.courerieeeessees st s s s bbb 5
06 (5 0] = o) LT 6
0 S 001 oY L0 U 0 (o) o PSPPI 7
2. Relationship with Other Deliverables...... s 8
3. Background on the Validation APProachssssssssssssssssssssssssssnns 9
4. Building a SPECS APPLICAtION ...t ssessssssssssssssas 10
4.1.1. Cloud Service Definition ... ssesssssssssssssssssssssssssssssssses 10
4.1.2. Security Mechanisms Preparation ... ssssssssssssssssssssssssssssnes 10
4.1.3. SLA Template Preparation ... sssaes 10
4.1.4. SLA Template and Security Mechanisms Deployment.........cooememenseenseessesseennee 11

5. The WED CONEAINET wcoueuuerirnrersseessesssssessssssesssessssssssssssssssessssssssssssssssessssssssssssssssesssasssessssssssssssesssessssssssssssssssees 12
5.1. Development FiNal RESULLSouiemieieessirernesseessssssessessssssssssssssssssssssssssessssssssssssssssssssssssssssens 12
5.2, AppPlication DeSCriPiON. .. cceieseesseessssssessesssesssssssssssssssssssss s sessssssssssssssssesssssssssssssssees 13
S0 T O U] 0103 1) o PPN 15

R N 03] 1 = (0) o PPN 15
5.4.1. Install using precompiled DINAries ... 15
5.4.2. Compile and install from SOUICE ... sessseens 15

S0 T € V- PPN 16
TG TR 1 PPN 17

6. The MetriC CatalOZUEouieriemereirrrsrssssssess st s s s bbb 18
6.1. Development Final RESUILScocuiremesniisiinsesesssessssessssssssssssssssssssssssssssssssessssssssssssesssessssesas 18
(SR \ o) o] 1T Ua (o) 000 DXTT 1 01 o) o 0O PN 19
6.3, REPOSITOTY it 21
6.4, INSTAIAION c.rveieieecet s 21
6.4.1. Install using precompiled DINAries ... sesssenns 21
6.4.2. Compile and install frOM SOUICE ... sesssenas 21

O TE TR U Y Vo PPN 22
0.6, TS ————————————————————————— 23

N 010) s U] 1013 T) o PPN 24
ES T 5110 1107 o4 =1 0] 1| 2SN 25
Appendix A — Web Container UNit TESEScoeeeersesssssssssessssssssssssssssssssssssssssssssesssessssssssssssssens 26
Appendix B — Metric Catalogue UNit TESLSoenirmesseesersessssssesssessssssssssssssssssssssssssssssssesssesssssssssssssssees 31

SPECS Project - Deliverable 5.1.3 4

Secure Provisioning of Cloud services based on SLA Management

Index of figures

Figure 1. Relationships with other deliverables ... 8
Figure 2. SPECS Application developmeNt PrOCESScuwreirmeeessesssessns 10
Figure 3. UML Activity Diagram of the Web CONtainereeesssssssssssssssssssesssssssesssesns 14
Figure 4. Selection of Capabilities ... ssssssesssssssssssssas 16
Figure 5. Definition of MEtriCs VAlUES ... ssss s ssssssssssssssssssas 17
Figure 6. Overall UML Use Case Diagram of the Metric Catalogue..........ccomemeneeenseenseeseesessseesseenns 19
Figure 7. Store Metric UML Activity DIiagram ... 20
Figure 8. Store Metric Using Form UML Activity Diagram ... 20
Figure 9. Retrieve Metric UML Activity DIagram ... 20
Figure 10. Get Metric XML UML Activity Diagram ... 20
Figure 11. Remove Metric UML Activity Diagram......sssssssssssses 20
Figure 12. Update Metric UML Activity Dia@ram.....oenernermessas 20
Figure 13. Backup Metrics UML Activity DIagramooeeermemssns 21
Figure 14. Restore Metrics UML Activity Diagram.......sssssss 21
Figure 15. Store a Metric USING @ FOIM....crinsisessesssssssessssssesssns 22
Figure 16. Retrieve a SeCUrity MetriC . 23
Figure 17. Manage the Security Metrics DacCKUPcoeeenirnsssessrsssssssssssssssssssssssssssssssssesns 23
Figure 18. Coverage of the Web Container application (by SonarQube)cuenenmeenmeereerseesseenns 30
Figure 19. Coverage of the Metric Catalogue application (by SonarQube)cccouvenreerriereeseerneenns 33

SPECS Project - Deliverable 5.1.3 5

Secure Provisioning of Cloud services based on SLA Management

Index of tables

Table 1. Mapping Web Container on VSs (excerpt from D5.1.2)ounrnrenmrrnseneensessessesssessssenns 12
Table 2. Mapping among VAs, solution portfolio and User Stories (excerpt from D5.1.2).......... 12
Table 3. Impact of Web Container on the Validation KPIS.......eseessssssessseeens 13
Table 4. Mapping Metric Catalogue on VSs (excerpt from D5.1.2) ...ccconenmeenmmennseneernseensessessseesseenns 18
Table 5. Impact of Metric Catalogue on the Validation KPIS.......onneeesessesssessseenns 18
Table 6. Details of getSIaTemMPlateTeSt ... ss s snnas 26
Table 7. Details Of SIGNTEST.....oerereesesseessessessssssss s sess s s s bbb 26
Table 8. Details Of SUDIMILTESE ... sss s s s sess s 26
Table 9. Details Of iMPleMENETESL. ... 27
Table 10. Details of implementedINfOTESL ... sessseeas 27
Table 11. Details of implementedMetricValueSTEStcoueernereemeeseessssssssssssssssessssssssesssssssesssesns 27
Table 12. Details of GEtSIaOFErSTESE .. 27
Table 13. Details of GEtSIAOFIEITESL ... 28
Table 14. Details of implementedINfOTESL ... sesssseas 28
Table 15. Details of implementedINfOTESL ... sesssseas 28
Table 16. Details of SQIItEHEIPEITESL ..o sssessseeas 28
Table 17. Details of implementedACtIONTESE ... ssssssssssesssssas 29
Table 18. Details of 0DSEIVEACHIONTESL ... sssesssssas 29
Table 19. Details of SIGNACHONTESL ...t s sesssenas 29
Table 20. Details of SQLItEHEIPEITEST ... sssesssssssessssssas 31
Table 21. Details of retrieVeMEITICTESE ... sssssssesssesssssas 31
Table 22. Details Of StOr@MEIICTESTvvuuerererrrsresees s s s ssnas 31
Table 23. Details of UpAateMEtIiCTESL ...t ssssess s ssnas 32
Table 24. Details of retrieVeMEITICTESE ... sssesssssas 32
Table 25. Details of reMOVEMELIICTESE ... sesssesssessssens 32
Table 26. Details of getMetricBaCKUPTESLccceeerreeiirsesssessseesssessesssesssssssssssssssssssssssssssssssssssssssesssssns 32
Table 27. Details of GEtMEtriCXMLTEST ..o seesssessesssesssas 33

SPECS Project - Deliverable 5.1.3 6

Secure Provisioning of Cloud services based on SLA Management

1. Introduction

This document focuses on the description of the status of development activities of the web
container and the metric catalogue applications. With respect to other prototypal
deliverables, this one describes SPECS applications rather than software components. SPECS
applications are not in the SPECS solution but they use it to provide advanced features to the
final user. Hence, describing SPECS applications as they were software components is not
correct: rather than, the description and the checkpoint on the development process should
focus on the following items:

e covered Validation Scenarios;
* solicited SPECS components;
* relations with SPECS portfolio solution.

This deliverable represents a complete guide to install and use both the web container and
the metric catalogue. Details about the implementation, installation, usage and testing of the
components are given in proper sections of this document. Furthemore, it also reports the
methodological steps which can guide a developer in the costruction of a SPECS Application.

This deliverable is structured as follows. In Section 2, relationships between this deliverable
and other deliverables of the project are discussed. Section 3 briefly describes the main
concepts of the SPECS validation and testing process, which are fully reported in D5.1.1 and
D.5.1.2. Section 4 provides the methodology to build a SPECS application. Section 5 reports
the status of the development on the Web Container and Section 6 on the Metric Catalogue.
Section 7 draws conclusions. Appendix A and Appendix B provide the details of the unit
testing campaign respectively on the Web Container and the Metric Catalogue applications.

SPECS Project - Deliverable 5.1.3 7

Secure Provisioning of Cloud services based on SLA Management

2. Relationship with Other Deliverables

Figure 1 represents the dependency relationships among this deliverable and other
deliverables.

WP1 WP5
s Db s)

WP1 WP5

= Dihd = ho i
s DiE5) s 50 J
e bDh 3

« D54

Figure 1. Relationships with other deliverables

The following deliverables are inputs for this deliverable:

D1.6.1 provides a description of the SPECS testbed. The information about the testbed
is necessary to make the testing campaign of the described applications compliant with
the SPECS testbed.

D5.1.2 fully describes the testing approach as well as providing the set of Validation
Scenarios. The information contained in this deliverable are needed to map the
applications described in this paper onto Validation Scenarios as well as measuring the
impact of the single application on the coverage of the SPECS Key Concerns.

The following deliverables are affected by the results of this deliverable:

D1.5.x focus on Integration Testing and, hence, could use the developed applications
here described as “test script” to conduct such testing activities.

D5.2.x, D5.3 and D5.4 focus on the industrial SPECS applications. The development
process of these applications should follow the building guidelines and the way in
which D5.1.3 reports application description. Moreover, the development and
execution of the applications in D5.2.x, D5.3 and D5.4 may benefit from the results of
this deliverable.

SPECS Project - Deliverable 5.1.3 8

Secure Provisioning of Cloud services based on SLA Management

3. Background on the Validation Approach

The SPECS project considers different levels of testing (user, integration, unit): an overview of
such levels is reported in D5.1.2. D5.1.2 also provides details about the testing methodology
and the definition of the Validation Scenarios.

In brief, T5.1 defines some Validation Scenarios (VSs) used to test the SPECS platform and
modules from a user perspective. Then, some Validation Applications (VAs) are defined to
implement such VSs and to run them in order to verify their assumptions. Such VAs have been
chosen refining the SPECS User Stories also by comparing such stories with the SPECS
solution portfolio. Such comparison is very important since it validates the set of the SPECS
requirements by the experience and the needs of industrial stakeholders. This deliverable
focuses on two of these applications: Web Container and Metric Catalogue.

The quality of the validation approach is measured by means of ten KPIs defined in D5.1.2.
Five of them are related to the execution of the Validation Applications and this deliverable
uses these five KPIs to evaluate the impact of each Validation Applications among all the
others. These KPIs measure which is the percentage of the covered Key Concern Items by the
single VA. The KPIs are:

* ECu: the percentage of the covered User Key Concern Items by executed VAs;
* ECrs: the percentage of the covered Target Services Key Concern Items by executed

VAs;

* ECic: the percentage of the covered Invocation Chain Key Concern Items by executed
VAs;

* ECss: the percentage of the covered SPECS Services Key Concern Items by executed
VAs;

* ECsa: the percentage of the covered SLA lifecycle Key Concern Items by executed VAs.

For more details on the entire validation approach, the Key Concern and on the validation
related KPIs, see D51.2.

In this deliverable, moreover, unit tests are conducted to demonstrate not only the coverage
of the Key Concerns but also of the developed source code. In particular, a testing approach
based on the use of existing frameworks and oriented to branch coverage is used. The
frameworks used in this deliverables are: JUnit which provide a framework for creating and
executing suites of unit tests [6]; WireMock that is a library for stubbing and mocking web
services [7]. Branch coverage is a widespread coverage technique which aims to test at least
one time each branch of the code[4][5]: this technique requires more test with respect
simpler coverage techniques as statement coverage but provide more accurate information
about the expected and unexpected behaviour of the software. The coverage level has been
measured using another widespread tool: SonarQube which provides a full comprehensive
and user friendly dashboard of the results of a testing campaign [8]. An instance of SonarQube
(i.e., an installation of the tool on a website connected to actual metrics and coverage data) is
available for SPECS project [14].

SPECS Project - Deliverable 5.1.3 9

Secure Provisioning of Cloud services based on SLA Management

4. Building a SPECS Application

SPECS applications orchestrate the SPECS core services to enable the cloud services delivery
based on the SLA life cycle phases. SPECS applications are built by developers by customizing
a default SPECS application, which includes all the functionalities needed to negotiate,
implement and monitor an SLA. Since the default SPECS application automates the most part
of the cloud service delivery based on SLAs, the customization consists in developing and
deploying the mechanisms needed to grant the features that the SPECS Owner is willing to
offer to End-users through the application.

Cloud Service Secur!ty SLA Template SLA.TempIate a.nd
. Mechanisms . Security Mechanisms
Definition . Preparation
Preparation Deployment

Figure 2. SPECS Application development process

Figure 2 summarizes the four main steps for the development of a new SPECS application: (i)
Cloud Service Definition, (ii) Security Mechanism Preparation, (iii) SLA Template Preparation,
and (iv) SLA Template and Security Mechanisms Deployment. These steps are briefly
described in the following.

4.1.1. Cloud Service Definition

During this phase, the developer defines what types of cloud services to deliver through the
SPECS application (e.g., web container services, storage services) and prepares related
cookbooks. In order to accomplish this task, the developer has to define proper mechanisms
to automatically deploy and configure the offered target services. In SPECS, such mechanisms
are developed as security mechanisms and offer, in addition to basic cloud services, some
security features that can be negotiated by the End-user.

As an example, the SPECS Secure Web Container application [2] requires the deployment of
the WebPool mechanism (see D4.2.2 and D4.3.2 for details), which offers a pool of web
servers over a set of virtual machines acquired from an external CSP (we used Amazon in our
implementation) and is also able to provide the web resilience capability.

4.1.2. Security Mechanisms Preparation

During this phase, the developer prepares (or selects among those already available) the
security mechanisms to offer on top of the cloud services defined at previous step. Each
security mechanism comes with some elements: its cookbook, declaring the granted security
capabilities and related security controls; the enforced/monitored security metrics: its
metadata which includes all related recipes and deployment constraints. The related recipes
deal with the software components implementing the mechanism while deployment
constraints include incompatibility or dependency of software components implementing the
mechanism.

Details on the design and implementation of security mechanisms currently available in
SPECS can be found in D4.2.2, D4.3.2 and D4.4.2.

4.1.3. SLA Template Preparation

The SPECS application negotiates the services with End-users by following a process based on
the WS-Agreement standard, which adopts proper templates summarizing the features that
can be offered to customers. To enable negotiation, the SPECS developer has to build a WS-
Agreement-compliant SLA template, which summarizes what kind of service is to be

SPECS Project - Deliverable 5.1.3 10

Secure Provisioning of Cloud services based on SLA Management

delivered, what are the security capabilities that can be offered to End-users through the
application and what are the related guarantees.

SPECS SLA templates must be written according to the Security SLA model described in
Deliverable D2.2.2, which also specifies the related machine-readable format. The reported
XML-based representation is an extension of the WS-Agreement schema with security-related
concepts, whose definition can be found at http://www.specs-
project.eu/resources/schemas/xml/SLAtemplate.xsd.

4.1.4. SLA Template and Security Mechanisms Deployment

The last development step is the deployment of the security mechanisms as well as of the SLA
Template to make them available to the SPECS application.

All the prepared cookbooks must be registered with the Chef Server in order to enable the
enforcement module to implement the SLA, and the mechanisms’ metadata must be
registered in the SLA Platform in order to enable the SPECS application to retrieve the
information and to implement the SLA.

The SPECS Owner, which will offer the SPECS application services to End-Users, uses the
SPECS Core Enforcement repository to share the cookbooks with the Chef Server and to
enable the SPECS application execution (further details on this process can be found in
D4.3.2).

To conclude, it is worth noticing that the SPECS application development mainly focuses on
the development of ad-hoc Chef cookbooks for the security mechanisms to be offered. When
cookbooks are already available, the only additional work consists in the preparation of the
metadata and of the SLA templates used to automate the SLA implementation.

Mechanisms’ metadata is defined according to the format discussed in D1.3 (related to the
Enforcement API). An example of metadata, defined for the WebPool mechanism, can be
found in D4.3.2, while an example of SLA template related to the SPECS Secure Web Container
Application is reported online at the address http://www.specs-project.eu/resources/specs-
security-sla-model/.

SPECS Project - Deliverable 5.1.3 11

Secure Provisioning of Cloud services based on SLA Management

5. The Web Container

A web developer, representing the End-User of this user story, aims at acquiring a web
container, to run his/her own application, which fulfils some security requirements. The web
container is represented by one or more Virtual Machines (VMs) provided by one or more
[aaS CSPs. It is reasonable to suppose that the End-User is not an expert in security field:
she/he is aware of the technologies that may be involved (SSL, authentication and
authorization protocols and so on), but she/he is not aware of the best practices and of how to
protect her/his application from malicious attacks. For this reason, the acquisition of VMs and
the enforcement of security features are accomplished through SPECS.

5.1. Development Final Results

The development of the application is completed, and a preliminary testing campaign has
been successfully accomplished. It is now possible to use the "alpha" release of the
application, deploying it from the repository website.

According to D5.1.2, the web container application covers the Validation Scenarios reported
in Table 1 with the indication of the percentage of coverage.

% of coverage
Secure_Web_Container_Selection 100%
Secure_Web_Container_Brokering 100%
Secure_Web_Container_TLS enhanced 100%
Secure_Web_Container_SVA _enhanced_alert 100%
Secure_Web_Container TLS SVA_enhanced_violation 100%
Secure_Web_Container_TLS_ multitenancy 100%
Secure_Web_Container_Web_Pool_Replication_enhanced_alert 100%
Secure_Web_Container_Web_Pool_Replication_enhanced_violation 100%

Table 1. Mapping Web Container on VSs (excerpt from D5.1.2)
The SPECS components solicited by the VA are here listed (see D5.12 for details):

* Core Modules
o Negotiation: SLO Manager, Supply Chain Manager, Security Reasoner
o Enforcement: Planning, Implementation, Diagnosis, RDS, Broker
o Monitoring: Event Hub, Event Aggregator, Event Archiver, Monitoring Policy
Filter, SLO Metric Exporter
* Security Mechanisms: Web Pool, TLS, SVA, DoS.

Table 2 reports an excerpt form a table of D5.1.2 showing how the Web Container application
is a refinement of the homonymous User Story and is into one-to-one relation with the Secure
Web Container in the solution portfolio.

Validation . solution
. L. User Stories .
Applications portfolio
Web Container Web Container Secure .Web
Container

Table 2. Mapping among VAs, solution portfolio and User Stories (excerpt from D5.1.2)

SPECS Project - Deliverable 5.1.3 12

Secure Provisioning of Cloud services based on SLA Management

Here, a brief discussion of the impact of this Validation Application is reported. The objective
is to evaluate how much of the validation-related KPIs (defined in D5.1.2) is covered by the
Web Container. To accomplish to this task, Table 3 reports on the row the KPIs that are
related to the execution of VAs. The table has two columns: the first reports which should be
the value of the KPIs if Web Container was the only available application; the second reports
these values considering all the VAs.

Only Web All VAs
Container
ECy 16.67% 66.67%
ECrs 85.7% 100%
ECic 33.33% 100%
ECsia 73.6% 78.9%
ECss 58% 100%

Table 3. Impact of Web Container on the Validation KPIs

5.2. Application Description

A web developer, representing the End-User of this user story, aims at acquiring a web
container, to run his/her own application, which fulfils some security requirements. The web
container is represented by one or more Virtual Machines (VMs) provided by one or more
[aaS CSPs. It is reasonable to suppose that the End-User is not an expert in security field:
she/he is aware of the technologies that may be involved (SSL, authentication and
authorization protocols and so on), but she/he is not aware of the best practices and of how to
protect her/his application from malicious attacks. For this reason, the acquisition of VMs and
the enforcement of security features are accomplished through SPECS.

By means of the SPECS framework, it would be possible to:

* Offer a single interface to select among different offerings on different providers;
* Enable web developer to specify the needed security capabilities on the target web
container explicitly, selecting the security controls
* Automatically configure the VM(s) in order to enforce the security controls requested
* Offers a set of security metrics in order to concretely monitor the respect of the
security requests
* Automatically remediate to (some of) alerts and violation that may occur to the SLA
associated with the web container
To develop this application, the phases of the process described in Section 4 have been
followed:

1. Cloud Service Definition, Figure 3 shows the UML Activity Diagram that explains the
flow starting from the selection of the services the End-User wants to acquire to the
monitoring of the metrics he has negotiated and signed into the SLA;

SPECS Project - Deliverable 5.1.3 13

Secure Provisioning of Cloud services based on SLA Management

2.

3.

Select Service Select Cloud \(Select security
to acquire Service Provider capabilities to add to

the service.
for each
security
control
selected

Select the security
metrics to monitor
Select the

security Control

\

\/ Specify the
importance score and
Assign a score the SLO to achieve

according to the
Choose and Submit
the SLA Offer
Sign the SLA

importance

(W
|
|

1
Acquire Resources form Configure each |
selected CSP resource |
J
W
Monitor metrics
negotiated

Figure 3. UML Activity Diagram of the Web Container

Security Mechanisms Preparation, the web container application uses the following
Security Mechanisms: WebPool, TLS, SVA, E2EE, DBB, DOS;
SLA Template Preparation, the SLA Template can be found at
https://bitbucket.org/specs-team/specs-app-
webcontainer/src/180e033efedb3b20302729a46f7a13713d84ffdb/src/main/resour
ces/sla_template/wsag_SecureWebContainer_ClientEncryption_Replication_v3clean.x
ml;
SLA Template and Security Mechanisms Deployment, to deploy the application
three Virtual Machines are needed; the chef scripts that automate the installation of
the Security Mechanisms as well of all the needed artefacts and executables:

o Apache Server https://bitbucket.org/specs-team/specs-mechanism-

enforcement-

SPECS Project - Deliverable 5.1.3 14

Secure Provisioning of Cloud services based on SLA Management

webpool/src/f45e81aa50ebe733253d69d257795578ca956e9a/recipes/apach
e.rb?at=master

o HA Proxy https://bitbucket.org/specs-team/specs-mechanism-enforcement-
webpool/src/f45e81aa50ebe733253d69d257795578ca956€e9a/recipes/hapro
xy.rb?at=master

o Nginx Server https://bitbucket.org/specs-team/specs-mechanism-
enforcement-
webpool/src/f45e81aa50ebe733253d69d257795578ca956€e9a/recipes/nginx.
rb?at=master

A full detailed architectural description of the application is out of the scope of this
deliverable. Technical documentation is available in the SPECS repository.

5.3. Repository

The repository containing all the data and artefacts necessary to understand, use and improve
the web container application is:

https://bitbucket.org/specs-team/specs-app-webcontainer

This repository contains the specs-app-webcontainer-demo which is the application.

5.4. Installation
The installation guide covers two scenarios:

* install using precompiled binaries (SPECS recommended);
* compile and install from source (for advanced users);

5.4.1. Install using precompiled binaries
The precompiled binaries are available under the SPECS Artefact Repository [13].

Prerequisites:

* Oracle Java JDK 7;

* Java Servlet/Web Container (recommended: Apache Tomcat 7.0.x [10]);

* a running SPECS SLA Platform with Monitoring, Negotiation and Enforcement
modules.

Installation steps:

* download the web application archive (war) file from the artefact repository:
http://ftp.specs-project.eu/public/artifacts/applications/secure-web-
container/webcontainer-app-0.0.1-SNAPSHOT.war

* the war file has to be deployed in the java servlet/web container. If Apache Tomcat
7.0.x is used, the war file needs to be copied into the “/webapps” folder inside the
home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

5.4.2. Compile and install from source
A developer should have the following prerequisites:
* aGitclient[12];
* Apache Maven 3.3.x [11];

* aJava 7 Development Kit;
* Java web container (recommended Apache Tomcat 7.0.x [10]);

SPECS Project - Deliverable 5.1.3 15

Secure Provisioning of Cloud services based on SLA Management

* a running SPECS SLA Platform with Monitoring, Negotiation and Enforcement
modules.

Installation steps:

* clone the Bitbucket repository:
o gitclone git@bitbucket.org:specs-team/specs-app-webcontainer.git
* under specs-app-webcontainer
o run: mvn install
o run: mvn package
Maven generates a .war file and automatically stores it in the “/target” folder. By following the
steps at Section 5.4.1 the application could be deployed and used.

5.5. Usage

Once the End-User runs the Web Container application, he/she is provided a simple user
interface through which he/she can choose first the capabilities he/she wants to add to the
service; for each of them the End-User has to select the security controls and finally he/she
has to define the Service Level Objectives he/she wants to be guaranteed. Once the End-User
has selected all those information, one or more Service Level Agreement offers are shown to
the EU, and he/she has to select and sign one of them. The process just described is the
Negotiation phase.

Then he/she has to implement the signed SLA so that all the components that are necessary to
guarantee the signed SLA are deployed on many virtual machines that are acquired from an
external service provider. During the implementation process, whose time varies depending
on how many resources have to be acquired and on how many components have to be
installed, the user is informed about the current status of the implementation phase; once it
has finished, the user has the opportunity to get updated information about each metric
defined into the SLA: in particular he/she can access to a web page where there is a summary
of all those metrics, and for each of them there is the value signed into the SLA and the values
measured using SPECS Monitoring System.

Two screenshots of the application are here reported.

e Home CSP Ranking Negotiate SLA Sign SLA Implement SLA Monitor SLA

Start Select Service Select Provider Select Capabilities Select Security Controls Define Agreement Terms SLA Overview

Previous Next

Security Capabilities as a Service

Select one or more security capabilities that you want to add to the service.
A security capability is a collection of security controls, i.e. safeguards and countermeasures, that can be applied over your services.
In case you do not select any capability, the service will be delivered with no additional security features or guarantees.

The SLO is represented by a comparison expression over a metric. If you are not a security expert just adopt the default values and go ahead with the next step.

Capability Name Description

Vulnerability Scanning Capability of detecting the vulnerabilities a machine (along with the installed software) is subject to.

DOS Detection and Mitigation Capability of detecting and reacting to security attacks aimed at distrupting a system's availability.

Web Resilience Capability of surviving to security incidents involving a web server, by implementing proper strategies aimed at

preserving business continuity, achieved through redundancy and/or diversity.

Figure 4. Selection of Capabilities

SPECS Project - Deliverable 5.1.3 16

Secure Provisioning of Cloud services based on SLA Management

35 Home CSP Ranking Negotiate SLA Sign SLA Implement SLA Monitor SLA

Vulnerability Scanning

@Vulnerability Report Max Age
The frequency of report generation (e.g., a value of "7*24h" requires that reports are generated at least once per week).
Importance: Mebium [

Expression: equal K 24 hours

Show metric details

@Vulnerability List Max Age
The frequency of vulnerability list updates (e.g., a value of "24h" requires that the list of known vulnerabilities is updated at least once per day).
Importance: MEeDIUM [

Expression: equal B hours

Show metric details

DOS Detection and Mitigation

Figure 5. Definition of metrics values

5.6. Test

A testing activity has been conducted having no failed tests. Unit tests allow to cover the
66.9% of the branches of the entire webcontainer-app software:

* eu.specsproject.app.sws.backend reached the 68.1%
* eu.specsproject.app.sws.frontend.rest reached 69.9%
o eu.specsproject.app.sws.frontend.rest.entities reached 100%
o eu.specsproject.app.sws.frontend.struts reached 56.2%
* eu.specsproject.app.sws.utility reached 67.7%
Qualitative and quantitative details of these tests are in Appendix A.

SPECS Project - Deliverable 5.1.3 17

Secure Provisioning of Cloud services based on SLA Management

6. The Metric Catalogue

The Catalogue is proposed as an application to help the users to manage easily a catalogue of
Security Metrics defined according to a specification. The creation or the display of a Security
Metric through an XML that is compliant with a specific XSD is not simple (obviously also the
update is not a simple operation) for the mean computer user not expert in programming. The
Metric Catalogue consists of one or more SQLite [9] databases containing the Security Metrics
managed by the users.

6.1. Development Final Results

The development of the application is completed, and a preliminary testing campaign has
been successfully accomplished. It is now possible to use the "alpha" release of the
application, deploying it from the repository website.

According to D5.1.2, the metric catalogue application covers the Validation Scenarios reported
in Table 1 with the indication of the percentage of coverage.

% of coverage

Metric_Definition 100%
Table 4. Mapping Metric Catalogue on VSs (excerpt from D5.1.2)

The application does not solicit any SPECS components with the exception of the SLA
Platform.

Differently from the other SPECS Validation Applications, the Metric Catalogue is not a
refinement of any User Story neither has a relation to the solution portfolio. This
notwithstanding, the Metric Catalogue is an application that has a strong impact on all the
other SPECS VAs which use Metric Catalogue to define and implement new security metrics.
Metric Catalogue can be seen as a sort of utility application for SPECS.

Here, a brief discussion of the impact of this Validation Application is reported. The objective
is to evaluate how much of the validation-related KPIs (defined in D5.1.2) is covered by the
Metric Catalogue. To accomplish to this task, Table 5 reports on the row the KPIs that are
related to the execution of VAs. The table has two columns: the first reports which should be
the value of the KPIs if Metric Catalogue was the only available application; the second reports
these values considering all the VAs.

Only Metric All VAs
Catalogue
ECy 16.67% 66.67%
ECrs 0% 100%
ECic 0% 100%
ECsLa 0% 78.9%
ECss 23%! 100%

Table 5. Impact of Metric Catalogue on the Validation KPIs

1 This percentage takes into account SPECS platform requirements over all requirements

SPECS Project - Deliverable 5.1.3 18

Secure Provisioning of Cloud services based on SLA Management

6.2. Application Description

Through a web interface each user can manage a database that represents the catalogue. The
user is guided in the creation of a new Security Metric through a form that explains each field
to add to create the Security Metric; the application will transform the input information in
the form into an XML file.

The display of a Security Metric is not simple through an XML, so the Security Metric
Catalogue allows displaying a Security Metric in a structured way to get all the information
about it easily. Moreover each Security Metric can be updated using the same structured form
to create it. Finally the user can retrieve a backup of the metrics or can restore it very easily.
Once the EU runs the Security Metric Catalogue application, he/she is provided a simple user
interface through which he/she can choose the section of interest.

To develop this application, the phases of the process described in section 4 have been
followed with a strong simplification due to the nature of the application. As stated before,
Metric Catalogue is a utility application whose aim is not to offer SLA based - security
enforced services. It simply allows CRUD (Create, Read, Update ad Delete) operations on
security metrics. Hence only the Cloud Service Definition phase has been accomplished:

1. Cloud Service Definition, the functionalities of the Metric Catalogue are depicted in
the UML Use Case Diagram in Figure 6. Each functionality is described by a separate
UML Activity Diagram: Store Metric, allowing to store a new Security Metric from its
XML representation (Figure 7); Store Metric Form: allowing to create a new Security
Metric compiling a form (Figure 8); Retrieve Metric (Figure 9); Get Metric XML (Figure
10); Remove Metric (Figure 11); Update Metric (Figure 12); Backup Metrics (Figure
13) and Restore Metrics (Figure 14).

User Remove
Metric
tore Metric
Using Form
Retrieve
Metric
Restore Metric Backup
Get Metric backup Update Metric

Figure 6. Overall UML Use Case Diagram of the Metric Catalogue

SPECS Project - Deliverable 5.1.3 19

Secure Provisioning of Cloud services based on SLA Management

[There is no duplicated Ref ID]

Figure 7. Store Metric UML Activity Diagram

[Concrete metric)

[There is no duplicated Ref ID]

Figure 8. Store Metric Using Form UML Activity Diagram

G50 D &8 —

Figure 9. Retrieve Metric UML Activity Diagram

G50 -GN -

Figure 10. Get Metric XML UML Activity Diagram

- -G -G —

Figure 11. Remove Metric UML Activity Diagram

@<

Figure 12. Update Metric UML Activity Diagram

SPECS Project - Deliverable 5.1.3 20

Secure Provisioning of Cloud services based on SLA Management

. > Select Metrics Database Section > click Get Metrics Backup I 5@

Figure 13. Backup Metrics UML Activity Diagram

. ~ Select Metrics Database Section ;l Choose the file to restore S click Restore Metric Backup)%@)

Figure 14. Restore Metrics UML Activity Diagram

A full detailed architectural description of the application is out of the scope of this
deliverable. Technical documentation is available in the SPECS repository.

6.3. Repository

The repository containing all the data and artefacts necessary to understand, use and improve
the web container application is:

https://bitbucket.org/specs-team/specs-app-security_metric_catalogue

6.4. Installation
The installation guide covers two scenarios:

* install using precompiled binaries (SPECS recommended);
* compile and install from source (for advanced users);

6.4.1. Install using precompiled binaries
The precompiled binaries are available under the SPECS Artefact Repository [13].

Prerequisites:

* Oracle Java JDK 7;

* SQLite 3.9x [9];

* Java Servlet/Web Container (recommended: Apache Tomcat 7.0.x [10]);
* arunning SPECS SLA Platform.

Installation steps:

* download the web application archive (war) file from the artefact repository:
http://ftp.specs-project.eu/public/artifacts/applications/metric-catalogue-
app/metric_catalogue-app-0.0.1-SNAPSHOT.war

* the war file has to be deployed in the java servlet/web container. If Apache Tomcat
7.0.x is used, the war file needs to be copied into the “/webapps” folder inside the
home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

6.4.2. Compile and install from source

A developer should have the following prerequisites:

* aGitclient [12];

* Apache Maven 3.3.x [11];

* SQLite 3.9x [9];

* aJava 7 Development Kit;

* Java web container (recommended Apache Tomcat 7.0.x [10]);
* arunning SPECS SLA Platform.

SPECS Project - Deliverable 5.1.3 21

Secure Provisioning of Cloud services based on SLA Management

Installation steps:

* clone the Bitbucket repository:
o gitclone git@bitbucket.org:specs-team/ specs-app-security_metric_catalogue.git
* under specs-app-security_metric_catalogue
o run: mvn install
o run: mvn package
Maven generates a .war file and automatically stores it in the “/target” folder. By following the
steps at Section 6.4.1 the application could be deployed and used.

6.5. Usage

Once the EU runs the Metric Catalogue application, he/she is provided a simple user interface
through which he/she can choose the section of interest. There is a section for each of the
functionalities previously described. Given the simplicity of the structure of the application,
some screenshots are reported in the following figures.

Home Store Metric Store Metric Form Retrieve/Remove Metric Update Metric Metrics Database

Store Security Metric Using a Form

Security Metric Type

Choose the type of security metric to be stored

© Abstract Metric () Concrete Metric

Insert Abstract Security Metric to be stored

Insert all data that represent the Abstract Security Metric.

ABSTRACT METRIC
Attribute Value

Name

Figure 15. Store a Metric Using a Form

SPECS Project - Deliverable 5.1.3 22

Secure Provisioning of Cloud services based on SLA Management

Home Store Metr Store Metric Form Retrieve/Remove Metric

Retrieve Security Metric %

Security Metric Type

Choose the type of security metric to be stored

© Abstract Metric) Concrete Metric

Choose the id of Security Metric to be retrieved or removed

Choose the reference id that represent the unique identifier of the Security Metric that you want retrieve from catalogue or remove from it.

Metric reference Id:
AMD_CertStatusRequest (<]

GET METRIC XML | REMOVE METRIC

Figure 16. Retrieve a Security Metric

Get Metrics Backup

Click on "GET METRICS BACKUP" button to retrieve a backup of the metrics database.

GET METRIC BACKUP

Restore Metrics Backup
Click on "RESTORE METRICS BACKUP* button to restore a backup of the metrics database.

Please specify a file:
Scegli file Nessun file selezionato

RESTORE METRIC BACKUP

Figure 17. Manage the Security Metrics backup

6.6. Test

A testing activity has been conducted having no failed tests. Unit tests allow to cover the
71.8% of the branches of the entire specs-app-security_metric_catalogue software:

* eu.specsproject.app.metriccatalogue.backend reached the 83.8%

* eu.specsproject.app.metriccatalogue.frontend.rest reached 63.3%

* eu.specsproject.app.metriccatalogue.utility reached 46.4%

* eu.specsproject.app.metriccatalogue.rest.entities reached 100%
Qualitative and quantitative details of these tests are in Appendix B.

SPECS Project - Deliverable 5.1.3 23

Secure Provisioning of Cloud services based on SLA Management

7. Conclusions

This deliverable provided installation and usage procedures of two Validation Applications of
SPECS: Secure Web Container and Security Metric Catalogue.

The testing activity has not addressed any meaningful issue and, hence, the applications can
be downloaded and tested also by external users as the source code is available in the
reported repositories.

The coverage levels reached in the unit testing activities are 66.9% for Web Container and
71.8% for the Metric Catalogue.

The importance of the Web Container application is evidenced by the crucial role it plays in
the coverage of the Key Concerns, as well as the relationship between this application and the
SPECS portfolio scenario. The later feature here highlights the possibility to exploit this
application for building real world industrial products.

On the other hand, the Metric Catalogue application has a prime role among all the other
SPECS applications since many SPECS application usage scenarios need the services provided
by Metric Catalogue.

SPECS Project - Deliverable 5.1.3 24

Secure Provisioning of Cloud services based on SLA Management

8. Bibliography

[1] “Unified Modeling Language version 2.5”. Object Management Group. 2015.
[2] http://www.specs-project.eu/solutions-portofolio/secure-web-container/
[3] http://docs.chef.io/
[4]
[5]

G.]. Myers, C. Sandler. “The Art of Software Testing”. John Wiley & Sons. 2004

K. Naik, P. Tripathy. “Software Testing and Quality Assurance: Theory and Practice.

John Wiley & Sons. 2008

http://junit.org

http://wiremock.org

http://www.sonarqube.org

http://www.sqlite.org

0] http://tomcat.apache.org

11] http://maven.apache.org

12] http://git-scm.com

13] SPECS Artifact Repository, [Online], http://ftp.specs-project.eu/public/artifacts/
[14] http://sonar.services.ieat.ro

— O 0 J 3
—_—

[— [— p— f— — f— f—

SPECS Project - Deliverable 5.1.3

»

25

Secure Provisioning of Cloud services based on SLA Management

Appendix A - Web Container Unit Tests

This appendix details the artefacts produced to test the Web Container application as well as
reports the testing results in term of branch coverage.

Fourteen tests have been defined and reported in Table 6, Table 7, Table 8, Table 9, Table 10,
Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18 and Table 19.

Test ID getSlaTemplateTest

The goal is to verify that the API listen on the path “/slaTemplate”
returns the template of the SLA returned by the call to the api
“/slo-manager-api/sla-negotiation/sla-templates/{template_id}”
(GET request)

Test objective

Inputs Get request to “/slaTemplate” path

Expected results | A 200 OK response with the value of the sla template in the body
Outputs 200 OK

Comments All operations executed successfully

Table 6. Details of getSlaTemplateTest

Test ID signTest

The goal is to verify that the API listen on the path “/sign” put the
Test objective state of the sla template sent in the body in sign using the api
“/sla-manager/cloud-sla/slas/ {sla_id}/sign” (POST request)

Inputs Post request to “/sign” path

A 204 No Content response that represents the correct execution

Expected results of the request

Outputs 204 No Content

Comments All operations executed successfully

Table 7. Details of signTest

Test ID submitTest

The goal is to verify that the API listen on the path “/submit” put
Test objective the sla template sent in the body using the api “/sla-
manager/cloud-sla/slas/ {sla_id}” (POST request)

Inputs Post request to “/submit” path

A 204 No Content response that represents the correct execution

Expected results of the request

Outputs 204 No Content

Comments All operations executed successfully

Table 8. Details of submitTest

Test ID implementTest

The goal is to verify that the API listen on the path “/implement”
put the state of the sla identified by the id sent in the body in
Test objective observe using the api “/sla-manager/cloud-
sla/slas/{sla_id}/observe” and so it verifies that the sla is returned
correctly to implement it (POST request)

SPECS Project - Deliverable 5.1.3 26

Secure Provisioning of Cloud services based on SLA Management

Inputs

Post request to “/implement” path

Expected results

A 204 No Content response that represents the correct execution
of the request

Outputs 204 No Content
Comments All operations executed successfully
Table 9. Details of implementTest
Test ID implementedInfoTest
The goal is to verify that the API listen on the path

Test objective

“/implementedInfo” works properly

Inputs

Post request to “/implementedInfo” path

Expected results

A 200 OK response with the implemented info in the body

Outputs 200 OK
Comments All operations executed successfully

Table 10. Details of implementedInfoTest
Test ID implementedMetricValuesTest

Test objective

The goal is to verify that the API listen on the path “/metricValues”
works properly

Inputs

Post request to “/metricValues” path

Expected results

A 200 OK response with the implemented metrics info in the body

Outputs 200 OK
Comments All operations executed successfully

Table 11. Details of implementedMetricValuesTest
Test ID getSlaOffersTest

Test objective

The goal is to verify that the API listen on the path “/slaoffers”
returns the list of the SLA offers related to the SLA sent in the body.
The sla offers are returned by the call to the api “/slo-manager-
api/sla-negotiation/sla-templates/{template_id}/slaoffers” (POST
request)

Inputs

Post request to “/slaoffers” path

Expected results

A 200 OK response with the list of the sla offers in the body

Outputs 200 OK

Comments All operations executed successfully
Table 12. Details of getSlaOffersTest

Test ID getSlaOfferTest

Test objective

The goal is to verify that the API listen on the path “/slaOffer”
returns the value of the SLA offer identified by the id sent in the
body of the request. To retrieve the sla offer is used the call to the
api “/slo-manager-api/sla-negotiation/sla-
templates/{template_id}/slaoffers/{offer_id}” (POST request)

Inputs

Post request to “/slaOffer” path

SPECS Project - Deliverable 5.1.3

27

Secure Provisioning of Cloud services based on SLA Management

Expected results

A 200 OK response with the value of the sla offer in the body

Outputs 200 OK

Comments All operations executed successfully
Table 13. Details of getSlaOfferTest

Test ID implementationInfoTest

Test objective

The goal is to verify that all methods of the Implementationlnfo
class works fine. In particular this test verifies that the constructor
returns an instance of the class and that all the get and set methods
work properly

Inputs

The values of the attributes to call the set methods

Expected results

The constructor of the class returns the required instance correctly
and all set and get methods works fine

An instance of the Implementationlnfo class that has all the

Outputs attributes set with the required values
Comments All operations executed successfully

Table 14. Details of implementedInfoTest
Test ID metricInfoTest

Test objective

The goal is to verify that all methods of the MetricInfo class works
fine. In particular this test verifies that the constructor returns an
instance of the class and that all the get and set methods work

properly

Inputs

The values of the attributes to call the set methods

Expected results

The constructor of the class returns the required instance correctly
and all set and get methods works fine

An instance of the MetricIinfo class that has all the attributes set

Outputs with the required values
Comments All operations executed successfully

Table 15. Details of implementedInfoTest
Test ID sqliteHelperTest

Test objective

The goal is to verify that all methods of the SQLiteHelper class
works fine. In particular this test verifies that the constructor
returns an instance of the class and that all the get and set methods
work properly

Inputs

The values of the attributes to call the set methods

Expected results

The constructor of the class returns the required instance correctly
and all set and get methods works fine

An instance of the SQLiteHelper class that has all the attributes set

Outputs with the required values

Comments All operations executed successfully
Table 16. Details of sqliteHelperTest

Test ID implementActionTest

SPECS Project - Deliverable 5.1.3

28

Secure Provisioning of Cloud services based on SLA Management

Test objective

The goal is to verify that the ImplementAction Struts works fine
and that it returns a not null ActionForward Object.

Inputs

Call to execute method

Expected results

An ActionForward Object

Outputs Not Null ActionFarward Object
Comments All operations executed successfully

Table 17. Details of implementedActionTest
Test ID observeActionTest

Test objective

The goal is to verify that the ObserveAction Struts works fine and
that it returns a not null ActionForward Object.

Inputs

Call to execute method

Expected results

An ActionForward Object

Outputs Not Null ActionFarward Object
Comments All operations executed successfully

Table 18. Details of observeActionTest
Test ID signActionTest

Test objective

The goal is to verify that the SignAction Struts works fine and that
it returns a not null ActionForward Object.

Inputs

Call to execute method

Expected results

An ActionForward Object

Outputs

Not Null ActionFarward Object

Comments

All operations executed successfully

Table 19. Details of signActionTest

Once the tests have been executed, SonarQube elaborates the results and produce a graphical
representation of the code coverage reported in Figure 18: the colors go from red (0%
coverage) to bright green (100% coverage).

SPECS Project - Deliverable 5.1.3 29

Secure Provisioning of Cloud services based on SLA Management

PROJECTS

Code Coverage
Size: Lines of code Color: Coverage

src/main/java/eu/specsproject/app/sws/
backend

src/main/java/eu/sp.. | src/main/java/eu/s..
frontend/rest utility

src/main/java/eu/specsproject/app/sws/
frontend/struts

A > 5 webcontainer-app

Figure 18. Coverage of the Web Container application (by SonarQube)

SPECS Project - Deliverable 5.1.3

30

Secure Provisioning of Cloud services based on SLA Management

Appendix B - Metric Catalogue Unit Tests

This appendix details the artefacts produced to test the Web Container application as well as
reports the testing results in term of branch coverage.

Seven tests have been executed: they are synthetically described in Table 20, Table 21, Table
22, Table 23, Table 24, Table 25, Table 26 and Table 27.

Test ID

SQLiteHelperTest

Test objective

The goal is to verify that the constructor of the class SQLiteHelper
returns a correct instance of the class

Inputs

n.a.

Expected results

An instance of the class SQLiteHelper that allows the connection to
database

Outputs The instance of the SQLiteHelper class
Comments All operations executed successfully

Table 20. Details of SQLiteHelperTest
Test ID retrieveMetricsTest

Test objective

The goal is to verify that the API listen on the path “/retrieve”
returns the list of the security metrics returned by the call to the
api “/metric-catalogue/cloud-sla/security-metrics” (GET request)

Inputs

Get request to “/retrieve” path

Expected results

A 200 OK response with the list of security metrics in the body

Outputs 200 OK
Comments All operations executed successfully

Table 21. Details of retrieveMetricTest
Test ID storeMetricTest

Test objective

The goal is to verify that the API listen on the path “/store” stores
the value of the security metric sent in the body using the api
“/metric-catalogue/cloud-sla/security-metrics” (POST request)

Inputs

Post request to “/store” path

Expected results

A 200 OK response with the id of the stored security metric in the
body

Outputs 200 OK

Comments All operations executed successfully
Table 22. Details of storeMetricTest

Test ID updateMetricTest

Test objective

The goal is to verify that the API listen on the path “/update”
updates the value of the security metric identified by the id param
with the value of the metric sent in the body using the api
“/metric-catalogue/cloud-sla/security-metrics/{id}" (PUT
request)

Inputs

Put request to “/update” path

SPECS Project - Deliverable 5.1.3

31

Secure Provisioning of Cloud services based on SLA Management

Expected results

A 200 OK response with the id of the updated security metric in
the body

Outputs 200 OK
Comments All operations executed successfully

Table 23. Details of updateMetricTest
Test ID retrieveMetricByldTest

Test objective

The goal is to verify that the API listen on the path “/retrieve/{id}”
returns the security metric identified by the id param calling the
api “/metric-catalogue/cloud-sla/security-metrics/{id}” (GET
request)

Inputs

Get request to “/retrieve/{id}” path

Expected results

A 200 OK response with the value of the security metric identified
by the id param in the body

Outputs 200 OK
Comments All operations executed successfully

Table 24. Details of retrieveMetricTest
Test ID removeMetricTest

Test objective

The goal is to verify that the API listen on the path “/remove/{id}”
removes the security metric identified by the id param calling the
api “/metric-catalogue/cloud-sla/security-metrics/{id}” (DELETE
request)

Inputs

Delete request to “/remove/{id}” path

Expected results

A 200 OK response with the value of the id of the security metric
removed in the body

Outputs 200 OK
Comments All operations executed successfully
Table 25. Details of removeMetricTest
Test ID getMetricBackupTest
The goal is to verify that the API listen on the path

Test objective

“/backupMetrics/{dbName}” returns the file that represents the
backup of the database of the security metrics calling the api
“/metric-catalogue/cloud-sla/security-metrics/backup/{dbname}”
(GET request)

Inputs

Get request to “/backupMetrics/{dbName}” path

Expected results

A 200 OK response with the backup file in the body

Outputs 200 OK
Comments All operations executed successfully
Table 26. Details of getMetricBackupTest
Test ID getMetricXMLTest
Test objective The goal is to verify that the API listen on the path

“/retrieve/{metric_id}.xml” returns the xml file that contains the

SPECS Project - Deliverable 5.1.3

32

Secure Provisioning of Cloud services based on SLA Management

value of the security metric identified by the metric_id param
calling the api “/metric-catalogue/cloud-sla/security-
metrics/{metric_id}.xml” (GET request)

Inputs Get request to “/retrieve/{metric_id}.xml“ path

Expected results | A 200 OK response with the xml file in the body
Outputs 200 OK

Comments All operations executed successfully

Table 27. Details of getMetricXMLTest

Once the tests have been executed, SonarQube elaborates the results and produce a graphical
representation of the code coverage reported in Figure 19: the colors go from red (0%
coverage) to bright green (100% coverage).

PROJECTS

Code Coverage
Size: Lines of code Color: Coverage

src/main/java/eu/specsproject/app/metriccatalogue/
backend

src/main/java/eu/specsproject/app/metriccatalogue/
frontend/rest

src/main/java/e...
rest/entities

> 5 specs-app-metric_catalogue

Figure 19. Coverage of the Metric Catalogue application (by SonarQube)

SPECS Project - Deliverable 5.1.3 33

