Secure Provisioning of Cloud Services
based on SLA Management

SPECS Project - Deliverable 3.4.1

SPECS monitoring services
Initial

Version 1.1
15 February 2016

|

SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

SPECS monitoring services - Initial

Deliverable information

Deliverable no.:

D3.4.1

Deliverable title:

SPECS monitoring services - Initial

Deliverable nature: Prototype

Dissemination level: Public

Contractual delivery: 18 February 2016

Actual delivery date: 18 February 2016

Author(s): Georgiana Macariu, Bogdan Irimie (IeAT), Miha Stopar (XLAB),
Vincenzo Cinque (CeRICT)

Contributors: Jolanda Modic (XLAB), Valentina Casola (CeRICT), Ciprian
Craciun, Dana Petcu (IeAT)

Reviewers: Umberto Villano (CeRICT), Silvio La Porta (EMC)

Task contributing to the
deliverable:

T34

Total number of pages:

29

SPECS Project - Deliverable 3.4.1 2

SPECS monitoring services - Initial

Executive summary

This deliverable is associated with the prototype implementation of the monitoring module
(Task 3.4).

The goal of this document is to: (i) report the status of implementation activities, (ii) provide
links to the SPECS public repository where the source code is available, (iii) give the initial
instructions on how to install and use the code (even if the full details are reported on-line in
the repository), especially for those components that are still in progress.

Finally, a plan for the future implementation activities is discussed.

SPECS Project - Deliverable 3.4.1 3

SPECS monitoring services - Initial

Table of contents

Deliverable INFOTMAtION ... bbb 2
EXECULIVE SUIMIMIATY ..rvueurerseseessessesssessssssesssessesssessesssesssessesssessesssesssssssssssssssssessssssssssssessssssasssss s s s ssssss s sssasens 3
T 0] (0 a0 117 L 4
DTG G0 i Ko PP 5
03 TG 3 0 1 [P 6
0 001 10T LU 0 (o) o PSPPI 7
2. Relationship with other delivVerables...... s 8
TR (0 U0 0 oY o o0) N 9
3.1. Status of development ACtIVItIES. ..o sess s sessees 9

S 70 2= ¢ ol 11 o TN 12

S 70770 SR 01 151 7= = (0) o LN 14
3.2.2. L0 LSE 16

4, MONILOrING SYSTEIMS ...t bbb 18
4.1. SVA Monitoring System and AdaPLermssssssssssssssssssssssssssssssssssssnes 18
4.1.1. Status of INtegration ACtIVItIES ... ssssas 18
4.1.1.1. SVA agent - Chef FECIPE ..t sssssssssssssssnes 19
4.1.1.2. SVA adapter — Chef reCiPe....oeerssessssssssssssssess s ssssssssssssssssnes 19

0 /20 § 0 1) = -) o PSP 19
4.1.3. L0 LSE 19

4.2, OSSEC Monitoring System and AdApPLer.....essssssssssssssssssssssssssssssssssssnes 19
4.2.1. Status of INtegration ACtIVILIES ..o sssssas 19
4.2.1.1. OSSEC agent - Chef T@CIPE.....ccuuurrreresrsrssssssssssssssssssesssesssssssssssssssssssssssssssssssssssssssas 20
4.2.1.2. OSSEC Server — Chef FECIPEoomrrmeeriisisssssesssssssssssssssesssssssssssssssssssssssssssssssssssssnes 20

20N 1 0 1) - 1 - 0) o IO PSP 20
4.2.3. L0 LSE 21

4.3. OpenVAS Monitoring System and AdApPLer ... 22
4.3.1. Status of INtegration ACtIVILIES ...t 22
4.3.1.1. OpenVAS Manager and Scanner - Chef managers recipeeeeseeseennes 23
4.3.1.2. OpenVAS Client - Chef client reCIPE ... ssesssssssssssssnas 23

TS 7/ § 0 1) = I - 0) o ISP 23
4.3.3. L0 LSE 24

4.4, NMAP Monitoring System and AdAPLereemssssssssssssssssssssssssssssssssssnes 24
4.4.1. Status of INtegration ACtIVILIES ..o sssssas 24
4.4.2. INSTAIALION touierrerecie s 26
4.4.3. L0 LSE 26

TR 00) s (ol 10 3 T) o PPN 28
LT 2310 1107 24 =1 0] 1|2 29

SPECS Project - Deliverable 3.4.1 4

SPECS monitoring services - Initial

Index of figures

Figure 1. Relationships with other deliverables ... 8
Figure 2. Architecture of the EVENt HUD ... ssssssssssssssssssssssssssssesssenns 12
Figure 3: Architecture of monitoring system based 0n NMapceememmeeseeseesessesssesssseens 25
Figure 4. Monitoring module implementation Plan ... 28

SPECS Project - Deliverable 3.4.1 5

SPECS monitoring services - Initial

Index of tables

Table 1. SPECS Components related to the Monitoring module and related requirements
Table 2. Monitoring Module Implementation Status

SPECS Project - Deliverable 3.4.1

SPECS monitoring services - Initial

1. Introduction

The SPECS Monitoring module observes the SLA status by collecting information about the
state of target services that is relevant to the set of signed SLAs, and by forwarding
notifications of possible alerts and violations to the Enforcement module. Any changes in
target services that may affect the validity of any signed SLA are reported to the Enforcement
module, which is in charge of the main reasoning and analysis parts (cf. Diagnosis
component).

Monitoring components are configured by the Enforcement module in the SLA implemen-
tation phase after each new SLA is signed. The Enforcement module extracts negotiated
security metrics in order to properly configure monitoring systems for associated target
services (to determine what to observe), and to translate metric values (the SLO in the signed
SLA) into alert and violation thresholds (to determine when to notify the Enforcement module
about a given monitoring event). See deliverable D3.3 for all design details.

Existing open-source monitoring tools that are of interest to SPECS were described in detail in
deliverable D3.1. We choose a subset of them in order to implement the validation scenarios
described in Work Package 5. In this deliverable we report how we integrated the first set of
them into the SPECS framework. The rest of this document is structured as follows: In Section
2 we describe the relationships with other deliverables. Section 3 is dedicated to the core
monitoring components under development. It reports the status of development activities,
installation and usage guides for the monitoring event router, i.e., the Event Hub. The first set
of monitoring systems used in SPECS is presented in Section 4. For each monitoring system
we report the integration status, the installation (i.e., the enforcement through a Chef
implementation Server) and usage guidelines. The deliverable closes with final remarks in
Section 5, reporting our plans for future activities.

SPECS Project - Deliverable 3.4.1 7

SPECS monitoring services - Initial

2. Relationship with other deliverables

The work presented in this document is related mainly to activities of other tasks in WP3. The
deliverable D3.1 provided an overview of existing monitoring tools and frameworks; D3.2
discussed the requirements that the integrated monitoring systems should respect, and the
D3.3 presents the design of the entire Monitoring module.

The next iteration of this deliverable (D3.4.2 at month 30) will present the final set of
monitoring services integrated into the SPECS framework.

Figure 1 shows the relationships described above.

D3.1

D3.3

Figure 1. Relationships with other deliverables

SPECS Project - Deliverable 3.4.1 8

SPECS monitoring services - Initial

3. Monitoring core

3.1. Status of development activities

In Table 1 we report the list of SPECS software components under development associated
with the Monitoring module, as discussed in D1.1.2, D3.2 and D3.3, together with the
requirements they respectively cover.

Monitoring
Module
Requirements

SPECS Software Components

Event
Archiver

Event
Aggregator

Event
Hub

SLOM
Exporter

Monitoring
Policy Filter

Adapter

MON_STA_R1

X

MON_STA_R2

MON_STA_R3

MON_STA_R4

MON_STA_R5

MON_STA_R6

MON_STA_R7

MON_DSH_R1

X [X | X | X

MON_DSH_R2

MON_DSH_R3

MON_DSH_R4

MON_DSH_R5

MON_DSH_R61

MON_SWC_R1

MON_SWC_R2

MON_SWC_R3

MON_SWC_R4

MON_SWC_R5

MON_SWC_R6

MON_SWC_R7

MON_SWC_R8 (**)

MON_SWC_R9

MON_SWC_R102

MON_SWC_R11

MON_SWC_R12

MON_SWC_R13

MON_SWC_R14

MON_SWC_R15

MON_SWC_R16

MON_SWC_R17

MON_SWC_R18

MON_SWC_R19

lcovered by the User Management component

2covered by the Enforcement module

SPECS Project - Deliverable 3.4.1

SPECS monitoring services - Initial

MON_SWC_R20

MON_SWC_R21

MON_SWC_R223

MON_SWC_R23

MON_SST_R1

MON_SST_R2

MON_SST_R3

MON_SST_R4

MON_SST_R5 X

MON_SST_R6

MON_SST_R7

MON_SST_R8

MON_SST_R9

MON_SST_R10

MON_NEG_R1

MON_NEG_R2

MON_NEG_R3

MON_COS_R1

MON_COS_R2

MON_COS_R3

MON_COS_R4 X

MON_COS_R5

MON_COS_R6

MON_COS_R7

MON_COS_R8

MON_COS_R9

X [X | X | X

MON_COS_R10 X X

MON_COS_R11

MON_COS_R12 X

MON_COS_R13

MON_BSC_R12

MON_BSC_R2

MON_BSC_R3

MON_BSC_R4 X

MON_BSC_R5

MON_BSC_R6

MON_BSC_R7

MON_BSC_R8

MON_BSC_R9

MON_BSC_R10

MON_BSC_R11

X | X | X

MON_BSC_R12 X

MON_BSC_R13

MON_DRE_R1

MON_DRE_R2

MON_DRE_R3

X | X [X | X

3deprecated

SPECS Project - Deliverable 3.4.1

10

SPECS monitoring services - Initial

MON_DRE_R4

MON_DRE_R5

MON_DRE_R6

MON_DRE_R7

MON_DFE_R1

MON_DFE_R2

MON_SSB_R1

MON_SSB_R2

MON_SSB_R3

MON_SSB_R4

X | X [X | X [X | X [X | X [X |X [X

MON_SSB_R5

MON_ENF_R12

MON_ENF_R2 X

MON_ENF_R3 X X

Table 1. SPECS Components related to the Monitoring module and related requirements

There are 49 total requirements for the Monitoring Core module (apart from the Adapters
that are discussed in the next sections). Of these, 30% are covered already in the current
implementation of the Monitoring module Core components (specifically, by the EventHub
component). As discussed in Deliverable D3.3, the requirements related to the need for
specific monitoring systems are reported in the Adapters component column.

As reported in Deliverable D3.3, we developed a set of adapters to integrate already available
monitoring systems in order to monitor and guarantee specific security metrics currently
associated with the scenarios and SPECS applications under development in Work Package 5.

In Table 2, we report the actual development status of all SPECS artefacts associated with the
Monitoring module. In particular, as widely illustrated in design related deliverables (cf. D3.3
and D1.1.2), these artefacts include both the components and models that need to be
developed in the tasks of WP3 until the end of the project.

Module Artefacts under development Status
Components: Event Hub Available
Components: Event Aggregator Work in progress
Components: Event Archiver Work in progress

Monitoring module Components: SLOM Exporter Work in progress
Components: Monitoring Policy Filter Work in progress
Components: Adapters Available
Model:Monipoli Work in progress

Table 2. Monitoring Module Implementation Status

Note that the Adapters artefacts include all those components to connect different kind of
Monitoring Systems that can be enforced depending on the metrics included in the signed
SLA. Four different adapters have been developed for and are presented in Section 4.

Both the EventHub and the four Adapters/Monitoring Systems are publicly available on the

SPECS’ Bitbucket repository. We are currently working on the other components that use the
Monipoli model artefact (discussed in D3.3),whose implementation is not yet finalized.

SPECS Project - Deliverable 3.4.1 11

SPECS monitoring services - Initial

3.2. Event Hub

The Event Hub is responsible for routing monitoring events between the other components of
the Monitoring core. Figure 2 depicts all internal components of the Event Hub and the
connections between them. The components in grey are not implemented in the initial
version of the Hub, but will be part of the next version.

<<component>> {l
Event Hub

<<component>> $:|
<<component>> {l Router Multi-Decoder
Router Input

<<component>> {l

Q/ SpecsDecoder
O Decode Decodelson

PublishMssg CO L
Decode O <<component>> $:|

SpecsRestDecoder
: Publish DecodeRest
Publish HitpRublish
> <;<.:_nl3apo&e$)t(> -1 () <<component>> €]
— Heka Router
Deljver
Noti Notify . @)
ify HetpNotify ForwatdMssg
| Secrts g
| Sieve Fitter g <<component>> {l
@ Sieve Filter £] Router Output
Encode
(@)
NotifyEvent
<<component>> {'
L__| Archive Output
i Encode
<<component>> {l <<store>
O Router Multi-Encoder O Store
Encod%Tonon E“C°d+'°ReSt Store
<<component>> {l <<component>> {l
SpecsEncoder SpecsRestEncoder

Figure 2. Architecture of the Event Hub

The Event Hub accepts as input events represented in the SPECS internal format. This format
consists of a set of key-value pairs, which can be implemented using JSON, or simply put as
header fields in a HTTP message. For the moment, the Event Hub accepts events represented
using JSON. The JSON message contains the following attributes:

* component (string): the unique identifier (usually a UUID) of the component instance
which generated the event, i.e. a virtual machine, a certain message queue system
instance or a web-server instance;

* object (string): is a hierarchical dot-notation string that pinpoints more accurately the
event source within the 'component’, i.e. queue, exchange, etc.;

* labels (array of strings): a list of hierarchical strings that provides a way to give a
context to the event, i.e. one such label could be vm, to denote all events coming from a
VM, or user-x, to denote all events belonging to a certain user;

SPECS Project - Deliverable 3.4.1 12

SPECS monitoring services - Initial

* type (string): an hierarchical string indicating what type of event is this, like "syslog",
"structured-log", "cloudwatch.metrics";

* data (JSON object): depends on the type of event;

* timestamp (number): time of the event, in seconds;

* token (JSON object): the token identifying an event generated by the Event Hub. The
object has two attributes: uuid, containing the UUID in the token, and seq, containing
the sequence number in the token. More the details about this token attribute will

follow below.

Typically, the Event Hub will receive published events, from the Monitoring Adapters, process
them and will notify the Monitoring Policy Filter of the generated events. The interface with
all these systems uses the HTTP Mux component, which implements a configurable request
router and dispatcher. The HTTP Mux forwards the received HTTP requests, containing
events, to the Router Input component, which decodes the event from the SPECS internal
format to a format manageable by the Heka Router [2] and forwards it to the router. For
decoding the message, the Router Input uses the Router Multi-Decoder component, which will
employ for the actual decoding either the SpecsDecoder or the SpecsRestDecoder sub-
components. The choice between these sub-components depends on the data interchange
format used by the event received by the Event Hub. If the event is received as a JSON object
in the body of the HTTP request, then the SpecsDecoder will be used. If the event is received
using the header fields of the request, then the SpecsRestDecoder will be used.

For the current version only the SpecsDecoder is available. As mentioned above, this decoder
expects the event to be sent as a JSON object, with the attributes defined according to the
SPECS internal format.

The Heka Router pipes each message to three components:

* The matching Sieve Filter.

* The Router Output.

* The Archive Output - responsible for sending events to the Event Archiver for

persistent storage.

This Heka Router is the piece that links almost all components. This implies that, for a
message to get from the Router Input to any of the Sieve Filters, to the Router Output or to the
Archive Output, the message must be delivered to the Heka Router. Its only endpoints are the
output components. That means that messages generated by the Sieve Filters must also be
delivered to the Heka Router, which will take them further to the Router- and Archive-Output.

The Router Input, Specs Decoder, Specs Multi-Decoder, Sieve Filters, Router Output, Specs
Encoder and Specs Multi-Encoder are all implemented as Heka plugins. The components
remaining to be implemented will also be developed as Heka plugins.

A Sieve Filter can be used to group all events matching a condition specified during the
configuration of the Event Hub. This condition should be expressed in terms of the SPECS
internal format for the event. For example, a filter can declare a condition through which it
will accept only events with the object field equal to dbl, generated by a component
representing a MySQL server (meaning that will filter events related to database db1). The
Sieve Filter will add a so-called stream attribute to all received events. For the example before,
a possible value of the stream attribute can be mysql-db1. This attribute will be used by clients

SPECS Project - Deliverable 3.4.1 13

SPECS monitoring services - Initial

when requesting events from the Event Hub and is configured before starting the Event Hub,
as explained in Section 3.2.1.

The Router Output will receive all events that have a stream attribute and will buffer them.
The Hub maintains a circular buffer for each possible stream and each buffer contains the
latest n events with the respective stream. The value of n is configured before starting the
Event Hub, as explained in Section 3.2.1. The Router Output buffers the events in the format
used internally by the Hub and leaves the actual encoding of the event to the SPECS internal
format to the HTTP Mux. Although one may expect the Router Output to do the encoding, this
is not possible at this stage, because the actual encoding is client-dependent. One client may
request that events must be delivered as JSON objects, another may request another format.

When a client connects to the Hub, requesting events with a given stream attribute, the HTTP
Mux will take all such events from their corresponding buffer, will encode them into the
SPECS internal format and will send them to the client until the latter disconnects. The
encoding is done with the help of the Specs Multi-Encoder. The Multi-Encoder chooses one of
its encoder sub-components based on the URL used by the client for connecting to the Hub.
More details about this matching can be found in Section 3.2.1.

In addition to the stream attribute, the Event Hub adds to each event, a token attribute,
composed of an UUID corresponding to a stream, and a sequence number. The UUID is
generated the first time an event associated with the stream reaches the Router Output. If the
Event Hub is restarted, the UUID will be regenerated.

If the connection between a client and the Hub drops, the client can reconnect and, at
reconnection time, it can specify that it wants only messages newer than the last received one.
In order to do so, all it has to do is send, in its HTTP request header, the token of the last
received message. When the Hub receives the token, it looks at its UUID. If it is the same as the
UUID currently associated with the requested stream, it will send only events with a sequence
number greater than the one in the received token. If the UUIDs do not match, the Hub will
send all events, as it means that the Hub was restarted, and, surely, the client does not have
any event in the Hub's buffer.

3.2.1. Installation

The Event Hub can be built from sources or can be downloaded as a binary file. The source
files are available in the SPECS repository [2] :

https://bitbucket.org/specs-team/specs-monitoring—-eventhub

The downloads section of this repository contains two already-built versions of the Event
Hub, one executable for Microsoft Windows (x64) and another for Linux (x64).

To build the Event Hub from the source code, one needs to setup a Go [3] work environment.
Therefore, prior to building the Hub, Go must be installed and configured.

Beside Go, since the Hub is implemented using Mozilla Heka [2] it also requires Heka for
building the binary. However, one will not need to install Heka, as this task is automated by
the Hub's build process, but will need to make sure that all Heka prerequisites are pre-
installed. Moreover, since these prerequisites may change from one Heka version to another,

SPECS Project - Deliverable 3.4.1 14

SPECS monitoring services - Initial

one must check the complete list of Heka prerequisites available on its website [1] . Once Go
and Heka's prerequisites are installed, to build the Event Hub, only the install.sh script in the
above repository is required. One should copy the install.sh somewhere on his/her computer
and run it. Upon successful execution, in the same folder where the script was executed, an
executable file named event-hub should be found.

The Event Hub configuration file specifies how to handle messages received from Monitoring
Adapters and other event generators, and how to send event notifications. The configuration
file is in TOML format [4] .

The configuration file is divided into sections. There is a section named hekad, which may
contain global configuration options described in Heka's documentation. The Event Hub adds
three other options to the configuration options described there, as follows:
* buffer_size (integer value, optional): The Event Hub temporarily stores events in
buffers before sending them to the interested clients. This option specifies the size of
these buffers. Defaults to 1024.
* handlers_configuration (string, required): This is a base64 encoded string which
specifies how input messages and outputs should be handled.
e port (integer value, optional): The port on which the Event Hub will receive HTTP
requests. Defaults to 8080.

Clients can send events to the Event Hub using HTTP. The output events, routed through the
Hub, can be received by interested clients also using HTTP. The Hub uses the
handler_configuration option in order to determine which HTTP requests are sending events
to the Hub and which are actually requesting events from the Hub. We call handler a group of
configuration parameters related to the way messages should be received or sent from/to
clients. These handlers are used by the HTTP Mux component in order to determine the data
interchange format of the received event or the stream from which a client wants events. As
such, a handler is composed of a set of parameters, as follows:

* path_pattern: A regular expression to be matched against the HTTP request URI path.
This pattern will be checked against the path of the received request and, in case of a
match, the rest of the parameters of the handler will specify how to handle the request.
This is a mandatory parameter.

e action: This will indicate if this is an input message or a request for receiving events
from the Hub. This is a mandatory parameter. The only possible values are input and
stream_output.

* method: A HTTP method. For now, this should be POST when sending input messages
and GET when requesting messages from the Hub. This is a mandatory parameter.

* path_pattern_stream_group: An integer value indicating which group from the regular
expression in the first parameter contains a stream name. This is mandatory when the
action parameter is stream_output.

* decoder: Indicates the decoder used for decoding input messages. This should
correspond to the name of a Heka decoder plugin. For now, the only plugin that can be
used is the SpecsDecoder. This option is mandatory when the action parameter is input
and is mutually exclusive with the encoder parameter.

* encoder: Indicates the encoder used for encoding events. For now, the only encoder to
be used is SpecsEventEncoder. This option is mandatory when the action parameter is
stream_output and is mutually exclusive with the decoder parameter.

SPECS Project - Deliverable 3.4.1 15

SPECS monitoring services - Initial

* annotations: A key-value mapping. This is not currently used, but was defined because
it will be used by the SpecsRestDecoder and SpecsRestEncoder, depicted in Figure 2.
This will be implemented in the next version of the Event Hub.

The base64 decoded handlers must comply with the following syntax:

handlers.<index>.path pattern = <regular expression describing a HTTP
request URI path>
handlers.<index>.action = input | stream output

handlers.<index>.method = POST | GET
handlers.<index>.path pattern stream group = <integer value>
handlers.<index>.decoder = SpecsDecoder
handlers.<index>.encoder SpecsEventEncoder

The <index> placeholder is an integer value used for grouping the parameters of a single
handler. As mentioned above, a handler will not have all the parameters in the syntax
description, only those related to its associated action.

Besides the global configuration section, the configuration file will contain a section for each
instance of a Heka plugin, which must be loaded by the Event Hub. As mentioned in the
previous section, several components of the Event Hub are implemented as Heka plugins. This
section name specifies the name of the plugin, and the “type” parameter specifies the plugin
type. For the Event Hub the only accepted plugin types are SieveFilter, SpecsDecoder and
SpecsEncoder, which implement the components with similar names. The required plugin
instances for the Router Input, Router Output and Archive Output components will be
configured and started automatically at the Evnt Hub's start-up.

3.2.2. Usage

You can start an Event Hub process based on a certain configuration by using the command:

event-hub -config=<config file.toml>

Sending monitoring events

In order to send a message to the Event Hub, a client should send a HTTP POST request with a
path matching the path pattern of one of the Hub's input handlers. The request should contain
a monitoring event conforming to the SPECS internal format.

Receiving monitoring events

A client that wants to receive events from the Event Hub, must send a HTTP GET request with
a path matching the path pattern of one of the Hub's output handlers. Once the connection is
established, the Event Hub will start streaming events to the client. The format of the output
event is the SPECS internal format.

As explained above, each event has a token attribute that uniquely identifies the message. This
token can be used by the client when requesting events. To understand better how it can be
used, consider the following scenario: A client connects to the Hub and starts receiving events
for a certain stream. The Event Hub associates with each known stream a UUID, embedded in
the token. The events are sent from the Event Hub to its client ordered by a sequence number,
also embedded in the token. During the streaming, something happens and the connection is
dropped. When the client reconnects, it will want to receive only the events generated for the
stream, after the connection was dropped. The client knows the last event it received, so all it
has to do is send the token attribute in the last received event to the Hub when it reconnects.

SPECS Project - Deliverable 3.4.1 16

SPECS monitoring services - Initial

The serialized token, containing the UUID and sequence number of the token, can be sent in
the SPECS-Heka-HTTP-Gateway-Stream-Sequence HTTP request header. If the Hub receives
this header and it was not restarted in the meantime, it will send only events with sequence
number greater than the one in the received token. If it was restarted, it will send all events
for the stream requested by the client, no matter what token is sent.

SPECS Project - Deliverable 3.4.1 17

SPECS monitoring services - Initial

4. Monitoring systems

4.1. SVA Monitoring System and Adapter

As introduced in deliverable D4.1.2, the SVA Security and Control mechanism detects software
vulnerabilities and misconfigurations of the installed packages. The SVA tool, applied on
running VMs, detects libraries that need to be upgraded (i.e., reports about vulnerabilities and
misconfigurations).

The SVA Security and Control mechanism offers two security metrics, introduced in
deliverable D4.3.1:
* VulnerabilityReportMaxAge: The frequency of report generation (for example “7*24h”
requires that report needs to be generated at least once per week);
* VulnerabilityListMaxAge: The frequency of vulnerability list updates (for example
“24h” means that list of known vulnerabilities needs to be updated at least once per

day).

The main requirements covered by this mechanism are reported in deliverable D4.1.2, and
the design details are present in deliverable D4.2.2. The mechanism consists of three
components; the SVA Monitoring component, the SVA Enforcement component and the SVA
Dashboard component. The SVA Monitoring component periodically performs a vulnerability
scan on the VM it is installed on, and detects a set of vulnerabilities and misconfigurations
(frequencies of scans are determined by the above-mentioned security metrics).

The SVA Security and Control mechanism has already been implemented in month 12 (see
deliverable D4.3.1 and [5]). Here we only report the implementation details for the
monitoring adapter needed for receiving and sending monitoring events related to software
vulnerabilities and misconfigurations.

4.1.1. Status of integration activities

The SVA monitoring system consists of two components: sva-agent and sva-adapter.

The sva-agent has been developed in the first year and has been included in the SVA
cookbook. It needs to be installed on each machine for which the software vulnerability
assessment is required by SLA. It works on top of OpenSCAP [6] .

According to the VulnerabilityReportMaxAge metric, the sva-agent periodically generates the
vulnerabilities report via OpenSCAP:

oscap oval eval --result results.xml /tmp/oval.xml
oscap oval generate report --output report.html results.xml

The report is sent to the sva-adapter, which processes it and sends the processed data to the
Specs Monitoring Core.

SPECS Project - Deliverable 3.4.1 18

SPECS monitoring services - Initial

4.1.1.1. SVA agent - Chef recipe

This Chef recipe*installs the sva-agent on the target machine (the machine that has to be
monitored). The agent is provided as a Ruby code block, inserted directly in the recipe, and
uses OpenSCAP command line utilities.

4.1.1.2. SVA adapter - Chefrecipe

This recipe installs the sva-adapter on a provisioned VM. The agent is provided as a Ruby code
block, inserted directly in the recipe, and uses Ruby XML utilities to parse the report.

4.1.2. Installation

The execution of the two recipes explained above needs the following prerequisites:

e All the VMs should runOpenSuse OS, 64 bit version.
e The sva-adapter recipe needs the TCP port 8000 to be opened on the hosted VM.

The component sva-agent needs OVAL [7] definition for an operating system that runs on a
monitored machine. According to the VulnerabilityListMaxAge metric, the Enforcement
periodically downloads from the OVAL MITRE repository [8] , the latest available list of
vulnerabilities (in OVAL format) and puts it in a cookbook (file folder in sva cookbook) from
which, Chef automatically transfers it to the monitored machine.

4.1.3. Usage

Once the appropriate OVAL definition is transferred to the monitored machine (Chef
automatically detects the operating system and sends the appropriate OVAL definition), sva-
agent periodically scans the system and generates a report. The report is sent to the sva-
adapter that processes it and sends it to the SPECS Monitoring Core. The two metrics
supported at M12 could be extended with some new metrics, such as MaxCountOfVulnera-
bilities (this would require appropriate comparison of the severity levels of vulnerabilities).
This would enable Enforcement Remediation actions, such as replacing the existing VM (with
vulnerabilities count higher than specified in the SLA) with a new one which would have a
vulnerability count less than the limit agreed in the SLA.

4.2. OSSEC Monitoring System and Adapter

OSSEC is an open source system that enables the monitoring and control of a system. It mixes
together all the aspects of HIDS (Host-based Intrusion Detection Systems), log monitoring and
SIM/SIEM (security information management/security information and event management)
in a simple, powerful and open source solution. The internal architecture of this monitoring
system and how it can be integrated with the SPECS Monitoring core components have been
described in Deliverable D3.3. In the following subsections, we provide a brief description of
the current status of integration activities, an installation and usage guideline, and a link to
public repositories where all packages and details can be retrieved.

4.2.1. Status of integration activities

The specs-monitoring-ossec security mechanism is a custom version of the open source ossec
solution, adapted to run inthe SPECS framework. It is composed of one server (ossec-server)
and one or more agents (ossec-agent).

* Chef and Chef receipts are described in D1.6.1
SPECS Project - Deliverable 3.4.1 19

SPECS monitoring services - Initial

The ossec-agent is a small program installed on the systems you desire to monitor. It will
collect information in real-time and forward it to the ossec-server for analysis and correlation.

The ossec-server is the central component of the Ossec deployment, and monitors everything.
It receives information (the file integrity checking databases, the logs, events and system
auditing entries) from agents, and analyses and collects them.

Agent and Server communicate through encrypted messages (symmetric key) generated by
the ossec-server.

The ossec-server manipulates the information received through the ossec-adapter in order to
send them to the Specs monitoring core.

A typical workflow starts when a file’s integrity is compromised, or a monitored log has been
updated, or a rootkit activity has been detected. The ossec-agent detects that something is
happening and sends the event (e.g., the modified log) to the ossec-server that collects,
analyses and generates an alert. All the alerts are stored in a log file and are sent to the ossec-
adapter that manipulates them, according to the format defined by the SPECS Monitoring
Core, and sends them to it.

Definitively, the components are: ossec-server, ossec-agent and ossec-adapter. These
components are deployed dynamically on VMs using the chef cookbook “specs-monitoring-
ossec”. These are currently available online in the SPECS public repository [9] :

https://bitbucket.org/specs-team/specs-monitoring-ossec

This cookbook contains two recipes: the “agent” one allows the installation of the ossec-agent,
while the “server” one allows the installation of the ossec-server and activates the ossec-
adapter on the same machine that hosts the ossec-server.

4.2.1.1. OSSEC agent - Chef recipe

This recipe installs the ossec-agent on the target machine (the machine that has to be
monitored). The agent is provided as a tar.gz file (Agent.tar.gz) that is hosted together with
the cookbook itself.

4.2.1.2. OSSEC server - Chef recipe

This recipe installs the ossec-server on a provisioned VM. The component is provided as a
tar.gz file (Server.tar.gz) that is hosted together with the cookbook itself. This recipe activates
the adapter component, registers all the agents and sends them the symmetric key (using the
ssh protocol) that the agents need to use to communicate with the ossec-server, and finally
starts all agents.

4.2.2. Installation

The execution of the two recipes introduced above has the following prerequisites:

e All the VMs should run OpenSuse OS, 64 bit version.

e [t is compulsory to have a tool that is able to execute recipes (e.g., a workstation with
the knife tool installed, a software that uses Apache Jcloud Chef Api).

e The ossec-agent recipe has to be executed on all the agent nodes before the execution
of the server recipe.

SPECS Project - Deliverable 3.4.1 20

SPECS monitoring services - Initial

e The ossec-server recipe needs the UDP port 1514 to be opened on the hosted VM. (e.g.,
On Amazon AMI: you need to: - access to amazon console; - add an inbound rule into
the security group [Custom UDP rule]).

e The server node and the agents need to communicate using the ssh protocol without
explicit password request, in order to communicate with each other in a secure way.

All the inputs necessary to execute these recipes are provided by the implementation plan
that has to be uploaded on the Chef server as a data bag item into the data bag
“implementation_plans”.

The necessary input for the agent recipe is the following:
ossec—-server IP_ address;

The ossec-server needs the following data in order to correctly execute the server, retrieved
through the implementation_plan given in input:

e specs-monitoring-core IP address and port;
e Listof all IP addresses and names of the VMs that hosts ossec-agent.

Each implementation_plan is identified by a unique id (“implementation_plan_id”) that has to
be passed as node_attribute during the node bootstrapping phase (the node bootstrapping is
described in D1.6.1).

The structure of the knife command to bootstrap the node and install ossec-agent on a target
machine is:

knife bootstrap <IP_ PUBLIC> -x <user name> -P <user password> --node-name
<node name> --run-list 'recipe['specs-monitoring-ossec::agent']' -j '/{
"implementation plan id":"<id value>"}'

A typical example is:

knife bootstrap 192.168.1.101 -x root -P specs --node-name agent-nodel --run-
list 'recipe['specs-monitoring-ossec::agent']' -3 '{
"implementation plan id":"1154982"}"'

The structure of the knife command to bootstrap the node and install ossec-server on a VM is:

knife bootstrap <IP PUBLIC> -x <user name> -P <user password> --node-name
<node name> --run-list 'recipe['specs-monitoring-ossec::server']' -3 '{ '{
"implementation plan id":"<id value>"}'}"'

A typical example is:

knife bootstrap 192.168.1.103 -x root -P specs --node-name server-node —--run-
list 'recipe['specs-monitoring-ossec::server']' -3 '{
"implementation plan i1d":"1154982"}'

4.2.3. Usage

If the Apache2 web server is available on the node, Ossec analyses the access and error log
files. The Ossec configuration looks at those files located into the following paths:

/opt/apache2/logs/access _log, /opt/apache2/logs/error log.

SPECS Project - Deliverable 3.4.1 21

SPECS monitoring services - Initial

If the Nginx web server is available on the node, Ossec analyses the access and error log files.
The Ossec configuration looks at those files located into the following paths:

/opt/nginx/logs/access.log, /opt/nginx/logs/error.logs

If the system syslog is available on the node, Ossec analyses the log file located in the
following default path: /var/log/messages. If syslog is not installed or it is not running, it will
be installed and run.Ossec generates a set of specs monitoring events, as reported in <specs-
monitoring-ossec>/doc/monitoring events/events.txt.

4.3. OpenVAS Monitoring System and Adapter

OpenVAS is an open source framework made of several services and tools offering a
comprehensive and powerful vulnerability scanning and vulnerability management solution.
The internal architecture of this monitoring system and how it can be integrated with the
SPECS Monitoring core components have been described in Deliverable D3.3. In the following
subsections, we provide a brief description on the current status of integration activities, an
installation and usage guideline and a link to public repositories where all packages and
details can be retrieved.

4.3.1. Status of integration activities

The specs-monitoring-openvas security mechanism is a custom version of the open source
OpenVASsolution, adapted to run in the SPECS framework. It consists of a monitoring client
(openvas-monitoring-client), and one or more monitoring scanners (openvas-monitoring-
manager).

The openvas-monitoring-manager runs a scan on the same machine it is installed on, in order
to find potential vulnerabilities. It exposes an interface useful to manage the scan and to make
the reports available to the openvas-monitoring-client. The openvas-monitoring-manager is
composed of the OpenVAS Scanner and the OpenVAS Manager. The former executes the actual
Network Vulnerability Tests (NVTs), while the latter is the central service that consolidates
plain vulnerability scanning into a full vulnerability management solution. The OpenVAS
Manager controls the Scanner via OTP (OpenVAS Transfer Protocol) and offers the XML-
based, stateless OpenVAS Management Protocol (OMP).

The openvas-monitoring-client is able to control all the openvas-monitoring-manager: in fact,
it is able to start a new scan and to retrieve the results. It consists of two components:
OpenVAS CLI and custom-openvas-adapter. The former contains the command line tool
"omp", which enables the creation of batch processes to drive OpenVAS Manager (inside the
openvas-monitoring-manager); the latter is a custom java program that uses the “omp tool” in
order to have a full control of the scan of a target machine. Each time it receives a new event
(that is, a new vulnerability found on the target machine and sent by the openvas-monitoring-
manager), it sends the event to the specs-monitoring-core in the appropriate format. It also
sends a full report when the scan finishes.

The components needed to implement and deploy all OpenVAS components are the chef-
client and the chef-server. In particular, these components are dynamically deployed on VMs
using the Chef cookbook named “specs-monitoring-openvas”, available online in the SPECS
public repository [10] :

https://bitbucket.org/specs-team/specs-monitoring-openvas

SPECS Project - Deliverable 3.4.1 22

SPECS monitoring services - Initial

The cookbook contains two recipes, client and manager, to install the necessary components.

4.3.1.1. OpenVAS Manager and Scanner - Chef managers recipe

This recipe installs and configures the OpenVAS Manager and OpenVAS Scanner on the target
machine (the machine that has to be monitored). The agent is provided as a tar.gz file
(openvas-libs-libraries-scanner-manager.tar.gz) that is hosted within the
cookbook itself.

4.3.1.2. OpenVAS Client - Chef client recipe

This recipe installs the OpenVAS CLI and the custom-openvas-adapter on a provisioned VM.
Both are provided as tar.gz files that are hosted within the cookbook itself. This recipe
activates also the adapter component, starting a scan on each agent that has been previously
installed.

4.3.2. Installation

The execution of the two recipes introduced above has the following prerequisites:

e All the VMs should run OpenSuse OS, 64 bit version.

e The manager recipe has to be executed on all the target nodes before the execution of
the client recipe.

e Itis compulsory to have a tool that is able to execute recipes (e.g., a workstation with
knife tool installed, a software that uses Apache Jcloud Chef Api).

e The agent recipe needs the TCP port 9390 to be opened on the hosted VM.

oe.g., On Amazon AMI,you need to: (i) have access to amazon console; (ii) add an
inbound rule into the security group [Custom TCP rule]

All the inputs necessary to execute these recipes are provided by the implementation plan
that has to be wuploaded on the chef-server as data bag item into data bag
“implementation_plans”.

The manager recipe does not need any input.

The agent recipe needs the following data in order to correctly execute the manager functions,
retrieved through the implementation_plan given as input:

e specs-monitoring-core ip address and port;

e Listof all ip addresses and names of the VMs that hosts openvas-monitoring-manager.

Each implementation_plan is identified by a unique id (“implementation_plan_id”) that has to
be passed as node_attribute during the node bootstrapping phase.

The structure of the knife command to bootstrap the node and install openvas-monitoring-
manager on one target machine is:

knife bootstrap <IP_ PUBLIC> -x <user name> -P <user password> --node-name
<node name> --run-list 'recipe['specs-monitoring-openvas::manager]' -3j '{
"implementation plan id":"<id value>"}'

A typical example is:

SPECS Project - Deliverable 3.4.1 23

SPECS monitoring services - Initial

knife bootstrap 192.168.1.101 -x root -P specs --node-name agent-nodel --run-
list 'recipe|['specs-monitoring-openvas::manager]' -3 '{
"implementation plan id":"1154982"}"

The structure of the knife command to bootstrap the node and install openvas-monitoring-client on
one VM is:

knife bootstrap <IP PUBLIC> -x <user name> -P <user password> --node-name
<node name> --run-list 'recipe['specs-monitoring-openvas::client]' -j '{ '{
"implementation plan id":"<id value>"}'}'

A typical example is:

knife bootstrap 192.168.1.103 -x root -P specs --node-name server-node —--run-
list 'recipe['specs-monitoring-openvas::client]' -3 '{
"implementation plan i1d":"1154982"}'

4.3.3. Usage

Upon execution of the recipes explained above, all the architecture components are installed
on the VMs and the vulnerability scan is launched on each target machine. The reports of each
scan are collected by the openvas-monitoring-client and manipulated by the custom-openvas-
adapter that formats and sends them to the specs-monitoring-core.

It is possible to execute a new vulnerability scan manually, connecting via ssh to the node that
hosts the openvas-monitoring-client, and launching the following script:

java -Jjar openvas-monitoring-client.jar
<IP_MACHINE TARGET><IP SPECS MONITORING CORE> 9390 <IP SPECS MONITORING PORT>

Openvas generates a set of SPECS monitoring events, as reported in <specs-monitoring-
openvas>/doc/monitoring events/events.txt.

4.4. NMAP Monitoring System and Adapter

Nmap [11] is a widely-used command line utility for network discovery and monitoring. It
can be used to scan for open ports, operating system version, service version, uptime and
other characteristics of a target machine or network.

4.4.1. Status of integration activities

We propose a fault tolerant distributed system based on Nmap, and possible other tools, for
scanning target hosts and networks. The system will store the result for later retrieval, audit
and statistics purposes.

The distributed monitoring system is composed of four components, as shown in Figure 3:
FrontEnd, Scanner, Converter and Presenter. Each of the four components can be replicated and
distributed on multiple machines, depending on the load of that particular component. For
example, we can have three FrontEnd replicas, ten Scanner replicas, five Converters replicas and
three Presenter replicas.

SPECS Project - Deliverable 3.4.1 24

SPECS monitoring services - Initial

Distributed monitoring system

FrontEnd

(receive commands
from clients)

Scanner

(execute commands)

Client

Presenter Converter

\ (send results N (converts results to :
\ " back to client) N Y different formats) : ’

Figure 3: Architecture of monitoring system based on Nmap

The communication between the four components is achieved by means of a message queue,
RabbitMQ [12], and a document database, MongoDB [13] . The only data that is sent over the
queue is the id of the document stored in the document database. Since documents can get
large, depending on the amount of results generated, we propose storing them in a document
database, rather than sending them over the message queue. The document database can be
used for auditing and statistics purposes as well. All the components are available and their
code can be retrieved from the SPECS Bitbucket repository [14] :

https://bitbucket.org/specs-team/specs-monitoring-nmap

A typical workflow starts with the external client initiating a HTTP request to the distributed
monitoring system. The HTTP request should be built using the following template:

http://<ip>:8000/job?request=<clientRequest>

For example, a client that provided id = “13”, response address = “192.168.56.101”, command
= “nmap -0 192.168.56.105", processors = “XmlToJsonConverter, TlsFilter” and adapter =
“EventHubAdapter” will have the following JSON as clientRequest:

{
“clientId” : “13”7,
“command” : “nmap 192.168.56.105”,
“responseAddress” : “http://192.168.56.101:8008/jobFinished”,
“processors” :[“processors.XmlTodsonConverter”,”processors.TlsFilter”],
“adapter” : “processors.EventHubAdapter”

Once the FrontEnd receives the request, it will create a new document. In the case of the above
request, the following document will be created and stored in the database:

SPECS Project - Deliverable 3.4.1 25

SPECS monitoring services - Initial

“id" . “56”,
“clientId” : “13”7,

“responseAddress” : “192.168.56.101",

“command” : “nmap -0 192.168.56.105”,

“processors” :[“processors.XmlTodsonConverter”,”processors.TlsFilter”],
“adapter” : “adapters.EventHubAdapter”,

“rawResult” : null,

“processedResult” : null

Once it has saved the new document in the document database, the FrontEnd component will
send the document id to the Scanner component. The Scanner component executes the
command from the document and stores the results, in XML format, in the rawResult field.
Once it has finished updating the rawResult field, the Scanner component will send the id of
the document to the Converter component. The Converter is responsible for applying the
processors and the adapter to the rawResult. After all processing is finished, the result is
stored, in JSON format, in the processedResults field and the Converter component sends the
id of the document to the Presenter component. The Presenter has the role of sending the
result to the HTTP address provided by the client that is stored in the responseAddress field.

All the components are functional and the system can be deployed on a local machine or an
[aaS cloud.

4.4.2. Installation

The four components (FrontEnd, Scanner, Converter and Presenter) are written in Java and
require JRE 1.8 [15] in order to run. Each component provides a configuration file,
conf.properties, used to specify the IP address of the machine hosting RabbitMQ, the IP and
the port for the machine hosting MongoDB, the names of the queue used in order to send and
receive messages and the credentials for RabbitMQ. A conf.properties example is the
following:

#RabbitMQ connection details
rabbitHost = 192.168.56.102
rabbitSendQueue = xmls
rabbitReceiveQueue = commands
rabbitUser = specsUser
rabbitPassword = specsPassword

#MongoDB connection details
mongoHost = 192.168.56.101
mongoPort = 27017

MongoDB version 2.6.3 or newer is required for storing the documents, RabbitMQ version
3.4.4 or newer for the message queue, and Nmap version 6.40 or newer for executing the
commands.

4.4.3. Usage

The distributed monitoring system can be used as a PaaS for security auditing. The client can
interact with the platform via HTTP, by sending commands, processors and an adapter that
will be executed by the platform and providing a HTTP address where the result can be sent
after the command has finished executing. For example,

curl -G "http://localhost:8000/job" --data-urlencode 'request=
{

SPECS Project - Deliverable 3.4.1 26

SPECS monitoring services - Initial

“clientId” : “13”7,

“command” : “nmap 192.168.56.105",

“responseAddress” : http://192.168.56.101:8008/jobFinished,
“processors” :[“processors.XmlTodsonConverter”,”processors.TlsFilter”],
“adapter” : “adapters.EventHubAdapter”

} 1

The server will analyse the request and will replay with a JSON that contains the status of the
request, valid or invalid, and, in case the request is valid, the id assigned to the job. For
example:

“status” : “wvalid”,
“JobId” : “55190d32f0027372c8034a0a”

After accepting the request, the monitoring system will immediately start processing the
request. If the message is intended to be consumed by the Event Hub, the EventHubAdapter
should be used. This adapter creates a message that is compatible with the messages accepted
by the hub. Since the client can choose the command to be executed, the processors to be
applied, and the adapter, the structure of the response message may vary. For example:

"component": "551948b3545063d8ad53b743",
"object": "nmap",
"labels": [
"userId-13"
I
"type": "ssl-enum-ciphers",
"data": {
"elem": [
{
"key": "name",
"content": "TLS RSA WITH AES 128 CBC_ SHA"
by
{
"key": "strength",
"content": "strong"
}
]
}y
"timestamp": "1427721690",

"token": null

SPECS Project - Deliverable 3.4.1 27

SPECS monitoring services - Initial

5. Conclusions

This document presents the first implementation of the Monitoring module, namely the
monitoring core and an initial set of monitoring systems able to monitor a set of metrics
associated to the SPECS applications and scenarios under development.

In this document, we summarized the status of implementation and integration activities and
reported the current coverage of the requirements that were located during the requirement

analysis and design phases.

Figure 4 illustrates the current status of the monitoring implementation activities.

Y2 Y3
Component M13-M18 19(20]21|22|23|24|25|26(27|28[29]|30
Event Hub
Event Aggregator
Monitoring |Monitoring Policy Filter
Core Event Archiver

SLOM Exporter
Monitoring Adapter

Nmap

L OpenVAS
Monitoring 0SSEC
Systems -
Monit
Snort

Figure 4. Monitoring module implementation plan

As illustrated, almost all monitoring core components are under development, and few of
them (the EventHub and the Adapters) have been completed and reported in this document.
The code (both the completed and the work in progress) is available on-line on the SPECS
repository and its description is provided with all information needed to install and correctly
use it within the SPECS Platform.

Other monitoring systems, that have special particularities (i.e. tight up to an existent
enterprise solution), will be developed and described in their dedicated deliverables (for
example, ViPR Monitoring System in D5.3).

At the time of revising this deliverable we decided not to develop Monit and Snort as their
associated security metrics are already covered by other security mechanisms.

SPECS Project - Deliverable 3.4.1 28

SPECS monitoring services - Initial

6. Bibliography

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

http://hekad.readthedocs.org/en/v0.9.1/installing.html
https://bitbucket.org/specs-team/specs-monitoring-eventhub
https://golang.org/project/

https://github.com/toml-lang/toml
https://bitbucket.org/specs-team/specs-enforcement-chef-repo/
http://www.open-scap.org/page/Main_Page
http://oval.mitre.org/
https://oval.mitre.org/repository/data/updates/latest
https://bitbucket.org/specs-team/specs-monitoring-ossec
https://bitbucket.org/specs-team/specs-monitoring-openvas
http://nmap.org

http://www.rabbitmg.com

https://www.mongodb.org
https://bitbucket.org/specs-team/specs-monitoring-nmap
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-

2133155.html

SPECS Project - Deliverable 3.4.1

29

