
PEACE : A Policy-based Establishment of Ad-hoc Communities

Sye Loong Keoh, Emil Lupu and Morris Sloman
Department of Computing
Imperial College London

180, Queen’s Gate, London, SW7 2AZ, UK
{slk, e.c.lupu, m.sloman}@doc.ic.ac.uk

Abstract

Ad-hoc networks are perceived as communities of au-
tonomous devices that interconnect with each other. Typ-
ically, they have dynamic topologies and cannot rely on a
continuous connection to the Internet. Users’ devices often
do not have a priori knowledge of each other and cannot
rely upon pre-existing shared information. This introduces
difficult security issues when attempting to provide authen-
tication, membership management and access control. De-
signing a framework which allows the secure establishment
and management of ad-hoc communities remains a signifi-
cant challenge. In this paper, we propose a novel policy-
based security framework to facilitate the establishment,
evolution and management of mobile ad-hoc networks. We
introduce a community specification, called doctrine, which
defines the roles of the participants in the community, the
characteristics that participants must exhibit in order to be
eligible to play a role, as well as the policies governing their
behaviour within the community. Based on the doctrine, we
propose a set of security protocols to bootstrap the commu-
nity, manage the membership, and govern the access to the
services provided by the participants. We have investigated
the impact of mobility on the proposed security protocols
and observed that the protocol is robust to changes in the
network topology.

1. Introduction

The proliferation of computing devices, which are be-
ing progressively embedded in the objects of everyday life,
gives rise to numerous interactions and collaborations be-
tween these devices. Applications rely increasingly upon
services provided by other computing devices and this
dependence is exacerbated when devices are mobile, au-
tonomous and interconnected through inherently unreliable
wireless links. For example, implanted or wearable medi-
cal devices on a patient collaborate in order to monitor the

healthcare of the individual; PDAs and laptops of different
persons can interact in an ad-hoc business meeting and vir-
tual organisations are frequently formed between businesses
to share resources. Ad-hoc networking (e.g. MANET)
is the platform that supports such collaborations, and the
primary motivation of this work is to provide a policy-
based security framework for establishing communities of
autonomous devices in the wireless environment.

There is little related work addressing the issue of how to
establish an ad-hoc network, determining who can partici-
pate and join the collaboration, what resources and services
are needed, and who can access these services. All these
issues are difficult to solve because ad-hoc networks cannot
rely upon the availability of any fixed network infrastruc-
ture. Thus, the provision of security services is difficult as
the information available to the user is limited, e.g. Cer-
tification Authorities (CAs) cannot be reached at all time.
Various security issues such as authentication, membership
management and access control to the resources shared in
the network need to be resolved. Some of these issues have
been addressed independently and prior research has mainly
focussed on the context of ad-hoc routing [24, 16, 14, 13],
middleware support [18], and communication infrastruc-
ture. However, few attempts have been made to address
authentication and access control issues in ad-hoc networks.

A security framework is needed to support the estab-
lishment, evolution and management of ad-hoc networks in
which users can have the assurance that their devices would
only interact with other devices that the user trusts to be
safe. Interactions between devices need to be controlled
in order to prevent unauthorised access to system resources
and services. A policy-based approach is flexible, scalable
and permits adaptation to changes in security requirements
and context of the ad-hoc network by dynamically loading
and removing policies from the system without interrupting
its functioning. In this paper, we propose a novel policy-
based security framework and a set of security protocols to
bootstrap an ad-hoc network, manage its membership, and
control access to the services provided by the participants.

We also show that the proposed solution is robust to changes
in the network topology.

The paper is organised as follows. In section 2, we
present the notion of community in the context of ad-hoc
networks. In section 3, we describe our framework, while
section 4 outlines the protocols used to establish and man-
age an ad-hoc community. Section 5 describes the architec-
ture and presents some preliminary results. In section 6, we
describe related work, and this is followed by discussions
and future work in section 7. Section 8 concludes the paper.

2. Ad-hoc Communities

In socio-economic studies, the term community com-
monly refers to a group of people with common interests or
characteristics [31, 1] who live in the same locality [9, 1]
under the governance of a set of laws [8]; and that they in-
teract [19] with each other.

In the context of ad-hoc networking, we perceive an ad-
hoc network as a community of autonomous devices that
collaborate and share resources with each other. It is sim-
ilar to the virtual enclaves [30] that enables the sharing of
resources and services between several organisations. The
motivation for users to form a community stems from the
need to access resources and use services that they do not
have on their own. We first present a definition of ad-hoc
communities and subsequently, we outline the properties of
an ad-hoc community with regards to this definition.

Definition 1. An ad-hoc community interconnects a
group of devices, maintains membership and ensures that
only entities, i.e., users or computing services, which pos-
sess certain credentials, attribute information and charac-
teristics can join the community (common characteristics).
The members of the community rely upon each other to pro-
vide services and share resources (interactions). These in-
teractions are regulated through a set of well-defined rules
and policies (law) that govern the access to the services and
resources in the community.

2.1. Common Characteristics

The main characteristics of the ad-hoc communities we
seek to define are that behaviour within the community is
regulated through a set of policies and that only participants
who satisfy well defined admission criteria can be admitted
in the community. An example of such communities are
disaster relief operations that require a coalition to be set up
among the police, fire brigade, ambulance etc. and where
membership is restricted, in terms of the characteristics of
the users who can participate. This is inline with the notion
of regularity-based trust [22] that builds trust relationships
among the users in the community. Trust arises from the
fact that participants in the community know that all other

participants have satisfied the admission criteria specified
and, consequently, have the expectation that they will be-
have accordingly. The next section discusses the need for
policies to regulate the behaviour of the participants.

2.2. Policies or Law

Since the purpose of an ad-hoc community is to enable
interactions between its participants, it is thus important to
ensure that these interactions are governed by well-defined
policies that define the rules for accessing services and re-
sources in the community. Policies are explicitly specified
and known to all the participants.

The rationale for explicitly specifying the rules or secu-
rity policies is to build trust between the participants. Trust
in this context derives from the fact that participants’ be-
haviour is expected to be consistent with both the charac-
teristics dictated by the admission criteria and the policies
governing the behaviour within the community. Typically,
the participants that form the community have to rely on
each other to provide the services that they do not have on
their own and usually, they do not have any a priori knowl-
edge about each other. As a result, collaborations among
them cannot be set up because they do not trust each other
to use their respective services and resources. Therefore,
there is a need for explicit specification of policies for each
community. By knowing the policies, a user is aware of the
potential users that it might trust to interact with, the ser-
vices and resources that it has access to, and the policies it
must enforce in order to protect its resources and services.

3. A Model of Ad-hoc Communities

In this section, we present a model for ad-hoc communi-
ties. The community doctrine is a specification that clearly
defines: the roles of the participants in the community, the
rules (or policies) governing their behaviour in terms of au-
thorisations, obligations and constraints which external en-
tities have to satisfy in order to join the community. Thus,
only the eligible users are allowed to participate in the com-
munity, and each of them is allocated a set of access priv-
ileges to use the resources and services provided by other
members. In addition, a set of protocols for the formation
and evolution of the community is required and forms an
integral part of the management of the community.

In essence, a doctrine is an information model that com-
prises tuples 〈R, P, S, TK, Sig〉 of a community, C, where:

• R - denotes the role types of the participating users in
the community.

• P - defines a set of policies that regulate the behaviour
of the participants assigned to the roles. Authori-
sation policies associate the permissions with roles,

while obligation policies are event-condition-action
rules that facilitate the adaptation and security man-
agement of the community.

• S - defines the constraints of the community. It is used
to specify security requirements, e.g. separation-of-
duty and cardinality constraints which must be pre-
served when the membership changes.

• TK - denotes public-keys of the credential issuers, e.g.
Certification Authorities (CAs) and Attribute Authori-
ties (AAs).

• Sig - Each doctrine must be signed by its issuer in order
to preserve its integrity and authenticity.

The following scenario gives an example of an ad-hoc
community:

Alice is on a business trip from London to Paris. She
will have to spend two hours on the train. With a limited
number of songs on her PDA, she would like to engage in a
media files sharing activity, where she can exchange songs
with other passengers onboard. Most of her songs are
purchased from the iTunes Music Store and Napster.com.
She is a premium subscriber of both music stores, so she
has the privileges to download unlimited number of songs.
Therefore, the exchange of songs can only be performed
with other passengers who are the premium subscribers as
well, otherwise, there will be a breach of copyright issues.
She is also interested to browse the top stories of today’s
news, e.g. Avantgo news on PDAs if there are any news
services provided by other passengers on the train.

Typically, doctrines are specified by a variety of issuers.
In this scenario, EuroRail can issue a doctrine to enable
its passengers to set up communities on the train or alter-
natively any music providers. The doctrine can be used to
instantiate several communities with different participants
and each participant maintains a set of preferences specify-
ing the characteristics of the communities that it is willing
to participate in. The decision to join a community is based
on the attributes of the doctrine, e.g. whether the user trusts
the issuer of the doctrine, or the services which the user will
be allowed to access if it joins the community.

3.1. Role Types and User-Role Assignment Policies

The doctrine defines role types, R and user-role assign-
ment policies, URA, so that access control permissions can
be associated with roles rather than individual identities.

Let R = {r1, ..., rn} be a set of role types of a community,
C, where there is a finite number, n ≥ 1.

In our scenario, communities can be established to fa-
cilitate the exchange of music files and news stories. Par-

ticipants of the community can be represented as three role
types, R = {premium user, normal user, news server}.

Each role type has a user-role assignment policy, URA,
so that only authorised users are allowed to join the com-
munity in that role. In order to be assigned to a role type,
the user must possess the required attributes, e.g. be a sub-
scriber of a music provider, a member of AOL etc. This is
termed as credential requirement, cr as it designates the cre-
dentials or certifications that a user or a service must exhibit
in order to demonstrate that it possesses certain attributes or
characteristics. This could be the user’s position in an or-
ganisation, professional membership, etc.

Let E be a URA policy specified for each role type in
the community. E is expressed in disjunctive normal form
(DNF) where the predicates are made up of credential re-
quirements. Users have to present a set of credentials or at-
tribute certificates which will be checked against the URA
policy. If the URA policy is satisfied, the user is assigned to
the role type and an instance of the role is created.

As an example, the URA policy for the roles normal
user, premium user and news server can be defined in the
corresponding DNF as follows:

Enormal = {SubscriberiTunes ∨ MemberAOL ∨
Subscribernapster}

Epremium = {PremiumiTunes ∨ Premiumnapster}
Enews = {PassengerEuroRail}

where only the subscribers of iTunes, napster or members
of AOL can join the community as normal user. To join
as a premium user, the user must be a premium subscriber
of either iTunes or napster, while any passenger who can
provide news service can join as news server.

A user can satisfy more than one URA policy and hence
can be assigned to more than one role in a community.
Therefore, in order to ensure separation-of-duty when re-
quired, there is a need to define additional constraints to
prevent a user from being assigned to more than one role
type. This will be discussed in section 3.3.

3.2. Authorisation and Obligation Policies

Authorisation policies are specified in the doctrine to
grant participants access to services and permissions to use
resources, while obligation policies facilitate security man-
agement of the community. These policies are based on
Ponder [10] and they are grouped according to the role type
specifications. Hence, this is similar to the role-based ac-
cess control (RBAC) model [28, 11]. An authorisation pol-
icy defines what actions a subject role is permitted to in-
voke on a target object. It protects the target objects from
unauthorised actions and this policy is enforced at the tar-
get. An obligation policy specifies the actions that must be

performed by the subject role when an event occurs [10].

The proposed framework groups all authorisation and
obligation policies according to the subject role, i.e., the
rights and duties of that role within the community. In
mobile networks, users who provide services are expected
to enforce the authorisation policies and all service requests
are then granted based on these policies. This implies that
all service providers must be able to interpret the policies
and subsequently enforce them [23]. The obligation
policies are perceived as duties of the users to manage
the security of their corresponding services as well as
the community as a whole. In general, they are used to
facilitate the management and adaptation of the community
to changes in its membership or context.

inst role NormalUser {
inst auth+ listenMusicAuth {

Target NormalUser, PremiumUser;
Action listen(); }

inst auth+ readNewsAuth {
Target NewsServer;
Action read(); }

}

Consider for example the composite policy illustrated
above, it specifies that the role normal user is authorised to
listen to songs (music files) shared by other normal users
and premium users, it can also read news provided by the
news server.

inst role PremiumUser {
inst auth+ downloadMusicAuth {

Target PremiumUser;
Action download(); }

inst auth+ listenMusicAuth { ... }
inst auth+ readNewsAuth { ... }

inst oblig maliciousDownloadAction {
On 3*maliciousDownload;
Action disable() → log() → notify(); }

}

Similarly, the composite policy for the premium user
comprises three authorisation and one obligation policies.
The authorisation policies specify that a premium user can
download music files from other premium users as well as
tune in live, i.e. listen to songs provided by other normal
user and premium user. The same access privilege is given
to read news. The obligation policy specifies that when the
system detects that there are three consecutive malicious at-
tempts to download the user’s shared music files, the user

must disable the file shares, log all the unauthorised ac-
cess details, and subsequently notify other members of the
community. (→ indicates that the actions are executed se-
quentially).

3.3. Constraint Specifications

Based on a doctrine, a community can be instantiated
when a group of users who satisfy the URA policies wishes
to engage in an ad-hoc collaboration. However, prior to
the instantiation of the community, certain security require-
ments must be fulfilled. The doctrine provides the flexibility
to specify constraints that express the security requirements
of the community. These constraints are evaluated when the
community is first instantiated and whenever the member-
ship changes.

Three types of constraints can be specified: separation-
of-duty (SoD), cardinality and community establishment.
SoD constraints ensure that a user is not assigned to two
or more conflicting roles at the same time in the commu-
nity. The purpose of SoD rules is to prevent one user from
doing all parts of a task that should require two or more
users, in order to prevent collusion or fraud [17]. The car-
dinality constraint restricts the number of role instances in
the community as well as the total number of participants,
while the community establishment constraint is a defini-
tion of conditions on the instantiation of a community. It
ensures amongst others that the indispensable roles and ser-
vices are available prior to the establishment of the commu-
nity, and defines the minimum number of instances for each
role type. In essence, a community can only be instantiated
when the required role types have been instantiated.

For example, a community establishment constraint can
be specified as there must exist at least two normal users
prior to the establishment of the community.

Scom establishment = {|normal user| ≥ 2}

3.4. Trusted Key Specifications

The issuer of the doctrine can include the public-keys of
the relevant CAs and AAs in the doctrine. These public-
keys are required by the participants when verifying each
other’s credentials, e.g. public-key or SPKI/SDSI [27] cer-
tificates. Essentially, the issuer knows which public-keys
of the CAs are needed for the URA policies, hence it can
asserts the authenticity of these public-keys by including
them as trusted key specifications in the doctrine. This is
necessary because in most cases, it is unlikely that every
participant maintains the public-keys of all potential issuers
and due to the lack of a continuous online connection to
the fixed network infrastructure, these authorities cannot
be reached at all times. Thus, it is difficult to verify the

participant’s credentials without the public-key of creden-
tial issuers. However, this implies that participants have to
trust the issuer to provide accurate information regarding
the public-keys that are needed to check URA policies.

In the scenario described in section 3, in order to ver-
ify the URA policies, one would need the public-keys of
iTunes, napster, and AOL. These public-keys can be in-
cluded in the doctrine as trusted key specifications.

TK = {PubiTunes, Pubnapster, PubAOL}
The doctrine is encoded using XML in order to provide

interoperability between various mobile devices. The hash
of the doctrine is used as its identifier, so that any changes to
the doctrine can be detected. All doctrines are signed using
XMLSignature [3].

4. Deployment and Enforcement Architecture

Having defined the policy specifications for the ad-hoc
community, this section briefly discusses the assumptions in
the deployment model, the process of creating and dissem-
inating the doctrine, the process of bootstrapping a com-
munity and the management of community membership in
terms of participants joining and leaving the community.

4.1. Assumptions

A community doctrine defines the rights and duties of
the participants as well as what behaviour a user can expect
from other participants in the community, so all participants
need to be aware of the doctrine, (i.e., have a copy of the
doctrine).

The devices of participants can have heterogeneous ca-
pabilities ranging from laptops, to PDAs and low powered
sensors. Since some devices will not be able to perform
complex cryptographic operations, it is useful to distinguish
between high-capability devices that can be used to perform
coordination tasks and the other devices. High-end devices
will need to perform computationally intensive tasks on be-
half of the other devices that must trust them to perform
these tasks. As previously discussed, this trust is not unrea-
sonable for two reasons: First, because without it the com-
munity would not be formed (or at least not with any form
of security) and second because these devices have satisfied
the URA policies.

We assume that there is an underlying routing infrastruc-
ture that supports the relay of data packets in an ad-hoc
network. Ad-hoc routing is still an active research area,
and many routing algorithms have been proposed [24, 16].
Some of them have been extensively tested in simulations.

Every participant maintains its own attribute certificates
and key pair that must be stored in a secure keystore.

Doctrines for the instantiation of a particular type of
community can be issued by any organisation or any in-
dividual, e.g., in a smart home scenario, a user can issue
a doctrine to interconnect mobile devices at home. Doc-
trines can be disseminated through broadcast messages or
made available on websites. Generally, their content is not
expected to be confidential although their integrity must be
preserved. However, users willing to join a community gov-
erned by a particular doctrine may need to trust the issuer of
that doctrine with respect to the accuracy of the certification
and attribute authority’s public-keys the doctrine comprises.
It is entirely at the user’s discretion whether to request join-
ing a community governed by a particular doctrine or not.
In most cases, users will have defined a set of preferences in
terms of the communities that they wish their devices to join
spontaneously. Such preferences are specified as Boolean
expressions on the attributes of the doctrine (including the
privileges and obligations of the role the user would wish to
play, trust in the issuer of the doctrine, and current context).

4.2. Bootstrapping a Community

When mobile users come into proximity of each other,
they can set up an ad-hoc community. One of the users with
a device of high CPU capability (a laptop or PDA), uco,
can initiate the bootstrapping of the community, by broad-
casting a 〈REQUEST〉 message. The request must contain
the doctrine and credentials of uco. When other users re-
ceive the request, they evaluate the doctrine against their
preferences and decide whether they would like to accept it.
They also have to authenticate uco and check that its cre-
dentials satisfy the URA policy for the role it proposes to
fulfil. Subsequently, they send a 〈REPLY〉, which contains
their respective credentials to uco if they want to participate.

For all the replies received, uco checks the credentials to
ensure that they satisfy the URA policies in the doctrine.
Then, uco evaluates the constraint specifications of the doc-
trine, to ensure that SoD, cardinality and community estab-
lishment constraints are satisfied. All admitted users are
then assigned a node id based on the time of admission and
a membership list is created for the community. This list
is then broadcast to all participants in a 〈MEMBERSHIP〉
message and uco automatically becomes the coordinator of
the community. The community is thus created. Through-
out the lifetime of the community, the coordinator is respon-
sible for enforcing the URA policies, evaluating constraints,
maintaining the membership list and responding to admis-
sion requests. Thus, only devices with high CPU capabili-
ties can be selected to act as coordinator.

The use of a single coordinator may be controversial as it
introduces a central point of failure and also a vulnerability
if the coordinator is malicious and/or compromised. How-
ever, the alternative, i.e., that every participant performs all

of the verifications, leads to numerous redundant compu-
tations (verifications of credentials and of constraints) and
also excludes from the community all devices that do not
have the computational capabilities to do it. Furthermore,
to evaluate the community constraints, the information re-
garding the size of the community is needed and up-to-date
membership information must be maintained. Replicating
the coordinator requires strong consistency of membership
lists. Although ISIS [4, 5] and other traditional group man-
agement systems [26, 20, 2] as well as virtual synchrony [6]
defined an approach to maintain the consistency of mem-
bership lists, they are not suitable for ad-hoc devices that
have scarce resources, because they impose significant com-
munication overheads among the coordinators. Hence, the
simplest way is to have a coordinator that maintains weak
consistency of the membership list by periodically broad-
casting it to all participants.

Note that the unavailability of the coordinator does not
entirely prevent the community from functioning. The main
role of the coordinator is to maintain the membership of
the community and verify credentials and constraints for
new members. Thus, if the coordinator becomes unavail-
able, new participants cannot be added to the community.
However, existing participants can continue their interac-
tions within the current community membership without in-
terruption. A compromised coordinator is a more serious
threat as it can admit rogue participants to the community.
The only way to detect this is if the rogue participants vio-
late the policies and the other participants detect this.

4.3. Joining the Community

A new user, unew periodically discovers new commu-
nities in the vicinity. It automatically requests to join
the discovered communities that use doctrines conforming
to its preferences. This is achieved by sending a 〈JOIN
REQUEST〉 to the coordinator of that community, which
contains unew’s credentials and the role, ru that it wishes to
join as.

Upon receipt of the join request, the coordinator checks
that unew’s credentials satisfy the URA policies and checks
that the admittance of unew does not violate the cardinal-
ity constraints. If unew requests to join the community in
more than one role, the coordinator must also ensure that
SoD constraints are not violated. A node id is then as-
signed to the admitted user and the coordinator sends a
〈JOIN REPLY〉 to unew. Subsequently, the membership list
is updated and broadcast to all participants.

4.4. Service Access and Subsequent Interactions

Access to services provided by participants is regulated
by the policies defined in the doctrine. When a service

provider receives a request, it first checks the membership
list in order to determine the validity of the requestor’s role
assignment. Then, it grants the requestor the permissions to
use the service if the authorisation policies allow it.

If the provider has sufficient device capability it may de-
cide to re-verify the user-role assignment. This helps to
guard against a malicious or compromised coordinator hav-
ing admitted a rogue user in the community. If a violation
is detected, other participants can be notified and if needed
the community can be reconstructed (see section 4.6).

4.5. Leaving the Community

Two scenarios can occur: either the user notifies the co-
ordinator that it is going to leave the community or its un-
expected absence is detected by others. If it is temporarily
absent (e.g., user moves out of range) but its absence is not
detected by other participants, no changes are necessary.

The first scenario is straightforward as the coordinator
can remove the user from the membership list, which can
then be re-sent to all participants. In the second scenario,
we rely on the other participants detecting its absence, typ-
ically through a communication failure. When a communi-
cation failure occurs, a user will retry for up to τ times. If
the failure is confirmed, the user notifies the coordinator by
sending a signed 〈FAILURE NOTIFICATION〉.

Upon receipt of such a notification of failure to reach a
user, uleave, the coordinator will checks that uleave is in-
deed a member of the community and attempt to reach that
user for τ times. If uleave is still unreachable, the coordi-
nator removes it from the membership list, checks that the
community establishment constraints are still satisfied and
broadcasts the revised membership list. If the constraints
are not satisfied the community can be dissolved.

4.6. The Coordinator is Unavailable

The coordinator can also become disconnected in an un-
expected manner. When the disconnection has been con-
firmed, an 〈UNAVAILABILITY〉 message is broadcast to
all participants. The community is considered by all par-
ticipants to be in a static state until a new coordinator is
elected. Static state (i.e., coordinator absent) implies that
no new users can be admitted to the community and all par-
ticipants disregard membership updates until a new coordi-
nator is elected. The community continues to operate based
on the last authenticated membership list.

Upon receipt of the 〈UNAVAILABILITY〉 message,
each participant checks whether or not it has the resources
and capability to serve as coordinator. Among all the eli-
gible participants, only one participant is selected and the
choice is arbitrary. For example, the participant with the
lowest node id can be selected as it is the oldest participant

in the community amongst the eligible ones. The selected
user, ulowid then broadcasts a 〈RECONSTRUCTION〉 mes-
sage and the other participants re-join the community by
sending 〈REJOIN〉 to ulowid. Subsequently, ulowid checks
all the URA policies and community constraints, and if they
are fulfilled, ulowid re-established the community. How-
ever, if no participant can take over the role of coordinator,
the community remains in static state until it is dissolved.

5. Architecture

Figure 1 shows the overall architecture of the proposed
framework. It is composed of five components: profile
management, membership management, protocol manage-
ment, policy enforcement and an event service. The frame-
work runs on every user’s device.

Authorisation

& Obligation

Policies

Membership

Info

Application

Requests

Credentials,

doctrines,

Preferences

Community

Management

Interfaces

Community

Management

Interfaces

Applications

Policy

Enforcement

Event

Service

Membership
Management

Profile

Management

Protocol

Management

Credentials,

doctrines,

Preferences

Membership Info
Protocol

Requests

Lower Layers

Requests

Events

Events

Messages

A Policy-based Security Framework

Figure 1. The architectural overview.

The profile management component maintains the user’s
credentials, such as public-key certificates, private-key
stores, and attribute certificates. Users can manage their
credentials and device settings through the community man-
agement interface. In addition, this component also main-
tains the user’s preferences on which communities the de-
vice should automatically join.

The membership management component exposes the
community management interface to the application level,
so that applications can initiate the establishment of a new
community, search for communities, as well as joining par-
ticular communities. Through this interface, the user can
register the services that it is providing to other participants.
The membership management component is also responsi-
ble for checking the authenticity of the doctrines and enforc-
ing them by extracting and distributing the policy instances
to various enforcement components. An optional module,
known as coordination service can be dynamically loaded
according to the user’s device capability in order to enable
the device to act as the coordinator. In this case, the mem-
bership management will also manage the membership of

the community including the enforcement of URA policies
and the community constraints.

The protocol management component executes various
security protocols for the establishment, evolution and man-
agement of communities as discussed in section 4. The pol-
icy enforcement component enforces both the authorisation
and obligation policies. Access requests are intercepted and
then checked against the policies to determine if they are
permitted. Obligation policies are enforced by subscribing
to the specified event and executing the actions specified in
the policies when the events occur.

Lastly, the event service collects and aggregates events
and subsequently forwards them to the policy enforcement,
e.g. the triggering of the execution of obligation policies.
System events are forwarded to the protocol management,
so that appropriate protocols can be performed. Events re-
garding the discovery of new communities are forwarded to
the membership management component.

5.1. Emulations and Preliminary Results

We have designed and implemented an emulation of a
mobile environment in order to investigate, the robustness
of the protocols against node mobility and to determine the
impact of various pause times on the proposed protocol.

The architecture was implemented as a Java prototype
and was tested using the MobiEmu [34] emulation tool.
MobiEmu was chosen because it can emulate the mobility
encountered in wireless networks and provides support for
ad-hoc routing. Essentially, MobiEmu provides a software
platform for testing and analysing ad-hoc network proto-
cols and applications in a LAN setting. The emulation is
scenario-driven and simulates the movement of nodes given
a history of locations. In terms of routing, it enforces a par-
tially connected topology at the data link layer and uses the
best-case ad-hoc routing algorithm.

A testbed was set-up to emulate the establishment and
evolution of an ad-hoc community. For simplicity, all ma-
chines were configured as capable to act as coordinator and
each of them was loaded with attribute certificates. A doc-
trine corresponding to the scenario described in section 3
was also created. Mobility scenarios were generated using
setdest version two, which can be found in ns-2 [7]. Table
1 summarises the parameters used in our emulations.

When running the emulation over a period of time, the
community could end up in the static or established state.
We are interested to find out the probability that a com-
munity will end-up in the static state at the end of the
emulation, i.e., that the community can no longer be re-
constructed. This occurs when the participants are out of
range and are no longer able to receive reconstruction mes-
sages even if a coordinator has been identified. Conversely,
a community remains in established state with the possi-

Table 1. Overall emulation parameters
Transmission Range 200 m
Emulation Time 1000 s
Number of Nodes 5
Pause Time 30, 60, 300, 600 s
Max. Node Speed 3.0 m/s
Min. Node Speed 0.1 m/s
Topology Size 500 x 500 m

bility that it has been reconstructed or it has never been
reconstructed. From Figure 2, we observe that the proba-
bility for a community to end up in static state is of 0.1 to
0.2. This probability is low and thus the protocol proposed
is relatively robust to the mobility of devices. Most of the
time, the community remains in the established state. More
specifically the probability that a community remains estab-
lished without being reconstructed for various pause times
ranges from 0.3 - 0.7.

The Probability that a community changes to static state vs

remains as established state

0

0.2

0.4

0.6

0.8

1

30 60 300 600

Pause Time (s)

P
ro

b
a

b
il
it

y

Static state (community could not

be reconstructed)

Established state (community was

reconstructed)

Established state (community was

not reconstructed)

Figure 2. This graph shows the stability of the
community against various pause times.

The second aspect is to investigate the probability of hav-
ing to reconstruct the community as a function of the pause
time of the nodes. As shown in Figure 2, we observed that
the probability that a community goes through the recon-
struction phase remains fairly high for pause times of 30,
60 and 300 s. For longer periods of time i.e., greater than
600s the coordinator remains within communication range
of the other devices for longer periods and the probability
of a reconstruction phase happening is relatively low i.e.,
0.2. This finding reveals that the proposed framework could
be efficient for scenarios such as communities in trains, li-
braries, and ad-hoc business meetings because in these sce-
narios, the users tend to move and then pause for a long
period of time before they move again.

6. Related Work

Law Governed Interaction (LGI) [23] proposes a frame-
work where interactions between a group of distributed

agents can interact subject to communication rules (the law)
specified using a simple Prolog notation. The underlying as-
sumption is that all interactions must occur through trusted
agents present at each of the sites to enforce the law. Our
framework does not rely on trusted agents, but requires par-
ticipants to monitor each other’s behaviour.

Zhou and Haas [35] have proposed the use of thresh-
old cryptography to thwart the problem of a single point
of failure in ad-hoc networks. They proposed that multiple
nodes can be used to act as CAs in an ad-hoc network. Each
network has a certificate signing key that is divided into n
shares and distributed to all nodes acting as CA. In order
to participate in the network, a user has to get t + 1 partial
signatures from different CAs and submit to a combiner to
generate a valid membership certificate, where (n ≥ 3t+1).
This implies that at least n CAs must be available at any
point in time and requires an efficient replacement scheme
to substitute the departing CA nodes. The framework pre-
sented in this paper does not aim to establish CAs, but rely
on a coordinator to manage the membership.

In [29], the authors have proposed an admission and
membership control for P2P and MANET that uses limited
consensus among current peers. The approach uses thresh-
old cryptography. The authors also revealed that threshold
cryptography seems to require significantly more time to
complete the membership admission process.

The Terminodes [15] project aims at building a self-
organised mobile ad-hoc network platform. Authentica-
tion aspects are mainly built on PGP [36]. A fundamen-
tal assumption is that all nodes have identical function-
ality and play an equal role to support self-organisation.
Hence, there are no privileged nodes performing functions
e.g., constraint verification, authentication, on behalf of oth-
ers. Nodes issue their own public-key certificates and store
them locally. Users issue certificates to each other, forming
a PGP-like web-of-trust. In our framework, mobile nodes
have different roles to play in the community and authenti-
cation is not fully decentralised.

Mäki et al [21] proposed a robust membership manage-
ment framework where each ad-hoc network has a group
leader that issues membership certificates to the mobile
nodes. This is similar to the coordinator in our framework.
The leader can delegate its leadership to other mobile nodes
in order to avoid a single point of failure. However, more
delegated leaders also means that there is a higher chance
of compromising them.

The Resurrecting Duckling Protocol [33] is built on the
notion of a master-slave relationship between mobile de-
vices. The protocol has been extended to cater for secure
transient relationships [32]. This work is complementary to
the work presented in this paper. An integrated approach
to formulating a security framework is required to express
security policies, credential requirements and trust relation-

ships between autonomous devices in a consistent manner.

7. Discussions and Future Work

Our approach does not seek to establish CAs in mobile
ad-hoc networks. Having a CA, does not resolve the is-
sue of how the CA identifies and authenticates the mobile
users, since they do not have a priori knowledge of each
other. Current PKI models require users to show proofs of
identification before the CA can issue a public-key certifi-
cate to the users. In a mobile environment, it is not possible
for each user to physically prove its identity to the mobile
user who acts as the CA when it wants to join the network.
On the contrary, we leverage on existing security solutions
where users already possess various certificates issued by
their respective CAs and AAs in the wired environment. By
using a well-defined doctrine, all participants have a com-
mon knowledge regarding the admission policies that need
to be satisfied in order to join the community and can thus
have expectations about the attributes of the other users in
the community. We prefer broadcasting a membership list
at regular intervals rather than issuing individual certificates
of membership, which need to be revoked. For relatively
small and dynamic communities, this appears to be more
efficient than the use of certificate revocation lists.

Acting as a coordinator consumes substantially more
computational resources than being a mere participant.
However, there is no direct benefit from becoming the coor-
dinator and no apparent motivation for a participant to take
on this role. The role of the coordinator has been introduced
in order to provide some form of security and coordination
in communities where most of the devices would not have
the computational resources for complex cryptographic op-
erations. Without the coordinator, the community would
not exist, or would exist without any form of security. The
motivation for becoming the coordinator is therefore inti-
mately linked to the need for the community to exist. This
may be because the coordinator has an interest in obtaining
information or specialised services from the other devices
such as obtaining music files. Or it may be because there
is an overall interest in the collaboration between various
participants e.g., disaster-relief operations, business meet-
ings, etc. Note that, it would also be possible to add a form
of micro-payments to the framework presented in this pa-
per, thus adding financial incentives to the coordinator role.
However, we have not investigated this aspect in detail yet.

When running the emulations, we observed that an ad-
hoc community could be partitioned, in which a community
instance is split into two instances. This happens because a
group of participants move out of the communication range
of the coordinator at the same time, and they reconstructed
the community and selected a new coordinator. As a result,
the community split into two distinct communities. How-

ever, we argue that this is not an issue because a doctrine
can be used to instantiate multiple communities with differ-
ent participants. Hence, provided that the community estab-
lishment constraints have been fulfilled, a new community
instance can be created although there is an existing com-
munity that uses the same doctrine.

Currently the broadcast of the membership list requires
extensive use of digital signatures. We are investigating
ways to eliminate this need through the use of TESLA [25].

Ensuring that all entities behave according to the speci-
fied policies in a distributed system remains an open prob-
lem. In our framework, the coordinator has to enforce the
URA policies and community constraints, whereas each in-
dividual participant has to enforce the obligation and au-
thorisation policies pertaining to their role. Ensuring that
they do so remains very difficult. The LGI [23] framework
achieves this by assuming that each site has a trusted con-
troller that mediates all message exchanges. This would re-
quire the use of a Trusted Computing Platform [12], to en-
sure that the user’s device runs reliable software that has not
been tampered with. The approach we are currently investi-
gating focuses more on detecting non-compliant behaviour
through monitoring of interactions. In particular, the coor-
dinator can be detected to be malicious if users without ap-
propriate credentials are admitted into the community. Fur-
ther, when a service provider denies an access request to a
user who has the right to use the service, this indicates a vio-
lation of the policies. However, continuous monitoring also
requires a great effort from all the participants to co-operate
with each other to detect anomalies.

8. Conclusions

In this paper, we have presented the notion of commu-
nity as a representation of an ad-hoc network. We claim
that a community should comprise a set of users who have
satisfied well-defined characteristics, and a set of policies
governing the users’ interactions. We advocate the use of a
community doctrine that comprises the policies specified in
terms of roles and that can be instantiated within the appro-
priate context. Users are then assigned to the roles subject
to the constraints specified in the doctrine. This approach
presents three advantages: First, it is well suited for au-
tonomous mobile devices as it requires relatively little pro-
cessing to instantiate a community and avoids the need for
negotiation. Second, it allows additional information to be
conveyed as part of the doctrine (e.g., CA keys) provided the
doctrine issuer is trusted and third, it allows to build trust be-
tween the community participants as they have knowledge
of all the policies applying to the other participants and can
therefore have expectations regarding their behaviour.

We have described a set of security protocols to manage
the evolution of the community, in terms of its membership.

We have chosen to rely on a coordinator node (with high
processing capabilities) as this avoids redundant computa-
tions. Although, this implies a certain degree of trust in
the coordinator, other community members may randomly
verify its actions. A simulation in a mobile environment has
also allowed us to identify the cases where this model would
be best applied by evaluating the stability of the community
as a function of the participants’ mobility.

Finally, the proposed framework can be generalised and
being applied to other application areas, e.g. peer-to-peer
networks and the establishment of virtual organisations
between different companies in the wired networks.

Acknowledgements
We gratefully acknowledge financial support from the EP-
SRC for AEDUS research grant GR/R95715/01 and from
the EU FP6 TrustCOM Project No. 01945. In addition,
we are indebted for many comments and suggestions to
our colleagues Naranker Dulay, Dan Chalmers, Leonidas
Lymberopoulos and Nilufer Tuptuk.

References

[1] Oxford Advanced Learner’s Dictionary. Oxford University
Press, December 1998.

[2] Y. Amir et al. Transis: A Communication Sytem for High
Availability. In 22nd IEEE Fault-Tolerant Computing Sym-
posium (FTCS), July 1992.

[3] M. Bartel et al. XML-Signature Syntax and Processing,
2002.

[4] K. P. Birman. The Process Group Approach to Reli-
able Distributed Computing. Communications of the ACM,
36(12):37–53, 1993.

[5] K. P. Birman et al. Lightweight Causal and Atomic Group
Multicast. ACM Trans. on Computer Systems, 9(3):272–314,
1991.

[6] K. P. Birman and T. A. Joseph. Exploiting Virtual Synchrony
in Distributed Systems. ACM Operating Systems Review,
21(5):123–138, 1987.

[7] L. Breslau et al. Advances in Network Simulation. IEEE
Computer, 33(5):59–67, May 2000.

[8] A. Cohen. The Symbolic Construction of Community. Tavi-
stock, London, 1985.

[9] Collins. Colins English Dictionary. Collins, 2000.
[10] N. Damianou et al. The Ponder Policy Specification Lan-

guage. In 2nd Int. Workshop on Policies for Distributed Sys-
tems and Networks (Policy’01), Bristol, U.K, 2001.

[11] D. Ferraiolo and R. Kuhn. Role-Based Access Controls. In
15th National Computer Security Conference. NIST, 1992.

[12] T. C. Group. Trusted Computing Platform Alliance (TCPA)
Main Specification, 2003.

[13] Y. Hu et al. Ariadne: A Secure On-demand Routing Protocol
for Ad Hoc Networks. In 8th ACM International Conference
on Mobile Computing and Networking, September 2002.

[14] Y. Hu et al. SEAD: Secure Efficient Distance Vector Rout-
ing in Mobile Wireless Ad-hoc Networks. In 4th IEEE

Workshop on Mobile Computing Systems and Applications
(WMCSA ’02), pages 3–13, June 2002.

[15] J. P. Hubaux et al. The Quest for Security in Mobile Ad Hoc
Networks. In ACM Symp. on Mobile Ad Hoc Networking
and Computing (MobiHOC), October 2001.

[16] D. Johnson and D. Maltz. Dynamic Source Routing in Ad
Hoc Wireless Networks. In Mobile Computing, volume 353.
Kluwer Academic Publishers, 1996.

[17] D. R. Kuhn. Mutual Exclusion of Roles as a Means of Imple-
menting Separation of Duty in Role-Based Access Control
Systems. In Second ACM Workshop on Role-Based Access
Control (RBAC 97), pages 23–30, 1997.

[18] M. Kumar and B. A. Shirazi. PICO: A Middleware Frame-
work for Pervasive Computing. IEEE Pervasive Computing,
2(3):72–79, 2003.

[19] D. Lee and H. Newby. The Problem of Sociology: An Intro-
duction to the Discipline. Unwin Hyman, London, 1983.

[20] C. Malloth et al. Phoenix: A Toolkit for Building Fault-
Tolerant, Distributed Applications in Large Scale. In Work-
shop on Parallel and Distributed Platforms in Industrial
Products, October 1995.

[21] S. Mäki et al. Robust Membership Management for Ad-hoc
Groups. In The 5th Nordic Workshop on Secure IT Systems
(NORSEC 2000), Reykjavik, Iceland, 2000.

[22] N. Minsky. Regularity-based Trust in Cyberspace. In 1st
Int. Conf. on Trust Management (iTrust), May 2003.

[23] N. H. Minsky and V. Ungureanu. Law-Governed Interac-
tion: A Coordination and Control Mechanism for Heteroge-
neous Distributed Systems. ACM Trans. on Software Engi-
neering and Methodology, 9(3):273–305, 2000.

[24] C. Perkins. Ad-hoc On-demand Distance Vector Routing. In
MILCOM ’97 panel on Ad Hoc Networks, November 1997.

[25] A. Perrig et al. SPINS: Security Protocols for Sensor Net-
works. Wireless Networks, 8(5), Sept. 2002.

[26] V. Renesse et al. Horus: A Flexible Group Communication
System. Communications of ACM, 39(4):76–83, 1996.

[27] R. L. Rivest and B. Lampson. SDSI – A Simple Distributed
Security Infrastructure. CRYPTO’96, 1996.

[28] R. Sandhu and E. Coyne. Role-Based Access Control Mod-
els. IEEE Computer, 29(8):38–47, 1996.

[29] N. Saxena et al. Admission Control in Peer-to-Peer: De-
sign and Performance Evaluation. In 1st ACM Workshop on
Security of Ad-hoc and Sensor Networks (SASN), Oct 2003.

[30] D. Shands et al. Secure Virtual Enclaves: Supporting Coali-
tion Use of Distributed Application Technologies. ACM
Trans. on Information and System Security, 4(2), May 2001.

[31] M. Smith. Community. Encyclopedia of Informal Educa-
tion, 2001.

[32] F. Stajano. The Resurrecting Duckling – What Next? In The
8th Int. Workshop on Security Protocols, 2000.

[33] F. Stajano and R. Anderson. The Resurrecting Duckling:
Security Issues for Ad-hoc Wireless Networks. In The 7th
Int. Workshop on Security Protocols, 1999.

[34] Y. Zhang and W. Lee. An Integrated Environment for Test-
ing Mobile Ad-Hoc Networks. In 3rd ACM Symp. on Mobile
Ad Hoc Networking and Computing (MobiHoc), June 2002.

[35] L. Zhou and Z. J. Haas. Securing Ad-Hoc Networks. IEEE
Network Magazine, 13(6), November/December 1999.

[36] P. Zimmermann. The Official PGP User’s Guide. MIT Press,
1995.

