

Secure Provisioning of Cloud Services
based on SLA Management

SPECS Project - Deliverable 1.6.2

SPECS Testbed
Definitive

Version no.1.0
30 April 2016

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

2	

Deliverable information

Deliverable no.: D1.6.2
Deliverable title: SPECS Testbed Definitive

Deliverable nature: Prototype
Dissemination level: Public

Contractual delivery: 30 April 2016
Actual delivery date:

Author(s):

Silviu Panica (IeAT)

Contributors: Alessandra De Benedictis (CeRICT)
Reviewers: Valentina Casola (CeRICT), Madalina Erascu (IeAT)
Task contributing to the
deliverable:

T1.6

Total number of pages: 22

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

3	

Executive summary
This	deliverable	is	associated	with	the	final	implementation	of	the	SPECS	Testbed	(Task	1.6)	
whose	goal	is	to	provide	and	to	maintain	a	running	platform	to	host	the	SPECS	services.			
	
The	SPECS	Testbed	provides	the	SPECS	Enabling	Platform	as	already	illustrated	in	Deliverables	
D1.2,	D1.1.1,	D1.1.2	and	D1.6.1;	it	offers	all	the	components	needed	to	provide	and	to	manage	
all	SPECS	services	in	their	life	cycle.	
It	 is	 currently	deployed	on	 the	 servers	 of	 the	 IeAT	partner,	 being	 accessible	 to	 all	 partners	
during	the	project	life.	After	the	end	of	the	project,	SPECS	Launcher	will	be	still	offered	for	three	
years	as	a	hosted	service	using	IeAT	partner	resources.	All	the	other	IeAT	partner	resources	
will	no	longer	be	available.	
	
The	design	of	the	SPECS	Enabling	Platform	module	is	shown	in	details	in	the	deliverable	D1.1.2,	
the	goal	of	this	document	is	to:	(i)	report	the	status	of	implementation	activities,	(ii)	give	the	
final	instructions	on	how	to	access	and	use	the	Testbed.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

4	

Table of contents
Deliverable information	...	2	
Executive summary	...	3	
Table	of	contents	..	4	
Index	of	figures	...	5	
Index	of	tables	...	6	
1.	 Introduction	...	7	
2.	 Relationship	with	other	deliverables	..	8	
3.	 SPECS	Enabling	Platform	..	9	

3.1.	 Status of development activities	..	9	
3.2.	 SPECS	Enabling	Platform	..	10	
3.2.1.	 Custom	Operating	System	..	10	
3.2.2.	 Bootstrapper	..	11	
3.2.3.	 Cluster	Manager	..	12	

3.3.	 The	testbed	supporting	infrastructure	...	14	
3.3.1.	 The	hosted	solution	...	14	
3.3.2.	 The	local	solution	...	14	
3.3.2.1.	 Installation	...	14	
3.3.2.2.	 Custom	OS	image	upload	...	15	
3.3.2.3.	 Cloud	Resource	Allocator	..	15	
3.3.2.4.	 The	Cluster	Launcher	interface	..	16	
3.3.2.5.	 The	Chef	Cluster	..	18	
3.3.2.6.	 Usage	..	18	

3.4.	 Usage of the physical resources	..	19	
4.	 Conclusions	...	21	
5.	 Bibliography	...	22	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

5	

Index of figures
Figure	1.Relationships	with	other	deliverables	...	8	
Figure	2.	Enabling	Platform	-	Bootstrapper	...	12	
Figure	3.	Enabling	Platform	-	Cloud	Resource	Allocator	..	12	
Figure	4.	Enabling	Platform	-	Chef	Cluster	...	14	
Figure	5.	Cluster	Launcher	-	Web	Interface	...	17	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

6	

Index of tables
Table	1.	SPECS	Components	related	to	the	Enabling	Platform	and	related	requirements	9	
Table	2.	Enabling	Platform	Implementation	Status	..	10	
Table	3.	IeAT	HP	Helion	Eucalyptus	available	VM	types.	...	19	
Table	4.	SPECS	Testbed	resource	requirements	templates.	...	19	
Table	5.	SPECS	resource	requirements	for	different	experiment	types.	...	19	
Table	6.	SPECS	physical	resources	usage	report.	...	20	
Table	7.	Task	1.6	outcomes	...	21	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

7	

1. Introduction
This	deliverable	reports	on	the	status	of	development	activities	related	to	the	SPECS	Testbed,	
and	illustrates	related	installation	and	usage	guides.	
The	 SPECS	 Testbed	 represents	 the	 supporting	 infrastructure	 that	 provides	 the	 runtime	
environment	for	the	SPECS	SLA	Platform	and	the	Core	Services.	In	the	SPECS	Project,	the	Testbed	
represents	the	SPECS	Enabling	Platform,	which	consists	of	a	software	layer	(operating	system,	
bootstrap	 services,	 management	 services)	 responsible	 for	 the	 initial	 start-up	 of	 the	 SPECS	
Platform	 and	 for	 the	 automatic	 management	 of	 the	 SPECS	 services,	 and	 in	 a	 physical	
infrastructure	composed	of	virtualized	resources	where	the	software	layer	is	executed.		
As	already	discussed	in	D1.6.1,	the	SPECS	Testbed	software	layer	is	composed	of	three	main	
components:	

• Custom	Operating	System	 -	a	multi-purpose	operating	system,	 that	runs	on	top	of	 the	
infrastructure;	

• Bootstrapper,	a	collection	of	services	that	bootstrap	and	customize	a	custom	OS	instance	
for	a	specific	deployment	template;	

• Cluster	 Manager,	 a	 deployment	 service	 that	 is	 able	 to	 automatically	 bootstrap	 any	
service	required	by	the	SPECS	Platform.	

	 	
For	 what	 regards	 the	 physical	 resources	 hosting	 the	 Enabling	 Platform	 services,	 they	 are	
currently	provided	by	two	of	the	SPECS	partners,	namely	IeAT	(whose	infrastructure	had	been	
already	used	in	the	previous	version	of	this	deliverable),	and	EMC.	
The	IeAT	infrastructure	hosts	a	HP	Eucalyptus	cloud	stack,	which	is	available	for	all	the	partners	
within	 the	 SPECS	Project.	 The	EMC	 infrastructure,	 instead,	 is	 private	 and	used	 only	 for	 the	
implementation	 of	 the	 EMC	 use	 cases,	 discussed	 in	 detail	 in	 D5.3	 and	 D5.4.	 However,	 the	
adoption	of	a	second	infrastructure	demonstrated	the	independence	of	the	services	from	the	
specific	underlying	technologies.	
	
For	what	concerns	the	other	advances	with	respect	to	the	previous	version	of	this	deliverable,	
as	illustrated	in	Section	3.1,	in	this	final	iteration	we	were	able	to	complete	the	development	of	
the	 missing/incomplete	 components	 (Discover	 Sys.	 component,	 Components	 Controller,	
Component	and	Node	Operational	REST	APIs,	Cluster	Manager	and	Artifact	Repository),	which	
are	now	available.	With	these	components,	the	coverage	of	requirements	was	completed.	
	
This	document	is	structed	as	follows.	In	Section	2	we	describe	describe	the	relationships	with	
other	deliverables.	Section	3	is	dedicated	to	the	SPECS	Enabling	Platform	description,	were	all	
the	components	are	described	in	detail.	
	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

8	

2. Relationship with other deliverables
	
The	work	presented	in	this	document	 is	related	mainly	to	activities	of	all	Tasks	in	WP1	and	
updates	 with	 respect	 to	 the	 D1.6.1	 deliverable	 (the	 preliminary	 report).	 In	 particular,	 in	
deliverable	D1.2	we	discussed	the	requirements	that	the	Enabling	Platform	should	respect,	and	
in	 deliverables	 D1.1.1	 and	 D1.1.2	 we	 motivated	 and	 designed	 the	 solution	 to	 provide	 an	
independent	Enabling	Platform	to	manage	the	whole	life	cycle	of	all	SPECS	Services.		
	
Figure	1	shows	the	relationships	described	above.	The	platform	described	in	this	deliverable	
enables	the	execution	of	all	SPECS	services.	However,	for	readability’s	sake	we	do	not	report	
here	 the	 complete	 list	 of	 all	 implementation	 tasks	 (and	 related	 deliverables)	 that	 use	 the	
services	provided	by	the	Enabling	Platform.	

Figure	1.Relationships	with	other	deliverables	
	

D	1.1.1 D	1.6.2 D	1.6.1

D	1.1.2

D	1.2

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

9	

3. SPECS Enabling Platform
	
The	Enabling	Platform	implementation	consists	of	two	main	parts:	the	SPECS	Enabling	Platform	
and	the	SPECS	Testbed	supporting	infrastructure.	SPECS	Enabling	Platform	is	described	in	sub-
section	3.2.	SPECS	Testebed	supporting	infrastructure	was	described	in	detailed	in	D1.6.1	and	
was	introduced	in	Section	1	of	this	document	and	

3.1. Status of development activities
In	Table	1	we	report	the	list	of	SPECS	software	components	under	development	associated	with	
the	SPECS	Enabling	Platform,	as	discussed	in	D1.2	and	D1.1.2,	together	with	the	requirements	
they	respectively	cover.	
	

Table	1.	SPECS	Components	related	to	the	Enabling	Platform	and	related	requirements	

All	19	requirements	have	been	covered	(100%	requirements	coverage)	and	all	the	components	
covering	these	requirements	are	already	available.		

Enabling	
Platform		
Requirements	

SPECS	Software	Components	

Cu
st
om

	O
S	

Co
m
po
ne
nt
s	

Lo
gg
in
g	

N
od
e	

Bo
ot
st
ra
pp
er
	

N
od
e	
Lo
gg
in
g	

N
od
e	
di
sc
ov
er
y	

N
od
e	
co
nt
ro
lle
r	

Co
m
po
ne
nt
	

D
is
co
ve
r	
Sy
s.
	

Co
m
po
ne
nt
s	

Co
nt
ro
lle
r	

Ar
ti
fa
ct
	

Re
po
si
to
ry
	

Co
m
po
ne
nt
	

O
pe
ra
ti
on
al
	

	R
ES
T	
AP
I	

N
od
e	
O
pe
ra
ti
on
al
		

RE
ST
	A
PI
	

Cl
us
te
r	
M
an
ag
er
	

ENPL_R1	 	 	 	 X	 	 X	 	 	 	 X	 	 	
ENPL_R2	 	 	 X	 	 	 	 	 	 	 X	 	 X	
ENPL_R3	 	 	 X	 	 X	 	 	 	 	 X	 	 X	
ENPL_R4	 	 	 	 	 X	 X	 	 	 	 X	 	 	
ENPL_R5	 	 	 	 	 X	 X	 	 	 	 X	 	 	
ENPL_R6	 X	 	 	 	 X	 	 	 	 	 X	 	 	
ENPL_R7	 X	 	 	 	 	 	 	 	 	 X	 	 	
ENPL_R8	 	 X	 	 	 	 	 	 	 	 	 	 	
ENPL_R9	 	 	 	 	 	 	 	 X	 	 	 X	 	
ENPL_R10	 	 	 	 	 	 	 	 X	 	 	 X	 	
ENPL_R11	 	 	 	 	 	 	 	 X	 	 	 X	 	
ENPL_R12	 	 	 	 	 	 	 X	 X	 	 	 X	 	
ENPL_R13	 	 	 	 	 	 	 X	 X	 	 	 X	 	
ENPL_R14	 	 	 	 	 	 	 X	 X	 	 	 X	 	
ENPL_R15	 	 X	 	 	 	 	 	 	 	 	 X	 	
ENPL_R16	 	 	 	 	 	 	 	 X	 	 	 X	 	
ENPL_R17	 	 	 	 	 	 	 	 X	 	 	 X	 	
ENPL_R18	 	 	 	 	 	 	 X	 	 X	 	 X	 	
ENPL_R19	 	 	 	 	 	 	 	 	 X	 	 	 	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

10	

	
In	Table	2,	we	report	the	current	development	status	of	all	SPECS	artefacts	associated	with	the	
Enabling	Platform.		
	
	
Module	 Artefacts	under	development	 Status	

Enabling	Platform	

Components:Custom	OS	 Available	
Components:Components	Logging	 Available	
Components:NodeBootstrapper	 Available	
Components:Node	Logging	 Available	
Components:Node	discovery	 Available	
Components:Node	controller	 Available	
Components:Component	Discover	System	 Available	
Components:Components	Controller	 Available	
Components:Artifact	Repository	 Available	
Components:Component	Operational	REST	API	 Available	
Components:Node	Operational	REST	API	 Available	
Components:Cluster	Manager	 Available	

Table	2.	Enabling	Platform	Implementation	Status	
	

The	second	testbed	is	deployed	at	the	EMC	partner	and	it	has	been	described	in	D5.3	and	D5.4	
as	an	integrated	solution	with	EMC's	SPECS	Platform	adapted	for	the	ViPR	technology.	EMCs	
solution	is	closed	source	and	it	is	described	separately	from	the	open	source	solutions.	

3.2. SPECS	Enabling	Platform	
The	SPECS	Enabling	Platform	is	a	software	stack	that	enables	the	SPECS	platform	deployment	
and	its	management	at	infrastructure	level.	It	has	three	main	components:	Custom	Operating	
System,	Bootstrapper	and	Cluster	Manager;	these	three	components	are	described	in	the	next	
paragraphs.	
	
Most	of	the	components	part	of	SPECS	Enabling	Platform	were	designed	and	developed	based	
on	SPECS	requirements.	However	Bootstrapper’s	Resource	registration	and	discovery	 service	
and	 	 Cluster	Manager’s	 Cloud	 Resource	 Allocator	were	 derived	 from	 a	 component	 that	 was	
developed	under	a	different	research	project,	called	mOSAIC	Cloud	[5].	

3.2.1. Custom	Operating	System	
Compared	to	D1.6.1	the	are	no	significant	improvements	over	the	operating	system.	CustomOS	
uses	 the	 openSUSE	13.1	 linux	 distribution,	 as	 base	 operating	 system,	with	 all	 the	 packages	
updated	to	the	latest	version.	This	was	necessary	in	order	to	address	the	latest	security	issues	
published	by	the	vendor.	Moreover,	some	packages	received	newer	versions	that	improve	also	
the	performance	and	stability	of	the	Enabling	Platform	dependencies.	
Usage	information	on	how	to	build	a	custom	image	and	to	use	it	in	a	cloud	environment	are	
available	publicly	on	the	BitBucket	repository	that	hosts	the	mOS	sources:	

• https://bitbucket.org/specs-team/specs-core-enabling_platform-custom-os	
	
The	 Custom	 OS	 also	 relies	 on	 packages	 that	 are	 customized	 for	 SPECS.	 These	 packages	
descriptors	are	hosted	on	BitBucket	together	with	a	tool	called	package	factory,	that	allows	a	
developer	to	create	and	publish	 its	own	custom	mOS	packages.	All	 the	details	regarding	the	
package	factory	are	described	on	its	dedicated	repository	wiki	page:	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

11	

• https://bitbucket.org/specs-team/specs-core-enabling_platform-custom-os-packaging	

3.2.2. Bootstrapper	
The	Bootstrapper	(or	platform	bootstrap	service)	represents	a	collection	of	services	that	run	on	
top	of	the	Custom	OS	(mOS).	These	services	are	used	to	customize	a	mOS	instance	in	order	to	
fulfill	 the	requirements	 in	terms	of	runtime	environment,	service	deployment,	configuration	
and	management	etc.	It	implements	two	components	that	were	designed	in	D1.1.2,	namely	the	
Node	Bootstrapper	 and	 the	Component	 Logging.	 The	 architecture	 is	 depicted	 in	 Figure	2.	 In	
particular,	 these	 services	 are	 responsible	 for	 resource	 registration	 and	 discovery,	 resource	
configuration	and	component	logging.	These	responsibilities	are	described	in	the	subsequent	
paragraphs.	
	
Resource	registration	and	discovery		
This	is	a	service	that	handles	the	information	about	the	deployed	resources.	It	uses	a	distributed	
system	and	 a	 custom	 communication	protocol	 that	 detailed	 in	 [1].	When	 a	 resource	 is	 first	
deployed,	 the	resource	 is	 registered	 into	 the	DNS	catalog.	 If	a	 resource	requests	access	 to	a	
different	platform	service	hosted	on	a	different	node	it	has	to	query	the	DNS	catalog	to	discover	
the	remote	resource	endpoint.	The	DNS	naming	schema	allows	the	registration	of	the	services	
name	(as	DNS	aliases	or	hostname	entries)	and	services	details	using	DNS	text	records.	The	
DNS	naming	convention	is:	

[service_unique_name].[service_group].[cluster_instance_id].cloud.domain_name.		
This	service	is	flexible	and	can	be	adapted	for	any	specific	use	case	scenario.	

	
Resource	configuration	
Resource	configuration	is	 in	charge	of	the	customization	of	the	operating	environment.	This	
includes	the	installation	and	configuration	of	the	software	packages	needed	by	the	platform.	
This	service	uses	Chef	Client	Deployment	technology	[2].	Chef	client	customizes	the	operating	
system	based	on	a	set	of	predefined	templates	or	recipes.	These	recipes	contain	policies	that	
are	applied	at	the	operating	system	level	in	order	to	deploy	software	package	and	configure	the	
service	it	delivers.	Resource	configuration	service	can	be	used	in	two	modes:	(a)	standalone	
mode,	where	 all	 the	 recipes	 are	downloaded	 locally	 and	Chef	 client	 is	 called	directly	or	 (b)	
central	 mode,	 where	 Chef	 client	 connects	 to	 a	 Chef	 server	 from	 where	 it	 gets	 all	 the	
configuration	templates	(Figure	2).	
	
Component	logging		
The	logging	service	is	used	to	verify	different	aspects	of	the	platform	components	and	also	to	
debug	potential	issues	that	the	platform	may	encounter,	in	real	time.	All	the	logging	information	
is	directly	exposed	using	a	standard	HTTP	interface.	The	default	URL	for	accessing	the	logging	
service	is:	http://VM_IP_ADDRESS:81/mos/	

	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

12	

	
Figure	2.	Enabling	Platform	-	Bootstrapper		

	 	
The	Bootstrapper	is	hosted	as	a	Bitbucket	repository	available	at:	

• https://bitbucket.org/specs-team/specs-core-enabling_platform-bootstrapper	

3.2.3. Cluster	Manager	
The	Cluster	Manager	orchestrates	the	most	important	aspects	of	the	deployment	process,	
namely	the	remote	resources	acquisition	process	(from	the	cloud	providers,	resources	used	to	
host	the	core	components)	using	the	cloud	resource	allocator	and	the	deployment	of	the	
platform	components	using	a	chef	cluster,	based	on	Chef	Deployment	technology.		
	
Cloud	Resource	Allocator	
Cloud	Resource	Allocator	is	the	entry	point	of	the	Enabling	Platform.	It	exposes	a	REST	API	and	
a	web	user	interface	for	accessing	the	core	functionalities	of	the	Enabling	Platform.	In	order	to	
bootstrap	 a	 new	 Enabling	 Platform	 instance,	 the	 user	 needs	 to	 specify:	 (a)	 cloud	 specific	
information	(cloud	provider,	authentication	credentials	and	security	information),	(b)	cluster	
information	(deployment	templates	repository,	cluster	identification)	and	(c)	the	configuration	
of	the	cluster:	number	of	virtual	machines	and	the	deployment	templates	to	be	applied.	This	
interface	is	called	the	Cluster	Launcher.	The	Cluster	Launcher	interface	was	described	in	details	
in	D1.4.2.	The	hosted	SPECS	Cluster	Launcher	instance	is	available	at:	

• https://dashboard.cloud.specs-project.eu/	
Based	on	the	configuration	descriptor	received	from	the	the	user,	the	Cluster	Launcher	creates	
a	deployment	descriptor.	This	deployment	descriptor	is	sent	to	the	backend	service	that	will	
acquire	 the	 resources	 from	 the	 targeted	 cloud	 provider	 and	 it	 will	 initialize	 the	 local	
deployment	 process	 using	 the	 Resource	 configuration	 service,	 that	 is	 described	 in	 The	
Bootstrapper	in	Section	3.2.2.	The	architecture	of	the	component	is	described	in	Figure	3.	

	
Figure	3.	Enabling	Platform	-	Cloud	Resource	Allocator	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

13	

	
The	Cloud	Resource	Allocator	component	technical	information	is	described	in	the	Bitbucket	
repository	dedicated	wiki:	

• https://bitbucket.org/specs-team/specs-core-enabling_platform-cloud-resource-
allocator	

	
The	Cluster	Launcher	component	is	publicly	available	in	the	Bitbucket	repository:	

• https://bitbucket.org/specs-team/specs-core-enabling_platform-cluster-launcher	
	
Chef	Cluster	
Chef	Cluster:	The	Enabling	Platform	uses	Chef	technology	to	automatize	the	deployment	of	the	
supporting	platform.	Chef	uses	predefined	configuration	templates,	called	recipes,	to	customize	
a	running	environment.	These	recipes	define	a	list	of	software	requirements	that	need	to	be	
installed	 and	 what	 are	 the	 configuration	 customizations	 to	 be	 applied.	 For	 each	 platform	
component	one	or	more	recipes	are	used	for	its	deployment.	This	list	of	recipes	specific	to	a	
single	component	deployment	are	so-called	cookbooks.	Chef	needs	to	be	manually	configured.	
There	is	no	default	method	for	automatic	configuration	of	the	Chef	technology.	For	cluster	mode	
we	need	one	server	instance	of	Chef	and	minimum	one	client	instance.	On	deployment	phase	
Chef	server	defines	the	credentials	used	by	the	Chef	clients	to	communicate	with	the	server.	All	
these	information	(credentials,	chef	server	endpoint	etc.)	must	be	manually	provided	by	the	
Chef	clients.	The	Enabling	Platform	automatizes	the	entire	process	and	it	does	it	in	a	secure	way	
by	using	simple	tokens	authentication	and	authorization	between	the	Chef	Cluster	nodes.	The	
Chef	Cluster	consists	of	multiple	components	integrated	into	The	Bootstrapper	and	Custom	OS	
special	packages	customizations.	The	architecture	is	presented	in	Figure	4.	
	 By	 default,	 the	 Chef	 Cluster	 will	 automatically	 upload	 and	 register	 the	 available	
cookbooks	hosted	on	Bitbucket	repositories	available	at:	

• https://bitbucket.org/specs-team/specs-core-enabling_platform-repository	
• https://bitbucket.org/specs-team/specs-core-enforcement-repository	

Any	new	developed	cookbooks	that	are	registered	under	one	of	these	two	repositories	will	be	
automatically	available	and	registered	by	the	Chef	Cluster.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

14	

	
Figure	4.	Enabling	Platform	-	Chef	Cluster	

3.3. The	testbed	supporting	infrastructure	

3.3.1. The	hosted	solution	
The	hosted	solution	of	the	SPECS	Testbed	was	entirely	described	in	D1.6.1.	The	hosted	solution	
uses	 HP	 Helion	 Eucalyptus	 as	 a	 cloud	 stack	 on	 IeAT's	 infrastructure.	 The	 procedures	 on	
obtaining	access	and	how	to	use	the	solution	where	detailed	in	D1.6.1.	There	are	no	updates	
regarding	the	hosted	solution	so	in	the	following	paragraphs	we	will	mainly	focus	on	the	local	
solution	 installation	and	usage	details.	With	 respect	 to	 the	hosted	 solution	 in	Section	3.4	we	
present	a	brief	overview	over	the	usage	of	the	physical	resources.	

3.3.2. The	local	solution	
The	local	solution	represents	a	custom	deployment	of	the	Enabling	Platform	on	a	different	cloud	
provider	than	the	official	supported	testbed,	hosted	by	IeAT.	The	local	solution	deployment	has	
the	following	requirements:	

• the	use/registration	of	the	CustomOS	image	with	the	official	SPECS	Custom	OS	packages	
repositories	enabled	(CustomOS	image	comes	with	the	repositories	enabled	by	default);	

• the	installation	of	the	Cloud	Resource	Allocator;	
• the	deployment	of	the	Cluster	Launcher	interface	on	top	of	a	running	HTTP	server;	

3.3.2.1. 	Installation	
The	 installation	 assumes	 that	 the	 user	 has	 access	 to	 a	 private/public	 cloud	 provider	 or	
resources	and	is	able	to	register	new	cloud	images	and	to	acquire	resources	from	a	supported	
cloud	provider.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

15	

3.3.2.2. Custom	OS	image	upload	
In	order	to	host	the	components	required	by	the	Enabling	Platform,	a	Custom	OS	image	has	to	
be	 imported	and	made	available	within	 the	 targeted	cloud	provider.	The	official	Custom	OS	
image	supported	by	SPECS	is	available	at:	

• ftp://ftp.specs-project.eu/public/custom-os/latest	
	 	
The	 image	needs	 to	 be	bundled	using	 the	 cloud	 stack	 specific	 tools.	 The	 image	 registration	
process	 is	 specific	 to	 the	 cloud	 stack	 instance	 used	 for	 deployment.	 The	 image	 registration	
process	is	usually	described	in	documentation	of	the	cloud	stack	software	or	cloud	provider	
documentation.	
After	successfully	importing	the	Custom	OS	image,	the	user	must	start	a	virtual	machine	(VM)	
using	the	Custom	OS	image.	The	VM	should	have	at	least	2GB	of	memory	and	5GB	of	virtual	
hard	drive.	

3.3.2.3. Cloud	Resource	Allocator	
On	the	newly	created	VM	the	user	must	install	the	Cloud	Resource	Allocator	(RA)	component.	
The	installation	steps	of	the	RA	component	are	available	on	the	dedicated	Bitbucket	repository	
wiki	space:	

• https://bitbucket.org/specs-team/specs-core-enabling_platform-cloud-resource-
allocator	

The	Cloud	Resource	Allocator	was	designed	 to	work	 in	 a	Unix/Linux	 environment	 that	 has	
support	for	the	following	requirements:	

• Python	Programming	Language	-	version	2.7.x	
• Python	libraries:	Pip,	Apache	Libcloud	0.12.4,	CherryPy	3.2.4	and	SOAPpy;	
• Mercurial	for	repository	download;	

	
Assuming	 that	 the	 running	 environment	 meets	 the	 above	 requirements,	 the	 following	
command	lines	will	download,	install	and	configure	Cloud	Resource	Allocator	locally:	
	
	 mkdir -p /opt/specs-cloud-resource-allocator
 cd /opt/specs-cloud-resource-allocator
 hg clone https://bitbucket.org/specs-team/specs-core-
enabling_platform-cloud-resource-allocator .
 pip install -r requirements.txt
	
To	control	the	service,	use	the	following	command:	
	 	
	 /opt/specs-cloud-resource-allocator/run.sh [start|stop]

	
The	basic	customizations	that	should	be	done	are:	
	
Add	the	cloud	image	details	for	each	supported	cloud	providers	(by	default,	AmazonEC2	and	HP	
Eucalyptus	 are	 enabled);	 a	 cloud	 image	 is	 represented	 by	 the	 image	 id	 (a	 random	 string	
generated	 by	 the	 cloud	 provider).	 Edit	 the	 /opt/specs-cloud-resource-
allocator/conf/images.conf	file	by	adding	a	JSON	structure	like:	

 [

 {
 "description": "Custom OS 4.2.0 64bit",
 "name": "CustomOS-4.2.0-001",

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

16	

 "platform": 64,
 "supported": [
 {
 "image": "emi-65c3e382",
 "kernel": "",
 "provider": "ieat-euca",
 "ramdisk": ""
 }
],
 "version": "4.2.0"
 }
]
	

Required	fields	are:	
• name:	custom	string	without	spaces	that	represents	the	name	displayed	in	the	Cluster	

Launcher	interface;	
• description:	image	description;	
• platform:	32	or	64	(bits);	
• supported:	a	list	of	providers	for	which	the	cloud	image	with	name	is	supported:	

o image:	represents	the	image	id	provided	by	the	cloud	provider;	
o provider:	the	provider	on	which	the	cloud	image	is	registered	(accepted	values:	

ieat-euca	and	ec2-eu-west);	
	
Configure	 the	 list	 of	 supported	 applications.	 An	 application	 represents	 a	 cloud	 image	 that	 is	
customized	with	a	specific	set	of	packages	and	transformed	in	a	node	with	a	certain	role.	The	
default	roles	are:	Chef	Server	and	Chef	Client.	The	only	customization	that	needs	to	be	applied	
is	 to	 edit	 /opt/specs-cloud-resource-allocator/conf/applications.conf	 and	 to	 add	 to	 field	
supported	the	corresponding	image	name	defined	in	the	images.conf	file	above.		
	
Add	a	list	of	users	authorized	to	use	the	cloud	resource	allocator.	Cloud	Resource	Allocator	uses	
a	 simple	 authentication	 using	 a	 token.	 The	 default	 token	 is	 registered	 in	 /opt/specs-cloud-
resource-allocator/conf/users.conf.	 After	 each	 modification	 over	 the	 configuration	 files	 the	
service	needs	to	be	restarted	in	order	to	reload	the	configuration	parameters.	
	
Next,	in	order	to	use	the	Cloud	Resource	Allocator	the	management	interface	has	to	be	deployed	
on	the	same	VM.	Follow	the	next	instructions	to	deploy	the	Cluster	Launcher	interface.	

3.3.2.4. The	Cluster	Launcher	interface	
The	last	step,	in	deploying	a	custom	Enabling	Platform	instance,	is	to	have	the	Cluster	Launcher	
interface	installed.	Cluster	Launcher	interface	is	written	as	a	plain	web-based	application	that	
requires	 only	 a	 running	 HTTP	 server,	 for	 serving	 its	 content,	 and	 a	 JavaScript	 compatible	
browser	to	use	the	interface.	Cluster	Launcher	must	be	installed	on	the	same	VM	where	Cloud	
Resource	Allocator	is	installed.	The	Cluster	Launcher	interface	is	shown	in	Figure	5	and	all	the	
information	on	how	to	use	the	interface	where	explained	in	detail	in	D1.4.2.	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

17	

	
Figure	5.	Cluster	Launcher	-	Web	Interface	

	
	 To	install	a	HTTP	server,	that	will	host	the	launcher	interface,	the	user	must	run	on	the	
VM	console,	logged	in	as	root:	
	
	 zypper install apache2

	
Also	be	sure	you	have	the	Mercurial	versioning	tool	installed	for	cloning	the	source	files	from	
the	repository.		
Next,	 the	Cluster	Launcher	has	 to	be	deployed	and	configured	 locally	using	the	HTTP	server	
installed	above:	
	
	 mkdir -p /srv/www/dashboard.cloud.mydomain.eu/
 cd /srv/www/dashboard.cloud.mydomain.eu/
 hg clone https://bitbucket.org/specs-team/specs-core-
enabling_platform-cluster-launcher .

	 	
The	HTTP	server	has	to	be	configured	to	deliver	the	content	of	the	Cluster	Launcher	interface	
by	adding	a	new	configuration	file	to	the	HTTP	server.	Add	a	new	file	to	
/etc/apache2/vhosts.d/	directory	with	name	dashboard.cloud.mydomain.eu	having	the	
following	content:	
	
	 <VirtualHost *:80>

 ServerAdmin email@address
 ServerName dashboard.cloud.mydomain.eu
 DocumentRoot /srv/www/dashboard.cloud.mydomain.eu
 <Directory />
 Options FollowSymLinks
 AllowOverride None

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

18	

 Require all granted
 </Directory>
 <LocationMatch "/(data|conf|bin|inc)/">
 Order allow,deny
 Deny from all
 Satisfy All
 </LocationMatch>
 <Directory /srv/www/dashboard.cloud.mydomain.eu>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride All
 Order allow,deny
 allow from all
 </Directory>

 ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
 <Directory "/usr/lib/cgi-bin">
 AllowOverride None
 Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
 Order allow,deny
 Allow from all
 </Directory>

 LogLevel warn
 CustomLog /var/log/apache2/dashboard.cloud.mydomain.eu-access.log
combined
 ErrorLog /var/log/apache2/dashboard.cloud.mydomain.eu-error.log

 ProxyPass /cloud http://127.0.0.1:5003/cloud
 ProxyPassReverse /cloud http://127.0.0.1:5003/cloud

</VirtualHost>

	
Hostname	dashboard.cloud.mydomain	must	be	replaced	with	a	custom	the	subdomain	set	up	to	
point	out	the	the	Cluster	Launcher	interface	VM	IP	address.	We	recommend	to	keep	the	current	
naming	convention	prefix:	dashboard.cloud.	 .	Restart	 the	HTTP	server	with	 systemctl	 restart	
apache2	command.	

3.3.2.5. The	Chef	Cluster	
Chef	 cluster	 doesn't	 need	 any	 special	 installation	 requirements	 if	 the	 above	 steps	 were	
completed.	 The	 Chef	 Cluster	 is	 setup	 by	 the	 Cloud	 Resource	 Allocator	 by	 applying	 	 specific	
deployment	plans	on	the	newly	acquired	resources.	The	deployment	plan	is	generated	relying	
on	the	information	provided	in	the	Cluster	Launcher	interface.	

3.3.2.6. 	Usage	
If	 all	 the	 components	 described	 in	 the	 Installation	 section	where	 successfully	 installed,	 the	
Cluster	 Launcher	 interface	 can	 be	 used	 to	 deploy	 a	 custom	 Enabling	 Platform	 and	 SPECS	
Platform	 running	 on	 your	 local	 cloud	 stack.	 The	 interface	 can	 be	 accessed	 directly	 using	 a	
JavaScript	 enabled	 browser	 pointing	 out	 the	 URL	 address	 of	 the	 VM	 used	 to	 deploy	 the	
components.	Using	the	naming	convention	from	the	example	described	above,	the	URL	is:	

• http://dashboard.cloud.mydomain/	
The	 complete	 tutorial	 on	 how	 to	 use	 the	 interface	where	 presented	 in	D1.4.2	 (Section	 3.3)	
together	with	a	tutorial	on	how	the	Cluster	Launcher	interface	can	be	used	to	bootstrap	a	new	
SPECS	Platform.		

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

19	

3.4. Usage of the physical resources
In	this	sub-section	we	present	the	hardware	resources	used	for	testing	and	executing	the	SPECS	
Platform.	In	Table	3	we	report	the	VM	types	and	their	maximum	available	number,	available	
for	hosting	SPECS	experiments	related	to	development,	testing	and	integration	activities.	
	

Instance type CPU RAM Memory
(MB)

Disk storage
(GB)

Maximum
available

m1.small 1 256 5 36
m1.medium 1 512 5 36
c1.medium 1 512 9 18
m1.large 1 1024 15 18
c1.xlarge 1 2048 9 18
m2.2xlarge 2 2048 9 18
m1.xlarge 1 1024 20 12
m2.xlarge 1 2048 10 12
m3.xlarge 2 2048 25 12
m3.2xlarge 2 4096 15 8
cc1.4xlarge 4 4096 20 8

Table	3.	IeAT	HP	Helion	Eucalyptus	available	VM	types.	
Base	on	the	usage	pattern	of	the	resources,	correlated	with	the	SPECS	Modules	hosted	by	these	
resources,	we	defined	a	list	of	resource	templates.	These	templates	contain	the	number	of	VMs	
(of	 different	 types)	 required	 to	 successfully	 host	 a	 particular	 SPECS	 module.	 The	 list	 of	
templates	is	outlined	in	Table	4.	
	

Template VM Type Number of VMs Description
SPECS Platform m2.2xlarge 1 Chef Server - Node

m1.xlarge 1 SPECS Components
WebContainers m1.large 3 SPECS Web Containers components
Storage m1.xlarge 3 Storage services

Table	4.	SPECS	Testbed	resource	requirements	templates.	
Based	on	 these	 templates,	we	compute	 the	physical	 resources	required	 to	conduct	different	
experiments	during	the	project	life-cycle	(Table	5).		
	

Consumer Template / VM
Type

No. CPU RAM (MB) HDD (GB)

apps.specs-project.eu SPECS Platform 1 3 3072 29
Partners experiments SPECS Platform 2 6 6144 58

m1.large 6 6 6144 90
c1.xlarge 3 3 6144 27

Integration SPECS Platform 1 3 3072 29
m1.large 3 3 3072 45

TOTAL 24 27648 278
Table	5.	SPECS	resource	requirements	for	different	experiment	types.	

	
The	physical	resources	usage	is	reported	by	the	HP	Helio	Eucalyptus.	At	the	project	level,	from	
01.01.2015	up	to	27.04.2016,	the	consumed	resources	is	outlined	in	Table	6.	These	numbers	
demonstrate	that	the	supporting	platform	was	intensively	used	to	support	SPECS	experiments	
made	on	development,	testing	and	integration	activities.	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

20	

Number of VMs
started

VM hours
consumption

Network IN
traffic (GB)

Network OUT
traffic (GB)

Disk Usage
Read (GB)

Disk Usage
Write (GB)

484 114816 2439 681 4273 11122
Table	6.	SPECS	physical	resources	usage	report.	

	
	
	 	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

21	

4. Conclusions
This	document	presents	 the	 final	 implementation	of	 the	SPECS	Testbed,	which	provides	 the	
environment	to	configure	and	run	the	SPECS	Enabling	Platform,	on	top	of	which	all	the	SPECS	
services	are	executed.	
	
In	this	document,	we	presented	the	status	of	implementation	activities	and	reported	the	final	
coverage	of	the	requirements	that	were	identified	during	the	requirement	analysis	and	design	
phases	of	the	Enabling	Platform.	As	illustrated,	all	the	requirements	are	now	covered	and	all	
artifacts	are	available.	Finally,	 two	testbeds	are	currently	available,	represented	by	the	IeAT	
and	EMC	infrastructures.	
	
The	 performance	 and	 scalability	 discussion	 was	 not	 tackled	 in	 this	 document	 because	 the	
Enabling	Platform	doesn't	need	to	be	scalable	and	its	performance	is	not	critical.	The	Enabling	
Platform	 is	used	 to	bootstrap	 the	SPECS	Platform	by	 the	 resource	provider.	 In	 this	way	 the	
workload	 on	 the	Enabling	 Platform	 is	 reduced	 and	 the	 response	 time	 is	 not	 critical	 as	 it	 is	
normally	used	only	once	per	a	SPECS	Platform	instance	setup.	
	
The	Enabling	Platform	tackled	the	problem	of	autonomic	deployment	of	distributed	software	
systems.	 In	 [3]	we	published	an	analysis	over	 the	existent	 solutions	 from	different	point	of	
views:	open-source	versus	enterprise,	hosted	solutions	versus	deployable	solutions,	etc.	The	
analysis	conducted	in	[3]	and	[4]	outlined	that	the	existent	technologies	are	inefficient	when	
distribution,	heterogeneity,	scalability,	dynamics	and	openness	are	primary	concerns.	With	our	
approach	we	 tried	and	partially	managed	 to	address	 the	above	 requirements.	As	a	proof	of	
concept,	 our	 proposed	 solution,	 namely	 the	 Enabling	 Platform,	 manages	 to	 automatize	 the	
setup	process	of	the	popular	Chef	deployment	solution,	that	SPECS	is	using	to	automatize	the	
deployment	of	the	SPECS	Platform.	The	Chef	deployment	technology	has	a	complex	deployment	
procedure	for	its	components	setup.	With	the	Enabling	Platform	(the	Chef	Cluster	component)	
we	managed	to	automatize	the	entire	process	and	by	this	to	hide	the	complexity	from	the	End-
user	or	owner	perspective.	This	approach	is	new	and	it	can	be	reused	in	other	contexts	with	
less	effort.	
	
In	conclusion,	Table	7	reports	the	main	outcomes	related	to	the	activities	of	Task	1.6.	
	

Outcome	description	
Enabling	platform	final	implementation	
SLA	 Platform	 implementation	 and	 testbed	
available	
SLA	platform	interface	(SPECS	Dashboard)	

Table	7.	Task	1.6	outcomes	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	1.6.2	
	

22	

5. Bibliography
	

[1] Panica,	S.	&	Petcu,	D.	(2013),	Distributed	Resource	Identification	Service	for	Cloud	
Environments.	15th	International	Symposium	on	Symbolic	and	Numeric	Algorithm	for	
Scientific	Computing	(pp.	448-453).	Timisoara:	SYNASC	2013.	

[2] Chef	technology	used	for	automatic	deployment,	http://chef.io/,	last	accessed	04.2016	
[3] Silviu	Panica,	Dana	Petcu,	“Unattended	deployment	of	enabling	platforms	for	Cloud-

based	applications”,	in		AINA	2016,	30th	IEEE	International	Conference	on	Advanced	
Information	Networking	and	Applications,	CCPI	Workshop,	Switzerland,	23-25	March,	
2016,	in	press.	

[4] J.-P.	Arcangeli,	R.	Boujbel,	and	S.	Leriche,	“Automatic	deployment	of	distributed	
software	systems:	Definitions	and	state	of	the	art,”	Journal	of	Systems	and	Software,	
vol.	103,	pp.	198	–	218,	2015	

[5] mOSAIC	Cloud,	FP7	EU	funded	project,	http://www.mosaic-cloud.eu/	
	
	

