Secure Provisioning of Cloud Services
based on SLA Management

SPECS Project - Deliverable 1.4.2

Module Shared API and Core Services

Version 1.1
15 February 2016

SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

Deliverable information

Deliverable no.:

D1.4.2

Deliverable title:

Module Shared API and Core Services

Deliverable nature:

Prototype

Dissemination level:

Public

Contractual delivery:

31 October 2015

Actual delivery date:

31 October 2015

Author(s): Massimiliano Rak (CeRICT)

Contributors: Giancarlo Capone (CeRICT), Silviu Panica (IeAT), Damjan Murn
(XLAB), Valentina Casola (CeRICT), Nicola De Filippo (CeRICT)

Reviewers: Umberto Villano (CeRICT), Jolanda Modic (XLAB)

Task contributing to the
deliverable:

T1.4

Total number of pages:

86

SPECS Project - Deliverable 1.4.2 2

Secure Provisioning of Cloud Services based on SLA Management

Executive summary

This deliverable provides the supporting documentation for the prototypes demonstrating
the SLA Platform module and two of the components of the Vertical layer, namely the Auditing
component and the User Manager component, whose final design is presented in D1.4.1.

The SLA Platform is in charge of managing every aspect of the SLA life cycle and has to
guarantee interoperability among all Core modules, namely Enforcement, Negotiation and
Monitoring. In particular, it exposes a high-level and service-oriented API to manage the SLA
life cycle. Each operation on an SLA is performed by invoking the appropriate service,
abstracting on common issues, like concurrency control or data storage and representation.
Furthermore, it exposes a set of high-level functionalities to the SPECS Core modules, as it is
responsible for the communication among Enforcement, Negotiation and Monitoring modules
in a centralized manner, allowing for the decoupling of the design and of the implementation
of such modules.

As described in deliverables D1.1.3 and D1.4.1, in order to cover the large number of
requirements and to cope with the feedbacks from implementation and validation activities,
the SLA Platform design has been updated. The final module architecture includes four
components, ie., SLA Manager, Service Manager, Security Metrics Catalogue and
Interoperability layer, and a number of different artifacts, mainly models, to cope with the
definition of common data models and APIs.

The Vertical layer provides some cross-cutting functionalities used by the SLA Platform and
by other modules. In particular, the Auditing component and the User Manager component
described in this deliverable are responsible for supporting auditing in all the steps of the
SPECS flow and for managing platform’s user, respectively. As said in deliverable D1.4.1, the
other two components of the Vertical layer (i.e., Credential Service and Security Tokens) are
described in WP4 deliverables (i.e., D4.4.1 and D4.4.2).

In this document, we present the status of the development activities related to T1.4, and
show how to install and use the prototype components developed in the framework of this
task. Such components are all currently available, and links to repositories are provided in
this document. Moreover, in accordance with the methodology proposed in D4.5.2, unit test
results are presented for all components.

The components reported in the following cover a very large number of requirements and
they are at the core of the SPECS solution, although most of them are transparent to the SPECS
End-users. The analysis of elicited requirements and motivations behind the choice of the
presented solution are discussed in deliverables D1.1.2, D1.1.3 and D1.4.1.

SPECS Project - Deliverable 1.4.2 3

Secure Provisioning of Cloud Services based on SLA Management

Table of contents

Deliverable iNfOrMation ... bbb 2
EX@CULIVE SUIMIMATY wvviririrssisissississssssssssss s sss bbb bbb 3
B IEET o) L0 0] 4 U= 0L PPN 4
06 (S 0T o U 6
06 (5 0] = o) LT 7
3 01 6 10 ot [) o L PSPPI 8
2. Relationship with other deliverables ... s 9
3. The SPECS SLA PlatfOrmm ...cc.oceeeerceseessssessssssssssssssesssesssssssssssssssessssssssssssssssssssssssssssssssssssesssassssssssssas 10
3.1. Status of Development ACHIVITIES. ... ssss s sssssesssssssessssssas 10
20 2U<3 0 0 12

1 70 R 00T 11 = (0) LN 12
3.3.1. REQUITEMENTES it 13
3.3.2. Starting a SPECS SLA Platform iNStanCeoeremessssssssssesssesssssssssssesssssssssns 13
3.3.2.1. Selecting the PrOVIAEr ... sessssssssssesssessass 13
3.3.2.2. Describing the cluster cOnfiguration ... 14
3.3.2.3. Deployment CONfIGUIAtIONouuueecerermiesiessssssessssssssesssesssessssssssessssssssssssssssssssssssssssssssssssss 14
3.3.2.4. Starting the ClUSLET ... 15

3.3.3. Controlling the SPECS SLA Platform inStancesseessssesssesssessssesns 15
3.3.4. Accessing the SPECS SLA Platform.......eenessessesssssssssssssssssessssssssssssssssssssas 16

4. SPECS SLA Platform COMPONENTS.....ccveureresiesssesssessssssesssessssssssssssesssessssssssssssssssssssssssssssssssesssassssssssssas 17
T Y YN0 L 0B =) o 17
0 0 SR 2U=] 01013 10) oy 17
4.1.2. DesSCription and deSIN ... s ssssssssssssssssssssssssssssssssssssas 17
0 TG TR 0o 1) =11 - U) o PSP 17
4.1.3.1. Installing by using precompiled binaries ... 17
4.1.3.2. Compiling and installing from SOUICE ... 18

N U7 V. 18
0 T T - TP 20

4.2, SEIVICE MANAGET ..ciiiurirririsisissssss bbb bbb 21
/708 SR 2U=] 0 1013 10) oy 21
4.2.2. DesSCription and deSIZN ... ssssssssssssssssas 22
L2 TR 1o 1) -1 I - L) o PSP 22
4.2.3.1. Installing by using precompiled binaries ... 22
4.2.3.2. Compiling and installing from SOUICEcemrnermeeneeseesserssssssssssssessssssessssssnes 23

T U7 V. 23
0 TR - PP 25

4.3, Security Metrics CatalOGUE.......oirmerieeeseisesssssssss s ssssssssssss s ssssssssssssssssssss s sssssssssssssssssas 27
4.3.1. REPOSITOTY it 28
4.3.2. DesSCription and deSIZN ... ssssssss s s ssssssssssssssssssssssssssssssssssssas 28
TG TG TR 1o 1) -1 I - L) o PP 28
4.3.3.1. Installing by using precompiled binaries ... 28
4.3.3.2. Compiling and installing from SOUICE ... 29

TG TR U7 ¥ . 29
T T - PSP 31

4.4, INteroperability LAYer ... erseessssssssssssssssssssss s ssssssssssesssessaas 33
4.4 1. REPOSITOTY it 33

SPECS Project - Deliverable 1.4.2 4

Secure Provisioning of Cloud Services based on SLA Management

4.4.2. Description and DeSIZN ... s ssssssssssssssssssssssssssssssssssssaes 34

L G TR 1o 1) -1 - L) o PSP 34
4.4.3.1. Installing by using precompiled binaries ... 34
4.4.3.2. Compiling and installing from SOUICE ... 34

T U7V . N 35
R TR - PSP 35
Vertical Layer COMPONENTS ...cueuererssesssessseessesssesssessssssssssssssssssssssssessssssssssssesssessssssssssssesssssssssssssssssssssssssssans 37
TR 0 e |0 o ¥ PP 37
T S =Y 010 1] 1 0 oy PP 37
4.5.2. Description and DESIN ... s sssssssssssssssssssssssssssssssssssses 37
TG TR 1o 1) =11 - L) o PSP 37
TG T N U b Y= a7 PP 37

TG 07/ N U b O =) L PP 38

T S T . PSPPSR 38
T T - PP 39

T T U T <) gl =V s =Y.l 40
4.6.1. REPOSITOTY it b 40
4.6.2. Description and DESIZN ... s sssssssssssssssssssssssssssssssssssaes 41

L STC TR 1o 1) =11 - U) o PSP 41
4.6.3.1. Installing by using precompiled binaries ... 41
4.6.3.2. Compiling and installing from SOUICEcuernemeeneseeesessesssssssessssssssssssnes 41

T TR U7 ¥ . 43
S TR - PSP 44

T 00} 4 e LTS (o) o - PPN 45
LT 2 =) /=) 4 LTSN 46
N 0D 1) S 47
A1, SLA Manager TEeStS . sasssssns 48
A2, Service Manager TeSES ... ———————— 57
A.3. Security Metrics CatalogUETESLSorceererersessesssersssssesssssssssssssssssssssss s ssssssssssssssessssssssssssssssens 63
A4, Interoperability Layer TeSTS. .. irssssesssessesssessssssssssssssssens 79
A5, AUITING TOSTS cuiuieriruirssersees s sess s ss s bbb s bbb 85

SPECS Project - Deliverable 1.4.2 5

Secure Provisioning of Cloud Services based on SLA Management

Index of figures

Figure 1: Relationship with other deliverables ... 9
Figure 2: SPECS platfOorm SETUP PIrOCESS...omererrsisssesssesssssssssssssssesssas 13
Figure 3: SPECS Launcher. Web User INTErface......eirrsssesssssssssssssssssssssssssssesssssssssssssns 14
Figure 4: SPECS Launcher. Sessions INtEIrfacCessns 15
Figure 5: SLA Manager - Get a collection of SLAs API call example.........coommmenensernneenneesseesseesseenns 19
Figure 6: SLA Manager - Get a single SLA API call eXampleccoeenmmmeneseesssssssssssesssseens 19
Figure 7: Code Quality Analysis Report for SLA Manager Backend........cc.omenenernnienseeseesseesseenns 20
Figure 8: Code Quality Analysis Report for SLA Manager Frontend ... 21
Figure 9: Service Manager - Get all SMs API call eXample........coenermeeessesessessssenns 24
Figure 10: Service Manager - Get SM Metadata API call example.......oonmmensenseenneensessessseesseeens 24
Figure 11: Service Manager - Get all SCs API call eXample.......coeneimeeeessssesssessessseenns 25
Figure 12: Code Quality Analysis Report for Service Manager Backend........coueneenmeennienseenseesneenns 26
Figure 13: Code Quality Analysis Report for Service Manager Frontendconmenneeneesneenns 27
Figure 14: Security Metrics Catalogue - Get all metrics API call examplecoonenmernneenreeseeeseenns 30
Figure 15: Security Metrics Catalogue - Get a specific metric API call example......c.ounrerreceneenns 31
Figure 16: Code Quality Analysis Report for Metric Catalogue Backendcconenmeennienseenseenseenns 32
Figure 17: Code Quality Analysis Report for Metric Catalogue Frontend..........eneeneeeseenns 33
Figure 18: Code Quality Analysis Report for Interoperability ... 36
Figure 19: Code Quality Analysis RepOrt for AUdit......oenernmernmeerersssssssssssssssssssssssssssssssesssesns 40
Figure 20: User Manager — The 1anding Pageccoeeesesesssssssssssssssssssssssssssssesssssssssssssns 43
Figure 21: User Manager - User allowed resources WUL.........coemssssssssssssssssssssssenns 44
Figure 22: User Manager - New account WU ... 44
SPECS Project - Deliverable 1.4.2 6

Secure Provisioning of Cloud Services based on SLA Management

Index of tables

Table 1: SLA Platform components requirements coverage

Table 3: SLA Platform module and Vertical layer module available artifacts

SPECS Project - Deliverable 1.4.2

Table 2: Vertical Layers components requirements COVErageeeennees

Secure Provisioning of Cloud Services based on SLA Management

1. Introduction

This deliverable provides the supporting documentation for the prototypes demonstrating
the SLA Platform and part of the Vertical layer.

Based on the final design, reported in D1.1.3 and D1.4.1, the components belonging to the SLA
Platform are the SLA Manager, the Service Manager, the Security Metrics Catalogue and the
Interoperability Layer. For what regards the Vertical layer, it comprises the Auditing
component, the User Manager component, the Credential Service component and the Security
Tokens component. As specified in D1.4.1, only the Auditing and User Manager components
have been analysed in Task 1.4, while the other two components are dealt with in WP4 and
discussed in D4.2.2 and D4.4.2.

For each of the above components, we report the source repository where the component
code is available, the installation steps, the usage guides and the testing results. Moreover, we
also provide a guide to set-up the whole SLA Platform on the SPECS Testbed by exploiting the
Launcher interface provided by the Enabling Platform and described in D1.6.1. This guide is
useful for those non-expert End-users (e.g., SPECS Owners) that do not want to set-up all the
components separately, and enables to have the SLA Platform up and running in few steps.

The deliverable is organized as follows. In Section 2, the relationship with other deliverables
is reported. In Section 3, the status of development activities related to the SLA Platform is
illustrated, and the guide for the set-up of the SLA Platform by means of the Launcher is
presented. In Section 4 and Section 5 the details on implementation, installation, usage and
testing of the single components belonging to the SLA Platform and to the Vertical layer
respectively are given. In particular:

* Section 4.1 discusses the SLA Manager, devoted to handling the SLA life cycle; its main
aim is to store all the SLAs that have been signed by End-users and to enable their
management;

* Section 4.2 discusses the Service Manager, devoted to storing and managing all the
information about the Security Mechanisms and Security Capabilities;

* Section 4.3 discusses the Security Metrics Catalogue, devoted to storing and managing
all the information about the Security Metrics;

* Section 4.4 discusses the Interoperability layer, devoted to offering functionalities for
enabling a transparent communication among different modules;

* Section 4.5 discusses the Auditing component, devoted to offering logging and audit
services to all other components and modules of the SPECS framework;

e Section 5.2 discusses the User Manager, which provides an access control mechanism
that can be integrated in all SPECS applications.

Finally, Section 6 reports our conclusions, while all the details on testing activities and results
are reported in Annex A.

SPECS Project - Deliverable 1.4.2 8

Secure Provisioning of Cloud Services based on SLA Management

2. Relationship with other deliverables

As illustrated in Figure 1, this document takes as primary input the Deliverable D1.4.1, where
the refined architecture of the SLA Platform and of the Vertical layer is presented. The design
and implementation choices are also strictly connected with deliverables D1.1.2, D1.3 and
D4.4.2, where specific components and offered APIs are presented.

Furthermore, the testing methodology proposed in D4.5.2 has been chosen for designing the
testing campaign of all SLA Platform components.

D4.5.2
Dyilal 2
PSS
D14.1 D1.4.2
D4.2.2 D1.6.2
D1.1.3 D16.1

Figure 1: Relationship with other deliverables

The current implementation is input for the deliverable associated with the Case Studies,
namely D5.1.3 (and to industrial applications, too), and will be used as input to the final
design of the Enabling Platform for the development of the SPECS Testbed that will be
reported in D1.6.2.

SPECS Project - Deliverable 1.4.2 9

Secure Provisioning of Cloud Services based on SLA Management

3. The SPECS SLA Platform

In this section, the status of development activities of the SLA Platform is presented, and the
guide for the set-up of the SLA Platform by means of the Launcher interface (Section 3.3.2) of
the Enabling Platform is presented.

3.1. Status of Development Activities

Table 1 and Table 2 schematically report the list of SPECS software components under
development that are associated with the SLA Platform module and to the Vertical Layer
module respectively, together with the requirements they cover.

DEPRECATED

Covered by other module (Monitoring- Archiver)

DR R <
DR PR <

DR >R <

Covered by other modules (Monitoring- Archiver and CTP Exporter)

Covered by other modules (Monitoring- Archiver)

DEPRECATED

Covered by Vertical Layer (User Manager)

X
X
X
X

X (No

(s

yet)

X
X
X
X
X
X
X
X
X
X
X
4

SPECS Project - Deliverable 1.4.2 10

Secure Provisioning of Cloud Services based on SLA Management

X

X
X
X
Table 1: SLA Platform components requirements coverage

As for the SLA Manager, this is one of the most important components of the whole SPECS
architecture. There are 24 requirements associated with it, of which 1 (SLAPL_R23) is not
covered yet and 3 (CERT_R1-R3) are not functional and mainly related to legal and
certification issues. We can consider them covered, but with the limitations discussed in
D1.1.2. The current implementation covers 99% of the SLA Manager requirements.

For what regards the Service Manager component, the Interoperability layer and the Security
Metrics Catalogue, as shown in Table 1, there are few requirements associated with them and
they are all covered (100%).

For what regards the Auditing component, as shown in Table 2, there are 14 requirements
associated with it, 3 of which are not yet covered in the current implementation (current
coverage is 79%). Similarly, as for the User Manager component, there are 9 requirements
associated with it, 4 of which are not yet covered in the current implementation (current
coverage is 55%). These are related to management of user and policy repositories and do not
affect the efficiency of the prototype components.

P DR DR DR DR | D D D <

X (not yet)
X (notyet)
X (notyet)

X
X
X (not yet)
X (not yet)
X
X
X
X (not yet)
X (not yet)

Table 2: Vertical Layers components requirements coverage

SPECS Project - Deliverable 1.4.2 11

Secure Provisioning of Cloud Services based on SLA Management

In Table 3, we report the status of development of all SPECS artifacts associated to the
SLA Platform module and to the Vertical layer. In particular, these artifacts include both the
components and the models that are under development in tasks of WP1 and will be
completed by the end of the project.

Module Artifacts under development Status
component:SLA Manager Available
component:Service Manager Available
component:Security Metrics Catalogue Available
component:Interoperability Layer Available

SLA Platform module | component:Auditing Available
component:User Manager Available
model: SLA machine readable format Available
model: SLA XML framework Available
model: SPECS data model Available

Table 3: SLA Platform module and Vertical layer module available artifacts

The SLA related models are described in detail in Deliverable D1.4.1, while the SPECS Data
model has been introduced in D1.3 and reported in detail in Section 5 of D1.4.1.

3.2. Repository
The SPECS SLA Platform is offered in form of a Cheft cookbook? that can be used to automate
its deployment and execution over the Enabling Platform. The SLA Platform Chef cookbook is
available in the Enabling Platform Chef repository at the following URL:
e https://bitbucket.org/specs-team/specs-core-enabling platform-repository

In particular, the cookbook devoted to SLA Platform is contained in the sla-platform
source folder inside the repository.

3.3. Installation

In this section, we illustrate how the SPECS Owner can bootstrap a new instance of the SPECS
SLA Platform on the SPECS Testbed, hosted on the infrastructure available in the project, by
means of the Enabling Platform Launcher (described in D1.1.3). The SLA Platform instance
configured through this guide includes a subset of the components of the SLA Platform,
namely the SLA Manager, the Service Manager and the Security Metrics Catalogue.

The process to follow in order to set-up a SPECS SLA Platform and to launch a SPECS
Application on top of it is summarized in Figure 2 and is described in detail in the following
sub-sections. The steps to be followed are: (i) Select Provider, (ii) Describe Cluster, (iii)
Configure Deployment, (iv) Start the Platform, (v) Monitor Resources Start-up, and (vi) Use
Platform components.

! Chef technology - automatic deployment software system (http://chef.io)
2 Chef Cookbook - a collection of recipes used by Chef to automatize the deployment process

SPECS Project - Deliverable 1.4.2 12

Secure Provisioning of Cloud Services based on SLA Management

Figure 2: SPECS platform setup process

3.3.1. Requirements

Starting the SPECS SLA Platform by using the SPECS Enabling Platform’s Launcher (hereafter,
Launcher) requires the End-User (EU) to have access to the resource providers officially
supported by SPECS, namely to the SPECS Testbed that is powered by HP Helion Private Cloud
Solution [18] (previously known as Eucalyptus Cloud) and Amazon EC2 [7]. The SPECS
Testbed usage details are described in D1.6.1.

3.3.2. Starting a SPECS SLA Platform instance

The Launcher offers a web user interface (WUI) hosted at http://dashboard.cloud.specs-
project.eu/. The interface provides several controls to create a launching configuration, used
to bootstrap the SPECS SLA Platform. It has two sections: Cluster descriptor, used to start the
SPECS SLA Platform, and Sessions, used to monitor the deployment of the launched
configurations.

The first time a SPECS Owner accesses the Launcher, a pop-up window requests for the Cloud
Resource Allocator token. The token is provided by the SPECS support team?.

3.3.2.1. Selecting the Provider

The SPECS Owner can start the SPECS SLA Platform either on the IeAT Cluster or on Amazon
EC2. Figure 3 shows the Cluster descriptor section of the WULI. In the panel labelled as Provider,
on the top section of the page, the SPECS Owner can specify:

* Provider name: the target cloud provider, i.e., either the SPECS Testbed (Eucalyptus) or
Amazon EC2;

* C(Credentials: the access key and secret key necessary for authentication; for the SPECS
Testbed, the SPECS Owner can click on the question mark sign near Credentials label in
order to get information about how to generate a credentials pair; for Amazon EC2, the
Owner must follow Amazon tutorial [15] on how to obtain an access credentials pair;

* C(Connection: the SSH key name (i.e., the secure access public key name for remote
connection access authorization to the virtual machines) and the security group (i.e,,
the name of the security group with the access rules to be applied to the VMs). By
default, the access to the virtual machines (VMs) is fully restricted on both cloud
providers. The SPECS Owner must follow the SPECS Testbed tutorial [16] and the
Amazon EC2 documentation[17] to obtain this information.

3 support@specs-project.eu

SPECS Project - Deliverable 1.4.2 13

Secure Provisioning of Cloud Services based on SLA Management

SPECS
a Cluster launcher Cluster descriptor ~ Sessions

Provider

Provider

Logout

Eucalyptus (IeAT)
Credentials © B

Connection ©@
Cluster formation

Cluster ID

Mechanisms Chef Repository

‘ https://bitbucket.org/specs-team/specs-core-enforcement-repository/raw/master/repository_descriptor.json ‘

Enabling-Platform Chef Repository

‘ https://bitbucket.org/specs-team/specs-core-enabling_platform-repository/raw/master/repository_descriptor.json ‘

Nodes Ak roos]
Node type Registration path Cookbook Instance type

mos-chef-server-manage ; chef-server.services c1.xlarge (1CPU/2048MB)

mos-chef-client ; chef-client-1.clients Nothing selected - m1.large (1CPU/1024MB)

mos-chef-client v chef-client-loloroga.clients Nothing selected v m1.large (1CPU/1024MB) H m

Figure 3: SPECS Launcher. Web User Interface

3.3.2.2. Describing the cluster configuration

The second panel of the Cluster descriptor section, labelled Cluster Formation, sets the
information associated to the composition of the VM cluster. The cluster must include a
machine devoted to hosting the Chef Servert, used to deploy both the components of the
platform and the security mechanisms needed to enforce security capabilities on top of the
services offered to End-Users.
The set of information reported in the panel is the following:
* C(Cluster ID: a string of letters and numbers that represents the identification ID of the
current SPECS platform configuration;
* Mechanisms Chef Repository: the repository containing all the Chef cookbooks
associated to mechanisms used by SPECS to configure Target Services according to
SLAs;
* Enabling-Platform Chef Repository: the repository that contains all the Chef cookbooks
used by the Launcher to start SPECS core components.

The SPECS Owner should supply the Cluster ID, which is a mnemonic name with the only
constraint that it must not be used in other sessions. Links to Mechanism Chef Repository and
Enabling-Platform Chef Repository are, by default, filled with SPECS official Bitbucket
repositories. (https://bitbucket.org/specs-team/specs-core-enforcement-repository and
https://bitbucket.org/specs-team/specs-core-enabling platform-repository respectively).

3.3.2.3. Deployment configuration

The last panel, labelled Nodes, enables the SPECS Owner to choose how many nodes to use
and to configure such nodes with the components needed to start the SPECS SLA Platform.

* Chef Server - the central service used to host the cookbooks and to dispatch the deployment process to the
clients

SPECS Project - Deliverable 1.4.2 14

Secure Provisioning of Cloud Services based on SLA Management

Note that the first node always hosts the Chef Server, while the other nodes, hosting the
clients, can be customized.

The panel reports a row for each node; the button Add Node adds new rows to the panel. It is
possible to remove one node from the configuration by simply using the button Remove Node.

For each node, the SPECS Owner must report:

* Node Type: nodes can be of two types, namely Chef Server and Chef Client. The node
configured by default as the Chef Server is used to store the configuration templates
for both core components and mechanisms, while the Chef Client nodes are used to
actually install the core components and the mechanisms;

* Registration path: this is the logical name associated to the node, when registered in
the infrastructure (it is configured automatically);

* Cookbook: this is a list box that enables the selection of components to deploy on the
node;

* Instance Type: reports the type of instance used to host the VM (hardware
configuration). Available instance types are described in the testbed deliverables
(D1.6.1). As an example, Amazon provides different types of instances, optimized for
different needs, such as T2 (burstable performance instances), M (general purpose
instances), etc.

3.3.2.4. Starting the cluster

The last step needed to create the SPECS platform is to launch the cluster creation by pressing
the Launch button in the Cluster descriptor shown in Figure 3. It opens a popup window,
summarizing the configuration and asking for confirmation.

A new session is created (see Figure 4), which enables the SPECS Owner to monitor the
cluster preparation and to access the resources, once they are available.

3.3.3. Controlling the SPECS SLA Platform instances

The Sessions tab (see Figure 4) shows information about the deployment process of the
launched SPECS SLA Platform. Every time a SPECS SLA Platform is started, a new Session
section is available in the panel enabling the monitoring of the infrastructure hosting the
platform itself.

SPECS

a Cluster launcher Cluster descriptor Sessions Logout
s-121E3AA2
Session ID: s-121E3AA2 [Teminate
deployment status: i}
timestamp: 2015-10-09 11:24:32
cluster id: ieat-test-1
cluster status: [not deployed |
Instances:
id alias state log service chef cluster joined launch time
1 i-12a56¢14 chef-client-1.clients [offline | = Fri Oct 09 2015 14:24:30 GMT+0300 (EEST)
2 i-f7be6b53 chef-server.services [offline | (not applicable) = Fri Oct 09 2015 14:24:32 GMT+0300 (EEST)

Figure 4: SPECS Launcher. Sessions interface

5 https://aws.amazon.com/ec2/instance-types/?ncl=h_ls

SPECS Project - Deliverable 1.4.2 15

Secure Provisioning of Cloud Services based on SLA Management

The Sessions page reports two main panels, the former devoted to summarizing the
information given at configuration time, and the latter reporting the status of each node
composing the cluster hosting SPECS.

The configuration panel contains the following information:

* Deployment status: represents the overall deployment process status; when the status
becomes “deployed”, the SPECS SLA Platform should be ready for use;

* Timestamp: the starting timestamp of the SPECS SLA Platform deployment process;

* C(luster id: the SPECS SLA Platform identification string chosen by the SPECS Owner at
the Cluster descriptor step;

* C(Cluster status: provides information regarding the status of the Chef infrastructure
deployment; when the Chef clients are all automatically registered, the status will
change to “deployed” and the recipes will be applied to nodes according to what the
SPECS Owner chose in the configuration step.

The second panel, labelled Instances, reports a table with a row for each node hosting the
SPECS platform components. Each row contains:

* Id: the id number generated by the cloud provider;

* Alias: the registration path defined by the Owner (internally used);

* State: the status of the VM, which can assume the following values: pending, running or
failed;

* Log service: a special service from which various debugging information can be
extracted directly using a web browser; when state changes to “online”, a click on the
label will open a new browser tab listing the available logging information;

* Chef: reflects chef configuration status; when the value changes to “joined” then the
node is part of the Chef infrastructure;

* C(luster joined: the status of the node inside the distributed system (internally used);

* Launcher time - the VM creation time.

3.3.4. Accessing the SPECS SLA Platform

When the SPECS SLA Platform is in “running” state, as reported in the Sessions tab, all the
nodes are started and configured and all SPECS components belonging to it are deployed on
the chosen nodes.

Once started, the SLA Platform components are accessible through the exposed APIs, i.e., the
SLA API, offered by the SLA Manager, and the Services API, offered by the Service Manager and
by the Security Metrics Catalogue. Both APIs are accessible at the base URI /cloud-sla/.
A detailed description of available calls is reported in D1.3 and in D1.4.1, which presents some
updates due to the architecture design refinement.

SPECS Project - Deliverable 1.4.2 16

Secure Provisioning of Cloud Services based on SLA Management

4. SPECS SLA Platform Components

In this section, the details on implementation, installation, usage and testing of the single
components belonging to the SLA Platform is given.

4.1. SLA Manager

The SLA Manager component is responsible for handling the SLA life cycle. It stores and
manages the SLAs signed by End-users and enables to perform the CRUD¢ operations on them.

4.1.1. Repository

The SLA Manager component consists of two sub-components: the backend, which provides
SLA management and storing features, and the frontend, which exposes a REST API. Both sub-
components are available on Bitbucket at the following URLSs:
* the backend:
o https://bitbucket.org/specs-team/specs-core-sla_platform-sla_manager
* the frontend:
o https://bitbucket.org/specs-team/specs-core-sla_platform-sla_manager-api

4.1.2. Description and design
As mentioned in the previous section, the SLA Manager consists of two sub-components. The

backend implements all the operations that enable the management of SLAs and grants the
persistence of the SLAs and of associated information.

The frontend sub-component contains the implementation of the SLA API, described in
deliverable D1.3 and in deliverable D1.4.1.
The main exposed resources are:
* SLAs Resource: represents a SLAs collection and the management operations
associated with it;
* SLA Resource: represents a particular SLA and the management operations associated
with it;

The description and the design of the SLA Manager component are available in deliverable
D1.4.1.

4.1.3. Installation

In this section we report the installation guide, which covers two scenarios:
* Installing by using precompiled binaries (SPECS recommended);
* compiling and installing from source (for advanced users);

4.1.3.1. Installing by using precompiled binaries
The precompiled binaries are available under the SPECS Artifact Repository [4].

Requirements
* Oracle Java]DK 7;
* Apache Tomcat 7.0.x;

SCRUD stands for create, read, update and delete and represents the four basic functions of persistent storage;

SPECS Project - Deliverable 1.4.2 17

Secure Provisioning of Cloud Services based on SLA Management

Installation steps

1. download the web application archive (war) file from the artifact repository :
http://ftp.specs-project.eu/public/artifacts/sla-platform/sla-manager/sla-manager-api-
STABLE.war

2. deploy the war in the java servlet/web container;
If Apache Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps” folder
inside the home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

4.1.3.2. Compiling and installing from source

In order to compile and install the SLA Manager, it is mandatory first to process the backend,
and afterwards the frontend.

Requirements
* aGitclient [5];
* Apache Maven 3.3.x [6];
* Oracle Java]DK 7;
* Apache Tomcat 7.0.x [7]

Backend installation steps:
1. clone the Bitbucket repository with the following command:

git clone git@bitbucket.org:specs-team/specs-core-sla_platform-sla_manager.git
2. under specs-core-sla_platform-sla_manager run:

mvn install

Frontend installation steps:
1. clone the Bitbucket repository with the following command:

git clone git@bitbucket.org:specs-team/specs-core-sla_platform-sla_manager-api.git
2. under specs-core-sla_platform-sla_manager-api run:

mvn package

The backend installation generates the artifact used by the frontend. The frontend installation
generates a web application archive (war) file, under the “/target” subfolder. In order to use
the component, the war file has to be deployed in the java servlet/web container. If Apache
Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps” folder inside the
home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

4.1.4. Usage

The SLA Manager component exposes a REST API interface. All the exposed REST resources
are mapped under the path “/cloud-sla/*”. The mapping rules are defined in the web.xml file
under WEB-INF folder (CATALINA_HOME/webapps/sla-manager-api/WEB-INF/).

<servlet-mapping>
<servlet-name>Jersey REST Service</servlet-name>
<url-pattern>/cloud-sla/*</url-pattern>
</servlet-mapping>

SPECS Project - Deliverable 1.4.2 18

Secure Provisioning of Cloud Services based on SLA Management

Moreover, all the REST resources are represented by specific java classes under the package
“eu.specsproject.slaplatform.slamanager.restfrontend”, defined in the web.xml file under WEB-
INF folder:

<init-param>
<param-name>jersey.config.server.provider.packages</param-name>
<param-value>

eu.specsproject.slaplatform.slamanager.restfrontend</param-value>
</init-param>

At the start-up of the component, all the REST resources are configured based on the
configuration parameters defined in the web.xml file.

Figure 5 and Figure 6 describe two examples of the REST API calls used to retrieve SLAs
information.

Get All SLAs
http://apps.specs-project.eu/specs-sla_platform-sla_manager-sla-api/cloud-sla/slas GET H & URL params & Headers (0)
m Save Preview Add to collection
Body 2000K mnmms

Pretty Raw Preview) E JSON = XML

1 <?xml version="1.0" en(odmg- 'UTF-8" standalone="yes"?>
2 <collection resource="SLA" total="7" members="7">

<item id="1">http://apps.specs-project.eu/specs-sla platform-sla manager-sla-api/cloud-sla/slas/1</item>
<item id="2">http://apps.specs-project.eu/specs-sla platform-sla manager-sla-api/cloud-sla/slas/2</item>
<item id="3">http://apps.specs-project.eu/specs-sla platform-sla manager-sla-api/cloud-sla/slas/3</item>
<item id="4">http://apps.specs-project.eu/specs-sla platform-sla manager-sla-api/cloud-sla/slas/4</item>
<item id="5">http://apps.specs-project.eu/specs-sla platform-sla manager-sla-api/cloud-sla/slas/5</item>
<item id="6">http://apps.specs-project.eu/specs-sla platform-sla manager-sla-api/cloud-sla/slas/6</item>
9 <item id="7">http://apps.specs-project.eu/specs-sla platform-sla manager-sla-api/cloud-sla/slas/7</item>
10 </collection>
Figure 5: SLA Manager - Get a collection of SLAs API call example
http://apps.specs-project.eu/specs-sla_platform-sla_manager-sla-api/cloud-sla/slas/1 GET = & URL params & Headers (0)
B rever Addtocolection =3
Body ZOOOK mswms

Pretty = Raw Preview) E JSON = XML

1 <?xml version="1.8" encoding="UTF-8"2>

2 <wsag:Agreement0ffer

3 xmlns:xs-'htt Www.w3.0rg/2001/XMLSchema”
xmlns:xsi=" ttg [[ww w3 org[2001/XMLSchema-instance

xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws- ggrggmgng
xmlns:specs=" http [zsgecs-gro ect.eu/schemas/sla related"
xmlns:ccm="http://specs-project.eu/schemas/ccm_control framework"

8 xmlns:nist="http://specs-project.eu/schemas/nist_control_framework"
xsi:schemalocation="http://schemas.ggf.org/graap/2007/03/ws-agreement http://schemas.ggf.org/graap/2007/03/ws-agreement

http://www.w3.0rg/2e01/XMLSchema http://www.w3.org/2001/XMLSchema http://specs-
project.eu/schemas/sla_related specs.xsd http://specs-project.eu/schemas/ccm_control_framework
ccm_control_framework.xsd http://specs-project.eu/schemas/nist control framework

nist_control_framework.xsd">
<wsag:Name>Y2-SPECS-APP</wsag:Name>
<wsag:Context>
<wsag:AgreementInitiator>$SPECS-CUSTOMER</wsag:AgreementInitiator>
<!-- OPTIONAL -->
13 <wsag:AgreementResponder>$SPECS -APPLICATION</wsag:AgreementResponder>

Figure 6: SLA Manager - Get a single SLA API call example

The complete details of the REST API are described in Deliverable 1.3.
SPECS Project - Deliverable 1.4.2 19

Secure Provisioning of Cloud Services based on SLA Management

4.1.5. Tests

The JUnit” framework has been used to test the component. Figure 7 and Figure 8 illustrates
the code quality analysis report produced for SLA Manager backend and frontend. In Annex A,
the tests conducted for this component are detailed with the list of the methods that have
been covered and the code coverage percentage currently reached.

& specs-core-sla_platform-sla_manager Version 0.0.1-SNAPSHOT / 12 febbraio 2016 16:36

Overview Components Issues More v

Main Dashboard

Lines Of Code Files SQALE Rating Technical Debt Ratio
655 21 1.2%
Java Directories Lines
7 1684w Debt Issues
i 4h 4min « 26
Functions
75s © Blocker 0
Classes Statements @ Critical 10
21 2129 @ Major 7w
Accessors © Minor 9 A
23 © Info 0
Duplications Directory Tangle Index Dependencies To Cut
[o)
o -| OO % Between Directories
0.0% |]
Cycles
Lines Blocks Files -1 Between Files
0 0 0 2
Complexity Unit Tests Coverage Unit Test Success
94y 79.4% a 100.0%
/Function /Class /File Line Coverage Failures Errors Tests
1.3 45 45 81.7% & 0 0 31
Condition Coverage Execution Time
‘;E 66.0% = 475ms
20
10 .
o Documentation Comments
12 4 & B 10 12
o, o,
® Functions Files 333 /O i 202 /O
Public APl Pub. Undoc. API Comment Lines
57 a 38 s 166w
Events All
12-02-2016 Version 0.0.1-SNAPSHOT

& specs-core-sla_platform-sla_manager
eu.specs-project.sla_platform:sla_manager

Profiles: Sonar way (Java)

Figure 7: Code Quality Analysis Report for SLA Manager Backend

7jUnit - Java unit testing framework (http://junit.org/)
SPECS Project - Deliverable 1.4.2 20

Secure Provisioning of Cloud Services based on SLA Management

£ specs-core-sla_platform-sla_manager-api

Overview Components

Main Dashboard

Issues More v

Version 0.0.1-SNAPSHOT / 12 febbraio 2016 16:37

Lines Of Code Files SQALE Rating Technical Debt Ratio
300 6 0.6%
Java Directories Lines
4 504 Debt Issues
Functions 55min 4
29 O Blocker 0
Classes Statements @ Critical 0
6 76 @ Major 3
Accessors © Minor 1
3 O Info 0
Duplications Directory Tangle Index Dependencies To Cut
[¢)
o 0.0% Between Directories
0.0% . :
. ycles
Lines Blocks Files >0 Between Files
0 0 0 0
Complexity Unit Tests Coverage Unit Test Success
45 75.2% 100.0%
/Function /Class /File Line Coverage Failures Errors Tests
16 75 75 80.2% 0 0 16
Condition Coverage Execution Time
0 59.4% 562 ms u
10
0 Documentation Comments
12 4 6 B 10 12
[¢) [¢)
® Functions Files OO 70 1 3 76
Public APl Pub. Undoc. API Comment Lines
28 28 4
Events Al
12-02-2016 Version 0.0.1-SNAPSHOT

£ specs-core-sla_platform-sla_manager-api
eu.specs-project.sla_platform:sla-manager

Profiles: Sonar way (Java)

Figure 8: Code Quality Analysis Report for SLA Manager Frontend

4.2. Service Manager

The Service Manager is responsible for managing the Security Mechanisms (SMs) (see
Deliverable D4.2.2 and Deliverable D4.3.2) by using a persistent data storage that is CRUD
enabled.

The main design requirement imposes the ability to query the Security Mechanisms and
Security Capabilities database in order to obtain Mechanisms that are able to enforce or
monitor specific metrics and satisfy specific capabilities. Moreover, the component should
allow the End-user to get the associated metadata of each Security Mechanism.

4.2.1. Repository

The component consists of two sub-components: the backend, which provides Security
Metrics and Security Capabilities management and storing features, and the frontend, which

SPECS Project - Deliverable 1.4.2 21

Secure Provisioning of Cloud Services based on SLA Management

exposes a REST APIL. Both sub-components are available on Bitbucket at the following URLSs:
* the backend:
o https://bitbucket.org/specs-team/specs-core-sla_platform-service_manager
* the front-end:
o https://bitbucket.org/specs-team/specs-core-sla_platform-service_manager-

api

4.2.2. Description and design

As mentioned in the previous section, the Services Manager consists of two sub-components.
The backend offers the implementation of all the functions that enable the management of the
Security Mechanisms and Security Capabilities database (CRUD enabled functions). These are
provided by:
* Service Manager Abstract Implementation, which offers the methods for managing
the Security Mechanisms and the Security Capabilities;
e Service Manager SQl JPA, which provides the functionalities to manage the
persistence of the Security Mechanisms and the Security Capabilities.

The frontend sub-component contains the implementation of the Services API, described in
deliverables D1.3 and D1.4.1.
The main exposed resources are:
* SMs Resource: represents a collection of Security Mechanisms and the management
operations associated with it;
* SM Resource: represents a specific created Security Mechanism and the management
operations associated with it;
* SM Metadata Resource: represents the metadata associated with a specific Security
Mechanism and the management operations associated with it;
* SCs Resource: represents the collection of Security Capabilities and the management
operations associated with it;
* SC Resource: represents a specific created Security Capability and and the
management operations associated with it.

The description and the design of the Services Manager component are available in
Deliverable D1.4.1.

4.2.3. Installation
In this section we provide an installation guide for the Service manager that covers two
scenarios:
* Installing by using precompiled binaries (SPECS recommended);
* compiling and installing from source (for advanced users);

4.2.3.1. Installing by using precompiled binaries
The precompiled binaries are available under the SPECS Artifact Repository [4].

Requirements
* Oracle Java]DK 7;
* SQLite 3.9.x;
* Apache Tomcat 7.0.x;
SPECS Project - Deliverable 1.4.2 22

Secure Provisioning of Cloud Services based on SLA Management

Installation steps
1. download the web application archive (war) file from the artifact repostiry :
http://ftp.specs-project.eu/public/artifacts/sla-platform/service-manager/service-manager-
STABLE.war
2. deploy the war file in the java servlet/web container
3. if Apache Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps”
folder inside the home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

4.2.3.2. Compiling and installing from source

In order to compile and install the Services Manager it is mandatory first to process the
backend and afterwards the frontend.

Requirements
¢ aGitclient;
* Apache Maven 3.3.x;
* Oracle Java]DK 7;
* SQLite 3.9.x;
* Apache Tomcat 7.0.x;

Backend installation steps:
1. clone the Bitbucket repository:
git clone git@bitbucket.org:specs-team/specs-core-sla_platform-service_manager.git
2. change the configuration of the database in the persistence.xml file (the file is located in
the folder “src/main/resource” and “/src/test/resources”) in order to define the
correct path where the SQLite database will be created;
3. under specs-core-sla_platform-service_manager run:
mvn install

Frontend installation steps:
4. clone the Bitbucket repository:

git clone git@bitbucket.org:specs-team/specs-core-sla_platform-service_manager-api.git
5. under specs-core-sla_platform-service_manager-api run:

mvn package

The backend installation generates the artifact used by the frontend. The frontend installation
generates a web application archive (war) file, under the “/target” subfolder. In order to use
the component, the war file has to be deployed in the java servlet/web container. If Apache
Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps” folder inside the
home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

4.2.4. Usage

The Service Manager component exposes a REST API interface. All the exposed REST
resources are mapped under the path “/cloud-sla/*”. The mapping rules are defined in the
web.xml file under WEB-INF folder (CATALINA_HOME/webapps/service-manager-api/WEB-
INE/):

SPECS Project - Deliverable 1.4.2 23

Secure Provisioning of Cloud Services based on SLA Management

<servlet-mapping>
<servlet-name>Jersey REST Service</servlet-name>
<url-pattern>/cloud-sla/*</url-pattern>
</servlet-mapping>

Moreover, all the REST resources are represented by specific java classes under the package
“eu.specsproject.slaplatform.servicemanager.restfrontend”, defined in the web.xml file under
WEB-INF folder:

<init-param>

<param-name>jersey.config.server.provider.packages</param-name>

<param-
value>eu.specsproject.slaplatform.servicemanager.restfrontend</param-
value>

</init-param>

At the start-up of the component, all the REST resources are configured based on the
configuration parameters defined in the web.xml file.

Figure 9, Figure 10 and Figure 11 describe three examples of the REST API calls used to
retrieve SMs and SCs information.

http://194.102.62.251:8080/service-manager/cloud-sla/security-mechanisms/ GET — & URL params & Headers (0)
m Preview Add to collection
Body ! -1 200 OK 130 ms
Pretty Raw Preview) B JSON XML
{

"resource”: "Security Mechanisms”,
"total": 2,
"members": 2,
"itemList": [

"http://194.102.62.251:8080/service-manager/cloud-sla/security-mechanisms/SM1",
"http://194.102.62.251:8080/service-manager/cloud-sla/security-mechanisms/SM2"

Figure 9: Service Manager - Get all SMs API call example

http://194.102.62.251:8080/service-manager/cloud-sla/security-capabilities GET = & URL params & Headers (0)
m Save Preview Add to collection
Body '-1 200 OK 119 ms
Pretty = Raw Preview . B JSON XML
{ i s
"resource”: "Security Capabilities”,
"total": 3,
"members": 3,
"itemList": [
"http://194.102.62.251:8080/service-manager/cloud-sla/security-capabilities/1",
"http://194.102.62.251:8080/service-manager/cloud-sla/security-capabilities/2",
"http://194.102.62.251:8080/service-manager/cloud-sla/security-capabilities/3’

Figure 10: Service Manager - Get SM Metadata API call example

SPECS Project - Deliverable 1.4.2 24

Secure Provisioning of Cloud Services based on SLA Management

ttp://194.102.62.251:8080/service-manager/cloud-sla/security-mechanisms/SM1/metadata ~ GET S & URL params & Headers (0)

m Preview Add to collection

Body B85 2000k (13 290 ms

Pretty = Raw Preview) =) JSON = XML

{"components":

[{"component_name": "wp_haproxy", "component_type":"balancer”,"recipe”:"webpool”, "cookbook": "wp_r5","implementation_step”:1,
"pool_seq_num":1,"pool_id":"webpool"”,"vm_requirement™:
"hardware":"t1_micro","usage":"1@0","acquire_public_ip":true,"private_ips_count":1,"firewall":{"incoming":{"source_ips":
"0.9.0.0/0"],"source_nodes":["string"],"interface":"public"”, "proto":["TCP"],"port_list":["22","80","443"]}, "outcoming":
"deﬁ?igition_ips":["e.e.e.e/e"],"destination_nodes":[],"interface":"public,private:l",“proto":[“TCP"],"port_list":
"component_name":"wp_apache", "component_type":"web_server”,"recipe"”:"webpool”, "cookbook":"wp_r6","implementation_step”:1,
"pool_seq_num":1,"pool_id":"webpool”,"vm_requirement”:
"hardware":"tl_micro","usage":"5@","acquire_public_ip":false,"private_ips_count":1,"firewall":{"incoming":{"source_ips":
], "source_nodes": ["wp_haproxy"],"interface":"private:1","proto™:["TCP"], "port_list":["22","8@","443"]}, "outcoming":
"destination_ips":[],"destination_nodes":["wp_haproxy"],"interface":"private:1","proto":["TCP"],"port_list":["*"]}}}},
{"component_name":"wp_nginx", "component_type":"web_server","recipe”:"webpool”, "cookbook":"wp_r7","implementation_step™:1,"
pool_seq_num":1,"pool_id":"webpool”,"vm_requirement":
"hardware":"tl_micro","usage":"5@","acquire_public_ip":false,"private_ips_count":1,"firewall":{"incoming":{"source_ips":
], "source_nodes":["wp_haproxy"],"interface":"private:1","proto™:["TCP"], "port_list":["22","8@","443"]},"outcoming":
"destination_ips":[],"destination_nodes":["wp_haproxy"],"interface":"private:1","proto":["TCP"],"port_list":
"*"1}}}}],"constraints™:[{"ctype":"SCla","argl": ["wp_haproxy"], "arg2":
"wp_apache","wp_nginx"],"op":null,"n1":null,"n2":null}, {"ctype”:"SCla","argl":["wp_apache"], "arg2":
"wp_nginx"],"op":null,"n1":null, "n2":null}, {"ctype":"SC2a_1","argl":

"wp_haproxy"],"arg2":null, "op":"=","n1":"1","n2" :null}, {"ctype" :"SC2b_2","argl":

"wp_apache”, "wp_nginx"],"arg2":null,"op":">=","n1":"1level_of_redundancy_m1","n2":null},
"ctype":"SC3","argl":null, "arg2":null, "op":null, "n1":"level_of_redundancy_ml+1","n2":null}]}

Figure 11: Service Manager - Get all SCs API call example
The complete details of the REST API are described in Deliverable 1.3.

4.2.5. Tests

The JUnit framework has been used to test the component. Figure 12 and Figure 13Figure 7
and Figure 8 illustrates the code quality analysis report produced for SLA Manager backend
and frontend. In Annex A, the tests conducted for this component are detailed with the list of
the methods that have been covered and the code coverage percentage currently reached.

SPECS Project - Deliverable 1.4.2 25

Secure Provisioning of Cloud Services based on SLA Management

& specs-core-sla_platform-service_manager

Overview Components Issues More v
Main Dashboard

Lines Of Code Files
690 a 18

Java Directories

6

Functions
87

Classes Statements

18 274 =&

Accessors

16

Duplications
0.0%

Lines Blocks Files

0 0 0

Complexity
129

/Function /Class /File

1.5 72 72

40
30
20
10

0

12 4 & & 10 12

® Functions Files

Events All

15-02-2016 Version

& specs-core-sla_platform-service_manager
eu.specs-project.sla_platform:service_manager

Profiles: Sonar way (Java)

0.0.1-SNAPSHOT

SQALE Rating

Debt
2h 50min a

© Blocker
@ Critical
@ Major

© Minor 1
© Info 2

~N ® o

Directory Tangle Index
15.4%

Cycles
>1

Unit Tests Coverage
66.7%

Line Coverage

68.0%

Condition Coverage

61.5%

Documentation

23.4%
Public APl Pub. Undoc. API
47 36

Version 0.0.1-SNAPSHOT / 15 febbraio 2016 10:36

Technical Debt Ratio

0.8%

Issues

18

Dependencies To Cut

Between Directories

1

Between Files

2

Unit Test Success
100.0%

Failures Errors Tests

0 0 26

Execution Time
2.8seca

Comments
13.4%

Comment Lines

107 =

Figure 12: Code Quality Analysis Report for Service Manager Backend

SPECS Project - Deliverable 1.4.2

26

Secure Provisioning of Cloud Services based on SLA Management

& specs-core-sla_platform-service_manager-api

Overview Components

Main Dashboard

Lines Of Code

457

Java

Functions

36

Classes Statements
10 121
Accessors

3

Duplications
0.0%

Lines Blocks Files
0 0 0
Complexity

78

/Function /Class /File

2.2 78 78

12 4 & & 10 12

® Functions Files

Events All

Issues

15-02-2016 Version

More v

Files
10

Directories

4

Lines

787

0.0.1-SNAPSHOT

& specs-core-sla_platform-service_manager-api
eu.specs-project.sla_platform:service-manager

Profiles: Sonar way (Java)

SQALE Rating

Debt
Th 44min

© Blocker
@ Critical
@ Major
© Minor
@ Info

o o o o o

Directory Tangle Index
0.0%

Cycles
>0

Unit Tests Coverage
68.9%

Line Coverage

74.5%

Condition Coverage

53.6%

Documentation

0.0%
Public APl Pub. Undoc. API
38 38

Version 0.0.1-SNAPSHOT / 15 febbraio 2016 10:42

Technical Debt Ratio

0.8%

Issues

6

Dependencies To Cut

Between Directories

0

Between Files

0

Unit Test Success
100.0%

Failures Errors Tests

0 0 9

Execution Time
Tseca

Comments
0.7%

Comment Lines

3

Figure 13: Code Quality Analysis Report for Service Manager Frontend

4.3. Security Metrics Catalogue

The Security Metrics Catalogue is responsible for managing the Security Metrics, which are
defined in Deliverable D2.2.2 and in Deliverable D4.3.2, by using a persistent data storage that

is CRUD enabled.

The main design requirement imposed the possibility to:
* query the Security Metrics catalogue in order to obtain all the metrics based on their

unique identifier (Reference ID);

* the EU must be allowed to obtain a metric specification represented in XML;
* the EU must be allowed to download the entire database in form of a file (raw database

download).

SPECS Project - Deliverable 1.4.2

27

Secure Provisioning of Cloud Services based on SLA Management

4.3.1. Repository

The component consists of two sub-components: the backend, which provides SLAs
management and storing features, and the frontend, which exposes a REST API. Both sub-
components are available on Bitbucket at the following URLs:
* the backend:
o https://bitbucket.org/specs-team/specs-core-sla_platform-security-metric-
catalogue
* the frontend:
o https://bitbucket.org/specs-team/specs-core-sla_platform-
security_metric_catalogue-api

4.3.2. Description and design

As mentioned in the previous section, the Security Metrics Catalogue component consists of
two sub-components. The backend offers the implementation of all the functions that fulfil the
management of the Security Metrics (CRUD enabled functions), provided by:
* Metric Manager Abstract Implementation, which implements the methods for
managing the Security Metrics;
* Metric Manager SQL JPA, which provides the functions to manage the persistence of
the Security Metrics;

The frontend sub-component contains the implementation of the exposed REST API. As
specified in D1.1.3, the Security Metrics Catalogue offers a subset of the Services API (offered
by Service Manager). Such subset, i.e. the Metric Catalogue API, can be invoked to manage a
catalogue of security metrics represented according to current standards. The main exposed
resources are:

* SMTs Resource: represents a collection of Security Metrics and the management
operations associated with it. In addition, it contains the REST API to manage the
database file (backup and restore);

* SMT Resource: represents a specific created Security Metric, the management
operations associated with it and the XML representation of the Security Metric.

The description and the design of the Security Metrics Catalogue component are available in
Deliverable D1.4.1.

4.3.3. Installation

The installation guide covers two scenarios:
* install using precompiled binaries (SPECS recommended);
* compile and install from source (for advanced users);

4.3.3.1. Installing by using precompiled binaries
The precompiled binaries are available under the SPECS Artifact Repository [4].

Requirements
* Oracle Java]DK 7;
* SQLite 3.9.x;
SPECS Project - Deliverable 1.4.2 28

Secure Provisioning of Cloud Services based on SLA Management

* Apache Tomcat 7.0.x;

Installation steps
1. download the web application archive (war) file from the artifact repostiry :
http://ftp.specs-project.eu/public/artifacts/sla-platform/metric-catalogue/metric-catalogue-
STABLE.war
2. the war file has to be deployed in the java servlet/web container
3. if Apache Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps”
folder inside the home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

4.3.3.2. Compiling and installing from source

In order to compile and install the Services Manager it is mandatory first to process the
backend and afterwards the frontend.

Requirements
¢ aGitclient;
* Apache Maven 3.3.x;
* Oracle Java]DK 7;
* SQLite 3.9.x;
* Apache Tomcat 7.0.x;

Backend installation steps:
1. clone the Bitbucket repository:
git clone git@bitbucket.org:specs-team/specs-core-sla_platform-security-metric-catalogue.git
2. change the configuration of the database in the persistence.xml file (the file is located in
the folder “src/main/resource” and “/src/test/resources”) in order to define the
correct path where the SQLite database will be created;
3. under specs-core-sla_platform-security-metric-catalogue run:
mvn install

Frontend installation steps:
1. clone the Bitbucket repository:
git clone git@bitbucket.org:specs-team/specs-core-sla_platform-security-metric-catalogue-
api.git
2. under specs-core-sla_platform-security-metric-catalogue-api run:
mvn package

The backend installation generates the artifact used by the frontend. The frontend installation
generates a web application archive (war) file, under the “/target” subfolder. In order to use
the component, the war file has to be deployed in the java servlet/web container. If Apache
Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps” folder inside the
home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

4.3.4. Usage

The Security Metrics Catalogue exposes a REST API interface. All the exposed REST resources
are mapped under the path “/cloud-sla/*”. The mapping rules are defined in the web.xml file
under WEB-INF folder (CATALINA_HOME/webapps/service-manager-api/WEB-INF/):

<servlet-mapping>
<servlet-name>Jersey REST Service</servlet-name>

SPECS Project - Deliverable 1.4.2 29

Secure Provisioning of Cloud Services based on SLA Management

<url-pattern>/cloud-sla/*</url-pattern>
</servlet-mapping>

Moreover, all the REST resources are represented by specific java classes under the package
“eu.specsproject.slaplatform.metriccatalogue.restfrontend”, defined in the web.xml file under
WEB-INF folder:

<init-param>

<param-name>jersey.config.server.provider.packages</param-name>

<param-
value>eu.specsproject.slaplatform.metriccatalogue.restfrontend</param-
value>

</init-param>

At the startup of the component, all the REST resources are configured based on the
configuration parameters defined in the web.xml file.

Figure 14 and Figure 15 describe two examples of the REST API calls used to retrieve Security
Metrics information.

//apps.specs-project.eu/metric_catalogue-api-0.0.1-SNAPSHOT/cloud-sla/security-metrics =~ GET : & URL params & Headers (0)
m Save Preview Add to collection
Body 57 118 ms
Pretty = Raw Preview) F JSON XML
{))
"resource”: "Security Metrics”,
"total": 16,

"members": 16,
"itemList": [

http://apps.specs-project.eu/metric catalogue-api-0.8.1-SNAPSHOT/cloud-sla/security-metrics/AMD CertStatusRequest”,
"http://apps.specs-project.eu/metric catalogue-api-8.0.1-SNAPSHOT/cloud-sla/security-metrics/AMD MTUR",
"http://apps.specs-project.eu/metric catalogue-api-8.0.1-SNAPSHOT/cloud-sla/security-metrics/AMD redundancy",
"http://apps.specs-project.eu/metric_catalogue-api-8.0.1-SNAPSHOT/cloud-sla/security-metrics/AMD Loc",
"http://apps.specs-project.eu/metric_catalogue-api-0.0.1-SNAPSHOT/cloud-sla/security-metrics/AMD_data_disclosure

http://apps.specs-project.eu/metric catalogue-api-8.
"http://apps.specs-project.eu/metric catalogue-api-8.
"http://apps.specs-project.eu/metric catalogue-api-@.
http://apps.specs-project.eu/metric catalogue-api-8.

.1-SNAPSHOT/cloud-sla/security-metrics/AMD availability”,
.1-SNAPSHOT/cloud-sla/security-metrics/AMD deviation”,
.1-SNAPSHOT/cloud-sla/security-metrics/AMD timeliness”,
.1-SNAPSHOT/cloud-sla/security-metrics/AMD report frequency

clolole |olel|

http://apps.specs-project.eu/metric catalogue-api-8.8.1-SNAPSHOT/cloud-sla/security-metrics/AMD SymmetricEquivalent”,
"http://apps.specs-project.eu/metric catalogue-api-8.0.1-SNAPSHOT/cloud-sla/security-metrics/AMD CryptoStrength”,
"http://apps.specs-project.eu/metric _catalogue-api-8.8.1-SNAPSHOT/cloud-sla/security-metrics/AMD ReadFreshness”,

http://apps.specs-project.eu/metric catalogue-api-0.8.1-SNAPSHOT/cloud-sla/security-metrics/AMD WriteSerializability",
"http://apps.specs-project.eu/metric catalogue-api-8.0.1-SNAPSHOT/cloud-sla/security-metrics/test”,
"http://apps.specs-project.eu/metric catalogue-api-8.0.1-SNAPSHOT/cloud-sla/security-metrics/test cm”,
"http://apps.specs-project.eu/metric_catalogue-api-8.0.1-SNAPSHOT/cloud-sla/security-metrics/Testo1l"”

Figure 14: Security Metrics Catalogue - Get all metrics API call example

SPECS Project - Deliverable 1.4.2 30

Secure Provisioning of Cloud Services based on SLA Management

ct.eu/metric_catalogue-api-0.0.1-SNAPSHOT/cloud-sla/security-metrics/AMD_redundancy = GET S & URL params & Headers (0)

m Preview Add to collection
Body 2000k [([73) 238 ms

Pretty = Raw Preview) B JSON = XML

"created”: "Sep 8, 2015 12:00:00 AM",

"updated”: "Sep 8, 2015 12:908:00 AM",

"referenceld”: "AMD_redundancy”,

"XMLdescription”: "<?xml version=\"1.0\" encoding=\"UTF-8\"?><specs:AbstractMetric
xmlns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\" xmlns:specs=\"http://specs-project.eu/schemas/metrics\"
xsi:schemalocation=\"http://specs-project.eu/schemas/metrics metrics.xsd\" name=\"Level of redundancy\"
referenceld=\"AMD_redundancy\">\n\n\n\n\t<specs:AbstractMetricDefinition>\n\n\t\t<specs:unit name=\"number of
replicas\">\n\n\t\t\t<specs:intervalUnit>\n\n\t\t\t\t<intervalltemsType>Integer</intervalltemsType>\n\n\t\t\t\t<intervallt
emStart>1</intervalltemStart>\n\n\t\t\t\t<intervalltemStop>
</intervalItemStop>\n\n\t\t\t\t<intervalItemStep>1</intervalltemStep>\n\n\t\t\t</specs:intervalUnit>\n\n\t\t\t\n\n\t\t</sp
ecs:unit>\n\n\t\t<specs:scale>\n\n\t\t\t<specs:Quantitative>Ratio</specs:Quantitative>\n\t\t\t\n\n\t\t</specs:scale>\n\n\t
\t<specs:expression>The number of active replicas is checked at each observation instant ti, where the ti are chosen
according to an \"ObservationInterval\" specified in ParameterDefinition and the check strategy is specified in
RuleDefinition.</specs:expression>\n\n\t\t<specs:definition>This abstract metric expresses the number of replicas of a
software component that are set-up and kept active during system operation.</specs:definition>\n\n\t\t<specs:note>
</specs:note>\n\n\t</specs:AbstractMetricDefinition>\n\n\t<specs:AbstractMetricRuleDefinition>\n\n\t\t<specs:RuleDefinitio
n name=\"CheckStrategy\" referenceld=\"AMR_LoR_CheckStrategy\">\n\n\t\t\t<specs:definition>This rule defines how to check
the number of active replicas: the check may be done according to different strategies:{ping,heartbit}
</specs:definition>\n\n\t\t\t<specs:note>
</specs:note>\n\n\t\t</specs:RuleDefinition>\n\n\t</specs:AbstractMetricRuleDefinition>\n\n\n\n\t<specs:AbstractMetricPara
meterDefinition>\n\n\t\t<specs:ParameterDefinition name=\"ObservationInterval\"
referenceld=\"AMP_LoR_ObservationInterval\">\n\n\t\t\t<specs:definition>This parameter refers to the time, expressed in
seconds, between two subsequent observations </specs:definition>\n\n\t\t\t<specs:note>
</specs:note>\n\n\t\t\t<specs:parameterType>
</specs:parameterType>\n\n\t\t</specs:ParameterDefinition>\n\n\t</specs:AbstractMetricParameterDefinition>\n\n\t<specs:Und
erlyingAbstractMetric/>\n</specs:AbstractMetric>”,

"metricType™: "abstract”

Figure 15: Security Metrics Catalogue - Get a specific metric API call example

The complete details of the REST API are described in Deliverable 1.3.

4.3.5. Tests

The JUnit framework has been used to test the component. Figure 16 and Figure 17 illustrate
the code quality analysis report produced for Metric Catalogue backend and frontend. In
Annex A, the tests conducted for this component are detailed with the list of the methods that
have been covered and the code coverage percentage currently reached.

SPECS Project - Deliverable 1.4.2 31

Secure Provisioning of Cloud Services based on SLA Management

& specs-core-sla_platform-metric_catalogue

Overview Components Issues More v

Main Dashboard

Lines Of Code Files

527 a 17

Java Directories

6

Functions
69

Classes Statements

17 172

Accessors

12

Duplications
0.0%

Lines Blocks Files

0 0 0

Complexity
95

/Function /Class /File

1.4 56 56

40

20

0
12 4 & & 10 12

® Functions Files

Events All

28-10-2015 Version

& specs-core-sla_platform-metric_catalogue
eu.specs-project.sla_platform:metric_catalogue

Profiles: Sonar way (Java)

0.0.1-SNAPSHOT

SQALE Rating

Debt
49min

© Blocker
@ Critical
@ Major
© Minor
© Info

o N M O O

Directory Tangle Index
16.7% s

Cycles
>1

Unit Tests Coverage
T4.2% a

Line Coverage

77.5% &

Condition Coverage

57.1% a

Documentation

10.5%
Public APl Pub. Undoc. API
57 a 51 a

Version 0.0.1-SNAPSHOT / 28 ottobre 2015 10:45

Technical Debt Ratio

0.3%

Issues

6

Dependencies To Cut

Between Directories

1

Between Files

2

Unit Test Success
100.0%

Failures Errors Tests

0 0 56 2

Execution Time

449 ms a

Comments
7.9%

Comment Lines

45

Figure 16: Code Quality Analysis Report for Metric Catalogue Backend

SPECS Project - Deliverable 1.4.2

32

Secure Provisioning of Cloud Services based on SLA Management

8 specs-core-sla_platform-metric_catalogue-api Version 0.0.1-SNAPSHOT / 28 ottobre 2015 10:46

Overview Components Issues More v

Main Dashboard

Lines Of Code Files SQALE Rating Technical Debt Ratio
382 a 7 2.3%
Java Directories Lines
4 625w Debt Issues
: 4h 26min 21 a
Functions
28 O Blocker 0
Classes Statements @ Critical 2
7 136 a @ Major 12
Accessors © Minor 7
3a © Info 0
Duplications Directory Tangle Index Dependencies To Cut
o) .
o 0.0% Between Directories
0.0% ‘ 0
Cycles
Lines Blocks Files >0 Between Files
0 0 0 0
Complexity Unit Tests Coverage Unit Test Success
76 2 67.3% 100.0%
/Function /Class /File Line Coverage Failures Errors Tests
2.7 109 109 73.4% a 0 0 24 A
Condition Coverage Execution Time
15 542% 812ms a
10
5 .
0 Documentation Comments
1 2 4 & B 10 12
[¢) (o)
® Functions Files OO % OO %
Public APl Pub. Undoc. API Comment Lines
26 9 26 0
Events All
28-10-2015 Version 0.0.1-SNAPSHOT

& specs-core-sla_platform-metric_catalogue-api
eu.specs-project.sla_platform:metric-catalogue

Profiles: Sonar way (Java)

Figure 17: Code Quality Analysis Report for Metric Catalogue Frontend

4.4. Interoperability Layer

The Interoperability layer offers functionalities for enabling transparent communication
among different modules. In practice, it acts as a gateway by intercepting all API calls and by
redirecting them to the right component. This is accomplished by defining a suitable virtual
interface that associates a set of API calls to a specific end-point (i.e., to a specific URL).

4.4.1. Repository

The component consists of four sub-components: Config, Manager, RestFrontend and Utility.
All sub-components are maintained in the same software repository. The repository is
available on Bitbucket at the following URL:

* https://bitbucket.org/specs-team/specs-core-sla_platform-interoperability

SPECS Project - Deliverable 1.4.2 33

Secure Provisioning of Cloud Services based on SLA Management

4.4.2. Description and Design

The Interoperability Layer is composed of four subcomponents: RestFrontend, Config,
Manager and Utility.

The RestFrontend component offers the Interoperability API described in D1.3, needed to
manage the REST resources of the Interoperability module.

Config and Manager cooperate in management of resources offered through the REST
interface: in particular, the Config component manages the configuration parameters (e,g,
logs location, the size of the log files and the log rotation policy), while the Manager
component offers the functionalities to configure the virtual interfaces.

The Utility component contains the event definition and the logic to manage it.

A detailed description of the design and architecture of the Interoperability layer is available
in deliverable D1.4.1.

4.4.3. Installation

The installation guide covers two scenarios:
* Installing by using precompiled binaries (SPECS recommended);
* compiling and installing from source (for advanced users);

4.4.3.1. Installing by using precompiled binaries
The precompiled binaries are available under the SPECS Artifact Repository [4].

Requirements
* Oracle Java]DK 7;
* Apache Tomcat 7.0.x

Installation steps
1. download the web application archive (war) file from the artifact repostiry :
http://ftp.specs-project.eu/public/artifacts/sla-platform/interoperability /interoperability-api-
STABLE.war
2. deploy the war file in the java servlet/web container
3. if Apache Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps”
folder inside the home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

4.4.3.2. Compiling and installing from source
The following are the prerequisites to compile and install the Interoperability Layer:

¢ aGitclient;

* Apache Maven 3.3.x;
* Oracle Java]DK 7;

* Apache Tomcat 7.0.x;

Installation steps:
1. clone the Bitbucket repository:

git clone git@bitbucket.org:specs-team/specs-core-sla_platform-interoperability.git
2. under specs-core-sla_platform-interoperability run:

mvn package

SPECS Project - Deliverable 1.4.2 34

Secure Provisioning of Cloud Services based on SLA Management

The installation steps generate a web application archive (war) file, under the “/target”
subfolder. In order to use the component, the war file has to be deployed in the java
servlet/web container. If Apache Tomcat 7.0.x is used, the war file needs to be copied into the
“/webapps” folder inside the home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

The installation instructions are also available on the Bitbucket repository:
* https://bitbucket.org/specs-team/specs-core-sla_platform-interoperability

4.4.4. Usage

The Interoperability component exposes the Interoperability API interface. All the exposed
REST resources are mapped under the path “/cloud-sla/*”. The mapping rules are defined in
the web.xml file under WEB-INF folder (CATALINA_HOME/webapps/service-manager-
api/WEB-INF/):

<servlet-mapping>
<servlet-name>Jersey REST Service</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

Moreover, all the REST resources are represented by specific java classes under the package
“eu.specsproject.slaplatform.slainteroperability.restfrontend”, defined in the web.xml file under
WEB-INF folder:

<init-param>
<param-name>jersey.config.server.provider.packages</param-name>
<param-
value>eu.specsproject.slaplatform.slainteroperability.restfrontend,
org.codehaus.jackson.jaxrs
</param-value>
</init-param>

At the startup of the component, all the REST resources are configured based on the
configuration parameters defined in the web.xml file.

4.4.5, Tests

The JUnit framework has been used to test the component. Figure 18 illustrates the code
quality analysis report produced for Interoperability component. In Annex A, the tests
conducted for this component are detailed with the list of the methods that have been covered
and the code coverage percentage currently reached.

SPECS Project - Deliverable 1.4.2 35

Secure Provisioning of Cloud Services based on SLA Management

& specs-core-sla_platform-interoperability-api

Overview Components Issues

Main Dashboard

Lines Of Code
972

Java

Functions
87

Classes Statements

21 255

Accessors

25

Duplications
3.4%

Lines Blocks Files

44 3 3

Complexity
127

/Function /Class /File

1.5 6.0 6.0

12 4 & & 10 12

® Functions Files

Events All

28-12-2015 Version

More v

Files
21

Directories

5

Lines

1308

0.0.1-SNAPSHOT

& specs-core-sla_platform-interoperability-api
eu.specs-project.sla_platform:interoperability-api

Profiles: Sonar way (Java)

SQALE Rating

Debt

2d 2h

O Blocker 0
@ Critical 4
@ Major 86
& Minor 82
© Info 0

Directory Tangle Index
16.0%

Cycles
>1

Unit Tests Coverage
60.9%

Line Coverage

64.7%

Condition Coverage

37.5%

Documentation

0.0%
Public APl Pub. Undoc. API
98 98

Version 0.0.1-SNAPSHOT / 28 dicembre 2015 11:50

Technical Debt Ratio

3.8%

Issues

172

Dependencies To Cut

Between Directories

1

Between Files

2

Unit Test Success
100.0%

Failures Errors Tests

0 0 43

Execution Time

12.9 sec

Comments
52%

Comment Lines

53

Figure 18: Code Quality Analysis Report for Interoperability

SPECS Project - Deliverable 1.4.2

36

Secure Provisioning of Cloud Services based on SLA Management

Vertical Layer Components

In this section, the details on implementation, installation, usage and testing of the single
components belonging to the Vertical layer is given.

4.5. Auditing

The Auditing component (designed together with security mechanisms of the Enforcement
module) serves as a logging/auditing component for the entire SPECS framework.

It should be noted that the Auditing component has been developed on the basis of the
Contrail Auditing component?, which has been extended and adjusted to the SPECS project’s
needs.

4.5.1. Repository

The component is implemented as a Maven project with two modules: audit-server and audit-
client. The source code can be found on the project’s BitBucket repository at the URL:
https://bitbucket.org/specs-team/specs-core-sla_platform-auditing

The component depends on the common data model classes, defined in the specs-
utility-data-model project.

4.5.2. Description and Design

In summary, the Auditing component is made up of two subcomponents that orchestrate all
logging activities:
* Audit Server. Provides a REST API for dealing with audit events and interacts with the
underlying audit database;
* Audit Client. Offers Java API with convenience methods for creating and publishing
audit events, which interacts in the background with the audit-server.

The initial design has been reported in D4.2.2 at M12; the final design and its validation is
available in D1.4.1.

4.5.3. Installation

The project can be built from source code using Apache Maven 3 tool:

* clone the project from the BitBucket repository using a Git client:
git clone git@bitbucket.org:specs-team/specs-utility-auditing.git

* go in the specs-utility-auditing directory and run:
mvn package

4.5.3.1. Audit Server

Requirements
* Apache Tomcat 7.0.x;
* MongoDB 2.x [14];
* Oracle Java]DK 7;

8“Contrail”’, 2014. [Online]. Available: http://contrail-project.eu/.
SPECS Project - Deliverable 1.4.2 37

Secure Provisioning of Cloud Services based on SLA Management

The project is packaged as a web application archive (war) file with name audit-api.war,
which has to be deployed to a Java web container. For example, to deploy the application to
Apache Tomcat, just copy the war file to the Tomcat webapps directory.

The application configuration is located in the file audit-server.properties in the Java
properties format. The file contains the following configuration properties:
mongodb.host=localhost
mongodb.port=27017
mongodb.database=auditing

Make the necessary changes if needed and restart the web container for changes to take
effect. The Audit server should now be available at https://<host>:<port>/audit-api.

4.5.3.2. Audit Client

The Audit client can be used by other SPECS components to create and publish audit events.
When using Apache Maven, the Audit client can be simply added to the project's

dependencies:
<dependency>
<groupld>eu.specs-project.utility</groupld>
<artifactId>audit-client</artifactId>
<version>0.1-SNAPSHOT</version>
</dependency>

Otherwise the jar file audit-client.jar has to be added to the project's library. If project was
built from the source code, the audit-client.jar is located in the audit-client/target directory.
In non-Java projects where the Audit client library cannot be used, the audit events can be
created in accordance with the audit event schema and published by calling Audit server
REST API.
The Audit client requires the following configuration properties:

* aqudit_client.audit_server_address: audit server address

* audit_client.keystore.path: path of the Java key store with the component certificate
* audit_client.keystore.password: key store password

* audit_client.truststore.path: path of the Java trust store with the SPECS certificate
authority certificate chain

* audit_client.truststore.password: trust store password

4.5.4. Usage

At the component startup, initialize the audit-client using the AuditorFactory init method by
providing the properties file path:
voidAuditorFactory.init (StringconfigFilePath);

The AuditorFactory creates an Auditor instance and caches it in memory. The Auditor is now
ready to accept audit events and to publish them to the audit-server.

Auditor can be retrieved from the AuditorFactory:
Auditorauditor=AuditorFactory.getAuditor () ;

If the Spring framework? is used, the Auditor can be defined in the Spring context file instead:

http://projects.spring.io/spring-framework/
SPECS Project - Deliverable 1.4.2 38

Secure Provisioning of Cloud Services based on SLA Management

<bean id="auditor" class="eu.specsproject.utility.auditing.auditclient">
<constructor-arg name="auditServerAddress" value="
https://localhost/audit-api"/>

</bean>
The auditor bean can then be injected using the @Autowired stereotype.

To audit an event, create an AuditEvent object, populate it with relevant data and publish it
using the Auditor's audit method:

AuditEventauditEvent=newAuditEvent () ;
auditEvent.set...// set relevant data
auditor.audit (auditEvent) ;

4.5.5. Tests

The JUnit and the Spring Test frameworks have been used to test the component, as shown in
Annex A. Figure 19 illustrates the code quality analysis report produced for Audit component.

SPECS Project - Deliverable 1.4.2 39

Secure Provisioning of Cloud Services based on SLA Management

8 specs-core-sla_platform-auditing

Overview Components Issues More v

Main Dashboard

Version 0.0.1-SNAPSHOT / 16 novembre 2015 10:41

Lines Of Code Files SQALE Rating Technical Debt Ratio
228 10 1.0%
Java Directories Lines
I 298 Debt Issues
‘ Th 8min 15
Functions
25 O Blocker 0
Classes Statements @ Critical 0
10 43 @ Major 4
Accessors ® Minor 9
0 © Info 2
Duplications Directory Tangle Index Dependencies To Cut
0, O . OO/O Between Directories
0.0% | :
Cycles
Lines Blocks Files >0 Between Files
0 0 0 0
Complexity Unit Tests Coverage Unit Test Success
31 73.4% 100.0%
/Function /Class /File Line Coverage Failures Errors Tests
1.2 3.1 3.1 75.0% 0 0 4
Condition Coverage Execution Time
2 50.0% 954 ms
10
9 Documentation Comments
1 2 4 &8 B 10 12
o) o)
® Functions Files OO 70 09 7
Public APl Pub. Undoc. API Comment Lines
35 35 2
Events All
16-11-2015 Version 0.0.1-SNAPSHOT

& specs-core-sla_platform-auditing
eu.specs-project.core.sla-platform.auditing:audit-parent

Profiles: Sonar way (Java)

Figure 19: Code Quality Analysis Report for Audit

4.6. User Manager

The User Manager component provides a shared access control mechanism to all SPECS
applications. In particular, it integrates a common authentication mechanism based on LDAP
(OpenLDAP [10]) and a role-based authorization mechanism (XACML [13]).

4.6.1. Repository

The User Manager component is available on Bitbucket at the following URL:
e https://bitbucket.org/specs-team/specs-core-vertical_layer-user manager

SPECS Project - Deliverable 1.4.2 40

Secure Provisioning of Cloud Services based on SLA Management

4.6.2. Description and Design

The User Manager component is implemented as a web application, the SPECS Apps Manager,
which can be integrated within any other SPECS Application in order to support user
management. The application uses an external authentication mechanism to manage accounts
and a Repository policy to store the files containing the access control policies.

A detailed description and the design of the User Manager component are available in
Deliverable 1.4.1.

4.6.3. Installation

In order to install the component on top of the SPECS SLA Platform, a Chef recipe is provided
in the Platform Chef repository. Such recipe automates the installation and configuration of a
dedicated external authentication mechanism (LDAP server) and of the policy repository.

The following paragraph covers the installation steps needed to install the component
independently of the SPECS SLA Platform and provides usage information on how to test it
locally. The installation guide covers two scenarios:

* Installing by using precompiled binaries (SPECS recommended);

* Compiling and installing by using sources (for advanced users);

4.6.3.1. Installing by using precompiled binaries
The precompiled binaries are available under the SPECS Artifact Repository [4].

Requirements
* Oracle Java]DK 7;
* Apache Tomcat 7.0.x

Installation steps:

1. download the web application archive (war) file from the artifact repository :
http://ftp.specs-project.eu/public/artifacts/vertical-layer/user-manager/user-manager-
STABLE.war

2. the war file has to be deployed in the java servlet/web container
if Apache Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps” folder
inside the home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

4.6.3.2. Compiling and installing from source

Requirements for the component setup
* aGitclient;
* Apache Maven 3.3.x;
* Oracle Java]DK 7;
* Apache Tomcat 7.0.x

Requirements for the authorization mechanisms
e JavaJNDI[11],
* Sun XACML [13].

SPECS Project - Deliverable 1.4.2 41

Secure Provisioning of Cloud Services based on SLA Management

Requirements for the authentication mechanism
* aninstance of OpenLDAP Server [10];

Installation steps for the User Manager component
1. clone the Bitbucket repository:

git clone git@bitbucket.org:specs-team/specs-core-vertical_layer-user_manager.git
2. under specs-core-vertical_layer-user_manager run:

mvn package

The installation steps put a web application archive (war) file under the “/target” subfolder.
In order to use the component, the war file has to be deployed in the java servlet/web
container. If Apache Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps”
folder inside the home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

After the installation of the User Manager the next step refers to the OpenLDAP Server
installation.

This paragraph explains briefly what are the requirements to setup the OpenLDAP Server
under the Windows and Linux environments. For tutorials that are more comprehensive,
please visit OpenLDAP official website. For OpenLDAP Server installation we recommend to
use the Chef based installation.

Installing a standalone OpenLDAP Server under Windows

Prerequisites:
* Visual C++ Redistributable Package [9],
e MIT Kerberos [10].

Installation package:
* the installation package available at [1];
* execute the installer file and follow the steps displayed:
o choose the installation folder in C:\OpenLDAP;
o checkall the boxes to make sure that every feature is enabled;
* when the installation is over proceed with the configuration steps;

Installing a standalone OpenLDAP Server under Linux/Unix
* Download the appropriate binary archive from [2];
* Use the installation guide at [3];
Configuration steps
* once installed the LDAP schemas need to be customized to support SPECS
configuration template:
* the slapd.conffile needs to be updated by including the following schema files:
include ./schema/cosine.schema
include ./schema/inetorgperson.schema

include ./schema/java.schema

* the schemas explanations:
o Inetorgperson.schema, in which users attributes will be defined;
o cosine.schema, that it is required by inetorperson.schema;

SPECS Project - Deliverable 1.4.2 42

Secure Provisioning of Cloud Services based on SLA Management

o java.schema, that permits to map java objects into the server.
* also update LDAP specific parameters like:

suffix "dc=specs,dc=eu"
rootdn "cn=Manager, dc=specs,dc=eu"
rootpw password
directory ./data

* save the configuration file and start OpenLDAP server daemon;
* create the LDIF files for each SPECS actor (users, developer and owners) using
following content as an example:

dn: dc=specs,dc=eu
dc: specs
objectClass: domain
objectClass: dcObject
objectClass: top

dn: ou=users,dc=specs,dc=eu
objectClass: top

objectClass: organizationalUnit
ou: users

4.6.4. Usage

The SPECS Apps Manager allows to manage the access to SPECS Applications by providing
authentication and authorization functionalities. Via the SPECS Apps Manager, the SPECS
Owner can configure the access rights to the available applications. In this way, the access
requests of Platform’s users can be processed based on the users’ roles and permissions.

ﬁs Signup

Welcome to the SPECS Apps Manager

LOGIN

Please insert SPECS credentials and role to access.

Are you new? Please click the signup button (top right) to create a new account

Username:
Password:

Select role:

User v

Login

Figure 20: User Manager - The landing page

In order to access the application interface, a user must insert the SPECS Credentials
(available in the LDAP repository) in the login form and click on the “Login” button. The

SPECS Project - Deliverable 1.4.2 43

Secure Provisioning of Cloud Services based on SLA Management

application redirects the user to a reserved page, depending on the role, with a list of
applications that the user is entitled to access [Figure 21].

New Log In

SPECS Apps Manager

Welcome User
Here is a list of applications which can be access

Secure Web Container

Security Reasoner

Figure 21: User Manager - User allowed resources WUI

Moreover, a new user can click the “Signup” button (located at the top left corner) to ask for
the creation of new credentials. This redirects the user to the signup module shown in Errore.
L'origine riferimento non e stata trovata.,.

Welcome to the SPECS Apps Manager

SIGNUP
Please insert SPECS credentials and select role into SPECS APPS.

Username:
Password:

Select role:

User

Signup

Figure 22: User Manager - New account WUI

SPECS Project - Deliverable 1.4.2 44

Secure Provisioning of Cloud Services based on SLA Management

4.6.5. Tests

The JUnit framework has been used to test the component. In Annex A, the tests conducted for
this component are detailed with the list of the methods that have been covered and the code
coverage percentage currently reached.

5. Conclusions

This document has presented the prototypes of the SLA Platform module and its vertical
layer, as they result after the updates to requirements and components made in year 2, after
the feedback from implementation and validation activities.

It should be noted that the two components of the Vertical Layer are intended to secure
interactions among SPECS components, namely Credential Service and Security Tokens,
although part of the Vertical Layer, are discussed in deliverables D4.4.1 and D4.4.2 of the
dedicated task T4.4.

All design changes, which were due to updates in other tasks and to the feedback received
from developers and integrators, are discussed in deliverable D1.4.1 and included in the
current implementation. In particular, we have reported here:

* Prototypes of all SLA Platform components;
* Prototypes of two Vertical layer components.

The implementation has been completed and the four main components cover about 100% of
the requirements, as reported in Section 3.1. As for the two vertical layer components, the
current implementation covers about 75% of the requirements, except for the User Manager
component, whose administration related functionalities are not yet implemented, as
discussed in Section 3.1. At this stage we do not plan to make further improvements but, if
any, they will be presented in the deliverables associated with SPECS applications within
WP5.

SPECS Project - Deliverable 1.4.2 45

Secure Provisioning of Cloud Services based on SLA Management

6. References

[1] OpenLDAP Server for Windows Environments, [Online],
http://www.userbooster.de/en/download/openldap-for-windows.aspx
[2] OpenLDAP Server for Linux/Unix binary repository. [Online].
ftp://ftp.openldap.org/pub/OpenLDAP/openldap-release/
[3] OpenLDAP Server for Linux/Unix Installation Guide, [Online],
http://www.openldap.org/doc/admin22 /install.html
[4] SPECS Artifact Repository, [Online], http://ftp.specs-project.eu/public/artifacts/
[5] Git - a version control system for software development, [Online], https://git-
scm.com/
[6] Apache Maven - software project management, [Online], https://maven.apache.org/
[7] Apache Tomcat - java servlet container, [Online], https://tomcat.apache.org/
[8] jUnit - Java unit testing framework, [Online], http://junit.org/
[9] Visual C++ Redistributable Package, [Online], http://www.microsoft.com/en-
us/download/details.aspx?id=5555
[10] MIT Kerberos - authentication protocol, [Online], http://web.mit.edu/kerberos/
[11] OpenLDAP - open-source directory protocol, [Online], www.openldap.org
[12] Java JNDI, [Online], http://docs.oracle.com/javase/jndi/tutorial/
[13] SUN XACML implementation, [Online], http://sunxacml.sourceforge.net/
[14] MongoDB - NoSQL database implementation, [Online], https://www.mongodb.org/
[15] Amazon AWS Documentation - Access keys, [Online],
http://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
[16] SPECS Testbed connection information, [Online], http://wiki.specs-
project.eu/SilviuPanica/Notes/DashboardSecurityRequiredData

[17] Amazon AWS Documentation - Network and security, [Online],
http://docs.aws.amazon.com/AWSEC2 /latest/UserGuide/EC2_Network and_Security.
html

[18] HP Helion Eucalyptus (formerly known as Eucalyptus Cloud), [Online],
http://www8.hp.com/us/en/cloud/helion-eucalyptus-overview.html

SPECS Project - Deliverable 1.4.2 46

Secure Provisioning of Cloud Services based on SLA Management

Annex A
SLA Platform and Vertical Layer components - Unit Test

SPECS Project - Deliverable 1.4.2

47

Secure Provisioning of Cloud Services based on SLA Management

This annex briefly summarizes the results of the tests performed on the SLA Platform and on
Vertical Layers. The SPECS Continuous Integration System (https://bamboo.services.ieat.ro),

introduce in deliverable D4.5.2x, performs continuously these tests, updating the results

every time the code changes.

A.l. SLA Manager Tests

The JUnit and the Jersey Test frameworks have been used to test the component. The
following tables provide a collection of tests, which currently cover the 89,3% of the entire

specs-core-sla_platform-sla-manager project.

Test ID createTest

Test objective The goal is to verify that the “create” method of the interface SLAManager
creates and saves in persistence a SLA

Verified SLAPL R11, SLAPL_R27, SLAPL_R26, SLAPL R28

requirements

Inputs Not null SLA

|Dqusei byl] SLA created , saved in persistence and in state of negotiating

Outputs none

Comments All operations executed successfully

Test ID retrieveTest

Test objective The goal is to verify that the “retrieve” method of the interface
SLAManager gets a SLA from the persistence

Verified SLAPL_R19, SLAPL R21, SLAPL R22

requirements

Inputs Not null and valid SLAIdentifier
|Dquseibygiiiei] The SLA is obtained form the persistence
Outputs none

Comments All operations executed successfully

Test ID observedSignSlaTest

Test objective The goal is to verify that the SLA gets from signed to observed, so it tests
the methods sign and observe

Verified SLAPL_R20, SLAPL_R31

requirements

Inputs Not null and valid SLAIdentifier, valid SLADocument

D BgEgilEi] The state of the SLA is observed

Outputs none

Comments

Test ID observedNotSignSlaTest

Test objective The goal is to verify that the SLA cannot get to observed if it wasn 't in
signed state. So the method returns an exception.

Verified SLAPL_R20, SLAPL_R31

requirements

Inputs Not null and valid SLAIdentifier, valid SLADocument

BBl ieT] TllegalStateException

Outputs none
All operations executed successfully

Test ID signTest

Test objective The goal is to verify that the SLA state gets to signed. So it tests the
method sign

Verified SLAPL_R20, SLAPL_R31, SLAPL R33

SPECS Project - Deliverable 1.4.2

48

Secure Provisioning of Cloud Services based on SLA Management

requirements

Inputs Not null and valid SLAIdentifier, valid SLADocument
D= BEE T SLA in state of signed

Outputs none

Comments All operations executed successfully

Test ID testTerminate

Test objective The goal is to verify that SLA gets from observed to terminated. So it tests
the method sign, observe and terminate

Verified SLAPL_R20, SLAPL_R31, SLAPL R32

requirements

Inputs Valid SLAIdentifier

D B iET SLA in state of terminated

Outputs none

Comments All operations executed successfully

Test ID testSignalAlert

Test objective The goal is to verify that SLA gets from observed to alerted. So it tests the
method signalAlert

Verified SLAPL_R20, SLAPL_R31

requirements

Inputs Valid SLAIdentifier

D BT SLA in state of alerted

Outputs none

Comments All operations executed successfully

Test ID testSignalViolation

Test objective The goal is to verify that SLA gets from observed to violated So it. So it
tests the method renegotiate

Verified SLAPL_R20, SLAPL_R31

requirements

Inputs Not null and valid SLAIdentifier, valid SLADocument

e BT SLA in state of violated

Outputs none

Comments All operations executed successfully

Test ID testComplete

Test objective The goal is to verify that SLA gets from observed to completed. So it tests
the method complete

Verified SLAPL_R20, SLAPL_R31, SLAPL R29

requirements

Inputs Valid SLAIdentifier

DU ByEiliE] SLA in state of completed

Outputs none

Comments All operations executed successfully

Test ID testGetState

Test objective The goal is to verify that current SLA state is not null. So it tests the
method getState

Verified SLAPL_R20, SLAPL_R31

requirements

Inputs Valid SLAIdentifier

D Byl Current state of SLA

Outputs none

Comments All operations executed successfully

SPECS Project - Deliverable 1.4.2

49

Secure Provisioning of Cloud Services based on SLA Management

Test ID testGetAnnotations

Test objective The goal is to verify that the method getAnnotations returns a list of
annotations. So it tests the methods annotate and getAnnotations of the
interface SLAManager

Verified SLAPL R19, SLAPL_R21
requirements

Inputs Valid SLAIdentifier

el B Lista of annotations
Outputs none
All operations executed successfully

Test ID testSearch

Test objective The goal is to verify that the list of SLAldentifiers saved in persistence is
not null. So it tests the method search of the interface SLAManager
Verified SLAPL R23

requirements

Inputs

e BT Lista of SLAidentifier

Outputs

Comments All operations executed successfully

Test ID testRetrieveAndLock

Test objective The goal is to verify that the pair SLA-Lock is not null and SLA is in the
state of negotianting. So it tests the method retrieveAndLock

Verified SLAPL_R19, SLAPL R21, SLAPL R22

requirements

Inputs Not null and valid SLAIdentifier, valid SLADocument

B4 ByE e Pair SLA-Lock e SLA in state of negotiating

Outputs none

Comments All operations executed successfully

Test ID testUpdate

Test objective The goal is to verify that the updated SLA is saved in persistence. So it
tests the method update

Verified SLAPL R34

requirements

Inputs Valid SLAIdentifier

e bgEiiiai] SLA updated and saved in persistence

Outputs none

All operations executed successfully

testAnnotateException

Test objective The goal of the test Is to verify that the method annotate generates an
exception if the annotation passed as parameter is null. So it tests the
method annotate

requirements
Valid SLAIdentifier
IllegalArgumentException
none
All operations executed successfully

Test ID testUpdateException

Test objective The goal of the test Is to verify that the method update generates an
exception if the SLA passed as parameter is null.
Verified SLAPL R25

SPECS Project - Deliverable 1.4.2

50

Secure Provisioning of Cloud Services based on SLA Management

requirements

Inputs Not null SLAIdentifier, null SLA

DB E T TllegalArgumentException

Outputs none

Comments All operations executed successfully

Test ID testCreateException

Test objective The goal of the test is verify that the method create generates an
exception id the SLA passed as parameter is null.

Verified SLAPL R11, SLAPL_R27, SLAPL_R26, SLAPL R28

requirements

Inputs Not null SLA

DB E T TllegalArgumentException

Outputs none

Comments All operations executed successfully

Test ID testSLADocument

Test objective The goal is to verify that the method “create” of the interface SLAManager
creates a SLADocument

Verified SLAPL R11, SLAPL_R27, SLAPL_R26, SLAPL R28

requirements

Inputs Valid SLADocument

Dl BEiliE] SLADocument created

Outputs none

Comments All operations executed successfully

Test ID testLock

Test objective The goal is to control the creation of a Lock and that his methods work
correctly. So it tests the class Lock and the methods hashcode and equals.

Verified /

requirements

Inputs

BByl Lock created

Outputs none

Comments All operations executed successfully

Test ID testPersistenceCreate

Test objective The goal is to verify that the method persistenceCreate generates an
exceptions if the SLA passed as parameter is null

Verified SLAPL R11, SLAPL_R27, SLAPL_R26, SLAPL R28

requirements

Inputs Null SLA

DB E T TllegalArgumentException

Outputs none

Comments All operations executed successfully

Test ID testPersistenceGetByID

Test objective The goal is to verify that the method persistenceGetByID generates an
exception if the SLAIdentifier is null

Verified SLAPL R19, SLAPL_R21, SLAPL_R22,, SLAPL_R23

requirements

Inputs Not valid SLAIdentifier

DB E T TllegalArgumentException

Outputs none

Comments All operations executed successfully

SPECS Project - Deliverable 1.4.2

51

Secure Provisioning of Cloud Services based on SLA Management

Test ID testPersistenceGerByIDNotValid

Test objective The goal is to verify that the method persistenceGetByID generates an
exception if the SLAIdentifier is not valid

Verified SLAPL R19, SLAPL_R21, SLAPL_R22
requirements

Not valid SLAIdentifier
IllegalArgumentException

none

All operations executed successfully

Test ID testPersistenceReleaseLock
Test objective The goal is to verify that the method persistenceReleaseLock releases a
Lock from a SLA saved in persistence. So it tests the method
persistenceReleaseLock
/

requirements

Inputs Not valid SLAIdentifier valido, valid Lock
False

Outputs none
All operations executed successfully

Test ID testCollection

Test objective The goal is to control the creation of a Collection and that his methods
work correctly. So it tests the class Collection

Verified /

requirements

Inputs

B4 By ilisi] Collection created

Outputs none

Comments All operations executed successfully

Test ID testitem

Test objective The goal is to control the creation of an Item and that his methods work
correctly. So it tests the class Item

Verified /

requirements

Inputs

| DI BERLEI Item created

Outputs none

Comments All operations executed successfully

Test ID

Test objective The goal is to verify that the method unmarshal converts a JSON into a
MarshallingInterface.

Verified /

requirements

Inputs JSON

Expected results il

Outputs none

All operations executed successfully

Test ID marshalTest
Test objective The goal is to verify that the method marshal converts a
MarshallingInterface into JSON

/
SPECS Project - Deliverable 1.4.2

52

Secure Provisioning of Cloud Services based on SLA Management

requirements

Inputs MarshallingInterface

D B EiET Not null

Outputs none

Comments All operations executed successfully

Test ID XMLunMarshalTest

Test objective The goal is to verify that the method unmarshal of the class
XMLEntityBuilder converts an xml into MarhallingInterface

Verified /

requirements

Inputs String

Expected results B\l

Outputs none

Comments All operations executed successfully

Test ID XMLmarshalTest

Test objective The goal is to verify that the method marshal of the class XMLMarshaller
converts a MarhallingInterface into xml.

Verified /

requirements

Inputs MarshallingInterface

Expected results B\l

Outputs none

All operations executed successfully

As for the frontend component, the following tables provide a collection of tests, which
currently cover 78,5% of the entire specs-core-sla_platform-sla_manager-api project.

Test ID testSLAAPI

Test objective The goal is to verify the creation of SLAAPI.
Verified /

requirements

Inputs

Expected results [ESH:V.AH!

Outputs none

All operations executed successfully
Test ID testAnnotation
Test objective The goal is to verify that the list of annotation is not null
Verified SLAPL_R19, SLAPL_R21, SLAPL R22
requirements
Inputs Valid SLAIdentifier, string
D ByEilE List of annotations
Outputs none
Comments All operations executed successfully
Test ID testCreateAnnotation
Test objective The goal is to verify that the method createAnnotation generates an
exception if the annotation passed as parameter is null
Verified SLAPL R25
requirements
Inputs Valid SLAIdentifier, annotation null
DB E T TllegalArgumentException
Outputs none
Comments All operations executed successfully

SPECS Project - Deliverable 1.4.2 53

Secure Provisioning of Cloud Services based on SLA Management

Test ID testAlerted

Test objective The goal is to verify that SLA gets from a status to another without errors.
SLA states controlled are negotiating, signed, observed and alerted. So it
tests the method getSLAStatus

Verified SLAPL_R20, SLAPL_R31

requirements

Valid SLAIdentifier

SLA in state of alerted

none

All operations executed successfully

testTerminate

Test objective The goal is to verify that SLA gets from a status to another without errors.
SLA states controlled are negotiating, signed, observed and terminated.
So it tests the method getSLAStatus

Verified SLAPL_R20, SLAPL_R31, SLAPL R32

requirements

Valid SLAIdentifier

SLA in state of terminated

none

All operations executed successfully

Test ID testRenegotiate

Test objective The goal is to verify that SLA gets from a status to another without errors.
SLA states controlled are negotiating, signed, observed and violated. So it
tests the method getSLAStatus

Verified SLAPL R30, SLAPL_R31
requirements

Valid SLAIdentifier

SLA in state of violated

none

All operations executed successfully

Test ID testComplete

Test objective The goal is to verify that SLA gets from a status to another without errors.
SLA states controlled are negotiating, signed, observed and completed. So
it tests the method getSLAStatus

Verified SLAPL_R20, SLAPL_R31, SLAPL_R29

requirements

Valid SLAIdentifier

SLA in state of completed

none

All operations executed successfully

Test ID testAnnotationResource

Test objective The goal is to verify that the method getAnnotationResource returns a not
null list of annotations

Verified SLAPL_R19, SLAPL R21

requirements

Inputs Valid SLA

D ByEilE List of annotations

Outputs none

All operations executed successfully

Test ID testUpdateSLA
SPECS Project - Deliverable 1.4.2

54

Secure Provisioning of Cloud Services based on SLA Management

Test objective The goal is to verify that the method update work correctly. So it test the
method updateSLA

Verified SLAPL R34

requirements

Inputs Valid SLAIdentifier, string

e bgEiliii] SLA created and saved in persistence

Outputs none

Comments All operations executed successfully

Test ID testIsWritaeble

Test objective The goal is to verify that the method isWriteable returns true if
MarshallingInterface is passed as parameter

Verified /

requirements

Inputs

Expected results By

Outputs none

Comments All operations executed successfully

Test ID testIsReadable

Test objective The goal is to verify that the method isReadable returns true if
MarshallingInterface is passed as parameter

Verified /

requirements

Inputs

Expected results [y

Outputs none

All operations executed successfully

Test ID testGetSize

Test objective The goal is to verify that the method getSize returns 0

Verified /

requirements

Inputs

Expected results RINFA o)

Outputs none

All operations executed successfully
Test ID testReadFromXMLEntityBuilder
Test objective The goal is to verify that the method readFrom of the class

SecurityProvider is called correctly. In this test case, the return will be
null because there is an exception.

Verified /

requirements

String

null

None

All operations executed successfully

TestID testSLAsResource

Test objective The goal is to verify that a SLAResource is created correctly, and its then
called with the method getSLAResource

Verified /
requirements
String

Dquseibyagiiie] SLAResource retrieved from persistence

Outputs None
All operations executed successfully

SPECS Project - Deliverable 1.4.2

55

Secure Provisioning of Cloud Services based on SLA Management

Test ID testSLAsResourceGetSLAS

Test objective The goal is to verify that the method getSLAS returns a not null list of SLA
retrieved from persistence

Verified SLAPL_R23
requirements

Valid SLAIdentifier

List of SLA retrieved from persistence
None

All operations executed successfully

SPECS Project - Deliverable 1.4.2

56

Secure Provisioning of Cloud Services based on SLA Management

A.2. Service Manager Tests

The JUnit and the Jersey Test frameworks have been used to test the component. The
following tables provide a collection of tests,which currently cover the 71,8% of the entire
specs-core-sla_platform-service_manager project.

Test ID createSMDTest
Test objective The goal is to verify the proper SecurityMechanismDocument creation
and its possible research or updating.
It covers some of declared methods of ServiceManager interface,
implemented in EUServiceManagerAbstractImpl class (createSM,
retrieveSM, retrieveSMMetadata, updateSM, removeSM).

Verified SLAPL _R6

requirements
Json files
It will create a new persistent SecurityMechanismDocument.

Outputs The SecurityMechanismDocument has been created and reachable into the

database.
All operations executed successfully.

Test ID exceptionCreateSmTest

Test objective The goal is to verify that the createSM method exception raised because of
the SecurityMechanismDocument does not exist.

Verified SLAPL _R6

requirements

Inputs No required input.

DB E T It will raise the IllegalArgumentException.

Outputs The lllegalArgumentException exception raised.

Comments All operations executed as expected.

Test ID exceptionUpdateSmTest

Test objective The goal is to verify that the updateSM method exception raised because
of the SecurityMechanismDocument does not exist.

Verified SLAPL _R8

requirements

Inputs No required input.

BB E T It will raise the IllegalArgumentException.

Outputs The lllegalArgumentException exception raised.

Comments All operations executed as expected.

Test ID annotateSMTest

Test objective The goal is to verify that the annotateSM method of the
EUServiceManagerAbstractImpl class called correctly.

Verified SLAPL_R8

requirements

Inputs No required input.

DB E T It will raise the IllegalArgumentException.

Outputs The lllegalArgumentException exception raised.

All operations executed as expected.

Test ID getAnnotationsSMTest

Test objective The goal is to verify that the getAnnotationsSM method of the
EUServiceManagerAbstractIimpl class called correctly.
Verified SLAPL_R5

SPECS Project - Deliverable 1.4.2 57

Secure Provisioning of Cloud Services based on SLA Management

requirements

Inputs No required input.

Dl B EgilET] The method will be called correctly.

Outputs The method called correctly.

Comments All operations executed as expected.

Test ID updateAnnotationsSMTest

Test objective The goal is to verify that the updateAnnotationsSM method of the
EUServiceManagerAbstractIimpl class called correctly.

Verified SLAPL_R8

requirements

Inputs No required input.

Dl BEgilE] The method will be called correctly.

Outputs The method called correctly.

Comments All operations executed as expected.

Test ID searchSMsTest

Test objective The goal is to verify that the searchSMs returns a correct list of
SecurityMechanismldentifier.

Verified SLAPL _R9

requirements

Inputs No required input.

D= B A result list will be created and it will contain the right
SecurityMechanismldentifier s.

Outputs The result list has been created and it actually contains the right
SecurityMechanismldentifier s.

All operations executed as expected.

Test ID createSCTest
Test objective The goal is to verify the proper SecurityCapability creation and its
possible research or updating.
It covers some declared methods of ServiceManager interface,
implemented in EUServiceManagerAbstractimpl class (createSC,
retrieveSC, updateSC, removeSC).
Moreover the test checks the correct creation of a
SecurityCapalityDocument calling all the methods of
SecurityCapalityDocument class.

Verified SLAPL _R6

requirements
No required input.
It will create a new persistent SecurityCapability.

Outputs The SecurityCapability has been created and reachable into a
SecurityMechanismDocument.

All operations executed as expected.

Test ID exceptionCreateScTest

Test objective The goal is to verify that the createSC method exception raised because of
the SecurityCapability does not exist.

Verified SLAPL_R6
requirements
No required input.
It will raise the IlllegalArgumentException.
The lllegalArgumentException exception raised.

All operations executed as expected.

Test ID exceptionUpdateScTest
The goal is to verify that the updateSC method exception raised because

SPECS Project - Deliverable 1.4.2

58

Secure Provisioning of Cloud Services based on SLA Management

of the SecurityCapability does not exist.
Verified SLAPL_R8
requirements

Inputs No required input.

DB E T It will raise the IllegalArgumentException.
Outputs The lllegalArgumentException exception raised.
Comments All operations executed as expected.

Test ID annotateSCTest
Test objective The goal is to verify that the annotateSC method of the
EUServiceManagerAbstractIimpl class called correctly.
Verified SLAPL_R8
requirements
Inputs No required input.
Dl BEgilE] The method will be called correctly.
Outputs The method called correctly.
All operations executed as expected.

Test ID getAnnotationsSCTest

Test objective The goal is to verify that the getAnnotationsSC method of the
EUServiceManagerAbstractlmpl class called correctly.
Verified requirements SLAPL_R5

Inputs No required input.

Expected results The method will be called correctly.

Outputs The method called correctly.

All operations executed as expected.

Test ID updateAnnotationsSCTest

Test objective The goal is to verify that the updateAnnotationsSC method of the
EUServiceManagerAbstractIimpl class called correctly.

Verified SLAPL_R8

requirements

Inputs No required input.

Dl BygiiliE] The method will be called correctly.

Outputs The method called correctly.

Comments All operations executed as expected.

Test ID unMarshalTest

Test objective The goal is to verify that the unmarshal method of JSONentityBuilder class
acts well.

Verified /

requirements

Inputs No required input.

BB E T It will create a new, not-null, MarshallingInterface.

Outputs A not-null Marshallinginterface.

Comments All operations executed as expected.

Test ID marshalTest

Test objective The goal is to verify that the marshal method of JSONmarshaller class acts
well.

Verified /

requirements

Inputs No required input.

BB E] It will return a new, not-null, String representing an entity.
Outputs A not-null String.
Comments All operations executed as expected.

SPECS Project - Deliverable 1.4.2

59

Secure Provisioning of Cloud Services based on SLA Management

Test ID XMLunMarshalTest

The goal is to verify that the unmarshal method of XMLentityBuilder class
acts well.
/
requirements
No required input.
It will create a new, null, MarshallingInterface.

A null MarshallingInterface.
All operations executed as expected.

Test ID XMLmarshalTest

Test objective The goal is to verify that the marshal method of XMLmarshaller class acts
well.

Verified /

requirements

Inputs No required input.

BB E ST It will return a new, null, String representing an entity.

Outputs A null String.

Comments All operations executed as expected.

The following tables provide a collection of tests, which currently cover the 68,9% of the entire specs-core-
sla_platform-service_manager-api project.

Test ID smResourceTest
Test objective The goal is to verify the correct calling to the following SMResource
methods: getSM, updateSM, removeSM, getMetadata,
getAnnotationResource.
SLAPL_RS5, SLAPL_R7, SLAPL_R8, SLAPL_R6
requirements
A SecurityMechanismldentifier declared and initialized.
DB R The getSM method returns a String corresponding to a specific
SecurityMechanism.

The updateSM actually modified the SecurityMechanism.

The getMetadata returns a SMMetadataResource object corresponding to
a SecurityMechanismldentifier’s SecurityMechanism metadata.

The getAnnotationResource returns a SMAnnotationsResource object
corresponding to a SecurityMechanismldentifier’s SecurityMechanism
annotations.

Outputs The String has been created and not null, the SecurityMechanism has been
modified, the returned metadata and annotations are the metadata and
annotations of the SecurityMechanism.

All operations executed successfully.

TestID smsResourceTest

Test objective The goal is to verify the correct calling of the http methods through the
SMsResource class methods.

requirements
JerseyEmbeddedHTTPServerCrunchify started.
BBy The post method (reached by url with a string representing the

SecurityMechanismldentifier of desidered SecurityMechanism) create a
persistent SecurityMechanismDocument.

The get method (reached by url with a string of desired
SecurityMechanismldentifier) returns a String representing the found
SecurityMechanismldentifier

Outputs A string (reachable through a Response object) of the stored
SecurityMechanismDocument.

A string, representing a SecurityMechanismldentifier, of found
SecurityMechanismDocument.

SPECS Project - Deliverable 1.4.2 60

Secure Provisioning of Cloud Services based on SLA Management

All operations executed successfully.

TestID smsResourceGetTest

Test objective The goal is to verify the correct calling of the gethttp methods through the
SMsResource class methods.

requirements
JerseyEmbeddedHTTPServerCrunchify started.
The get method (reached by url) returns a String representing the found
SecurityMechanismldentifier

Outputs A string, representing a SecurityMechanismldentifier, of found
SecurityMechanismDocument/s.

All operations executed successfully.

Test ID scResourceTest
Test objective The goal is to verify the correct calling to the following SCResource
methods: getSC, updateSC, getAnnotationResource, removeSC.
Verified SLAPL_R5, SLAPL_R7, SLAPL_R8, SLAPL_R6
requirements
A SecurityCapabilityldentifier declared and initialized.

B u B The getSC method returns a String corresponding to a specific
SecurityCapability.

The updateSC actually modified the SecurityCapability.

The getAnnotationResource returns a SCAnnotationsResource object
corresponding to a SecurityCapabilityldentifier’s SecurityCapability
annotations.

Outputs The String has been created and not null, the SecurityCapability has been
modified, the annotations are the SecurityCapability’s annotations.
All operations executed successfully.

TestID scsResourceTest

Test objective The goal is to verify the correct calling of the http methods through the
SCsResource class methods.

Verified SLAPL _R5

requirements

Inputs JerseyEmbeddedHTTPServerCrunchify started.

1. Byl i3 The post method (reached by url) create a persistent SecurityCapability.
The get method (reached by url with a string representing the
SecurityCapabilityldentifier of desidered SecurityCapability) returns a
String representing the found SecurityCapabilityldentifier.

Outputs A string (reachable through a Response object) of the stored
SecurityMechanismDocument.

A string, representing a SecurityMechanismldentifier, of found
SecurityMechanismDocument.

All operations executed successfully.

TestID scsResourceGetTest

Test objective The goal is to verify the correct calling of the gethttp methods through the
SCsResource class methods.

requirements
JerseyEmbeddedHTTPServerCrunchify started.
The get method (reached by url) returns a String representing the found
SecurityCapabilityldentifier/s.

Outputs A string, representing a SecurityCapabilityldentifier/s of found
SecurityCapability.

All operations executed successfully.
SPECS Project - Deliverable 1.4.2

61

Secure Provisioning of Cloud Services based on SLA Management

Test objective The goal is to verify the correct calling of the SCAnnotationResource class
methods.

Verified SLAPL_R5

requirements

Inputs A SecurityCapabilityldentifier declared and initialized.

1. Byl [E5 It should return Annotations of the SecurityCapability.

It should update the annotation.

Outputs An Annotation object representing SecurityCapability annotations.
Comments All operations executed successfully.

Test objective The goal is to verify the correct calling of the SMAnnotationResource class
methods.

Verified SLAPL_R5

requirements

Inputs A SecurityMechanismldentifier declared and initialized.

|9 Bl It should return Annotations of the SecurityMechanism.

It should update the annotation.

Outputs An Annotation object representing SecurityMechanism annotations.
Comments All operations executed successfully.

Test objective The goal is to verify the correct calling of SerializationProvider class
methods (isReadable, readFrom, getSize).

Verified /

requirements

Inputs A SerializationProvider objectdeclared and initialized.

1D bl It should return true at isReadable calling and 0 to getSize calling.
It should return a MarshallingInterface at readFrom calling.
Outputs True, 0 and a MarshallingInterface.

Comments All operations executed successfully.

SPECS Project - Deliverable 1.4.2

62

Secure Provisioning of Cloud Services based on SLA Management

A.3. Security Metrics CatalogueTests

The JUnit and the Jersey Test frameworks have been used to test the component. The
following tables provide a collection of tests,which currently cover 74,2% of the entire specs-
core-sla_platform-metric_catalogue project.

Test ID getMetricManagerlstanceTest

Test objective The goal is to verify the proper MetricManagerFactory creation.
Verified /

requirements

Inputs

B4 BE ST It will create a new MetricManagerFactory.

Outputs The istance of the class MetricManagerFactory is created.

All operations executed successfully

Test ID getMetricManagerlstanceTestWithParameters

Test objective The goal is to verify the proper MetricManagerFactory creation when a
correct parameter is passed.

Verified /

requirements

Inputs String unitName

B4 B E T It will create a new MetricManagerFactory.

Outputs The istance of the class MetricManagerFactory is created.

All operations executed successfully

Test ID EUMetricManagerSQLJPATest

Test objective The goal is to verify the proper EUMetricManagerSQL]JPA creation.

Verified /

requirements

Inputs String unitName

DB E] It will create a new EUMetricManagerSQLJPA

Outputs The istance of the class EUMetricManagerSQLJPA is created.

Comments All operations executed successfully

Test ID createSMTTest

Test objective The goal is to verify that the method createSMT of the class
EUMetricManagerAbstractlmpl is called correctly.

Verified SLAPL _R6

requirements

Inputs A SecurityMetricDocument (Created from an XML file)

Dbl To create a SMT and save it in the database, returns an instance of
SecurityMetricldentifier
Outputs An istance of SecurityMetricldentifier

All operations executed successfully

Test ID retrieveSMTTest

Test objective The goal is to verify that the method retrieveSMT of the class
EUMetricManagerAbstractImpl is called correctly. This method calls
persistenceGetSMTbyID from the class EUMetricManagerSQLJPA.
Verified SLAPL _R5

requirements

SecurityMetricldentifier id
| e Bl iEs e To return the SecurityMetric related to the SecurityMetricldentifier
passed as parameter

SPECS Project - Deliverable 1.4.2 63

Secure Provisioning of Cloud Services based on SLA Management

Outputs A SecurityMetric istance.

All operations executed successfully

Test objective The goal is to verify that the method removeSMT of the class
EUMetricManagerAbstractImpl is called correctly.

Verified SLAPL_R7

requirements

Inputs SecurityMetricldentifier ID

| Bl i To remove the SecurityMetric related to the ID passed as a parameter,
from the database

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method updateSMT of the class
EUMetricManagerAbstractImpl is called correctly.

Verified SLAPL_R8

requirements

Inputs A securityMetricldentifier, a SecurityMetricDocument

| i Bl i3 To update the securityMetric related to the ID passed as parameter, to the
new metric contained in the XML file.

Outputs None

Comments All operations executed successfully

Test objective The goal is to verify that the method annotateSMT of the class
EUMetricManagerAbstractImpl is called correctly.

Verified SLAPL_R8

requirements

Inputs SecurityMetricldentifier ID, Object Object

D BEgilET] None, method is not yet implemented

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method getAnnotationsSMT of the class
EUMetricManagerAbstractImpl is called correctly.

Verified SLAPL_R5

requirements

Inputs SecurityMetricldentifier id

Dl BEgilET] None, method is not yet implemented

Outputs none

Comments All operations executed successfully

Test ID updateAnnotationsSMT

Test objective The goal is to verify that the method updateAnnotationsSMT of the class
EUMetricManagerAbstractImpl is called correctly.

Verified SLAPL_R8

requirements

Inputs SecurityMetricldentifier Id,String AnnotationID,0bject Object

i BEgilET] None, method is not yet implemented

SPECS Project - Deliverable 1.4.2 64

Secure Provisioning of Cloud Services based on SLA Management

Outputs none
All operations executed successfully

searchSMT
Test objective The goal is to verify that the method searchSMT of the class
EUMetricManagerAbstractImpl is called correctly. This method calls the
method persistenceSearchSMT of the class EUMetricManagerSQLJPA
Verified SLAPL_R9
requirements
String metricType
A list of SecurityMetrics, related to the MetricType passed as parameter
none
All operations executed successfully

Test ID getMetricsBackupTest

Test objective The goal is to verify that the method getMetricsBackup of the the class
EUMetricManagerAbstractImpl is called correctly.

Verified /

requirements

Inputs String DbName

D= BEEEE] Returns null, dbName is wrong.

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method restoreMetricsBackup of the class
EUMetricManagerAbstractImpl is called correctly.

Verified /

requirements

Inputs An inputStream dbFile, a String dbName

D ByiliEi] Returns false, wrong input.

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the constructor of the class SecurityMetric is
called correctly.

Verified /

requirements

Inputs

D ByEgiliE] An instance of the class SecurityMetric

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method getCreated of the class
SecurityMetrics is called correctly.
Verified /

requirements

Inputs

D BEEilET Returns the variable “created” of the securityMetric
Outputs none

Comments All operations executed successfully

Test ID setCreatedTest
SPECS Project - Deliverable 1.4.2

65

Secure Provisioning of Cloud Services based on SLA Management

Test objective The goal is to verify that the method setCreated of the class
SecurityMetrics is called correctly.

Verified /

requirements

Inputs A variable Date

D BT To set the value of the variable “created” to the one passed as parameter

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method getUpdated of the class
SecurityMetrics is called correctly.

Verified /

requirements

Inputs

D B ET Returns the variable “updated” of the SecurityMetric

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method setUpdated of the class
SecurityMetrics is called correctly.

Verified /

requirements

Inputs A variable Date

D BT To set the value of the variable “updated” to the one passed as parameter

Outputs none

Comments All operations executed successfully

Test ID setReferenceldTest

Test objective The goal is to verify that the method getReferenceld of the class
SecurityMetrics is called correctly.

Verified /

requirements

Inputs

D BT Fails, there is an error in the code.

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method setReferenceld of the class
SecurityMetrics is called correctly.

Verified /

requirements

Inputs String referenceld

DB To set the value of the variable “referenceld” to the one passed as
parameter
Outputs none

All operations executed successfully

Test ID getXMLDescriptionTest

Test objective The goal is to verify that the method getXMLdescription of the class
SecurityMetrics is called correctly.
Verified /

requirements

SPECS Project - Deliverable 1.4.2 66

Secure Provisioning of Cloud Services based on SLA Management

Inputs

D Bl ET Returns the variable “XMLdescription” of the security metric
Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method setXMLdescription of the class
SecurityMetrics is called correctly.

Verified /

requirements

Inputs String XMLdescription

| Byl i3 To set the value of the variable “xmlIDescription” to the one passed as
parameter

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method getMetricType of the class
SecurityMetrics is called correctly.

Verified /

requirements

Inputs

|9 BT Returns the variable “metricType” of the security metric

Outputs None

Comments All operations executed successfully

Test objective The goal is to verify that the method setMetricType of the class
SecurityMetrics is called correctly.

Verified /

requirements

Inputs String metricType

1D Byl i3 To set the value of the variable “metricType” to the one passed as
parameter

Outputs None

Comments All operations executed successfully

Test objective The goal is to verify that the consctructor of the class
SecurityMetricldentifier is called correctly.

Verified /

requirements

Inputs A string containing the ID

D BT An instance of the class SecurityMetricldentifier

Outputs None

Comments All operations executed successfully

Test ID securityMetricldentifierNoArgsTest

Test objective The goal is to verify that the consctructor of the class
SecurityMetricldentifier is called correctly.

Verified /

requirements

Inputs String ID

D BT An instance of the class SecurityMetricldentifier

Outputs None

Comments All operations executed successfully

SPECS Project - Deliverable 1.4.2

67

Secure Provisioning of Cloud Services based on SLA Management

Test objective The goal is to verify that the method getld of the class
SecurityMetricldentifier is called correctly.
Verified /

requirements

Inputs

D ByEgiliE] Returns the value of the variable “id” of the SecurityMetricldentifier
Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method toString of the class
SecurityMetricldentifier is called correctly.
Verified /

requirements

Inputs

D BEEgilET Returns the value of the variable “id” of the SecurityMetricldentifier
Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method setld of the class
SecurityMetricldentifier is called correctly.

Verified /

requirements

Inputs String id

D BT To set the value of the variable “id” to the one passed as parameter

Outputs none

Comments All operations executed successfully

Test ID collectionSchemaTest

Test objective The goal is to verify that the constructor of the class CollectionSchema is
called correctly.

Verified /

requirements

Inputs String resource, Integer total,Integer members,List <String > itemList

1D BT Returns an instance of the class CollectionSchema

Outputs None

All operations executed successfully

Test objective The goal is to verify that the constructor of the class CollectionSchema is
called correctly.

Verified /

requirements

Inputs

e B ET Return an instance of the class CollectionSchema

Outputs none

Comments All operations executed successfully

Test ID getResourceTest

Test objective The goal is to verify that the method getResource of the class
CollectionSchema is called correctly.
Verified /

requirements
Inputs
D= BEE ST Returns the value of the variable “resource” of the CollectionSchema

SPECS Project - Deliverable 1.4.2

68

Secure Provisioning of Cloud Services based on SLA Management

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method setResource of the class
CollectionSchema is called correctly.

Verified /

requirements

Inputs String resource

D ByEgiliE] To set the value of the variable “resource” to the one passed as parameter
Outputs None
Comments All operations executed successfully

Test objective The goal is to verify that the method getTotal of the class
CollectionSchema is called correctly.
Verified /

requirements

Inputs

D B EgilET Returns the value of the variable “total” of the CollectionSchema
Outputs None

Comments All operations executed successfully

Test objective The goal is to verify that the method setTotal of the class
CollectionSchema is called correctly.

Verified /

requirements

Inputs Integer total

D BT To set the value of the variable “total” to the one passed as parameter

Outputs none

Comments All operations executed successfully

Test ID setMembersTest

Test objective The goal is to verify that the method getMembers of the class
CollectionSchema is called correctly.

Verified /

requirements

Inputs

1D DL Returns the value of the variable “members” of the CollectionSchema

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method setMembers of the class
CollectionSchema is called correctly.

Verified /

requirements

Inputs Integer members

e Bl i To set the value of the variable “members” to the one passed as
parameter

Outputs none

Comments All operations executed successfully

Test ID getltemListTest

Test objective The goal is to verify that the method getltemList of the class
CollectionSchema is called correctly.
Verified /

SPECS Project - Deliverable 1.4.2

69

Secure Provisioning of Cloud Services based on SLA Management

requirements

Inputs

| bl i3 Returns the list of the values as in the variable “itemList” of the class
CollectionSchema

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method setltemList of the class
CollectionSchema is called correctly.

Verified /

requirements

Inputs List <String > itemList

D BT To set the value of the variable “itemList” to the one passed as parameter
Outputs none
Comments All operations executed successfully

Test objective The goal is to verify that the method getAttributeFromPersistence of the
class PersistenceManager is called correctly.

Verified /

requirements

Inputs

D BT Test not implemented yet

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method getSQLPathByUnit of the class
PersistenceManager is called correctly.

Verified /

requirements

Inputs

D BT Test not implemented yet

Outputs none

Comments All operations executed successfully

Test ID getSQLPathByDbNameTest

Test objective The goal is to verify that the method getSQLPathByDbName of the class
PersistenceManager is called correctly.

Verified /

requirements

Inputs

D4 ByEiiliEi] Test not implemented yet

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the constructor of the class Annotation is called
correctly

Verified /

requirements

Inputs String id,String descr

D= BEE e Returns an instance of the class Annotation

Outputs None

Comments All operations executed successfully

Test ID annotationTestNoParameters

SPECS Project - Deliverable 1.4.2 70

Secure Provisioning of Cloud Services based on SLA Management

Test objective The goal is to verify that the constructor of the class Annotation is called
correctly

Verified /

requirements

Inputs

D BEEilET Returns an instance of the class Annotation

Outputs none

Comments All operations executed successfully

Test ID ocetldTest

Test objective The goal is to verify that the method getld of the class Annotation is called
correctly

Verified /

requirements

Inputs

D BEEgilET Returns the value of the variable “id” of the class Annotation
Outputs none

Comments All operations executed successfully

Test ID setldTest

Test objective The goal is to verify that the method setld of the class Annotation is called
correctly

Verified /

requirements

Inputs String id

D BT To set the value of the variable ”id” to the one passed as parameter
Outputs none

Comments All operations executed successfully

Test ID getDescrTest

Test objective The goal is to verify that the method getDescr of the class Annotation is
called correctly

Verified /
requirements

Inputs

D B i Returns the value of the variable “descr” of the class Annotation
Outputs None

Comments All operations executed successfully

Test ID setDescrTest

Test objective The goal is to verify that the method setDescr of the class Annotation is
called correctly

Verified /

requirements

Inputs String descr

Dl BT To set the value of the variable "descr” to the one passed as parameter
Outputs none

Comments All operations executed successfully

Test ID securityMetricDocumentTest

Test objective The goal is to verify that the constructor of the class
SecurityMetricDocument is called correctly.
Verified /

requirements

Inputs String doc

D Byl e Returns an instance of the class SecurityMetricDocument
Outputs none

Comments All operations executed successfully

SPECS Project - Deliverable 1.4.2 71

Secure Provisioning of Cloud Services based on SLA Management

Test ID securityMetricDocumentTestNoParams
Test objective The goals is to verify that the constructor of the class
SecurityMetricDocument is called correctly.

Verified

requirements

Inputs String doc

D ByEiliE] Returns an instance of the class SecurityMetricDocument
Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method getSecurityMetricJsonDocument of
the class SecurityMetricDocument is called correctly
Verified /

requirements

Inputs

| Byl i3 Returns the value of the variable “securityMetricJsonDocument” of the
class SecurityMetricDocument

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method setSecurityMetricJsonDocument of
the class SecurityMetricDocument is called correctly

Verified /

requirements

Inputs String document

| Bl i To set the value of the variable “securityMetricJsonDocument” to the one
passed as parameter

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method unmarshal of the class
JSONentityBuilder is workingCorrectly.

Verified /

requirements

Inputs A String, MarshallingInterface.class

B4 B YE ST Null, as a null string is passed as parameter.

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method marshal of the class
JSONentityBuilder is workingCorrectly.

Verified /

requirements

Inputs A marshallingInterface object, the class MarshallingInterface

4w B Null, converted as json object, since a null marshallingInterface is passed
as parameter.

Outputs none

Comments All operations executed successfully

Test ID XMLUnMarshalTest

Test objective The goal is to verify that the method unmarshal of the class
XMLentityBuilder is workingCorrectly.
Verified /

SPECS Project - Deliverable 1.4.2

72

Secure Provisioning of Cloud Services based on SLA Management

requirements

Inputs A string and the MarshallingInterface class

D BT Exception is returned, parameters are not correct.

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method marshal of the class
XMLentityBuilder is workingCorrectly.

Verified /

requirements

Inputs A MarshallingInterface object, the MarshallingInterface class

D BEEgiET Null converted as json object, since the object passed as parameter is null.
Outputs none
Comments All operations executed successfully

The following tables provide a detailed overview of the tests, which currently cover the 67,3% of the entire
specs-core-sla_platform-metric_catalogue-api project.

Test objective The goal is to verify that the method getlstance of the class MetricApi is
called correctly.

Verified /

requirements

Inputs

1D BT To create an instance of the class MetricAPI

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method getlstance of the class MetricApi is
called correctly.

Verified /

requirements

Inputs String dbName

D BT To create an instance of the class MetricAPI

Outputs None

Comments All operations executed successfully

Test ID testGetManager

Test objective The goal is to verify that the method getManager of the class MetricApi is
called correctly.

Verified /

requirements

Inputs

D= B iET] Returns an istance of the variable “managerEU” of the class MetricAPI
Outputs none

Comments All operations executed successfully

Test ID testSMTAnnotationResource

Test objective The goal is to verify that the constructor of the class
SMTAnnotationResource is called correctly.

Verified /

requirements

Inputs SecurityMetricldentifier id

B BEE] To create an instance of SMTAnnotationResource

SPECS Project - Deliverable 1.4.2 73

Secure Provisioning of Cloud Services based on SLA Management

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method getAnnotations of the class
SMTAnnotationResource is called correctly.

Verified SLAPL_R5

requirements

Inputs

i byl iii Uses the method getAnnotationsSMT of the manager, returns an
annotation.

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method createAnnotations of the class
SMTAnnotationResource is called correctly.

Verified SLAPL _R6

requirements

Inputs

D ByEgiilEi] Uses the method annotateSMT of the manager.

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the method updateAnnotations of the class
SMTAnnotationResource is called correctly.

Verified SLAPL_R8

requirements

Inputs

D4 B E T Uses the method updateSMT of the manager

Outputs none

Comments All operations executed successfully

Test objective The goal is to verify that the constructor of the class SMTResource is
called correctly.
Verified /
requirements
Inputs SecurityMetricldentifier id
D BT To create an instance of SMTResource
Outputs none
All operations executed successfully
Test ID testGetSMT
Test objective The goal is to verify if the method getSMT of the class SMTResource is

called correctly.
To get a securityMetric identified by the id of the SMTResource we are
calling the method from.
Verified SLAPL_R5
requirements
Returns a JSON containing the SecurityMetric definition
None
All operations executed successfully

Test ID testUpdateSMT
The goal is to verify that the method updateSMT of the class

SPECS Project - Deliverable 1.4.2

74

Secure Provisioning of Cloud Services based on SLA Management

- SMTResource is called correctly.

To update the securityMetric of the resource. This is done calling the
manager method updateSMT.

requirements

String description, an XML file

Returns a code Response.ok

none
All operations executed successfully

Test ID testRemoveSMT

Test objective The goal is to verify that the method removeSMT of the class
SMTResource is called correctly.

To remove the securityMetric of the SMTResource that calls the method.
This is done calling the method removeSMT of the manager.

Verified SLAPL R7

requirements

Returns a code Response.ok
none
All operations executed successfully

Test ID testGetAnnotationsResource

Test objective The goal is to verify that the method getAnnotationsResource of the class
SMTResource is called correctly.

To get the annotations of the SMTResource that calls the method.
Verified SLAPL_R5

requirements

Returns a istance of SMTAnntotationResource with the same ID of the
SMTResource that calls the method.

none

All operations executed successfully

Test ID testMarshall

Test objective The goal is to verify that the method marshall of the class
CollectionResource is working correctly.

Verified /

requirements

Inputs ArrayList <String > lista

| BEiET Returns null

Outputs none

Comments All operations executed successfully

Test ID testUnMarshall

Test objective The goal is to verify that the method unmashall of the class

CollectionResource is called correctly.

Verified /
requirements
String collection
Return null.
none
All operations executed successfully

Test ID testIsWriteable
Test objective The goal is to verify that the method isWriteable of the class
SerializationProvider is called correctly.

SPECS Project - Deliverable 1.4.2

75

Secure Provisioning of Cloud Services based on SLA Management

Verifies if the class is writeable calling a Marshalling method.
This is true only if the class implements MarshallingInterface

/
requirements

Returns true

none

All operations executed successfully

Test ID testIsReadable

Test objective The goal is to verify that the method isReadable of the class
SerializationProvider is called correctly.

Verifies if the class is writeable calling a Marshalling method.
This is true only if the class implements MarshallingInterface

/
requirements

Returns true

none

All operations executed successfully

Test ID testReadFrom

Test objective The goal is to verify that the method readFrom of the class
SerializationProvider is called correctly.

Reads the inputStream passed as a parameter, then builds an item of the
class defined in the parameter mediaType

Verified /

requirements

Inputs InputStream is, MediaType Application.JSON_TYPE | MediaType
Application.XML_TYPE
D Bl I Returns an object of the MediaType passed as parameter.

Outputs none
All operations executed successfully

Test ID testGetSize

Test objective The goal is to verify that the method getSize of the class
SerializationProvider is called correctly.

This method is not yet implemented.

:
requirements

Returns 0

None

All operations executed successfully

Test ID testGetSMTs

Test objective The goal is to verify that the the method getSMTs of the class
SMTsResource is called correctly.

To test this class a clientResource is created, then an URI with the query
parameters is passed. The path is “/security-metrics”

Verified SLAPL _R5

requirements

Inputs A query containing 4 parameters : metricType = abstract,items =
10,page= 0,length = 2

DW= BEEd] Returns a response.ok code, and a JSON containing the CollectionSchema
created.

Outputs None
Comments All operations executed successfully

SPECS Project - Deliverable 1.4.2 76

Secure Provisioning of Cloud Services based on SLA Management

testGetSMTsBackup

Test objective The goal is to verify that the method getSMTsBackup of the class
SMTsResource is called correctly.

To test this class a client resource is created, then an uri is passed.

The path is “/backup/{database}.db”

To get the backupFile, the method getMetricsBackup of MetricManager is
called, and the file is put in the response.

/
requirements

The URI containing the position of the database on the pc.

Returns a Response code ok.

None

All operations executed successfully

Test ID testGetSMTXml

Test objective The goal is to verify that the method getSMTXml of the class
SMTsResource is called correctly.

To test this class a client Resource is created, then an uri is passed.
The path is “/security-metrics/{id}.xml”

To get the XML file, retrieveSMT from metricManager is called.
The file path is then determined, and the file is put in the response.
Verified SLAPL _R5

requirements

An Uri that contains the path to a XML resource .
Returns a response code ok

none

All operations executed successfully

Test ID testGetSMTResource

Test objective The goal is to verify that the method getSMTResource of the class
SMTsResource is called correctly.

To test this class a client resource is called, then an uri is passed.

In particular, first a SMTResource is created, then the same resource is
called through its id.

To call the resource, the path “/security-metrics/{id}” is used.

:
requirements

An XML file.

Returns a SMTResource with the same ID passed in the uri.

none

All operations executed successfully

Test ID testCreateSMT

Test objective The goal is to verify that the method createSMT of the class
SMTsResource is called correctly.

To test this class a client resource is created, then an XML file is read and
it is used as body for the post request.

The path called is “/security-metrics”.

To create the resource, the method createSMT of the MetricManager is
used, and the XML passed in the body is used to create the
securityMetricDocument.

Verified SLAPL _R6

requirements

An XML file
D BEEgilET Returns response code Created
none

SPECS Project - Deliverable 1.4.2

77

Secure Provisioning of Cloud Services based on SLA Management

All operations executed successfully
Test ID testRestoreSMTBackup

Test objective The goal is to verify that the method restoreSMTbackup of the class
SMTsResource is called correctly.

To test this class a client resource is created, and the path is “/security-
metrics/restore/{dbname}.db”.

An Inputstream is passed as the body of the post.

Then the method restoreMetricsBackup of the MetricManager is called.
Verified /

requirements

Inputs

D B ET Returns Response code ok.

Outputs none

Comments All operations executed successfully

SPECS Project - Deliverable 1.4.2

Secure Provisioning of Cloud Services based on SLA Management

AA4. Interoperability Layer Tests

The JUnit and the Jersey Test frameworks have been used to test the component. The
following tables provide a collection of tests, which currently cover the 70% of the entire
specs-core-sla_platform-sla_interoperabilityproject.

Test ID testEventClass

Test objective The goal is to verify that all methods of the Event class works fine. In
particular this test verifies that the constructor returns an instance of the
class.

Verified

requirements
The constructor of the class returns the required instance correctly
An instance of the Event class
All operations executed successfully

Test ID testVirtuallnterfaceClass

Test objective The goal is to verify that all methods of the Virtuallnterface class works
fine. In particular this test verifies that the constructor returns an
instance of the class and that all the get and set methods work properly

Verified
requirements
The values of the attributes to call the set methods

1. Bl i3 The constructor of the class returns the required instance correctly and
all set and get methods works fine

Outputs An instance of the Virtuallnterface class that has all the attributes set with
the required values

All operations executed successfully

Test ID testEventManagerClass

Test objective The goal is to verify that all methods of the EventManager class works
fine. In particular this test verifies that the constructor returns an
instance of the class and that all the get and set methods work properly

Verified
requirements
The values of the attributes to call the set methods

1. Bl i3 The constructor of the class returns the required instance correctly and
all set and get methods works fine

Outputs An instance of the EventManager class that has all the attributes set with
the required values

All operations executed successfully

Test ID testProxyControllerClass

Test objective The goal is to verify that all methods of the ProxyController class works
fine. In particular this test verifies that the constructor returns an
instance of the class and that all the get and set methods work properly

Verified
requirements
The values of the attributes to call the set methods

1. Byl E3 The constructor of the class returns the required instance correctly and
all set and get methods works fine

Outputs An instance of the ProxyController class that has all the attributes set
with the required values

All operations executed successfully
SPECS Project - Deliverable 1.4.2 79

Secure Provisioning of Cloud Services based on SLA Management

Test ID getHomeTest

The goal is to verify that the API listen on the base path returns a correct
value
requirements
Inputs Get request to base path
The API returns the String “HOME”
The String “HOME”
All operations executed successfully

Test ID getInterfacesTest
Test objective The goal is to verify that the API listen on the path

“interoperability /interfaces” returns a not null collection of virtual
interfaces (get request)
requirements
Get request to “interoperability/interfaces” path
The API returns a collection of the virtual interfaces
The collection of virtual interfaces
All operations executed successfully

Test ID testCreatelnterface
Test objective The goal is to verify that the API listen on the path

“interoperability /interfaces” stores a new virtual interface properly (post
Verified
requirements

request)
Post request to “interoperability/interfaces” path
| byl i A 201 Created response with the id of the stored virtual interface in the

body

201 Created
All operations executed successfully

Test ID testUpdatelnterface

Test objective The goal is to verify that the API listen on the path

“interoperability /interfaces” updates the value of the virtual interface
properly (put request)

Verified
requirements
Put request to “interoperability/interfaces” path
A 201 Created response with the id of the updated virtual interface
201 Created
All operations executed successfully

Test ID testDeleteIlnterface

Test objective The goal is to verify that the API listen on the path

“interoperability /interfaces/{id}” deletes the value of the virtual interface
properly (delete request)

Verified
requirements
Delete request to “interoperability/interfaces/{id}” path
A 204 No Content response
204 No Content
All operations executed successfully

Test ID testGetInterface

The goal is to verify that the API listen on the path
SPECS Project - Deliverable 1.4.2

80

Secure Provisioning of Cloud Services based on SLA Management

“interoperability /interfaces/{id}” returns the value of the virtual
interface properly (get request)

Verified

requirements

Inputs Get request to “interoperability/interfaces/{id}” path

Dbyl iise A 200 OK response with the value of the stored virtual interface in the
body

Outputs 200 OK

Comments All operations executed successfully

Test ID testEvents

Test objective The goal is to verify that the API listen on the path “event/events” returns

a not null collection of events (get request)

Verified

requirements

Inputs Get request to “event / events” path
D ByEgilE] The API returns a collection of the events
Outputs The collection of events

Comments All operations executed successfully

Test ID testEventld
Test objective The goal is to verify that the API listen on the path “events/{id}” returns a
null value for an event that doesn’t exist (get request)

Verified

requirements

Inputs Get request to “events/{id}” path

i BT A 200 OK response with the value null in the body
Outputs 200 OK

All operations executed successfully

Test ID testGetSLAs

Test objective The goal is to verify that the method getSLAs of the class Ins_Resource is
called correctly.

To test this method, first a Virtual Interface is created and the path
(“/interoperability /interfaces”) is called with a POST operation, to put
the Virtuallnterface in the contentProvider of ProxyController,then the
path (“/param/slas”) is called with a GET operation.

Verified
requirements
Get request to “param/slas” path
A 200 OK response with the value of the requested slas in the body
200 OK
All operations executed successfully

testPostSLAs
Test objective The goal is to verify that the method createSLAs of the class Ins_Resource
is called correctly.
To test this method, first a Virtual Interface is created and the path
(“/interoperability /interfaces”) is called with a POST operation, to put
the Virtuallnterface in the contentProvider of ProxyController,then the
path (“/param/slas”) is called with a POST operation.

Verified

requirements
Post request to “param/slas” path

| Byl iis] A 201 created response with the value of the id of the created sla in the
body

201 created
SPECS Project - Deliverable 1.4.2

81

Secure Provisioning of Cloud Services based on SLA Management

All operations executed successfully

testResource
Test objective The goal is to verify that the method getResource of the class In_Resource

is called correctly.
To test this method, the path (“/param/slas/{id}") is called with a GET
operation.
requirements

Get request to “param/slas/{id}” path

A 200 OK response with the value of the requested sla in the body

200 OK

All operations executed successfully

Test ID testPostResource
Test objective The goal is to verify that the method createResources of the class

In_Resource is called correctly.
To test this method, the path (“/param/slas/{id}”) is called with a PUT
operation.
requirements

Put request to “param/slas/{id}” path

A 200 OK response with the value of the put sla in the body

200 OK

All operations executed successfully

Test ID testAlertsResource

Test objective The goal is to verify that the method getAlerts of the class
In_AlertsResource is called correctly.
To test this method, the path (“/param/slas/{id}/ alerts”) is called with a
GET operation.

requirements

Inputs Get request to “param/slas/{id}/alerts” path

A 200 OK response with the value of the alerts in the body

200 OK
All operations executed successfully

Test ID testViolationsResource
Test objective The goal is to verify that the method getViolations of the class

In_ViolationsResource is called correctly.
To test this method, the path (“/param/slas/{id}/violations”) is called
with a GET operation.
requirements

Get request to “param/slas/{id}/violations” path

A 200 OK response with the value of the violations in the body

200 OK

All operations executed successfully

Test ID testTeamplatesResource

Test objective The goal is to verify that the method getTemplates of the class
In_TemplatesResource is called correctly.

To test this method, the path (“/param/slas/{id}/templates”) is called

SPECS Project - Deliverable 1.4.2 82

Secure Provisioning of Cloud Services based on SLA Management

_ with a GET operation.

Verified
requirements
Get request to “param/slas/{id}/ templates” path
A 200 OK response with the value of the templates in the body
200 OK
All operations executed successfully

Test ID testAssociationsResource
Test objective The goal is to verify that the method getAssociations of the class

In_AssociationsResource is called correctly.
To test this method, the path (“/param/slas/{id}/associations”) is called
with a GET operation.
requirements

Get request to “param/slas/{id}/ associations” path

A 200 OK response with the value of the templates in the body

200 OK

All operations executed successfully

Test ID testAlertResourceParam
Test objective The goal is to verify that the method getAlert of the class

In_AlertResource is called correctly.
To test this method, the path (“/param/slas/{id}/alerts/{param}”) is
called with a GET operation.
requirements

Get request to “param/slas/{id}/alerts/{param}” path

A 200 OK response with the value of the requested alert in the body

200 OK

All operations executed successfully

Test ID testViolationResourceParam

Test objective The goal is to verify that the method getViolation of the class
In_ViolationResource is called correctly.

To test this method, the path (“/param/slas/{id}/violations/{param}”) is
called with a GET operation.

Verified
requirements

Get request to “param/slas/{id}/violations/{param}” path
i BT A 200 OK response with the value of the requested violation in the body

200 OK
All operations executed successfully

Test ID testTemplateResourceParam

Test objective The goal is to verify that the method getTemplate of the class

In_TemplateResource is called correctly.
To test this method, the path (“/param/slas/{id}/templates/{param}”) is
called with a GET operation.
requirements

Get request to “param/slas/{id}/templates/{param}” path

A 200 OK response with the value of the requested template in the body

200 OK

All operations executed successfully

Test ID testAssociationResourceParam

The goal is to verify that the method getAssociation of the class
SPECS Project - Deliverable 1.4.2

83

Secure Provisioning of Cloud Services based on SLA Management

In_AssociationResource is called correctly.
To test this method, the path (“/param/slas/{id}/associations/{param}”)
is called with a GET operation.
requirements
Get request to “param/slas/{id}/associations/{param}” path

e Byl A 200 OK response with the value of the requested association in the
body

200 OK
All operations executed successfully

SPECS Project - Deliverable 1.4.2

Secure Provisioning of Cloud Services based on SLA Management

A.5. Auditing Tests

The following tables provide a collection of tests,which currently cover 72% of all source
code.

Test ID CompActivityServiceTest

Test objective Test operations of the ComponentActivity service class (create, retrieve,
find Component Activity audit records)

Verified ENF _PLAN_R6, ENF IMPL_R8, ENF_DIAG_R9, ENF_REM_RZ2, ENF AUD_R1,

requirements ENF_AUD_R2

Inputs A test Component Activity object.

e bl All operations executed successfully, the retrieved record matches the
original one.

Outputs None.

Comments All operations executed successfully.

Test ID ServiceActivityServiceTest

Test objective Test operations of the ServiceActivity service class (create, retrieve, find
Service Activity audit records)

Verified ENF_IMPL_R6, ENF AUD_R1, ENF AUD_R2

requirements

Inputs A test Service Activity object.

| Bl i All operations executed successfully, the retrieved record matches the
original one.

Outputs None.

Comments All operations executed successfully.

Test ID DiagMonEventServiceTest

Test objective Test operations of the DiagnosedMonitoringEvent service class (create,
retrieve, find Diagnosed Monitoring Event audit records)

Verified ENF DIAG R12, ENF DIAG R14, ENF DIAG R17, ENF AUD_R1,

requirements ENF_AUD_R2

Inputs A test Diagnosed Monitoring Event object.

e Bl All operations executed successfully, the retrieved record matches the
original one.
Outputs None.

All operations executed successfully.
Test ID RemediationResultServiceTest
Test objective Test operations of the RemediationResult service class (create, retrieve,
find Remediation Result audit records)
Verified ENF AUD_R1, ENF AUD_R2
requirements
Inputs A test Remediation Result object.

e Bl All operations executed successfully, the retrieved record matches the
original one.
Outputs None.

All operations executed successfully.

Test ID CompActivityControllerTest
Test objective ENF _PLAN_R6, ENF_IMPL _R8, ENF DIAG_R9, ENF_ REM_R2, ENF AUD_R1,
ENF AUD_R2

SPECS Project - Deliverable 1.4.2 85

Secure Provisioning of Cloud Services based on SLA Management

Verified ENF_PLAN_R6, ENF_IMPL_R8, ENF_DIAG_R9, ENF_REM_R2
requirements

A test Component Activity object.

DBl All operations executed successfully, the retrieved record matches the
original one.

Outputs None.
All operations executed successfully.

Test ID ServiceActivityControllerTest

Test objective Test operations of the ServiceActivity controller class through REST API
(create, retrieve, find Service Activity audit records)

Verified ENF_IMPL_R6, ENF AUD_R1, ENF AUD_R2

requirements

Inputs A test Service Activity object.

| Bl All operations executed successfully, the retrieved record matches the
original one.
Outputs None.

All operations executed successfully.

Test ID DiagMonEventControllerTest

Test objective Test operations of the DiagnosedMonitoringEvent controller class
through REST API (create, retrieve, find Diagnosed Monitoring Event
audit records)

Verified ENF DIAG_R12, ENF _DIAG_R14, ENF DIAG_R17, ENF AUD_RI,
requirements ENF_AUD_R2

A test Diagnosed Monitoring Event object.

1D Bl All operations executed successfully, the retrieved record matches the
original one.

Outputs None.
All operations executed successfully.

Test ID RemediationResultControllerTest

Test objective Test operations of the RemediationResult controller class through REST
API (create, retrieve, find Remediation Result audit records)

Verified ENF _AUD_R1, ENF_AUD _R2

requirements

Inputs A test Remediation Result object.

| Bl All operations executed successfully, the retrieved record matches the
original one.
Outputs None.

All operations executed successfully.

Test ID AppConfigTest

Test objective Test application configuration loading from a file.
Verified
requirements
Inputs A test application configuration file.

B BYE T Application configuration properties are set correctly.
Outputs None.

Comments All operations executed as expected.

~

SPECS Project - Deliverable 1.4.2

86

